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We define a class of differential operators 𝑇 which have infinitely many discontinuous points, and investigate the kernel of 𝑇 in
terms of operator theory. It is shown that the solutions of 𝑇 have exponential behavior, and the dimension of the kernel is given.

1. Introduction and Motivations

In the study of ergodicity of billiard flows, a very important
question concerns the hyperbolicity of these flows [1, 2].
Hyperbolicity is defined in the language of the linearized
system; this is the situation where trajectories close to a
given trajectory either diverge exponentially in time from
it or converge in the same way. The differential operator
𝑇 we study is associated with the linearization of the flow;
hence we ask whether solutions to 𝑇𝑓 = 0 have the
corresponding property. However, this is a paper not about
ergodic theory, but about the spectral theory [3, 4] of a class of
generalized differential operators which comes up naturally
in this context.

The first class of chaotic billiards was introduced by Sinai
in [5]; he proved the ergodicity of plenary dispersing billiards.
It tookmore than 30 years; until 2003, Bálint et al. were able to
prove ergodicity for multidimensional dispersing billiard in
[6]. However it remains an important and difficult question
to study hyperbolicity for nondispersing chaotic billiards, as
well as high dimensional Bunimovich type billiards. We plan
to give a self-contained approach using spectral theory to
study the asymptotic behavior of functions in the kernels
of a class of ordinary differential operators, motivated by
asymptotic behavior of Jacobian filed of certain dynamical
systems with singularities, especially billiards.

In this paper we construct a new class of generalized dif-
ferential operators associated with the impulsive equations.

The differential operators we deal with are second order,
matrix coefficient Schrödinger operators with infinitelymany
discontinuous points. These kinds of operators are more
general than those occurring in billiard flow, but include these
as a special case. In this case, the jump conditions correspond
to the reflections. We investigate the exponential behavior of
functions in the null-space of 𝑇 in terms of operator theory.
On this basis, we obtain the relation between theminimal and
maximal operators associated with the weighted operators
and then characterize the dimension of the kernel.The results
of this paper extend the result in the papers of Kauffman and
Zhang [7] andZhang andLian [8] tomore general case, which
gives somehope that the structure of the differential operators
may be used later to analyze some of the problems of greater
interest in multidimensional billiards.

This paper is divided into five sections: the first section
introduces the research background; the second section
describes the main results derived in this paper; they are
formulated in Theorems 7 and 8; in the third section, we
studied the differential operator 𝑇; then, in the last two
sections, we give the proof of the two main theorems.

2. Statement of the Main Results

Throughout this paper, we will let 0 = 𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑖
< ⋅ ⋅ ⋅

be a partition P of [0,∞), 𝑚 ≥ 1. Denote 𝐼
𝑖
= [𝑡
𝑖
, 𝑡
𝑖+1
),

for all 𝑖 = 0, 1, 2, . . .. Denote 𝑢 ⋅ V as the inner product of
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vectors 𝑢, V ∈ C𝑚. Let 𝐼 be a real interval; denote by 𝐿2(𝐼)
the Hilbert space of all measurable functions 𝑓 from 𝐼 toC𝑚,
such that

∫
𝐼

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2
𝑑𝑡 < ∞, (1)

with inner product

[𝑓, 𝑔] = ∫
𝐼

(𝑓 ⋅ 𝑔) 𝑑𝑡. (2)

Definition 1. Let 𝑙 be the differential expression on an interval
𝐼 defined by

𝑙𝑓 = −𝑓
󸀠󸀠
+ 𝐴 (𝑡) 𝑓, (3)

where 𝐴(𝑡) is a positive semidefinite symmetric real 𝑚 × 𝑚

matrix for each 𝑡 ∈ 𝑅+ and a continuous function of 𝑡.

Definition 2. Let 𝑙
𝑝
be a set of all sequences of complex

numbers {𝜉
𝑘
}
∞

𝑘=1
, which satisfy the condition ∑

∞

𝑘=1
|𝜉
𝑘
|
𝑝
<

∞. In this paper, every element of the sequence is a 𝑞-
dimensional column vector; we denote 𝑙𝑞𝑝 as a set, which
satisfy the following condition: 𝜉 = {𝜉

𝑘
}
∞

𝑘=1
∈ 𝑙
𝑞

𝑝; then 𝜉𝑘 = (𝜉
1

𝑘
,

𝜉
2

𝑘
, . . . , 𝜉

𝑞

𝑘
)
⊺ (𝑘 = 1, 2, . . .) and {𝜉𝑗

𝑘
}
∞

𝑘=1
∈ 𝑙
𝑝
, for 𝑗 = 1, . . . , 𝑞.

Definition 3. Let 𝐹([0,∞),C𝑚) denote the set of all mea-
surable functions 𝑓 from [0,∞) to C𝑚, such that 𝑓 is
differentiable (in distribution sense) almost everywhere. For
any 𝑓 ∈ 𝐹([0,∞),C𝑚), and the partitionP of [0,∞), define
the operator:

Λ : 𝐹 ([0,∞) ,C
𝑚
) 󳨀→ 𝑙

4𝑚

0

𝑓 󳨃󳨀→ 𝑎,

(4)

where 𝑎 = {𝑎
𝑖
}
∞

𝑖=1
and 𝑎
𝑖
= (𝑓(𝑡

𝑖
− 0), 𝑓

󸀠
(𝑡
𝑖
− 0), 𝑓(𝑡

𝑖
), 𝑓
󸀠
(𝑡
𝑖
))
𝑇

is a 4𝑚 × 1matrix.

Definition 4. Let

𝑇 : 𝐷 (𝑇) ⊂ 𝐿
2
([0,∞) ,C

𝑚
) 󳨀→ 𝐿

2
([0,∞) ,C

𝑚
) × 𝑙
2𝑚

0

(5)

be a linear operator defined as

𝑇𝑓 (𝑡) = (𝑔 (𝑡) , 𝑏) , (6)

𝑔 (𝑡) = 𝑙𝑓 (𝑡) , 𝑡 ∈ 𝐼
𝑖
, 𝑖 = 0, 1, 2, . . . , (7)

𝑏 = 𝑙̃𝑓 (8)

with domain

𝐷 (𝑇) = {𝑓 ∈ 𝐿
2
([0,∞) ,C

𝑚
) |

𝑓
󸀠
∈ 𝐴𝐶 (𝐼

𝑖
) ,

∞

∑

𝑖=0

󵄩󵄩󵄩󵄩𝑙𝑓
󵄩󵄩󵄩󵄩

2

2,𝐼𝑖
< ∞} ,

(9)

where 𝑙̃ = (𝐵(𝑡
𝑖
), −𝐼)Λ, and𝐴𝐶(𝐼

𝑖
) denotes the set of absolutely

continuous complex valued functions on 𝐼
𝑖
, and, for each 𝑖 ∈

N,

𝐵 (𝑡
𝑖
) = (

𝑈
𝑖
0

𝑂
𝑖
𝑈
𝑖

)

2𝑚×2𝑚

(10)

and the following holds:

(1) 𝑈∗
𝑖
𝑈
𝑖
= 𝐼, where 𝐼 is an identity𝑚 × 𝑚matrix;

(2) 𝑈∗
𝑖
𝑂
𝑖
is a symmetric operator on the R𝑚;

(3) there exists a universal constant 𝐶
1
> 0, such that for

any unit vector 𝑢 ∈ R𝑚, any 𝑡 > 0, and any 𝑖 ∈ N,

𝐶
1
≥ (𝑈
∗

𝑖
𝑂
𝑖
𝑢, 𝑢) ≥ 0, ‖𝐴 (𝑡)‖ < 𝐶1. (11)

Remark 5. InDefinition 4, (8) represents the jump conditions
at points {𝑡

𝑖
}. The range of 𝑏 is in 𝑙2𝑚

0
, as one can check that

𝑏 = 𝑙̃𝑓 = (𝐵 (𝑡
𝑖
) , −𝐼) Λ𝑓 = 𝐵 (𝑡

𝑖
) (

𝑓 (𝑡
𝑖
− 0)

𝑓
󸀠
(𝑡
𝑖
− 0)

) − (
𝑓 (𝑡
𝑖
)

𝑓
󸀠
(𝑡
𝑖
)
) .

(12)

Definition 6 (Ω
𝜖,𝛿

condition). Let 𝜖 > 0, 𝛿 > 0.Ω
𝜖,𝑖
be a set of

all vectors V ∈ R𝑚 such that

𝑈
∗

𝑖
𝑂
𝑖
V ⋅ V ≥ 𝜖|V|2. (13)

For any 𝑓 : [0,∞) → R𝑚, we say that 𝑓 ∈ Ω
𝜖,𝛿

if there exists
a subsequence {𝑖

𝑘
} ⊂ N with

lim
𝑛→∞

inf 1
𝑛
∑

𝑘≤𝑛

(𝑡
𝑖𝑘
− 𝑡
𝑖𝑘−1

) ≥ 𝛿, (14)

such that 𝑓(𝑡
𝑖𝑘
− 0) ∈ Ω

𝜖,𝑖𝑘
for all 𝑖

𝑘
, 𝑘 ∈ N.

Note that any function 𝑓 ∈ Ω
𝜖,𝛿

has a certain nice
property that

𝑈
∗

𝑖𝑘
𝑂
𝑖𝑘

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2
(𝑡
𝑖𝑘
− 0) ≥ 𝜖

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑡
𝑖𝑘
− 0)

󵄨󵄨󵄨󵄨󵄨

2 (15)

for a subsequence 𝑡
𝑖𝑘
which are not too close to each other.

The main results we derived are Theorems 7 and 8.

Theorem 7. Let 𝑓 ∈ ker(𝑇), and there exist 𝛿 > 0, 𝜖 > 0 such
that 𝑓 ∈ Ω

𝜖,𝛿
for interval 𝐼. Then one has the following.

(1) If |𝑓| is nonincreasing, then there exists 𝛼
1
> 0, such

that, for all 𝜆 ∈ (0, 𝛼
1
) and 𝑡 ∈ 𝐼,

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑒
−𝜆𝑡 󵄨󵄨󵄨󵄨𝑓 (0)

󵄨󵄨󵄨󵄨 .
(16)

(2) If |𝑓| is nondecreasing, then there exists 𝛼
2
> 0, such

that, for all 𝜆 ∈ (0, 𝛼
2
) and 𝑡 ∈ 𝐼,

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 ≥ 𝑒
𝜆𝑡 󵄨󵄨󵄨󵄨𝑓 (0)

󵄨󵄨󵄨󵄨 .
(17)

Next theorem characterizes the dimension of the kernel
of 𝑇.
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Theorem 8. There exist exactly 𝑚 linearly independent
bounded solutions to the equation 𝑇𝑓 = 0.

Example 9. Consider the one-dimensional case; that is, 𝑚 =

1. Let 𝑈
𝑖
= 1, 𝑂

𝑖
be a real number, and let 𝐴(𝑡) = 𝑎(𝑡) be a

continuous function of 𝑡 and satisfy the following conditions:
𝑎(𝑡) ≥ 0, ∃𝐶

1
> 0, s.t., ‖𝑎(𝑡)‖ < 𝐶

1
; then the equation 𝑇𝑓 = 0

becomes

𝑓
󸀠󸀠
(𝑡) = 𝑎 (𝑡) 𝑓,

𝑓 (𝑡
𝑖
− 0) − 𝑓 (𝑡

𝑖
) = 0,

𝑓
󸀠
(𝑡
𝑖
− 0) + 𝑂

𝑖
𝑓 (𝑡
𝑖
− 0) − 𝑓

󸀠
(𝑡
𝑖
) = 0.

(18)

It describes the movement of the billiard particle in a smooth
table; when it reaches the border, its position is not changed,
but the direction is changed. Theorems 7 and 8 hold for this
special equation; that is, the solutions of (18) have exponential
behavior, and there exists exactly one linearly independent
bounded solution.

3. Characterization of the Generalized
Differential Operator 𝑇

In this section, we give a characterization on the generalized
differential operator 𝑇.

Definition 10. Define an operator𝑊 : 𝐷(𝑊) ⊂ 𝑙
2𝑚

2
→ 𝑙
2𝑚

2
,

such that

𝑊(𝑎) = 𝑎, ∀𝑎 ∈ 𝑙
2𝑚

2
,

𝑎
𝑖
= 𝑄
𝑖
𝑎
𝑖
− 𝑋
𝑖
𝑎
𝑖+1
,

(19)

where, for 𝑖 = 1, 2, . . . , 𝑄
𝑖
and 𝑋

𝑖
are 2𝑚 × 2𝑚 nonsingular

matrices with ‖ 𝑄
𝑖
‖
∞
≤ 𝐶, ‖ 𝑋

𝑖
‖
∞
≤ 𝐶 for some 𝐶 > 0, with

𝐷 (𝑊) = {𝑎 ∈ 𝑙
2𝑚

2
| 𝑊 (𝑎) ∈ 𝑙

2𝑚

2
} . (20)

Lemma 11. 𝑊 is surjective.

Proof. 𝑊 can be written as

𝑊 =(

𝑄
1
−𝑋
1

0 0 ⋅ ⋅ ⋅

0 𝑄
2

−𝑋
2

0 ⋅ ⋅ ⋅

0 0 𝑄
3

−𝑋
3
⋅ ⋅ ⋅

...
...

...
... d

). (21)

Since 𝑄
𝑖
and 𝑋

𝑖
are nonsingular matrices, so 𝑊 is an

invertible matrix. For any 𝑎 ∈ 𝑙
2𝑚

2
, let 𝑎 = 𝑊

−1
𝑎. Then we

can check that𝑊(𝑎) = 𝑎 and 𝑎 ∈ 𝑙2𝑚
2
.

In order to study the operator 𝑇, we first introduce an
operator 𝐿 which was studied in [7, 9] and review some
properties of 𝐿.

Definition 12. Let 𝐿 be a differential operator defined by

𝐿𝑓 (𝑡) = 𝑙𝑓 (𝑡) , ∀𝑡 ∈ 𝐼
𝑖
∩ 𝐼, 𝑖 = 0, 1, 2, . . . , (22)

satisfying the following boundary conditions: for any 𝑖 ∈ N,

(𝑓 (𝑡
𝑖
) , 𝑓
󸀠
(𝑡
𝑖
))
𝑇

= 𝐵 (𝑡
𝑖
) (𝑓 (𝑡

𝑖
− 0) , 𝑓

󸀠
(𝑡
𝑖
− 0))
𝑇

, (23)

where 𝑈
𝑖
, 𝑂
𝑖
are the same as in the definition of 𝑇.

Lemma 13 (see [7]). Let 𝐿
𝑀
be themaximal operator of 𝐿, and

let 𝐿
0
be the minimal operator. Then the adjoint operator of 𝐿

0

satisfies

𝐿
∗

0
= 𝐿
𝑀
. (24)

Lemma 14 (see [7]). For all 𝑓 in the domain of 𝐿
0
,

[𝐿𝑓, 𝑓] ≥ 𝜂
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
, (25)

where 𝜂 is a universal positive constant.

Lemma 15 (see [9]). Let 𝐵 be a densely defined closed operator
on a Hilbert space. Denote the range of 𝐵 by R(𝐵) and the
nullspace of 𝐵 byN(𝐵). Then

R(𝐵
∗
)
⊥
=N (𝐵) . (26)

Based on all the above properties for operator𝐿, we obtain
the following result.

Lemma 16. Let 𝑔 ∈ 𝐿
2
([0,∞),C𝑚). Then there exists 𝑓 ∈

𝐷(𝑇) such that

𝑇𝑓 (𝑡) = (𝑔, 0) . (27)

Proof. By Lemma 14, we know that N(𝐿
0
) = {0}. From

Lemmas 13 and 15, it is easy to show thatR(𝐿
𝑀
)
⊥
= N(𝐿

0
).

So 𝐿
𝑀
is surjective.Then we have, for all 𝑔 ∈ 𝐿

2
([0,∞),C𝑚),

∃𝑓 ∈ 𝐷(𝐿
𝑀
), such that 𝐿

𝑀
𝑓 = 𝑔. But by the definition of 𝐿,

we know that 𝑇𝑓 = (𝐿
𝑀
𝑓, 0), which gives the result.

Lemma 17. Assuming that there exists 𝑑 > 0, such that

𝑡
𝑖+1
− 𝑡
𝑖
≤ 𝑑, ∀𝑖 ∈ N, (28)

then the range of 𝑇 is a subset ofH := 𝐿
2
([0,∞),C𝑚) × 𝑙2𝑚

2
.

Proof. Since 𝑓 ∈ 𝐿
2
([0,∞),C𝑚) and 𝑙𝑓 ∈ 𝐿

2
([0,∞),C𝑚), so

(
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2,𝐼0

,
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2,𝐼1

, . . .) ∈ 𝑙
1
,

(
󵄩󵄩󵄩󵄩𝑙𝑓
󵄩󵄩󵄩󵄩2,𝐼0

,
󵄩󵄩󵄩󵄩𝑙𝑓
󵄩󵄩󵄩󵄩2,𝐼1

, . . .) ∈ 𝑙
1
.

(29)

There exists 𝐾 > 0, such that, on each 𝐼
𝑖
,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩∞,𝐼𝑖

+
󵄩󵄩󵄩󵄩󵄩
𝑓
󸀠󵄩󵄩󵄩󵄩󵄩∞,𝐼𝑖

≤ 𝐾 (
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩2,𝐼𝑖

+
󵄩󵄩󵄩󵄩𝑙𝑓
󵄩󵄩󵄩󵄩2,𝐼𝑖

) . (30)

Therefore {𝑓(𝑡
𝑖
− 0)}

∞

𝑖=1
, {𝑓(𝑡

𝑖
− 0)
󸀠
}
∞

𝑖=1
, {𝑓(𝑡

𝑖
)}
∞

𝑖=0
, and

{𝑓(𝑡
󸀠

𝑖
)}
∞

𝑖=0
are all in 𝑙𝑚

2
. It follows that

{𝑈
𝑖
𝑓 (𝑡
𝑖
− 0) − 𝑓 (𝑡

𝑖
)}
∞

𝑖=1
∈ 𝑙
𝑚

2
,

{𝑈
𝑖
𝑓
󸀠
(𝑡
𝑖
− 0) + 𝑂

𝑖
𝑓 (𝑡
𝑖
− 0) − 𝑓

󸀠
(𝑡
𝑖
)}
∞

𝑖=1
∈ 𝑙
𝑚

2
.

(31)

Thus the range of 𝑇 is contained in 𝐿
2
([0,∞),C𝑚) × 𝑙2𝑚

2
.
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Next we recall Gronwall’s inequality, which will be used
in our proof that 𝑇 is subjective below.

Lemma 18 (Gronwall’s inequality). Let 𝑓(𝑡) > 0 be continu-
ous on [𝑎, 𝑏] and satisfy

𝑓 (𝑡) ≤ 𝛼 + ∫

𝑡

𝑎

𝛽 (𝑠) 𝑓 (𝑠) 𝑑𝑠, (32)

where 𝛼 > 0 and 𝛽 > 0 is continuous on [𝑎, 𝑏]. Then

𝑓 (𝑡) ≤ 𝛼 exp∫
𝑡

𝑎

𝛽 (𝑠) 𝑑𝑠, (33)

for 𝑡 ∈ [𝑎, 𝑏].

Proposition 19. 𝑇 : 𝐿
2
([0,∞),C𝑚) → H is surjective.

Proof. Let (𝑔, 𝑥, 𝑦) ∈H. By Lemma 16, there exists𝑓 ∈ 𝐷(𝑇),
such that

𝑇𝑓 (𝑡) = (𝑔, 0, 0) . (34)

We just need to find a ℎ ∈ 𝐷(𝑇), such that 𝑇ℎ = (0, 𝑥, 𝑦). By
Definition 4, that is,

ℎ
󸀠󸀠
(𝑡) = 𝐴 (𝑡) ℎ (𝑡) 𝑡 ∈ 𝐼

𝑖
, 𝑖 = 0, 1, 2, . . . ,

𝑥
𝑖
= 𝑈
𝑖
ℎ (𝑡
𝑖
− 0) − ℎ (𝑡

𝑖
) , 𝑖 ∈ N,

𝑦
𝑖
= 𝑈
𝑖
ℎ
󸀠
(𝑡
𝑖
− 0) + 𝑂

𝑖
ℎ (𝑡
𝑖
− 0) − ℎ

󸀠
(𝑡
𝑖
) , 𝑖 = 0, 1, 2, . . . .

(35)

For each 𝑖 ∈ N, let 𝐹
𝑖
(𝑡) be the fundamental solution matrix

of

𝑑

𝑑𝑡
(
ℎ (𝑡)

ℎ
󸀠
(𝑡)
) = (

0 𝐼

𝐴 (𝑡) 0
)(

ℎ (𝑡)

ℎ
󸀠
(𝑡)
) , 𝑡 ∈ 𝐼

𝑖
; (36)

with 𝐹
𝑖
(𝑡
𝑖
) = 𝐼. Since we assumed that |𝐼

𝑖
| ≤ 𝑑, for all 𝑖 ∈ N, so

there exists a uniform constant 𝐶
𝑑
, such that ‖ 𝐹

𝑖
(𝑡)‖
∞
≤ 𝐶
𝑑
.

By Lemma 11, we choose𝑄
𝑖
= (
𝑈𝑖 0

𝑂𝑖 𝑈𝑖
), and𝑋−1

𝑖
= 𝐹
𝑖
(𝑡
𝑖+1
−0),

then we know that there exist 𝑎, 𝑏 ∈ 𝑙𝑚
2
, such that

𝑊(𝑎, 𝑏)
𝑇
= (𝑥, 𝑦)

𝑇
. (37)

That is,

(
𝑥
𝑖

𝑦
𝑖

) = 𝑄
𝑖
(
𝑎
𝑖

𝑏
𝑖

) − 𝑋
𝑖
(
𝑎
𝑖+1

𝑏
𝑖+1

) . (38)

Letting ℎ : [0,∞) → C𝑚 satisfy ℎ󸀠 ∈ 𝐴𝐶(𝐼
𝑖
) and

ℎ (𝑡
𝑖
− 0) = 𝑎

𝑖
, ℎ

󸀠
(𝑡
𝑖
− 0) = 𝑏

𝑖
, (39)

then we have

(
𝑥
𝑖

𝑦
𝑖

) = 𝑄
𝑖
(
ℎ (𝑡
𝑖
− 0)

ℎ
󸀠
(𝑡
𝑖
− 0)

) − 𝑋
𝑖
(
ℎ (𝑡
𝑖+1
− 0)

ℎ
󸀠
(𝑡
𝑖+1
− 0)

) . (40)

Let
ℎ (𝑡
𝑖
) = 𝑈
𝑖
ℎ (𝑡
𝑖
− 0) − 𝑥

𝑖
,

ℎ
󸀠
(𝑡
𝑖
) = 𝑈
𝑖
ℎ
󸀠
(𝑡
𝑖
− 0) + 𝑂

𝑖
ℎ (𝑡
𝑖
− 0) − 𝑦

𝑖
,

(41)

and then we get
𝑥
𝑖
= 𝑈
𝑖
ℎ (𝑡
𝑖
− 0) − ℎ (𝑡

𝑖
) ,

𝑦
𝑖
= 𝑈
𝑖
ℎ
󸀠
(𝑡
𝑖
− 0) + 𝑂

𝑖
ℎ (𝑡
𝑖
− 0) − ℎ

󸀠
(𝑡
𝑖
) ,

(
ℎ (𝑡
𝑖+1
− 0)

ℎ
󸀠
(𝑡
𝑖+1
− 0)

) = 𝑋
−1

𝑖
(
ℎ (𝑡
𝑖
)

ℎ
󸀠
(𝑡
𝑖
)
)

= 𝐹
𝑖
(𝑡
𝑖+1
− 0)(

ℎ (𝑡
𝑖
)

ℎ
󸀠
(𝑡
𝑖
)
) .

(42)

It follows that 𝑇ℎ = (0, 𝑥, 𝑦).
In the following, it is enough to show that ℎ ∈

𝐿
2
([0,∞),C𝑚). On each 𝐼

𝑖
, we have

𝑑

𝑑𝑡
(
ℎ (𝑡)

ℎ
󸀠
(𝑡)
) = (

0 𝐼

𝐴 (𝑡) 0
)(

ℎ (𝑡)

ℎ
󸀠
(𝑡)
) . (43)

Denote

𝐵 (𝑡) = (
0 𝐼

𝐴 (𝑡) 0
) , 𝑋 (𝑡) = (

ℎ (𝑡)

ℎ
󸀠
(𝑡)
) . (44)

Then
𝑋
󸀠
(𝑡) = 𝐵 (𝑡)𝑋 (𝑡) . (45)

By hypothesis of𝐴(𝑡), we know that ∃𝐾, such that ‖ 𝐵(𝑡)‖
∞
≤

𝐾 and |𝐼
𝑖
| ≤ 𝑑; thus on each 𝐼

𝑖

∫

𝑡

𝑡𝑖

𝑋
󸀠
(𝑠) 𝑑𝑠 = ∫

𝑡

𝑡𝑖

𝐵 (𝑠)𝑋 (𝑠) 𝑑𝑠 = 𝑋 (𝑡) − 𝑋 (𝑡
𝑖
) ,

‖𝑋 (𝑡)‖∞,𝐼𝑖
≤
󵄩󵄩󵄩󵄩𝑋 (𝑡𝑖)

󵄩󵄩󵄩󵄩∞ + ∫

𝑡

𝑡𝑖

‖𝐵 (𝑠)‖∞‖𝑋 (𝑠)‖∞𝑑𝑠.

(46)

By Gronwall’s inequality,

‖𝑋 (𝑡)‖∞,𝐼𝑖
≤
󵄩󵄩󵄩󵄩𝑋 (𝑡𝑖)

󵄩󵄩󵄩󵄩∞ exp∫
𝑡

𝑡𝑖

‖𝐵 (𝑠)‖∞𝑑𝑠 ≤
󵄩󵄩󵄩󵄩𝑋 (𝑡𝑖)

󵄩󵄩󵄩󵄩∞𝑒
𝑑𝐾
.

(47)
Combining all these facts together, we get

‖𝑋 (𝑡)‖2,𝐼𝑖
≤ √𝑑𝑚

󵄩󵄩󵄩󵄩𝑋 (𝑡𝑖)
󵄩󵄩󵄩󵄩∞𝑒
𝑑𝐾
. (48)

Therefore

‖ℎ‖
2

2,[0,∞)
≤ ‖𝑋 (𝑡)‖

2

2,[0,∞)
≤

∞

∑

𝑖=0

‖𝑋 (𝑡)‖
2

2,𝐼𝑖

≤ 𝑑𝑚𝑒
2𝑑𝐾

∞

∑

𝑖=0

󵄩󵄩󵄩󵄩𝑋 (𝑡𝑖)
󵄩󵄩󵄩󵄩

2

∞

≤ 𝑑𝑚𝑒
2𝑑𝐾

∞

∑

𝑖=0

(
󵄨󵄨󵄨󵄨ℎ (𝑡𝑖)

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠
(𝑡
𝑖
)
󵄨󵄨󵄨󵄨󵄨

2

) < ∞.

(49)

Thus 𝑓 + ℎ ∈ 𝐷(𝑇) satisfies
𝑇 (𝑓 + ℎ) (𝑡) = (𝑔 (𝑡) , 𝑥, 𝑦) . (50)

This completes the proof of Proposition 19.
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4. Exponential Behavior of Solutions:
Proof of Theorem 7

In this section, we give the proof ofTheorem 7 by considering
the exponential behavior of the null space of 𝑇.

For any 𝑓 ∈ ker(𝑇), we denote

𝑘
𝑓 (𝑡) =

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

󸀠

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

=
𝑓
󸀠
⋅ 𝑓

𝑓 ⋅ 𝑓
. (51)

Note that |𝑓| = √(𝑓 ⋅ 𝑓), so

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

󸀠
= (√(𝑓 ⋅ 𝑓))

󸀠

=
(𝑓 ⋅ 𝑓)

󸀠

2√𝑓 ⋅ 𝑓
=
2𝑓
󸀠
⋅ 𝑓

2√𝑓 ⋅ 𝑓
=
𝑓
󸀠
⋅ 𝑓

√𝑓 ⋅ 𝑓
.

(52)

Lemma 20. Let 𝑓 ∈ Ω
𝜖,𝛿

for interval 𝐼. Then there exists a
constant 𝑟 > 0, and 𝜆 = 𝜆

𝜖,𝛿
> 0, such that for any 𝑡 > 𝑟

1

𝑡
∫
[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑘
𝑓
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 > 𝜆. (53)

Proof. Assume that there exists {𝑖
𝑘
} ⊂ N, such that

lim
𝑛→∞

inf 1
𝑛
∑

𝑘≤𝑛

(𝑡
𝑖𝑘
− 𝑡
𝑖𝑘−1

) ≥ 𝛿, (54)

since 𝑓 ∈ ker(𝑇) and 𝑓 ∈ Ω
𝜖,𝛿
, so

(𝑓
󸀠
⋅ 𝑓) (𝑡

𝑖𝑘
) − (𝑓

󸀠
⋅ 𝑓) (𝑡

𝑖𝑘
− 0)

= 𝑈
𝑖𝑘
𝑂
𝑖𝑘

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2
(𝑡
𝑖𝑘
− 0) ≥ 𝜖

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2
(𝑡
𝑖𝑘
− 0) .

(55)

This implies that

󵄨󵄨󵄨󵄨󵄨
𝑘
𝑓
(𝑡
𝑖𝑘
) − 𝑘
𝑓
(𝑡
𝑖𝑘
− 0)

󵄨󵄨󵄨󵄨󵄨
=

𝑈
𝑖𝑘
𝑂
𝑖𝑘

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

2
(𝑡
𝑖𝑘
− 0)

𝑓 ⋅ 𝑓
≥ 𝜖. (56)

Thus

1

𝑡
∫
[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑘
𝑓
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 >

1

𝑡
∑

𝑡𝑖
𝑘
<𝑡

(𝑘
𝑓
(𝑡
𝑖𝑘
) − 𝑘
𝑓
(𝑡
𝑖𝑘
− 0)) >

𝜖

𝑡
𝑏
𝑡
,

(57)

where 𝑏
𝑡
is the number of 𝑡

𝑖𝑘
, such that 𝑡

𝑖𝑘
< 𝑡. But we know

that

lim
𝑡→∞

inf
𝑏
𝑡

𝑡
≥ 𝛿, (58)

so there exists 𝑟 > 0, such that, for any 𝑡 > 𝑟,

1

𝑡
∫
[0,𝑡]

󵄨󵄨󵄨󵄨󵄨
𝑘
𝑓
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 > 𝜆, (59)

where 𝜆 = 𝛿𝜖.

Now we are ready to proveTheorem 7.

Proof. By the definition of 𝑘
𝑓
, we know that

𝑘
𝑓 (𝑡) =

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

󸀠

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨

= (ln 󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨)
󸀠

(𝑡) . (60)

Thus

ln 󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 = ∫

𝑡

0

𝑘
𝑓 (𝑠) 𝑑𝑠 + 𝑐,

󵄨󵄨󵄨󵄨𝑓
󵄨󵄨󵄨󵄨 (𝑡) = 𝑐𝑒

∫
𝑡

0
𝑘𝑓(𝑠)𝑑𝑠 =

󵄨󵄨󵄨󵄨𝑓 (0)
󵄨󵄨󵄨󵄨 𝑒
∫
𝑡

0
𝑘𝑓(𝑠)𝑑𝑠.

(61)

(1) Since |𝑓| is nonincreasing, then 𝑘
𝑓
(𝑡) ≤ 0; by Lemma 20,

we have

∫

𝑡

0

𝑘
𝑓
(𝑠) 𝑑𝑠 = −∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝑘
𝑓
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 < −𝜆𝑡, (62)

so

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑒
−𝜆𝑡 󵄨󵄨󵄨󵄨𝑓 (0)

󵄨󵄨󵄨󵄨 .
(63)

(2) Since |𝑓| is nondecreasing, then 𝑘
𝑓
(𝑡) ≥ 0; by Lemma 20,

we have

∫

𝑡

0

𝑘
𝑓
(𝑠) 𝑑𝑠 = ∫

𝑡

0

󵄨󵄨󵄨󵄨󵄨
𝑘
𝑓
(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠 > 𝜆𝑡, (64)

so

󵄨󵄨󵄨󵄨𝑓 (𝑡)
󵄨󵄨󵄨󵄨 ≥ 𝑒
𝜆𝑡 󵄨󵄨󵄨󵄨𝑓 (0)

󵄨󵄨󵄨󵄨 .
(65)

5. Proof of Theorem 8

In this section,we give the proof ofTheorem 8. First we obtain
the relation between the minimal and maximal operators
associated with the weighted operators𝑀

𝐼
and then charac-

terize the dimension of the kernel of 𝑇.

Definition 21. Let𝐿 be defined asDefinition 12, ⟨𝑡⟩ = √𝑡2 + 1.
Define

𝑀
𝐼
= ⟨𝑡⟩ 𝐿 ⟨𝑡⟩ , ∀𝑡 ∈ 𝐼

𝑖
∩ 𝐼, 𝑖 = 0, 1, 2, . . . . (66)

Definition 22. Let the maximal operator 𝑀
𝑀,𝐼

associated
with𝑀

𝐼
be the restriction of𝑀

𝐼
on𝐷
𝑀
, with

𝐷
𝑀
= {𝑓 ∈ 𝐿

2
(𝐼) ∩ 𝐷 (𝐿) | 𝑀𝐼 (𝑓) ∈ 𝐿

2
(𝐼) ,

𝑓
󸀠
∈ 𝐴𝐶 (𝐼

𝑖
∩ 𝐼) , ∀𝑖 = 0, 1, 2, . . .} .

(67)

Let 𝐷
𝐼
be the set of all 𝑓 ∈ 𝐷

𝑀
, such that 𝑓 ∈ 𝐶

∞
(𝐼
𝑖
∩ 𝐼),

for all 𝑖 ∈ N and 𝑓 vanishes in a neighborhood of both “end
points” of 𝐼 and supp(𝑓) is compact. Denote 𝑀

𝐼
to be 𝑀

𝐼

restricting on 𝐷
𝐼
; then we define the minimal operator𝑀

0,𝐼

to be the smallest closed operator in 𝐿2(𝐼) which extends𝑀
𝐼

and denote by𝐷
0
the domain of𝑀

0,𝐼
.
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Lemma 23. If𝑀
𝐼
is defined as in Definition 21 on 𝐼, then

𝑀
0,𝐼
⊆ 𝑀
𝑀,𝐼
, (68)

and, for any𝑓 in the domain of𝑀
0,𝐼
, we have𝑓(0) = 0, 𝑓󸀠(0) =

0. If 𝐼 is compact, say 𝐼 = [0,T] ⊂ [0,∞), then for any𝑓 ∈ 𝐷
0
,

also 𝑓(T) = 𝑓󸀠(T) = 0.

Proof. Let {𝑓
𝑛
} be a Cauchy sequence of functions from 𝐷

𝐼

converging to 𝑓 with 𝑀
0,𝐼
𝑓
𝑛
converging to 𝑀

0,𝐼
𝑓 in 𝐿2(𝐼).

Then on any compact interval [𝛼, 𝛽] ⊆ 𝐼
𝑖
, 𝑡 ≥ 0, 𝑓

𝑛
and 𝑓󸀠

𝑛

both converge uniformly; therefore𝑓󸀠󸀠
𝑛
also converges in each

𝐿
2
(𝐼
𝑖
), so𝑓󸀠󸀠

𝑛
converges in 𝐿2(𝐼). It follows that𝑓󸀠 is absolutely

continuous on each 𝐼
𝑖
, and 𝑓󸀠(0) = 0, if 𝐼 = [0,T]; then also

𝑓
󸀠
(T) = 0. Since 𝑓(𝑖)

𝑛
converges to 𝑓(𝑖) for 𝑖 = 0, 1, 2, we see

that𝑀
0,𝐼
𝑓 = 𝑀

𝐼
𝑓,𝑀
𝐼
𝑓 is in 𝐿2, and so 𝑓 ∈ 𝐷

𝑀,𝐼
.

Definition 24 (see [10]). A densely defined operator 𝑆 on a
Hilbert space is said to be symmetric if [𝑆𝑓, 𝑔] = [𝑓, 𝑆𝑔] for
all 𝑓, 𝑔 in the domain of 𝑆.

Lemma 25. 𝑀
0,𝐼

is a symmetric operator, for 𝐼 = [0,T] or
𝐼 = [0,∞).

Proof. For any 𝑓, 𝑔 in the domain of𝑀
0,𝐼
, by Lemma 23, we

know that 𝑓(0) = 𝑓󸀠(0) = 0 and 𝑔(0) = 𝑔󸀠(0) = 0. Without
loss of generality, we suppose that 𝑓 and 𝑔 are real vector
valued functions:

[𝑀
𝐼
𝑓, 𝑔] − [𝑓,𝑀

𝐼
𝑔]

= − [⟨𝑡⟩ (⟨𝑡⟩ 𝑓)
󸀠󸀠
, 𝑔] + [⟨𝑡⟩ 𝐴 ⟨𝑡⟩ 𝑓, 𝑔]

+ [𝑓, ⟨𝑡⟩ (⟨𝑡⟩ 𝑔)
󸀠󸀠
] − [𝑓, ⟨𝑡⟩ 𝐴 ⟨𝑡⟩ 𝑔]

= −∫
𝐼

(⟨𝑡⟩ (⟨𝑡⟩ 𝑓)
󸀠󸀠
⋅ 𝑔 − 𝑓 ⋅ ⟨𝑡⟩ (⟨𝑡⟩ 𝑔)

󸀠󸀠
) (𝑡) 𝑑𝑡

+ [⟨𝑡⟩
2
𝐴𝑓, 𝑔] − [𝑓, ⟨𝑡⟩

2
𝐴𝑔]

= −[(⟨𝑡⟩ 𝑓)
󸀠
⋅ ⟨𝑡⟩ 𝑔 − ⟨𝑡⟩ 𝑓 ⋅ (⟨𝑡⟩ 𝑔)

󸀠
]
󵄨󵄨󵄨󵄨󵄨𝐼

= −[⟨𝑡⟩
2
𝑓
󸀠
⋅ 𝑔 − ⟨𝑡⟩

2
𝑓 ⋅ 𝑔
󸀠
]
󵄨󵄨󵄨󵄨󵄨𝐼
.

(69)
If 𝐼 is a compact interval [0,T], then by the fact that

𝑓 (T) = 𝑓
󸀠
(T) = 𝑔 (T) = 𝑔

󸀠
(T) = 0, (70)

we get [𝑀
𝐼
𝑓, 𝑔] = [𝑓,𝑀

𝐼
𝑔].

If 𝐼 = [0,∞), by hypotheses on the boundary conditions
and 𝑈∗

𝑖
𝑈
𝑖
= 𝐼, we have

[𝑓
󸀠
⋅ 𝑔 − 𝑓 ⋅ 𝑔

󸀠
] (𝑡
𝑖
)

= [𝑂
𝑖
𝑓 (𝑡
𝑖
− 0) + 𝑈

𝑖
𝑓
󸀠
(𝑡
𝑖
− 0)]

⋅ 𝑈
𝑖
𝑔 (𝑡
𝑖
− 0) − 𝑈

𝑖
𝑓 (𝑡
𝑖
− 0)

⋅ [𝑂
𝑖
𝑔 (𝑡
𝑖
− 0) + 𝑈

𝑖
𝑔
󸀠
(𝑡
𝑖
− 0)]

= [𝑓
󸀠
⋅ 𝑔 − 𝑓 ⋅ 𝑔

󸀠
] (𝑡
𝑖
− 0) .

(71)

Thus we get

[𝑀
𝐼
𝑓, 𝑔] − [𝑓,𝑀

𝐼
𝑔]

= −

∞

∑

𝑖=1

⟨𝑡⟩
2
{[𝑓
󸀠
⋅ 𝑔−𝑓 ⋅ 𝑔

󸀠
] (𝑡
𝑖
)−[𝑓
󸀠
⋅ 𝑔 − 𝑓 ⋅ 𝑔

󸀠
] (𝑡
𝑖
− 0)}

= 0.

(72)

That is, [𝑀
𝐼
𝑓, 𝑔] = [𝑓,𝑀

𝐼
𝑔]. So by Definition 24, 𝑀

0,𝐼
is

symmetric.

Lemma 26. For ℎ ∈ 𝐿
2
(𝐼), the equation 𝑀

𝐼
𝑓 = ℎ has a

solution 𝑓 in the domain of𝑀
0,𝐼

if and only if ℎ is orthogonal
to all solutions of𝑀

𝑀,𝐼
𝑔 = 0.

Proof. Assume that, for ℎ ∈ 𝐿2(𝐼), the equation𝑀
𝐼
𝑓 = ℎ has

a solution 𝑓 ∈ 𝐷
0
. For any 𝑔 ∈ 𝐷

𝑀
, such that𝑀

𝐼
𝑔 = 0, we

have

[ℎ, 𝑔] = [𝑀
0,𝐼
𝑓, 𝑔] = [𝑓,𝑀

𝐼
𝑔] = 0. (73)

Conversely, if ℎ is orthogonal to all solutions of𝑀
𝑀,𝐼
𝑔 = 0,

choose 𝑓 such that𝑀
𝐼
𝑓 = ℎ and 𝑓(𝛼) = 𝑓󸀠(𝛼) = 0. We need

to show that 𝑓(𝛽) = 𝑓󸀠(𝛽) = 0. Using the same calculation as
in the proof of Lemma 25, we get

[𝑀
𝐼
𝑓, 𝑔] − [𝑓,𝑀

𝐼
𝑔] = 𝑓 (𝛽) ⋅ 𝑔

󸀠
(𝛽) − 𝑓

󸀠
(𝛽) ⋅ 𝑔 (𝛽) .

(74)

On the other hand, Consider

[𝑀
𝐼
𝑓, 𝑔] − [𝑓,𝑀

𝑀,𝐼
𝑔] = [𝑀

𝐼
𝑓, 𝑔] = [ℎ, 𝑔] = 0. (75)

Thus we get that 𝑓(𝛽) ⋅ 𝑔󸀠(𝛽) − 𝑓󸀠(𝛽) ⋅ 𝑔(𝛽) = 0 for any 𝑔
satisfying𝑀

𝐼
𝑔 = 0. Choose 𝑔 ∈ 𝐷

𝑀
, s.t. 𝑔(𝛽) ̸= 0, but 𝑔󸀠(𝛽) =

0; then we get 𝑓󸀠(𝛽) = 0; similarly, we can get 𝑓(𝛽) = 0.

Corollary 27. 𝐼 = [𝛼, 𝛽] ⊂ [0,∞); letting 𝜏 denote the
restriction of𝑀

𝐼
to domain

{𝑓 ∈ 𝐷
𝑀 (𝐼) : 𝑓 (𝛼) = 𝑓

󸀠
(𝛼) = 0, 𝑓 (𝛽) = 𝑓

󸀠
(𝛽) = 0} ,

(76)

then 𝜏 = 𝑀
0,𝐼
.

Based on all the above results, we can derive the relation
between the operators𝑀

0,𝐼
and𝑀

𝑀,𝐼
.

Proposition 28. If𝑀
𝐼
is defined as in Definition 21 and 𝐼 =

[𝛼, 𝛽] ⊂ [0,∞), then

𝑀
∗

0,𝐼
= 𝑀
𝑀,𝐼
. (77)

Proof. Since 𝑀
0,𝐼

is the smallest closed extension of 𝑀
𝐼
, it

follows that

𝑀
∗

0,𝐼
= 𝑀
∗

𝐼
. (78)
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As for any 𝑓 ∈ 𝐷
𝐼
(then 𝑓 ∈ 𝐷

0
) and 𝑔 ∈ 𝐷

𝑀,𝐼
, [𝑀
𝐼
𝑓, 𝑔] =

[𝑓,𝑀
𝑀,𝐼
𝑔], then

𝑀
𝑀,𝐼

⊆ 𝑀
∗

𝐼
= 𝑀
∗

0,𝐼
. (79)

Let 𝑓 be in the domain of𝑀∗
0,𝐼
. Since𝑀

𝑀,𝐼
is surjective for

compact 𝐼, so there is a function 𝑔 in𝐷
𝑀,𝐼

such that𝑀
𝑀,𝐼
𝑔 =

𝑀
∗

0,𝐼
𝑓; thus

𝑀
∗

0,𝐼
(𝑓 − 𝑔) = 0. (80)

So if 𝑢 is in the range of𝑀
0,𝐼

with𝑀
0,𝐼
V = 𝑢, we have

[𝑓 − 𝑔, 𝑢] = [𝑓 − 𝑔,𝑀
0,𝐼
V] = [𝑀∗

0,𝐼
(𝑓 − 𝑔) , V] = 0.

(81)

Therefore 𝑓 − 𝑔 is orthogonal to the range of 𝑀
0,𝐼
, but, by

Lemma 26,𝑓−𝑔 is in the null space of𝑀
𝑀,𝐼

. Hence𝑓 ∈ 𝐷
𝑀,𝐼

;
that is,𝑀∗

0,𝐼
⊂ 𝑀
𝑀,𝐼

.

Proposition 29. If𝑀
𝐼
is defined as in Definition 21 and 𝐼 ⊂

[0,∞), then

𝑀
∗

0,𝐼
= 𝑀
𝑀,𝐼
. (82)

Proof. By Proposition 28, we only need to show𝑀∗
0,𝐼
⊂ 𝑀
𝑀,𝐼

.
If𝑔 is in the domain of𝑀∗

0,𝐼
, then, on any compact subinterval

[𝛼, 𝛽] of 𝐼, we have

[𝑀
𝐼
𝑓, 𝑔] = [𝑓,𝑀

∗

0,𝐼
𝑔] , ∀𝑓 ∈ 𝐷

𝐼
. (83)

Thus the restriction of 𝑔 to [𝛼, 𝛽] is in the domain of 𝑀∗
0,𝐼
.

But, by Proposition 28, the restriction of𝑀∗
0,𝐼
𝑔 to [𝛼, 𝛽]must

agree with𝑀
𝑀,𝐼
𝑔. Since [𝛼, 𝛽] is arbitrary, the proposition is

proved.

We can show that𝑀
0,𝐼

is semibounded in the next lemma.

Lemma 30. If𝑀
𝐼
is defined as in Definition 21, for all𝑓 ∈ 𝐷

0
,

[𝑀
𝐼
𝑓, 𝑓] ≥

1

4

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
. (84)

Proof. By integration by parts we obtain, for 𝑓 ∈ 𝐶∞
0
(R+),

[𝑀
0,𝐼
𝑓, 𝑓] = [⟨𝑡⟩ 𝐿 (⟨𝑡⟩ 𝑓) , 𝑓]

= − [⟨𝑡⟩ (⟨𝑡⟩ 𝑓)
󸀠󸀠
, 𝑓] + [⟨𝑡⟩ 𝐴 ⟨𝑡⟩ 𝑓, 𝑓]

= [(⟨𝑡⟩ 𝑓)
󸀠
, (⟨𝑡⟩ 𝑓)

󸀠
] + [⟨𝑡⟩

2
𝐴𝑓, 𝑓]

≥ [(⟨𝑡⟩ 𝑓)
󸀠
, (⟨𝑡⟩ 𝑓)

󸀠
]

≥
1

4

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2
,

(85)

where the last inequality follows fromHardy’s inequality [11].

In order to prove Theorem 8, we need to introduce the
Friedrichs extension of𝑀

0,𝐼
.

Definition 31. With 𝑀
𝐼
as in Definition 21, let 𝑄

𝐼
(𝑓, 𝑔) =

[𝑀
𝐼
𝑓, 𝑔], for all 𝑓, 𝑔 ∈ 𝐷

𝐼
.

It follows from operator theory [9] that the semibounded
symmetric operator 𝑀

0,𝐼
has equal deficiency indices, and

therefore, by Von Neumann’s theorem, such an operator
always has self-adjoint extensions. There is a distinguished
extension 𝐻, called the Friedrichs extension [11], which is
obtained from the quadratic form associated with𝑀

0,𝐼
.

Proposition 32. 𝑄
𝐼
is a closable quadratic form and its closure

𝑄
𝐼
is the quadratic form of a unique self-adjoint operator 𝐻

defined by

𝐷(𝐻
𝐼
) = {𝑓 ∈ 𝐿

2
(𝐼) :

󵄨󵄨󵄨󵄨𝑄𝐼 (𝑓, 𝑔)
󵄨󵄨󵄨󵄨

≤ 𝐶
𝑓
[𝑔, 𝑔] , ∀𝑔∈𝐷

𝐼
, 𝑤ℎ𝑒𝑟𝑒 𝐶

𝑓
𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡} ,

𝐻
𝐼
𝑓 = 𝑀

𝑀,𝐼
𝑓, ∀𝑓 ∈ 𝐷 (𝐻

𝐼
) .

(86)

Furthermore,

[𝐻
𝐼
𝑓, 𝑓] ≥

1

4
[𝑓, 𝑓] , ∀𝑓 ∈ 𝐷 (𝐻

𝐼
) . (87)

Proof. This is a form of the definition of the Friedrichs
extension: for the semibounded symmetric operator𝑀

0,𝐼
and

the closable quadratic form 𝑄
𝐼
, the restriction of𝑀∗

0,𝐼
to the

domain of the closure of𝑄
𝐼
is in fact the Friedrichs extension.

This form is clearly closable. The last inequality follows from
the construction of the Friedrichs extension𝐻

𝐼
, togetherwith

Lemma 30.

Next proposition tells us the relation between ker(𝑇) and
ker(𝑀

𝐼
).

Proposition 33. 𝑓 ∈ ker(𝑇) is nonincreasing if and only if
𝑔 = 𝑓/⟨𝑡⟩ is a nonincreasing solution to𝑀

𝐼
𝑔 = 0.

Proof. Let 𝑓 ∈ ker(𝑇); if |𝑓| is nonincreasing, then 𝑓󸀠 ⋅ 𝑓 < 0.
So by east calculation, we have

(𝑔 ⋅ 𝑔)
󸀠

(𝑡) = 2𝑔
󸀠
(𝑡) ⋅ 𝑔 (𝑡) = 2

𝑓
󸀠
⋅ 𝑓 (1 + 𝑡

2
) − 𝑓
2
𝑡

(1 + 𝑡2)
2

< 0,

(88)

which implies the result.

Now we are ready to proveTheorem 8.

Proof. It is sufficient to consider real solutions. Let 𝑓 be any
real solution of 𝑇𝑓 = 0; for any 𝑖 ∈ N, let 𝑡 ∈ 𝐼

𝑖
, (𝑓 ⋅ 𝑓)󸀠(𝑡) =

2𝑓
󸀠
(𝑡) ⋅ 𝑓(𝑡). Using the fact that 𝐴(𝑡) is positive semidefinite

for each 𝑡 ≥ 0, we have

(𝑓 ⋅ 𝑓)
󸀠󸀠

(𝑡) = 2
󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠󵄨󵄨󵄨󵄨󵄨

2

(𝑡) + 2 (𝐴 (𝑡) 𝑓 (𝑡) ⋅ 𝑓 (𝑡)) ≥ 0. (89)

On the other hand, for any 𝑖 ∈ N,

(𝑓 ⋅ 𝑓
󸀠
) (𝑡
𝑖
) − (𝑓 ⋅ 𝑓

󸀠
) (𝑡
𝑖
− 0) = (𝑈

∗

𝑖
𝑂
𝑖
𝑓, 𝑓) (𝑡

𝑖
− 0) ≥ 0.

(90)
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This implies that (𝑓 ⋅ 𝑓)󸀠 is nondecreasing on [0,∞]. Choos-
ing 𝑓, such that 𝑓(0) = 0, 𝑓

󸀠
(0) ̸= 0, then (𝑓 ⋅ 𝑓)

󸀠
(𝑡) >

(𝑓 ⋅ 𝑓)
󸀠
(0) = 0, from (52); |𝑓| is nondecreasing. Then, by

Theorem 7, we know that those solutions have exponentially
increasing amplitude; that is, they are unbounded solutions.
Clearly dim(ker(𝑇)) ≤ 2𝑚. The set {𝑓 ∈ ker(𝑇) | 𝑓(0) =
0, 𝑓
󸀠
(0) ̸= 0} is 𝑚 dimensional, which means that there are at

most𝑚 linearly independent bounded solutions for 𝑇𝑓 = 0.
Now we prove dim(ker(𝑀

𝑀,𝐼
)) ≥ 𝑚, using the properties

of Friedrichs extension of 𝑀
0,𝐼
. Let 𝐻

𝐼
be the Friedrichs

extension of𝑀
0,𝐼
; then, by Proposition 32, 𝐻

𝐼
is self-adjoint

and positive definite. Also for any 𝑓 in 𝐷(𝐻
𝐼
), 𝑓(0) = 0. We

choose 𝑚 compactly supported piecewise smooth functions
𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
on 𝐼, such that the space spanned by {𝑓

𝑘
(0) |

𝑘 = 1, . . . , 𝑚} has dimension 𝑚. Then {𝑓
𝑘
| 𝑘 = 1, . . . , 𝑚}

are linearly independent mod 𝐷(𝐻
𝐼
). It is clear that 𝑓

𝑘
∈

𝐷
𝑀

for 𝑘 = 1, . . . , 𝑚; this forces the Fredholm index to
increase by 𝑚. Since 𝐻

𝐼
is already surjective, this produces

an𝑚 dimensional nonincreasing solution space to𝑀
𝐼
𝑓 = 0,

so dim(ker(𝑀
𝑀,𝐼
)) ≥ 𝑚; by Proposition 33, we know that

there are at least 𝑚 linearly independent bounded solutions
for 𝑇𝑓 = 0. This completes the proof.
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