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We study a streamline upwind Petrov-Galerkin method (SUPG) with bubble stabilization coefficients on quasiuniform triangular
meshes. The new algorithm is a consistent Petrov-Galerkin method and shows similar numerical performances as the standard
SUPG when the mesh Péclet number is greater than 1. Relationship between the new algorithm and the standard SUPG will be
explored. Numerical experiments support these results.

1. Introduction

We consider the reaction-convection-diffusion problem in
2D

−𝜀Δ𝑢 + b ⋅ ∇𝑢 + 𝑐𝑢 = 𝑓, (𝑥, 𝑦) ∈ Ω,

𝑢 = 0, (𝑥, 𝑦) ∈ 𝜕Ω,

(1)

whereΩ is a bounded open domain inR2, with the boundary
𝜕Ω, b ∈ (𝑊

∞

1
(Ω))

2, 𝑐 ∈ 𝐿

∞
(Ω) are given functions, and

𝜀 ≪ |b| is a small positive parameter. For simplicity, we only
consider the case that Ω = (0, 1)

2. In the following, suppose
that there is a constant 𝜇

0
> 0 such that

𝑐 −

1

2

∇ ⋅ b ≥ 𝜇

0
> 0, ∀ (𝑥, 𝑦) ∈ Ω.

(2)

It is also assumed that 𝑓 is sufficiently smooth. In the case
of b = (𝑏

1
, 𝑏

2
)

𝑇
> (0, 0)

𝑇 (𝑏
1
, 𝑏

2
≥ 𝛽, where 𝛽 is a positive

constant), the solution of (1) typically has two exponential
layers of width 𝑂(𝜀 ln(1/𝜀)) at the sides 𝑥 = 1 and 𝑦 =

1 of Ω. In the case of b = (𝑏, 0)

𝑇 (𝑏 ≥ 𝛽 > 0), the
solution of (1) typically has an exponential layer of width𝑂(𝜀)

near the outflow boundary at 𝑥 = 1 and two characteristic
(or parabolic) layers of width 𝑂(√𝜀) near the characteristic
boundaries at 𝑦 = 0 and 𝑦 = 1.

When the mesh Péclet number Pe is greater than 1, there
exist global unphysical oscillations in numerical solutions of
standard discretization schemes on general meshes. Hence,
stabilizedmethods and/or a priori adaptedmeshes are widely
used in order to get discrete solutions with satisfactory
accuracy. An overview on these methods can be found in the
survey [1, 2].

One of themost famous stabilized finite elementmethods
is the streamline upwind Petrov-Galerkin method (SUPG).
The SUPG proposed by Hughes and Brooks [3] is known to
provide good stability properties and high accuracy. How-
ever, there are several drawbacks in SUPG, such as lacking
discretemaximumprinciple and involving second derivatives
and difficulties in determining the stabilization coefficients.
Driven by these problems, many researchers were devoted
to improving the SUPG. A lot of numerical methods were
proposed, such as SOLD [4], nonlinear residual [5], and LPS
[6]. Also, relations of SUPGandother numerical formulation,
like residual-free bubble method [7] and variational multi-
scale method [8], were studied to seek possible directions of
improvement.

By means of residual, the SUPG adds to the original
bilinear form a term which introduces a suitable amount
of artificial viscosity in the direction of streamlines. Also,
the SUPG can be viewed as an inconsistent Petrov-Galerkin
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method, since its modified weighting function cannot apply
to the diffusive term (see the details in Section 4).

For this reason, we are to analyze the SUPG with bubble
stabilization coefficients in 2D and compare its numerical
performance with the SUPG’s. From theoretical analysis and
numerical results, we find that the new scheme is classified
into the consistent Petrov-Galerkin formulation (CPGF) and
behaves as well as SUPG. Also, the standard finite element
method (FEM), which shows excellent performances for Pe ≤

1, can be classified into the CPGF and viewed as a special
“SUPG with bubble stabilization coefficients” by taking 𝛿

𝐾
=

0 in (7). Thus, the FEM and our new scheme could be
viewed as two reference numericalmethods in theCPGF.This
provides possibilities of constructing new numerical schemes
between them in theCPGF. In fact, in our forthcomingworks,
we obtain a linear maximum-principle-preserving stabilized
method in the CPGF by means of the FEM and the SUPG
with bubble stabilization coefficients, which shows better
numerical performances than the standard SUPG. Thus, our
results in this paper can be viewed as a starting point to
construct new numerical schemes in the CPGF.

The remainder of this paper is organized as follows. In
Section 2 we formulate the problem and introduce notation
and mesh. Theoretical results including stability analysis and
energy norm estimates can be found in Section 3. Section 4
is devoted to the relationship between SUPG, standard finite
element method, and our method. Finally, numerical exper-
iments that illustrate our theoretical results are presented in
Section 5.

2. Mesh and Numerical Formulation

First we define a finite element space on triangular meshes

𝑉

ℎ
:= {V
ℎ
∈ 𝐶 (Ω) : V

ℎ







𝜕Ω
= 0, V

ℎ







𝐾
is linear, ∀𝐾 ∈ T

ℎ
} ,

(3)

where the term “linear” is to be understood in the usual
isoparametric sense. Here we assume that the triangulations
T
ℎ
onΩ are quasiuniform:

ℎ

𝐾
> 𝛼

0
ℎ, 𝛼

𝐾
> 𝛼

0
, (4)

for any𝐾 ∈ T
ℎ
, where 𝛼

0
is a positive constant and ℎ

𝐾
, 𝛼

𝐾
, ℎ

denote, respectively, the diameter of 𝐾, the smallest angle of
𝐾, and the maximum of all diameters of triangles inT

ℎ
.

Using the linear finite element space 𝑉

ℎ
, we can state the

standardGalerkin discretisation of (1) which reads as follows.
Find 𝑢

ℎ
∈ 𝑉

ℎ
such that for all V

ℎ
∈ 𝑉

ℎ
,

𝑎

ℎ
(𝑢

ℎ
, V
ℎ
) = 𝑓

ℎ
(V
ℎ
) , (5)

where 𝑎(𝑢, V) = 𝜀(∇𝑢, ∇V) + (b ⋅ ∇𝑢 + 𝑐𝑢, V).
The SUPG consists in adding to the original bilinear

form a term which introduces a suitable amount of artificial
viscosity in the direction of streamlines. In this case, the
SUPG reads as follows.

Find 𝑢

ℎ
∈ 𝑉

ℎ
such that for all V

ℎ
∈ 𝑉

ℎ
,

𝑎

ℎ
(𝑢

ℎ
, V
ℎ
) = 𝑓

ℎ
(V
ℎ
) , (6)

where

𝑎

ℎ
(𝑢

ℎ
, V
ℎ
) = 𝑎 (𝑢

ℎ
, V
ℎ
)

+ ∑

𝐾

(−𝜀Δ𝑢

ℎ
+ b ⋅ ∇𝑢

ℎ
+ 𝑐𝑢

ℎ
, 𝛿

𝐾
b ⋅ ∇V

ℎ
)

𝐾
,

𝑓

ℎ
(V
ℎ
) = (𝑓, V

ℎ
) + ∑

𝐾

(𝑓, 𝛿

𝐾
b ⋅ ∇V

ℎ
)

𝐾
.

(7)

In (7) the term 𝛿

𝐾
is defined as 𝛿

𝐾
(𝑥, 𝑦) := 𝛿

𝐾
=

𝐶

∗

𝐾
ℎ𝜆

1
𝜆

2
𝜆

3
, (𝑥, 𝑦) ∈ 𝐾 in which 𝐶

∗

𝐾
is a constant to be

determined and 𝜆

𝑖
(𝑖 = 1, 2, 3) are the linear basis functions.

Actually, 𝛿
𝐾
is a bubble function. Moreover,

𝜆

1
𝜆

2
𝜆

3
≤

1

27

in 𝐾, ∫

𝐾

𝜆

1
𝜆

2
𝜆

3
=

𝑆 (𝐾)

60

, (8)

where 𝑆(𝐾) represents the area of𝐾.
Finally, we define a special energy norm (SD norm)

associated with 𝑎

ℎ
(⋅, ⋅):

























𝑢

ℎ

























2

:= 𝜀









𝑢

ℎ









2

1
+ ∑

𝐾











𝛿

1/2

𝐾
b ⋅ ∇𝑢

ℎ











2

𝐾
+









𝑢

ℎ









2

. (9)

We denote by ‖ ⋅‖

𝐷
the 𝐿2 norm in 𝐿

2
(𝐷); that is,

‖V‖2
𝐷
= (V, V)

𝐷
∀V ∈ 𝐿

2
(𝐷) .

(10)

If𝐷 = Ω, then we dropΩ from the notation.

3. Stability and Energy Estimates

Throughout this subsection, we assume 𝐶 is some positive
constant.

3.1. Stability Analysis. The stability properties are a conse-
quence of the following.

Lemma 1. Let the parameter 𝐶∗
𝐾
in 𝛿

𝐾
satisfies

𝐶

∗

𝐾
≤

27𝜇

0

ℎ𝐶

2

𝐾

(11)

for each 𝐾 ∈ T
ℎ
, where 𝐶

𝐾
:= ‖𝑐‖

𝐿
∞
,𝐾
. Then the discrete

bilinear form is coercive; that is,

𝑎

ℎ
(V
ℎ
, V
ℎ
) ≥

𝐴

2

























V
ℎ

























2

,
(12)

where 𝐴 := max{𝜇
0
, 1}.

Proof. By divergence theorem we obtain

𝑎

ℎ
(V
ℎ
, V
ℎ
) = 𝜀









V
ℎ









2

1
+ ∫

Ω

(𝑐 −

1

2

∇ ⋅ b) V2
ℎ

+ ∑

𝐾











𝛿

1/2

𝐾
b ⋅ ∇V

ℎ











2

𝐾
+ ∑

𝐾

∫

𝐾

𝑐V
ℎ
𝛿

𝐾
b ⋅ ∇V

ℎ
.

(13)
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Obviously the sumof first three terms is greater than𝐴|||V
ℎ
|||

2

from the condition of (2), and we only need to estimate the
last term. Using Hölder inequality, we have





















∑

𝐾

∫

𝐾

𝑐V
ℎ
𝛿

𝐾
b ⋅ ∇V

ℎ





















≤ ∑

𝐾

(∫

𝐾

𝑐

2V2
ℎ
𝛿

𝐾
)

1/2

(∫

𝐾

(b ⋅ ∇V
ℎ
)

2

𝛿

𝐾
)

1/2

≤

1

2

∑

𝐾

[∫

𝐾

𝑐

2V2
ℎ
𝛿

𝐾
+ ∫

𝐾

(b ⋅ ∇V
ℎ
)

2

𝛿

𝐾
]

≤

𝜇

0

2









V
ℎ









2

+

1

2

∑

𝐾











𝛿

1/2

𝐾
b ⋅ ∇V

ℎ











2

𝐾

≤

𝐴

2

























V
ℎ

























2

,

(14)

where (14) is based on the definition of 𝛿
𝐾
, (8), and (11):

∑

𝐾

∫

𝐾

𝑐

2V2
ℎ
𝛿

𝐾
≤ 𝐶

2

𝐾
∑

𝐾

∫

𝐾

𝐶

∗

𝐾
ℎ𝜆

1
𝜆

2
𝜆

3
V2
ℎ

≤ ∑

𝐾

∫

𝐾

𝜇

0
V2
ℎ
= 𝜇

0









V
ℎ









2

.

(15)

Then the proof of the lemma is finished.

3.2. Energy Norm Estimate. We denote by 𝑢

𝐼 the nodal
piecewise linear interpolant to 𝑢 overT

ℎ
. FromLemma 1 and

the fact of 𝑎
ℎ
(𝑢 − 𝑢

ℎ
, 𝑢

𝐼
− 𝑢

ℎ
) = 0 one gets

𝜇

0

2































𝑢

𝐼
− 𝑢

ℎ































2

≤ 𝑎

ℎ
(𝑢

𝐼
− 𝑢

ℎ
, 𝑢

𝐼
− 𝑢

ℎ
)

= 𝑎

ℎ
(𝑢

𝐼
− 𝑢, 𝑢

𝐼
− 𝑢

ℎ
) .

(16)

Denote 𝜂 := 𝑢

𝐼
− 𝑢, 𝑒 := 𝑢

𝐼
− 𝑢

ℎ
and estimate the right-hand

side of (16) term by term:

𝜀 (∇𝜂, ∇𝑒) ≤ 𝜀

1/2






𝜂







1
|||𝑒||| ,

(17)

(b ⋅ ∇𝜂 + 𝑐𝜂, 𝑒)

= ∫

𝜕Ω

b ⋅ n𝜂𝑒 − ∫

Ω

∇ ⋅ b𝜂𝑒 − ∫

Ω

(b ⋅ ∇𝑒) 𝜂 + ∫

Ω

𝑐𝜂𝑒

= ∫

Ω

(𝑐 − ∇ ⋅ b) 𝜂𝑒 − ∫

Ω

(b ⋅ ∇𝑒) 𝜂

≤ 𝐶(∫

Ω

𝜂

2
)

1/2

(∫

Ω

𝑒

2
)

1/2

+ (∫

Ω

(b ⋅ ∇𝑒)

2
)

1/2

(∫

Ω

𝜂

2
)

1/2

≤ 𝐶ℎ

2
|||𝑒||| + 𝐶ℎ

−1/2
|||𝑒||| ℎ

2
≤ 𝐶ℎ

3/2
|||𝑒||| ,

(18)

where we have used the standard interpolation results ‖ 𝜂 ‖≤

𝐶ℎ

2 (see [9]) and the first inequality of (18) is obtained by

∫

Ω

(b ⋅ ∇𝑒)

2
≤ 𝐶𝛽∫

Ω

(∇𝑒)

2

= 𝐶ℎ

−1
𝛽(∇𝑒)

2
∑

𝐾

∫

𝐾

𝛿

𝐾

≤ 𝐶ℎ

−1
∑

𝐾

∫

𝐾

𝛿

𝐾
(b ⋅ ∇𝑒)

2
≤ 𝐶ℎ

−1
|||𝑒|||

2
,

∑

𝐾

(𝜀Δ𝑢 + b ⋅ ∇𝜂 + 𝑐𝜂, 𝛿

𝐾
b ⋅ ∇𝑒)

≤ ∑

𝐾

∫

𝐾

(𝐶𝜀 + b ⋅ ∇𝜂 + 𝑐𝜂) 𝛿

1/2

𝐾
𝛿

1/2

𝐾
b ⋅ ∇𝑒

≤ ∑

𝐾











(𝐶𝜀 + b ⋅ ∇𝜂 + 𝑐𝜂)𝛿

1/2

𝐾









𝐾











𝛿

1/2

𝐾
b ⋅ ∇𝑒









𝐾

≤ (∑

𝐾











𝛿

1/2

𝐾
(𝐶𝜀 + b ⋅ ∇𝜂 + 𝑐𝜂)











2

𝐾
)

1/2

(∑

𝐾











𝛿

1/2

𝐾
b ⋅ ∇𝑒











2

𝐾
)

1/2

≤ 𝐶ℎ

2
|||𝑒||| .

(19)

Combining all of these estimates, one gets

























𝑢 − 𝑢

ℎ

























≤ 𝐶ℎ

3/2
.

(20)

4. Comparison of SUPG with
Bubble Stabilization Coefficients
and the Standard SUPG

Consider the bilinear form of SUPG:

𝜀 (∇𝑢

ℎ
, ∇V
ℎ
) + (b ⋅ ∇𝑢

ℎ
+ 𝑐𝑢

ℎ
, V
ℎ
)

+ ∑

𝐾

𝛿

𝐾
(−𝜀Δ𝑢

ℎ
+ b ⋅ ∇𝑢

ℎ
+ 𝑐𝑢

ℎ
, b ⋅ ∇V

ℎ
)

𝐾

= (𝑓, V
ℎ
) + ∑

𝐾

(𝑓, 𝛿

𝐾
b ⋅ ∇V

ℎ
)

𝐾
,

(21)

where 𝛿
𝐾
is constant in𝐾.

It can be rewritten in the form

𝜀 (∇𝑢

ℎ
, ∇V
ℎ
) + (b ⋅ ∇𝑢

ℎ
+ 𝑐𝑢

ℎ
, V
ℎ
+

̃

𝛿b ⋅ ∇V
ℎ
)

= (𝑓, V
ℎ
+

̃

𝛿b ⋅ ∇V
ℎ
) ,

(22)

where ̃

𝛿|

𝐾
= 𝛿

𝐾
.
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Notice that (22) does not correspond to a consistent
Petrov-Galerkin formulation in general except in the case
when b ≡ C and V

ℎ
is linear. Clearly, when 𝛿

𝐾
is a bubble

function,

𝜀 (∇𝑢

ℎ
, ∇ (

̃

𝛿b ⋅ ∇V
ℎ
)) = ∑

𝐾

𝜀(∇𝑢

ℎ
, ∇ (𝛿

𝐾
b ⋅ ∇V

ℎ
))

𝐾

= 𝜀∑

𝐾

∫

𝜕𝐾

∇𝑢

ℎ
⋅ n𝛿
𝐾
b ⋅ ∇V

ℎ

− 𝜀∑

𝐾

∫

𝐾

(∇ ⋅ ∇𝑢

ℎ
) 𝛿

𝐾
b ⋅ ∇V

ℎ

= 𝜀∑

𝐾

∫

𝜕𝐾

∇𝑢

ℎ
⋅ n𝛿
𝐾
b ⋅ ∇V

ℎ
≡ 0,

(23)

since 𝛿

𝐾
vanishes on the boundary of 𝐾. Thus (22) can be

written as

𝜀 (∇𝑢

ℎ
, ∇ (V
ℎ
+

̃

𝛿b ⋅ ∇V
ℎ
)) + (b ⋅ ∇𝑢

ℎ
+ 𝑐𝑢

ℎ
, V
ℎ
+

̃

𝛿b ⋅ ∇V
ℎ
)

= (𝑓, V
ℎ
+

̃

𝛿b ⋅ ∇V
ℎ
) .

(24)

Then SUPG with bubble stabilization coefficients is classified
into the consistent Petrov-Galerkin formulation.

Moreover, in general, piecewise constants 𝛿

𝐾
in SUPG

make the test function V
ℎ
+𝛿

𝐾
b ⋅∇V
ℎ
discontinuous. However,

the test functions are continuous in the case of bubble
stabilization coefficients and the consequent test space 𝑊

ℎ

is contained in 𝐻

1

0
(Ω). In this case, SUPG with bubble

stabilization coefficients reads as follows.
Find 𝑢

ℎ
∈ 𝑉

ℎ
, such that for all 𝑤

ℎ
∈ 𝑊

ℎ
,

𝑎 (𝑢

ℎ
, 𝑤

ℎ
) = (𝑓, 𝑤

ℎ
) , (25)

where

𝑊

ℎ
:= {𝑤

ℎ
∈ 𝐶 (Ω) : 𝑤

ℎ







𝐾
= V
ℎ







𝐾
+ 𝛿

𝐾
b ⋅ ∇V

ℎ







𝐾
, V
ℎ
∈ 𝑉

ℎ
} .

(26)

On the other hand, SUPG with bubble stabilization
coefficients is gradually close to the FEM in the same space
𝐻

1

0
(Ω) as 𝐶∗

𝐾
→ 0 for any ∈ T

ℎ
.

In a word, SUPG with bubble stabilization coefficients
inherits the advantages of SUPG and constructs the relation
between FEM and SUPG in consistent Petrov-Galerkin for-
mulations.

5. Numerical Experiments

In this section we give numerical results that appear to
support our theoretical results. Errors and convergence rates
for our numerical scheme are presented. All calculations are
carried out by using Intel visual Fortran 11. The discrete
problems are solved by using a version of Pardiso solver (see
[10, 11]).

For the computations we have chosen 𝛿

𝐾
= 60.0ℎ𝜆

1
𝜆

2
𝜆

3

in SUPG with bubble stabilization coefficients and 𝛿

𝐾
= 1.0ℎ

in SUPG. We set Ω = [0, 1]

2 and calculate the errors and
convergence rates in the subdomainΩ

𝐶
away from layers for

Tables 1–16. For parabolic Problems 1 and 2, Ω
𝐶
= [0, 1/2] ×

[1/3, 2/3]. For exponential Problems 3 and 4,Ω
𝐶
= [0, 1/2] ×

[0, 1/2].The errors in Tables 17–20 are calculated in the whole
domain Ω. In the following we only list the results of the
case of 𝜀 = 10

−2 and 𝜀 = 10

−8 since the comparison results
between the two methods of other cases like 𝜀 = 10

−4, 𝜀 =

10

−6, and 𝜀 = 10

−10 are similar.

Problem 1. One has

−𝜀Δ𝑢 + (2 − 𝑥) 𝑢

𝑥
+

3

2

𝑢 = 𝑓 (𝑥, 𝑦) ∈ Ω,

𝑢 = 0 (𝑥, 𝑦) ∈ 𝜕Ω,

(27)

where 𝑓 is chosen such that the solution 𝑢 is

𝑢 (𝑥, 𝑦) = (sin 𝜋

2

𝑥 −

𝑒

−((1−𝑥)/𝜀)
− 𝑒

−(1/𝜀)

1 − 𝑒

−(1/𝜀)
)

×

(1 − 𝑒

−(𝑦/√𝜀)
) (1 − 𝑒

−((1−𝑦)/√𝜀)
)

1 − 𝑒

−1/√𝜀
.

(28)

Problem 2. One has

−𝜀Δ𝑢 + 𝑢

𝑥
+ 𝑢 = 𝑥 (1 − 𝑥) + 𝑦 (1 − 𝑦) , (𝑥, 𝑦) ∈ Ω,

𝑢 = 0 (𝑥, 𝑦) ∈ 𝜕Ω.

(29)

Problem 3. One has

−𝜀Δ𝑢 + 2𝑢

𝑥
+ 3𝑢

𝑦
+ 𝑢 = 𝑓 (𝑥, 𝑦) ∈ Ω,

𝑢 = 0 (𝑥, 𝑦) ∈ 𝜕Ω,

(30)

where 𝑓 is chosen such that the solution 𝑢 is

𝑢 (𝑥, 𝑦) = 2 sin𝑥(1 − exp(

−2 (1 − 𝑥)

𝜀

))

× 𝑦

2
(1 − exp(

− (1 − 𝑦)

𝜀

)) .

(31)

Problem 4. One has

−𝜀Δ𝑢 + 2𝑢

𝑥
+ 3𝑢

𝑦
+ 𝑢 = 𝑥 (1 − 𝑥) + 𝑦 (1 − 𝑦) (𝑥, 𝑦) ∈ Ω,

𝑢 = 0 (𝑥, 𝑦) ∈ 𝜕Ω.

(32)

From the above tables it is shown that the errors and con-
vergence rates of SUPG with bubble stabilization coefficients
and standard SUPG in the maximum norm, in the 𝐿2 norm,
and in the SD norm are similar not only in the subdomain
away from layers but also in the global sense. These results
illustrate that SUPGwith bubble stabilization coefficients also
has good stability properties and high accuracy as standard
SUPG.
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Table 1: 𝜀 = 10

−8, Problem 1 (comparison of error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 4.10 × 10

−2
4.13 × 10

−2
2.59 × 10

−2
2.60 × 10

−2
2.59 × 10

−2
2.6 × 10

−2

12 6.30 × 10

−3
6.35 × 10

−3
3.32 × 10

−3
3.34 × 10

−3
3.33 × 10

−3
3.34 × 10

−3

24 3.53 × 10

−4
3.45 × 10

−4
1.32 × 10

−4
1.33 × 10

−4
1.32 × 10

−4
1.33 × 10

−4

48 1.14 × 10

−4
1.13 × 10

−4
2.00 × 10

−5
2.00 × 10

−5
2.00 × 10

−5
2.01 × 10

−5

96 3.11 × 10

−5
3.10 × 10

−5
4.74 × 10

−6
4.75 × 10

−6
4.75 × 10

−6
4.75 × 10

−6

192 8.15 × 10

−6
8.13 × 10

−6
1.16 × 10

−6
1.16 × 10

−6
1.16 × 10

−6
1.16 × 10

−6

Table 2: 𝜀 = 10

−8, Problem 1 (comparison of convergence rate).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 2.70 2.70 2.95 2.96 2.96 2.96

12 4.16 4.20 4.66 4.65 4.66 4.65

24 1.63 1.61 2.73 2.73 2.73 2.73

48 1.87 1.87 2.07 2.08 2.07 2.08

96 1.93 1.93 2.03 2.04 2.03 2.03

Table 3: 𝜀 = 10

−2, Problem 1 (comparison of error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 3.63 × 10

−2
3.63 × 10

−2
2.75 × 10

−2
2.73 × 10

−2
3.02 × 10

−2
3.01 × 10

−2

12 9.03 × 10

−3
9.07 × 10

−3
4.63 × 10

−3
4.64 × 10

−3
6.23 × 10

−3
6.23 × 10

−3

24 9.72 × 10

−4
9.85 × 10

−4
4.71 × 10

−4
4.74 × 10

−4
1.36 × 10

−3
1.36 × 10

−3

48 3.96 × 10

−4
3.98 × 10

−4
1.63 × 10

−4
1.64 × 10

−4
6.40 × 10

−4
6.39 × 10

−4

96 2.58 × 10

−4
2.59 × 10

−4
8.24 × 10

−5
8.25 × 10

−5
3.20 × 10

−4
3.20 × 10

−4

192 1.47 × 10

−4
1.47 × 10

−4
4.19 × 10

−5
4.19 × 10

−5
1.61 × 10

−4
1.61 × 10

−4

Table 4: 𝜀 = 10

−2, Problem 1 (comparison of convergence rate).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 2.01 2.00 2.57 2.56 2.28 2.27

12 3.22 3.20 3.30 3.29 2.20 2.20

24 1.30 1.31 1.53 1.53 1.09 1.09

48 0.62 0.62 0.99 0.99 1.00 1.00

96 0.82 0.82 0.98 0.98 1.00 1.00

Table 5: 𝜀 = 10

−8, Problem 2 (comparison of error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 4.99 × 10

−3
5.01 × 10

−3
5.80 × 10

−3
5.82 × 10

−3
8.81 × 10

−3
9.23 × 10

−3

12 6.04 × 10

−4
6.04 × 10

−4
5.63 × 10

−4
5.64 × 10

−4
1.33 × 10

−3
1.42 × 10

−3

24 2.37 × 10

−4
2.36 × 10

−4
5.54 × 10

−5
5.54 × 10

−5
2.93 × 10

−4
3.16 × 10

−4

48 6.59 × 10

−5
6.59 × 10

−5
1.43 × 10

−5
1.43 × 10

−5
1.02 × 10

−4
1.10 × 10

−4

96 1.73 × 10

−5
1.73 × 10

−5
3.65 × 10

−6
3.65 × 10

−6
3.60 × 10

−5
3.88 × 10

−5

Table 6: 𝜀 = 10

−8, Problem 2 (comparison of convergence rate).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 3.05 3.05 3.37 3.37 2.72 2.70

12 1.35 1.35 3.34 3.35 2.18 2.17

24 1.84 1.84 1.95 1.95 1.52 1.52

48 1.93 1.93 1.97 1.97 1.51 1.51
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Table 7: 𝜀 = 10

−2, Problem 2 (comparison of error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 6.67 × 10

−3
6.69 × 10

−3
6.12 × 10

−3
6.13 × 10

−3
9.36 × 10

−3
9.75 × 10

−3

12 1.32 × 10

−3
1.32 × 10

−3
9.23 × 10

−4
9.25 × 10

−4
1.94 × 10

−3
2.03 × 10

−3

24 1.72 × 10

−4
1.72 × 10

−4
1.07 × 10

−4
1.07 × 10

−4
4.55 × 10

−4
4.69 × 10

−4

48 1.09 × 10

−4
1.09 × 10

−4
4.56 × 10

−5
4.57 × 10

−5
1.98 × 10

−4
2.01 × 10

−4

96 7.14 × 10

−5
7.14 × 10

−5
2.45 × 10

−5
2.45 × 10

−5
9.28 × 10

−5
9.39 × 10

−5

Table 8: 𝜀 = 10

−2, Problem 2 (comparison of convergence rate).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 2.34 2.34 2.73 2.73 2.27 2.26

12 2.94 2.94 3.11 3.12 2.09 2.11

24 0.66 0.67 1.22 1.22 1.20 1.22

48 0.60 0.60 0.90 0.90 1.09 1.10

Table 9: 𝜀 = 10

−8, Problem 3 (comparison of error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 2.70 × 10

−1
2.70 × 10

−1
5.66 × 10

−2
5.66 × 10

−2
3.27 × 10

−1
3.27 × 10

−1

12 9.15 × 10

−2
9.15 × 10

−2
1.51 × 10

−2
1.51 × 10

−2
6.40 × 10

−2
6.43 × 10

−2

24 6.60 × 10

−3
6.60 × 10

−3
8.04 × 10

−4
8.04 × 10

−4
6.35 × 10

−3
6.71 × 10

−3

48 1.62 × 10

−5
1.62 × 10

−5
1.09 × 10

−5
1.09 × 10

−5
2.13 × 10

−3
2.26 × 10

−3

96 3.84 × 10

−6
3.85 × 10

−6
2.56 × 10

−6
2.56 × 10

−6
7.53 × 10

−4
7.80 × 10

−4

192 9.51 × 10

−7
9.52 × 10

−7
6.38 × 10

−7
6.38 × 10

−7
2.66 × 10

−4
2.83 × 10

−4

Table 10: 𝜀 = 10

−8, Problem 3 (comparison of convergence rate).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 1.56 1.56 1.91 1.91 2.35 2.35

12 3.79 3.79 4.23 4.23 3.33 3.26

24 8.67 8.67 6.21 6.21 1.58 1.57

48 2.08 2.07 2.08 2.08 1.50 1.50

96 2.01 2.02 2.01 2.01 1.50 1.50

Table 11: 𝜀 = 10

−2, Problem 3 (comparison of error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 1.66 × 10

−1
1.48 × 10

−1
3.65 × 10

−2
3.30 × 10

−2
2.14 × 10

−1
1.96 × 10

−1

12 4.07 × 10

−2
3.28 × 10

−2
7.07 × 10

−3
5.83 × 10

−3
3.65 × 10

−2
3.38 × 10

−2

24 2.59 × 10

−3
2.23 × 10

−3
3.06 × 10

−4
2.63 × 10

−4
6.13 × 10

−3
6.49 × 10

−3

48 1.41 × 10

−4
1.42 × 10

−4
4.02 × 10

−5
4.02 × 10

−5
2.19 × 10

−3
2.31 × 10

−3

96 7.77 × 10

−5
7.77 × 10

−5
2.01 × 10

−5
2.01 × 10

−5
7.91 × 10

−4
8.35 × 10

−4

192 3.85 × 10

−5
3.85 × 10

−5
9.98 × 10

−6
9.98 × 10

−6
2.92 × 10

−4
3.07 × 10

−4

Table 12: 𝜀 = 10

−2, Problem 3 (comparison of convergence rate).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 2.03 2.18 2.37 2.50 2.55 2.54

12 3.97 3.88 4.53 4.47 2.57 2.38

24 4.20 3.97 2.93 2.71 1.49 1.49

48 0.86 0.87 1.00 1.00 1.47 1.47

96 1.01 1.01 1.01 1.01 1.44 1.44
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Table 13: 𝜀 = 10

−8, Problem 4 (comparison of error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 1.24 × 10

−2
1.24 × 10

−2
4.31 × 10

−3
4.31 × 10

−3
2.11 × 10

−2
2.11 × 10

−2

12 8.76 × 10

−3
8.76 × 10

−3
2.35 × 10

−3
2.35 × 10

−3
9.09 × 10

−3
9.09 × 10

−3

24 1.54 × 10

−3
1.54 × 10

−3
3.20 × 10

−4
3.20 × 10

−4
2.04 × 10

−3
2.04 × 10

−3

48 1.06 × 10

−4
1.06 × 10

−4
1.78 × 10

−5
1.78 × 10

−5
6.65 × 10

−4
6.65 × 10

−4

96 2.59 × 10

−5
2.59 × 10

−5
4.06 × 10

−6
4.06 × 10

−6
2.35 × 10

−4
2.35 × 10

−4

Table 14: 𝜀 = 10

−8, Problem 4 (comparison of convergence rate).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 0.50 0.50 0.87 0.87 1.22 1.22

12 2.51 2.51 2.88 2.88 2.16 2.16

24 3.85 3.85 4.16 4.16 1.62 1.62

48 2.04 2.04 2.13 2.13 1.50 1.50

Table 15: 𝜀 = 10

−2, Problem 4 (comparison of error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 1.21 × 10

−2
1.21 × 10

−2
4.23 × 10

−3
4.23 × 10

−3
2.08 × 10

−2
2.08 × 10

−2

12 8.77 × 10

−3
8.77 × 10

−3
2.34 × 10

−3
2.34 × 10

−3
9.07 × 10

−3
9.07 × 10

−3

24 1.62 × 10

−3
1.62 × 10

−3
3.56 × 10

−4
3.56 × 10

−4
2.05 × 10

−3
2.05 × 10

−3

48 1.14 × 10

−4
1.14 × 10

−4
2.59 × 10

−5
2.59 × 10

−5
6.63 × 10

−4
6.63 × 10

−4

96 2.73 × 10

−5
2.73 × 10

−5
8.23 × 10

−6
8.23 × 10

−6
2.41 × 10

−4
2.41 × 10

−4

Table 16: 𝜀 = 10

−2, Problem 4 (comparison of convergence rate).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 0.47 0.47 0.85 0.85 1.20 1.20

12 2.44 2.44 2.72 2.72 2.14 2.14

24 3.82 3.82 3.78 3.78 1.63 1.63

48 2.06 2.06 1.65 1.65 1.46 1.46

Table 17: 𝜀 = 10

−8, Problem 1 (comparison of global error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 3.18 × 10

−1
3.19 × 10

−1
3.72 × 10

−1
3.73 × 10

−1
1.44 1.44

12 3.31 × 10

−1
3.32 × 10

−1
2.64 × 10

−1
2.64 × 10

−1
1.42 1.42

24 3.38 × 10

−1
3.38 × 10

−1
1.86 × 10

−1
1.86 × 10

−1
1.41 1.41

48 3.41 × 10

−1
3.41 × 10

−1
1.31 × 10

−1
1.31 × 10

−1
1.41 1.41

96 3.42 × 10

−1
3.42 × 10

−1
9.29 × 10

−2
9.29 × 10

−2
1.41 1.41

192 3.43 × 10

−1
3.43 × 10

−1
6.54 × 10

−2
6.54 × 10

−2
1.41 1.41

Table 18: 𝜀 = 10

−8, Problem 2 (comparison of global error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 6.60 × 10

−2
6.60 × 10

−2
3.13 × 10

−2
3.14 × 10

−2
6.61 × 10

−2
7.02 × 10

−2

12 6.56 × 10

−2
6.56 × 10

−2
2.16 × 10

−2
2.16 × 10

−2
5.78 × 10

−2
6.17 × 10

−2

24 6.55 × 10

−2
6.55 × 10

−2
1.52 × 10

−2
1.52 × 10

−2
5.42 × 10

−2
5.81 × 10

−2

48 6.55 × 10

−2
6.55 × 10

−2
1.08 × 10

−2
1.08 × 10

−2
5.26 × 10

−2
5.65 × 10

−2

96 6.54 × 10

−2
6.54 × 10

−2
7.63 × 10

−3
7.63 × 10

−3
5.18 × 10

−2
5.58 × 10

−2
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Table 19: 𝜀 = 10

−8, Problem 3 (comparison of global error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 1.16 1.16 4.84 × 10

−1
4.84 × 10

−1
1.47 1.48

12 1.25 1.25 3.73 × 10

−1
3.73 × 10

−1
1.20 1.20

24 1.28 1.28 2.66 × 10

−1
2.66 × 10

−1
1.41 1.41

48 1.29 1.29 1.88 × 10

−1
1.88 × 10

−1
1.62 1.62

96 1.30 1.30 1.32 × 10

−1
1.32 × 10

−3
1.75 1.75

Table 20: 𝜀 = 10

−8, Problem 4 (comparison of global error).

𝑁

𝐿

∞ norm 𝐿

2 norm SD norm
Bubble SUPG SUPG Bubble SUPG SUPG Bubble SUPG SUPG

6 2.53 × 10

−2
2.53 × 10

−2
1.26 × 10

−2
1.26 × 10

−2
7.82 × 10

−2
7.82 × 10

−2

12 2.97 × 10

−2
2.97 × 10

−2
1.27 × 10

−2
1.27 × 10

−2
7.18 × 10

−2
7.18 × 10

−2

24 2.87 × 10

−2
2.87 × 10

−2
9.44 × 10

−3
9.44 × 10

−3
6.66 × 10

−2
6.66 × 10

−2

48 2.79 × 10

−2
2.79 × 10

−2
6.60 × 10

−3
6.60 × 10

−3
6.43 × 10

−2
6.43 × 10

−2

96 2.76 × 10

−2
2.76 × 10

−2
4.64 × 10

−3
4.64 × 10

−3
6.34 × 10

−2
6.34 × 10

−2
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