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We study the peristaltic mechanism of an incompressible non-Newtonian biofluid (namely, Maxwell model) in the annular region
between two coaxial tubes. The inner tube represents the endoscope tube. The system of the governing nonlinear PDE is solved by
using the perturbation method to the first order in dimensionless wavenumber. The modified Newton-Raphson method is used
to predict the flow separation points along the peristaltic wall and the endoscope tube. The results show that the presence of the
endoscope (catheter) tube in the artery increases the pressure gradient and shear stress. Such a result seems too reasonable from
the physical and medical point of view.

1. Introduction

Peristalsis is produced by sequential waves of contrac-
tions in an elastic channel (tube), which push their fluid
forward. In the urinary system, peristaltic movement is
due to spontaneous muscular contractions of the ureteral
wall which drives urine from the kidneys to the bladder
through the ureters. Peristalsis is an important property of
many biological systems which transports biofluids by its
propulsive movements. It is responsible for the movement of
chyme in the gastrointestinal tract, intrauterine fluid motion,
vasomotion of the small blood vessels and in many glandular
ducts. A number of analytical studies of peristaltic flows of
different fluids have been reported [1–5].

Non-Newtonian fluids have wide-range applications, so
they receive a great attention from scientists. The flows of
non-Newtonian fluids are important because of their tech-
nological significance. Moreover, physiological flows indicate
that non-Newtonian viscoelastic rheology is the correct way
of properly describing the peristaltic flow through channels
and tubes. Among many models, which have been employed
to describe the non-Newtonian behavior exhibited by certain

real fluids, Oldroyd fluid has obtained a special status;
it includes elastic and memory effects exhibited by dilute
solutions. Oldroyd fluid has been extensively used in many
applications, and also results of simulations fit experimental
data quite well [6, 7].

Recently, peristaltic motion of non-Newtonian fluids
has been an important subject in the field of chemical,
biomedical, and environmental engineering and science. A
considerable amount of the literature has been reported
[8–17].

Endoscope and catheters are very important tools for
medical diagnosis and they have many clinical applications.
The endoscope now is a very important tool used for
determining the real causes responsible formany problems in
the human organs through which the fluids are transported
by peristaltic pumping such as, stomach and small intestine.
Also from the fluid dynamic point of view, there is no
difference between an endoscope and catheter. In medicine,
a catheter is a tube that can be inserted into a body cavity,
duct, or vessel. Catheters thereby allow drainage or injec-
tion of fluids. The process of inserting a catheter is called
catheterization.Also, the insertion of an endoscope (catheter)
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in an artery will alter the flow field and modify the pressure
distribution. There are several investigations that studied the
effect of an endoscope on peristaltic transport for different
fluids [18–22].

So far, no attempt has been made to understand the effect
of endoscope on the peristalticmotion for theMaxwellmodel
which is a subclass of Oldroyd model. Therefore the main
purpose of the present paper is to study the mathematical
modeling of peristaltic transport of flow in a gap between two
coaxial tubes, filled with an incompressible non-Newtonian
fluid (Maxwell model). The inner tube is rigid (endoscope)
and the outer one has wave trains moving independently. In
this paper, we are concerned with viscoelastic flows governed
by the Maxwell model. The mathematical modeling of this
problem is explained below in brief.

2. Basic Equations

The basic equations governing the motion of Oldroyd fluid
take the form

∇ ⋅ V = 0,

𝜌
𝐷V

𝐷𝑡
= ∇ ⋅ T,

(1)

where 𝜌 is the density,V is the velocity vector,𝐷/𝐷𝑡 denotes
thematerial derivative, andT is the Cauchy stress tensor.The
Cauchy stress T for an incompressible Oldroyd fluid can be
expressed as

T = −𝑝
I + S,

S + Γ(
𝑑S

𝑑𝑡
− LS − SL𝑇)

= 𝜇[A
1
+ ](

𝑑A
1

𝑑𝑡
− LA

1
− A
1
L𝑇)] ,

(2)

where 𝑝
 is the pressure, 𝜇 is the coefficient of viscosity,

S is the extra stress, Γ is the relaxation time, and ] is the
retardation time. The Rivlin-Ericksen tensors are defined as

A
1
= (∇V) + (∇V)

𝑇

, L = ∇V. (3)

It is worth mentioning that this model includes the
Maxwell model for ] = 0 and the classical linear case for
Γ = ] = 0.

3. Formulation of the Problem
and Mathematical Model

In this paper, the flow of the Maxwell fluid is considered
through the gap between coaxial tubes.The inner tube is rigid
and the outer has a sinusoidal wave traveling down its walls.
The geometry of the walls surface (Figure 1) is

𝑅


1
= 𝑎
1
,

𝑅


2
= 𝑎
2
+ 𝑏 sin(2𝜋

𝜆
(𝑍

− 𝑐𝑡

)) ,

(4)
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Figure 1: Geometry of the problem.

where 𝑎
1
is the radius of the inner tube, 𝑎

2
is the radius

of the outer tube at any axial distance 𝑍
, and 𝑏 is the

amplitude of the wave. Introducing a wave frame (𝑟

, 𝑧

)

moving with velocity 𝑐 away from the fixed frame (𝑅, 𝑍) by
the transformation

𝑧

= 𝑍

− 𝑐𝑡

, 𝑟


= 𝑅

,

𝑤

= 𝑊

− 𝑐, 𝑢


= 𝑈

,

(5)

where (𝑢

, 𝑤

) and (𝑈


,𝑊

) are the velocity components

in the wave and fixed frame, respectively. After using this
transformation then the mathematical formulation of this
problem results in the following differential equations:

𝜕𝑢


𝜕𝑟
+
𝜕𝑤


𝜕𝑧
+
𝑢


𝑟
= 0,

𝜌 [𝑢
 𝜕𝑢


𝜕𝑟
+ 𝑤
 𝜕𝑢


𝜕𝑧
] = −

𝜕𝑝


𝜕𝑟

− [
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝑆


11
) −

𝑆


22

𝑟
+
𝜕𝑆


13

𝜕𝑧
] ,

𝜌 [𝑢
 𝜕𝑤


𝜕𝑟
+ 𝑤
 𝜕𝑤


𝜕𝑧
] = −

𝜕𝑝


𝜕𝑧
− [

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝑆


13
) +

𝜕𝑆


33

𝜕𝑧
] .

(6)

The constitutive equations of Maxwell fluid are

𝑆


11
+ Γ [𝑢


𝜕𝑆


11

𝜕𝑟
+ 𝑤

𝜕𝑆


11

𝜕𝑧
− 2𝑆


11

𝜕𝑢


𝜕𝑟
− 2𝑆


13

𝜕𝑢


𝜕𝑧
] = −𝜇 ̇𝛾

11
,

𝑆


13
+ Γ[𝑢


𝜕𝑆


13

𝜕𝑟
+ 𝑤

𝜕𝑆


13

𝜕𝑧
− 𝑆


33

𝜕𝑢


𝜕𝑧
− 𝑆


11

𝜕𝑤


𝜕𝑟
+
𝑢


𝑟
𝑆


13
]

= −𝜇 ̇𝛾
13
,

𝑆


22
+ Γ [𝑢


𝜕𝑆


22

𝜕𝑟
+ 𝑤

𝜕𝑆


22

𝜕𝑧
−
2𝑢


𝑟
𝑆


22
] = −𝜇 ̇𝛾

22
,

𝑆


33
+ Γ[𝑢


𝜕𝑆


33

𝜕𝑟
+ 𝑤

𝜕𝑆


33

𝜕𝑧
− 2𝑆


33

𝜕𝑤


𝜕𝑧
− 2𝑆


13

𝜕𝑤


𝜕𝑟
]

= −𝜇 ̇𝛾
33
,

(7)

where 𝜌 is the density, 𝑃 is the pressure, 𝑆
𝑖𝑗
are the compo-

nents of the extra stress tensor and ̇𝛾
𝑖𝑗
are the components
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of strain-rate tensor, and Γ is the relaxation time. The system
of nonlinear differential equations has to be solved with the
following boundary conditions:

𝑤

= −𝑐, 𝑢


= 0, at 𝑟 = 𝑟



1
,

𝑤

= −𝑐, 𝑢


= −𝑐

𝑑𝑟


2

𝑑𝑧
, at 𝑟 = 𝑟



2
.

(8)

Consider the following nondimensional variables and
parameters:

𝑟 =
𝑟


𝑎
2

, 𝑧 =
𝑧


𝜆
, 𝑤 =

𝑤


𝑐
,

𝑢 =
𝜆𝑢


𝑎
2
𝑐
, 𝑝 =

𝑎
2

2

𝜆𝜇𝑐
𝑝

, 𝑟

1
=

𝑟


1

𝑎
2

= 𝜖, 𝜙 =
𝑏

𝑎
2

,

𝑆
𝑖𝑗
=

𝑎
2
𝑆


𝑖𝑗

𝑐𝜇
, 𝑟

2
=

𝑟


2

𝑎
2

= 1 + 𝜙 sin (2𝜋𝑧) ,

Re =
𝜌𝑐𝑎
2

𝜇
, 𝛿 =

𝑎
2

𝜆
, 𝜖 =

𝑎
1

𝑎
2

, Wi = 𝑐Γ

𝑎
2

,

(9)

where 𝜙 is the amplitude ratio, Re is the Reynolds number, 𝛿
is the dimensionless wave number andWi is theWeissenberg
number, and 𝜖 is the radius ratio (the ratio between the radius
of the inner tube and the radius of the outer). To proceed, we
nondimensionalize ((4), (6)–(7)); this yields

𝑟
1
= 𝜖, (10)

𝑟
2
= 1 + 𝜙 sin (2𝜋𝑧) , (11)

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑢) +

𝜕𝑤

𝜕𝑧
= 0, (12)

Re 𝛿3 [𝑢𝜕𝑢
𝜕𝑟

+ 𝑤
𝜕𝑢

𝜕𝑧
]

= −
𝜕𝑝

𝜕𝑟
− 𝛿 [

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆
11
) −

𝑆
22

𝑟
+ 𝛿

𝜕𝑆
13

𝜕𝑧
] ,

(13)

Re 𝛿 [𝑢𝜕𝑤
𝜕𝑟

+ 𝑤
𝜕𝑤

𝜕𝑧
] = −

𝜕𝑝

𝜕𝑧

− [
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆
13
) + 𝛿

𝜕𝑆
33

𝜕𝑧
] ,

(14)

𝑆
11
+Wi𝛿 [𝑢𝜕𝑆11

𝜕𝑟
+ 𝑤

𝜕𝑆
11

𝜕𝑧
− 2𝑆
11

𝜕𝑢

𝜕𝑟
− 2𝛿𝑆

13

𝜕𝑢

𝜕𝑧
]

= −2𝛿
𝜕𝑢

𝜕𝑟
,

(15)

𝑆
13
+Wi [𝛿(𝑢

𝜕𝑆
13

𝜕𝑟
+ 𝑤

𝜕𝑆
13

𝜕𝑧
− 𝛿𝑆
33

𝜕𝑢

𝜕𝑧
+
𝑢

𝑟
𝑆
13
) − 𝑆
11

𝜕𝑤

𝜕𝑟
]

= −(𝛿
2 𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑟
) ,

(16)

𝑆
22
+Wi𝛿 [𝑢𝜕𝑆22

𝜕𝑟
+ 𝑤

𝜕𝑆
22

𝜕𝑧
−
2𝑢

𝑟
𝑆
22
] = −2𝛿

𝑢

𝑟
, (17)

𝑆
33
+Wi [𝛿(𝑢

𝜕𝑆
33

𝜕𝑟
+ 𝑤

𝜕𝑆
33

𝜕𝑧
− 2𝑆
33

𝜕𝑤

𝜕𝑧
) − 2𝑆

13

𝜕𝑤

𝜕𝑟
]

= −2𝛿(
𝜕𝑤

𝜕𝑧
) .

(18)

The non-dimensional boundary conditions will be

𝑤 = −1, 𝑢 = 0, at 𝑟 = 𝜖,

𝑤 = −1, 𝑢 = −
𝑑𝑟
2

𝑑𝑧
, at 𝑟 = 𝑟

2
.

(19)

4. Rate of Volume Flow in the Annulus

The instantaneous volume flow rate in the fixed frame is given
by

𝑄 = 2𝜋∫

𝑅


2

𝑅


1

𝑅

𝑊

𝑑𝑅

, (20)

where 𝑅
2
is a function of 𝑍, 𝑡. The rate of volume flow in

the wave frame is given by

𝑞 = 2𝜋∫

𝑟


2

𝑟


1

𝑟

𝑤

𝑑𝑟

, (21)

where 𝑟
2
is a function of 𝑧 only. If we substitute (5) into (20)

and make use of (21), we find that the two rates of volume
flow are related through

𝑄 = 𝑞 + 𝜋𝑐 (𝑟
2

2
− 𝑟
2

1
) . (22)

The time mean flow over a period 𝑇 at a fixed position𝑍


is defined as

𝑄

=

1

𝑇
∫

𝑇

0

𝑄𝑑𝑡. (23)

Substituting (22) into (23) and integrating, we get

𝑄

= 𝑞 + 𝜋𝑐𝑎

2

2
(1 +

𝜙
2

2
) − 𝜋𝑐𝑟

2

1
. (24)

On defining the dimensionless time-mean flows𝑄 and 𝐹,
respectively, in the fixed and wave frame as

𝑄 =
𝑄


𝜋𝑐𝑎
2

2

, 𝐹 =
𝑞

𝜋𝑐𝑎
2

2

, (25)



4 Abstract and Applied Analysis

one finds that (24) may be written as

𝑄 = 𝐹 + 1 +
𝜙
2

2
− 𝜖
2
, (26)

where

𝐹 = 2∫

𝑟
2

𝑟
1

𝑟𝑤𝑑𝑟. (27)

5. Perturbation Solution

It is evident that ((12)–(18)) are highly nonlinear, and, as
such, it is not possible to obtain the solutions in a closed
form. In order to solve the present problem, we expanded the
flow quantities in a power series of the small parameter 𝛿 as
follows:

𝑢 = 𝑢
0
+ 𝛿𝑢
1
+ 𝛿
2
𝑢
2
+ ⋅ ⋅ ⋅ ,

𝑤 = 𝑤
0
+ 𝛿𝑤
1
+ 𝛿
2
𝑤
2
+ ⋅ ⋅ ⋅ ,

𝑝 = 𝑝
0
+ 𝛿𝑝
1
+ 𝛿
2
𝑝
2
+ ⋅ ⋅ ⋅ ,

𝜏
𝑖𝑗
= 𝑆
(0)

𝑖𝑗
+ 𝛿𝑆
(1)

𝑖𝑗
+ 𝛿
2
𝑆
(2)

𝑖𝑗
+ ⋅ ⋅ ⋅ where 𝑖, 𝑗 = 1, 2, 3,

𝐹 = 𝐹
0
+ 𝛿𝐹
1
+ 𝛿
2
𝐹
2
+ ⋅ ⋅ ⋅ .

(28)

If we substitute (28) into ((12)–(19)) and separate the
terms of different order in 𝛿, we obtain the following systems
of partial differential equations together with boundary
conditions as follows.

System of Order Zero. Consider

0 = −
𝜕𝑝
0

𝜕𝑟
,

0 = −
𝜕𝑝
0

𝜕𝑧
− (

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆
0

13
)) ,

𝑆
0

11
= 0,

𝑆
0

13
+Wi(−𝑆0

11

𝜕𝑤
0

𝜕𝑟
) = −

𝜕𝑤
0

𝜕𝑟
,

𝑆
0

22
= 0,

𝑆
0

33
+Wi(−2𝑆0

13

𝜕𝑤
0

𝜕𝑟
) = 0,

(29)

with the boundary conditions:

𝑤
0
= −1, 𝑢

0
= 0, at 𝑟 = 𝑟

1
= 𝜖,

𝑤
0
= −1, 𝑢

0
= −

𝑑𝑟
2

𝑑𝑧
, at 𝑟 = 𝑟

2
.

(30)

System of Order One. Consider

0 = −
𝜕𝑝
1

𝜕𝑟
−
1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆
0

11
) −

1

𝑟
𝑆
0

22
,

Re [𝑢
0

𝜕𝑤
0

𝜕𝑟
+ 𝑤
0

𝜕𝑤
0

𝜕𝑧
] = −

𝜕𝑝
1

𝜕𝑧
− (

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆
1

13
)) +

𝜕𝑆
0

33

𝜕𝑧
,

𝑆
1

11
+Wi(𝑢

0

𝜕𝑆
0

11

𝜕𝑟
+ 𝑤
0

𝜕𝑆
0

11

𝜕𝑧
− 2𝑆
0

11

𝜕𝑢
0

𝜕𝑟
) = −2

𝜕𝑢
0

𝜕𝑟
,

𝑆
1

13
+Wi[𝑢

0

𝜕𝑆
0

13

𝜕𝑟
+ 𝑤
0

𝜕𝑆
0

13

𝜕𝑧
+
𝑢
0

𝑟
𝑆
0

13
− 𝑆
0

11

𝜕𝑤
1

𝜕𝑟
− 𝑆
1

11

𝜕𝑤
0

𝜕𝑟
]

= −
𝜕𝑤
1

𝜕𝑟
,

𝑆
1

22
+Wi[𝑢

0

𝜕𝑆
0

22

𝜕𝑟
+ 𝑤
0

𝜕𝑆
0

22

𝜕𝑧
−
2𝑢
0

𝑟
𝑆
0

22
] = −2

𝑢
0

𝑟
,

𝑆
1

33
+Wi[𝑢

0

𝜕𝑆
0

33

𝜕𝑟
+ 𝑤
0

𝜕𝑆
0

33

𝜕𝑧
− 2𝑆
0

33

𝜕𝑤
0

𝜕𝑧

− 2𝑆
0

13

𝜕𝑤
1

𝜕𝑟
− 2𝑆
1

13

𝜕𝑤
0

𝜕𝑟
] = −2

𝜕𝑤
0

𝜕𝑧
,

(31)

with the boundary conditions:

𝑤
1
= 0, 𝑢

1
= 0, at 𝑟 = 𝑟

1
= 𝜖,

𝑤
1
= 0, 𝑢

1
= 0, at 𝑟 = 𝑟

2
.

(32)

Solving the above sets of equations with the correspond-
ing boundary conditions, we get the following.

Zero-Order Problem. Consider

𝑤
0
(𝑟, 𝑧) = −1 + log [𝑟]Ω

7
+ Ω
8
+ 𝑟
2
Ω
9
, (33)

𝑢
0
(𝑟, 𝑧) = Ω

3
− 𝑟Ω
4
+ 𝑟 log [𝑟]Ω

5
− 𝑟Ω
6
, (34)

𝑑𝑝
0

𝑑𝑧
= (8 (𝐹

0
− 𝜖
2
+ 𝑟
2

2
) (log [𝜖] − log [𝑟

2
]))

× ([(𝜖
2
− 𝑟
2

2
) (−𝜖
2
+ 𝑟
2

2
+ 𝜖
2 log [𝜖] + 𝑟

2

2
log [𝜖]

− 𝜖
2 log [𝑟

2
] − 𝑟
2

2
log [𝑟
2
])])
−1

.

(35)

We point out that the zero order solution coincides with
the solution obtained by Mekheimer and Abd elmaboud [22]
and is still independent of the viscoelastic effects.

First-Order Problem. Substituting the zeroth-order solution
((33) and (34)) into the equation of motion obtained for first
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order, one finds that the solution of the first-order problem
will be in the form
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(38)

where () represents differentiation with respect to 𝑧, and the
coefficients Ω

𝑖𝑗
and 𝑐
6
that appear in the whole paper are

listed in the appendix. The total expressions for the velocities
and the pressure gradient up to first order can be obtained
by substituting ((33)–(38)) and 𝐹

0
= 𝐹 − 𝛿𝐹

1
into (28) and

neglecting the terms greater than 𝑂(𝛿).
The pressure riseΔ𝑝, in nondimensional form, is given by

Δ𝑝 = ∫

Λ

0

𝑑𝑝

𝑑𝑧
𝑑𝑧, (39)

where Λ = 𝐿/𝜆.
The integral in (39) is not integrable in a closed form; it

is evaluated numerically with aid of the MATHEMATICA
programme.

6. The Flow Separation Points

In cases of separation from bodies of smooth geometrical
form, the surface streamlines are observed to leave (separate)
the surface more or less tangentially. In the case where the
boundary layer is laminar, in sufficient momentum exchange
takes, the flow is unable to adjust to the increasing pressure
and separates from the surface. Contemplation of the velocity

field shows that it is plausible to identify the point of
separation (𝑧

𝑠
) on the walls with points where the circulation

vanishes (the vorticity equal zero) [23]. A condition used to
prognosticate the separation in boundary-layer theory is to
set the vorticity equal to zero on the boundary walls [10], as

𝜂
𝑧
=
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑟
, at 𝑟 = 𝜖, 𝑟

2
(40)

(the result of (40) is omitted because of large output). We
can solve the resultant equation (𝜂

𝑧
|
𝑟=𝑟
2

= 0 and 𝜂
𝑧
|
𝑟=𝜖

= 0)

numerically using the modified Newton-Raphson method
[24] to get the flow separation points 𝑧

𝑠
. The flow separation

points 𝑧
𝑠
with different values of the amplitude ratio 𝜙 in the

tube (𝜖 = 0) and in the annulus (𝜖 ̸= 0) are summarized in
Table 1.

The table shows that there are two values of separation
points 𝑧

𝑠
. An important point here is that there is no

separation when 𝜙 = 0 on the tube wall and on the
annulus walls. Moreover, the separation points are different
in tube than those in annulus. Also, the separation points are
different from the amplitude ratio to the other one and from
radius ratio to the other one.The effect of various parameters
of interest on the wall vorticity will be discussed in the next
section.

7. Numerical Results and Discussion

This section is divided into three subsections. In the first
subsection, the effects of various parameters on the velocity
distribution and wall vorticity are investigated. The pumping
characteristics and shear stresses are discussed in the second
subsection. The trapping phenomenon is illustrated in the
last subsection. The emerging parameters of our analysis are
the Reynolds number Re, wave number 𝛿, the Weissenberg
number Wi, the radius ratio 𝜖, the amplitude ratio 𝜙, and the
average flow rate𝑄. These have easy physical interpretations:
𝛿 is a measure of how large the semi depth of the peristaltic
motion is, as compared to its wavelength. It is an aspect ratio
and thus an expression of shallowness.The Reynolds number
Re is formed with the wave speed, the amplitude, and the
kinematic viscosity of the Newtonian part of the constitutive
behavior. Wi measures the elastic contributions of the stress
behavior. 𝜖 gives the ratio between the radius of the inner tube
and the radius of the outer tube of the annulus. 𝜙 is a measure
of how large the wave amplitude of the peristaltic wave is as
compared to the radius of the outer tube.

7.1. Axial Velocity, Wall Vorticity, and Flow Separation. This
subsection describes the influences of various emerging
parameters of our analysis on the transverse distributions of
the longitudinal velocity at the gap of the annulus𝑤(𝑟, 𝑧) and
the wall vorticity 𝜂

𝑧
on the outer and inner tube walls. Figures

2, 3, 4, 5, 6, 7, 8, and 9 display the effects of Re, 𝛿, Wi, 𝜖, 𝜙,
and 𝑄 on 𝑤(𝑟, 𝑧) and 𝜂

𝑧
. From Figures 2 and 3, owing to the

limit of the no-slip boundary condition in (19), the velocity at
wall tubes has the same value 𝑤 = −1 in the wave frame for
all values of the parameters; that is, the fluid velocity at the
annulus walls moves with an opposite velocity to that of the



Abstract and Applied Analysis 7

Table 1: Computed values of the flow separation points 𝑧
𝑠
for

different values of amplitude ratio 𝜙 at 𝑄 = 1, Re = 10, Wi = 0.01,
and 𝛿 = 0.01.

𝜙
Tube 𝜖 = 0 Annulus 𝜖 = 0.05 Annulus 𝜖 = 0.1

𝑧
𝑠

𝑧
𝑠

𝑧
𝑠

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

0.1 0.6045724 0.6504434 0.6504434
0.8975483 0.8702141 0.8615617

0.2 0.5678108 0.5987454 0.6078304
0.9194012 0.9139087 0.9015790

0.3 0.5575255 0.5987454 0.6078304
0.9102325 0.9076357 0.8959550

0.4 0.5479702 0.6050183 0.6162664
0.9014732 0.9043910 0.8901146

0.5 0.5327034 0.5991780 0.6162664
0.904884 0.9072031 0.8901146

wave that propagates on the outer wall of the annulus. As we
expected, the magnitudes of forward and backward flows (in
the annulus gap) increase when the wave number 𝛿 (i.e, small
wave length for the peristaltic wave, so the amplitude of the
wave increases) andReynolds number Re increase.Moreover,
Figure 2, indicates that the location of the reflux phenomenon
in the flow depends upon the magnitudes of Re and 𝛿. Effects
of the Weissenberg number Wi and the radius ratio 𝜖 are
illustrated in Figure 3.The curves forWimatch together and a
slight difference occurs only for 𝜖 = 0.01 near the inner wall.
For 𝜖 = 0.1 the data are identical for Wi values. It is worth
mentioning that the shear stress decreases with an increase in
the relaxation parameter Γ, Wi = 𝑐Γ/𝑎

2
, so that the velocity

increases. However, an increase of the radius ratio 𝜖 produces
a decrease of the velocity and more back flow occurs.

The variation of the flow vorticity at the outer and inner
tubes along the annulus is illustrated in Figures 4–9 for
different values of the emerging parameters. These figures
show that the vorticity increases in the wider part of the
annulus, 𝑧 ∈ (0, 0.5), while it decreases as going to the narrow
part, 𝑧𝜖(0.51, 1), and separation occurs at the outer tube but
at the inner one there are no separation points appearing
(Figures 7–9). Moreover, the separation points positions are
in the narrow part of the annulus. In solid annulus (no
peristaltic 𝜙 = 0,) we observe that the vorticity is constant
along the annulus and, therefore, there are no separation
points (this result is compatible with the results in Table 1.).
By increasing the value of the amplitude ratio 𝜙 (peristaltic
transport), separation points appear but this depends on the
position 𝑧.

7.2. The Pumping Characteristics and Shear Stresses. This
subsection describes the influences of various emerging
parameters of our analysis on the axial pressure gradient
(𝑑𝑝/𝑑𝑧), the pressure rise per wavelength (Δ𝑝), and the shear
stresses at the annulus walls. The effects of these parameters
are shown in Figures 10, 11, 12, 13, 14, 15, and 16. Figures
10 and 11 illustrate that in the wider part of the channel
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Figure 2: The velocity distribution 𝑤, across the annulus with
different values of Re and 𝛿 at 𝜖 = 0.01, Wi = 0.01, 𝑄 = 1.5, 𝜙 = 0.4,
and 𝑧 = 0.1, where 𝑟 ∈ [𝜖, 𝑟
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Figure 3: The velocity distribution 𝑤, across the annulus with
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].

𝑧 ∈ [0, 0.6] and [0.9, 1.0] the pressure gradient is relatively
small; that is, the flow can easily pass without imposition
of large pressure gradient. However, in a narrow part of the
channel 𝑧 ∈ [0.6, 0.9] a much larger pressure gradient is
required tomaintain the same flux to pass it, especially for the
narrowest position near 𝑧 = 0.8. This is in good agreement
with the physical situation. Also from these two figures we
observe the effect of 𝜖 and 𝛿 on the pressure gradient, for
fixed values of the other parameters, where the amplitude
of 𝑑𝑝/𝑑𝑥 increases with increasing 𝜖 and 𝛿. Figure 11 shows
that the amplitude of the axial pressure gradient decreases as
Reynolds number increases. Reynolds number is the ratio of
inertial to viscous forces and with the increase of Reynolds
number the viscous forces decrease so the velocity increases



8 Abstract and Applied Analysis

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

60

0

−60

Wi = 0.01, 𝛿 = 0.01

Wi = 0.01, 𝛿 = 0.1
Wi = 0.08, 𝛿 = 0.01

Wi = 0.08, 𝛿 = 0.1

𝜂
r 2 z

z

Figure 4: Variation ofwall vorticity 𝜂𝑟2
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of 𝛿 and Wi at Re = 5, 𝜖 = 0.01, 𝑄 = 1.5, and 𝜙 = 0.4.
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Figure 5: Variation of wall vorticity 𝜂𝑟2
𝑧
versus 𝑧with different values

of 𝜖 and Re at Wi = 0.01, 𝛿 = 0.1, 𝑄 = 1, and 𝜙 = 0.4.

and so the pressure gradient decreases. Also, as the Wi
increases (stresses decreases) the pressure gradient increases.
In Figure 12, the pressure rise Δ𝑝 is illustrated in terms of
the wave amplitude 𝜙 of the wall disturbance with various
values of the radius ratio 𝜖. Firstly, it is obvious that with
increasing occlusion 𝜙 the pressure drop increases; that is, an
increase of the pressure gradient is needed to push the same
flux to pass the gap annulus. Secondly, the pressure rise for
an annulus is higher than that for a tube. Figure 12 is sectored
so that the upper right-hand quadrant denotes the region
of peristaltic pumping where 𝑄 > 0 (positive pumping)
and Δ𝑝 > 0 (adverse pressure gradient). The lower right-
hand quadrant denotes the region of augmented pumping
where 𝑄 > 0 (positive pumping) and Δ𝑝 < 0 (favorable
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Figure 6: Variation ofwall vorticity 𝜂𝑟2
𝑧
versus 𝑧with different values

of 𝑄 and 𝜙 at Wi = 0.02, 𝛿 = 0.1, 𝜖 = 0.01, and Re = 1.
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Figure 7: Variation of wall vorticity 𝜂𝜖
𝑧
versus 𝑧with different values

of 𝛿 and Wi at Re = 5, 𝜖 = 0.01, 𝑄 = 1.5, and 𝜙 = 0.4.

pressure gradient) and the upper left-hand quadrant denotes
the region of retrograde pumping (or backward pumping)
where 𝑄 < 0 and Δ𝑝 > 0 (adverse pressure gradient);
in this region the flows is opposite to the direction of the
peristaltic motion. It is clear that the peristaltic pumping
region becomes wider as the radius ratio 𝜖, amplitude ratio 𝜙
(the ratio between wave amplitude and the radius of the outer
tube), increases.

The influences of various parameters of our analysis on
shear stress 𝜏

13
at the outer and inner walls are shown in

Figures 13–16. The shear stress 𝜏
13

in the outer tube varies
along the annulus from small value in the wider part to large
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of 𝑄 and 𝜙 at Wi = 0.02, 𝛿 = 0.1, 𝜖 = 0.01, and Re = 1.

value in the narrow part but the shear stress in the inner
tube has an opposite behavior. The maximum amplitude of
the shear stress 𝜏

13
increases with an increase in both 𝜖 and

𝛿 as displayed in Figure 13. Figure 14 shows that there is no
variation in the shear stress 𝜏

13
along the annulus in the case

of solid wall annulus (𝜙 = 0), but an apparent variation is
noticed at𝜙 > 0 (peristalticmovement).Thefigure also shows
that, in the peristaltic movement case (𝜙 > 0), there is an
apparent variation in the shear stress 𝜏

13
with various values
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Figure 10: Variation of pressure gradient versus 𝑧 with different
values of 𝛿 and 𝜖 at Wi = 0.05, 𝑄 = 0.5, 𝜙 = 0.4, and Re = 2.
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Figure 11: Variation of pressure gradient versus 𝑧 with different
values of Wi and Re at 𝛿 = 0.1, 𝑄 = 0.1, 𝜙 = 0.4, and 𝜖 = 0.1.

of theWeissenberg numberWi along the annulus.The inverse
results are seen through Figures 15 and 16 for the shear stress
at the inner wall.

7.3. Trapping Phenomenon. An important phenomenon in
peristalticmotion is trapping. In a wave frame, the streamline
under particular conditions split to trap a bolus which moves
as a whole with the speed of the peristaltic wave. The effects
of the Reynolds number Re, Weissenberg parameter Wi,
the wave number 𝛿, and radius ratio 𝜖 on trapping can be
observed through Figures 17, 18, 19, and 20. The effect of
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Figure 13: Wall shear stress 𝜏
13

at the outer wall versus 𝑧 with
different values of 𝛿 and 𝜖 at Wi = 0.01, 𝑄 = 1.5, 𝜙 = 0.4, and
Re = 10.

inertia on trapping is shown in Figure 17. The figure displays
that the streamlines corresponding to Re = 0 in Figure 17(a)
are in the form of trapped bolus and by elevating the values
of Re more trapped boluses appear as in Figure 17(b). With
further increase in Re, we find the presence of a second eddy
as seen in Figure 17(c). We can see that there is no substantial
difference to be seen on trapping by changing Weissenberg
parameterWi as shown in Figure 18. In order to see the effect
of the curvature 𝛿 on trapping we have plotted Figure 19.
We see that the shape of the trapped bolus is deformed by
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Figure 14: Wall shear stress 𝜏
13

at the outer wall versus 𝑧 with
different values of 𝜙 andWi at 𝜖 = 0.1,𝑄 = 1, 𝛿 = 0.08, and Re = 10.
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Figure 15: Wall shear stress 𝜏
13

at the inner wall versus 𝑧 with
different values of 𝛿 and 𝜖 at Wi = 0.01, 𝑄 = 1.5, 𝜙 = 0.4, and
Re = 10.

increasing the values of the dimensionless wave number 𝛿.
The streamlines graph for different values of radius ratio 𝜖 is
plotted in Figure 19.The “trapping” phenomena occur for 𝜖 =
0.2 (Figure 19(a)). But for a further decrease in (𝜖 = 0) (tube),
the trapped bolus is seen with large size and the trapping
range increases gradually as in Figure 19(c).

8. Concluding Results

The mathematical model of peristaltic transport of flow in
a gap between two coaxial tubes filled with Maxwell fluid is
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studied analytically.Themain findings can be summarized as
follows.

(i) There exist two values of a separation points at the
outer wall of the annulus. An important result is that
there is no separation when 𝜙 = 0 (solid wall) on both
the tube wall and the annulus walls. Moreover, the
separation points are different in the tube than those
in the annulus.

(ii) In the narrow part of the annulus, the maximum
amplitude of the pressure gradient for Maxwell fluid
is different from the Newtonian fluid.

(iii) Inertial force effect on the peristaltic flow is stronger
for the case of larger amplitude ratio.

(iv) The shear stress 𝜏
13
in the outer tube along the annulus

varies from small values in the wider part to large
values in the narrow part, but the shear stress in the
inner tube behaves oppositely.

(v) The presence of the endoscope tube (𝜖 ̸= 0) in an
artery increases the pressure gradient and shear stress.
Such a result seems reasonable from the physical and
medical point of view.

(vi) The presence of a second eddy is seen by increasing
the values of the Reynolds number.
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Figure 19: Graph of streamlines for different three values of 𝛿: (a) 𝛿 = 0, (b) 𝛿 = 0.08, (c) 𝛿 = 0.156 at 𝜖 = 0.13, 𝑄 = 0.7, Wi = 0.05, Re = 10,
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−
1

16
𝜖
2
(4Wi + Re 𝜖2) log [𝜖]2 (Ω2

7
+ Ω
7
Ω


7
)

−
1

128
𝜖
4
(32Ω


17
− 8Ω


18
+ Re (Ω2

7
+ Ω
7
Ω


7
))

−
𝜖
2

(16𝑟
2
(log (𝜖/𝑟

2
))
2

)

× (
𝑑𝑝
1

𝑑𝑧
(1 + 2 log [𝜖])

× (𝜖
2
+ 𝑟
2

2
(−1 − 2 log 𝜖

𝑟
2

)) 𝑟


2

+ 2𝑟
2
(log 𝜖

𝑟
2

)

2

× (4Ω


21
− 2Ω


22
+Wi (Ω2

7
+ Ω
7
Ω


7
)))

−
log [𝜖]

(8𝑟
2
(log (𝜖/𝑟

2
))
2

)

× (
1

6
𝜖
6
Ω


20
+ 2Wi𝜖 (Ω

7
Ω


5
+ Ω
5
Ω


7
)

+
4

3
Wi𝜖3 (Ω

9
Ω


5
+ Ω
5
Ω


9
)

+
𝜖
4

32
𝜖
4
(8Ω


18
− Re (Ω2

7
+ Ω
7
Ω


7
))

+ (𝜖
2
(
𝑑𝑝
1

𝑑𝑧
(−𝜖
2
+ 𝑟
2

2
(1 + 2 log 𝜖

𝑟
2

)) 𝑟


2

+ 2𝑟
2
(log 𝜖

𝑟
2

)

2

× (2Ω


22

−Wi (Ω2
7
+ Ω
7
Ω


7
)))))

−
1

288
Re 𝜖8 (Ω2

9
+ Ω
9
Ω


9
)]

]

.
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