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We deal with the oscillation of a generalized Emden-Fowler dynamic equation in the form (𝑟 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑍
Δ
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛼−1

𝑍
Δ
(𝑡))
Δ

+𝑓(𝑡, 𝑥(𝛿(𝑡))) =

0. We establish some new oscillation criteria for the equation, which improve some of the main results of (H. Liu and P. Liu, 2013).
Some examples are given to illustrate the new results.

1. Introduction

The theory of time scales has attracted a great deal of attention
since it was first introduced by Hilger [1] in order to unify
continuous and discrete analysis. For completeness, we recall
the following concepts related to the notion of time scales; see
[2, 3] formore details. A time scale T is an arbitrary nonempty
closed subset of the real numbers R. In this paper, since we
shall be concerned with the oscillatory behavior of solutions,
we shall also assume that sup T = ∞.We define the time scale
interval [𝑡

0
,∞)T by [𝑡0,∞)T := [𝑡

0
,∞) ∩ T . The forward and

backward jump operators are defined by

𝜎 (𝑡) := inf {𝑠 ∈ T : 𝑠 > 𝑡} ,

𝜌 (𝑡) := sup {𝑠 ∈ T , 𝑠 < 𝑡} ,
(1)

where inf 0 := sup T and sup 0 := inf T ; here 0 denotes the
empty set. A point 𝑡 ∈ T and 𝑡 > inf T is said to be left-
dense if 𝜌(𝑡) = 𝑡, right-dense if 𝑡 < sup T and 𝜎(𝑡) = 𝑡,
left-scattered if 𝜌(𝑡) < 𝑡, and right-scattered if 𝜎(𝑡) > 𝑡.
The graininess function 𝜇 for the time scale T is defined by
𝜇(𝑡) := 𝜎(𝑡)−𝑡, and for any function𝑓 : T → R, the notation
𝑓
𝜎(𝑡) denotes 𝑓(𝜎(𝑡)). A function 𝑔 : T → R is said to be

rd-continuous provided 𝑔 is continuous at right-dense points
and at left-dense points in T and left-hand limits exist and are

finite. The set of all such rd-continuous functions is denoted
by 𝐶rd(T). We say that 𝑥 : T → R is differentiable at 𝑡 ∈ T

provided

𝑥
Δ
(𝑡) := lim

𝑠→ 𝑡

𝑥 (𝑡) − 𝑥 (𝑠)

𝑡 − 𝑠
(2)

exists when 𝜎(𝑡) = 𝑡 (here by 𝑠 → 𝑡 it is understood that 𝑠
approaches 𝑡 in the time scale) and when 𝑥 is continuous at 𝑡
and 𝜎(𝑡) > 𝑡

𝑥
Δ
(𝑡) :=

𝑥 (𝜎 (𝑡)) − 𝑥 (𝑡)

𝜇 (𝑡)
. (3)

Note that if T = R, then the delta derivative is just the
standard derivative and when T = Z the delta derivative
is just the forward difference operator. The set of functions
𝑓 : T → R which are differentiable and whose derivative is
rd-continuous is denoted by 𝐶1rd(T ,R).

In this paper, we consider the oscillatory behavior of
the nontrivial solutions of the second-order Emden-Fowler
dynamic equation of the form

(𝑟 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑍
Δ
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛼−1

𝑍
Δ
(𝑡))
Δ

+ 𝑓 (𝑡, 𝑥 (𝛿 (𝑡))) = 0,

𝑡 ∈ [𝑡
0
,∞)

T
,

(4)
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on an arbitrary time scale T , with sup T = ∞, where 𝑍(𝑡) =
𝑥(𝑡) + 𝑝(𝑡)𝑥(𝜏(𝑡)), and 𝛼 > 0 is a constant. Throughout this
paper, we always assume that

(𝐴1) 𝑟 ∈ 𝐶rd([𝑡0,∞)T , (0,∞)) with ∫
∞

𝑡0

𝑟−1/𝛼(𝑡)Δ𝑡 = ∞;

(𝐴2) 𝑝 ∈ 𝐶rd([𝑡0,∞)T ,R) with 0 ≤ 𝑝(𝑡) < 1;
(𝐴3) 𝜏, 𝛿 ∈ 𝐶rd([𝑡0,∞)T , T), 𝜏(𝑡) ≤ 𝑡, 𝛿(𝑡) ≤ 𝑡, and

lim
𝑡→∞

𝜏(𝑡) = lim
𝑡→∞

𝛿(𝑡) = ∞;
(𝐴4) 𝑓(𝑡, 𝑢) ∈ 𝐶([𝑡

0
,∞)T ×R,R) is a continuous function

such that 𝑢𝑓(𝑡, 𝑢) > 0, for all 𝑢 ̸= 0 and there exists a
positive right-dense continuous function 𝑞(𝑡) defined
on [𝑡
0
,∞)T such that |𝑓(𝑡, 𝑢)| ≥ 𝑞(𝑡)|𝑢|𝛽 for all 𝑡 ∈

[𝑡
0
,∞)T and for all 𝑢 ∈ R, where 𝛽 > 0 is a constant.

By a solution of (4), we mean a nontrivial real-valued
function 𝑥 ∈ 𝐶1rd([𝑇𝑥,∞),R),𝑇

𝑥
≥ 𝑡
0
which has the property

that 𝑟(𝑡)(𝑍Δ(𝑡))𝛼 ∈ 𝐶1rd([𝑇𝑥,∞),R) and satisfies (4) that
holds on [𝑇

𝑥
,∞). The solutions vanishing in some neighbor-

hood of infinity will be excluded from our consideration. A
solution 𝑥(𝑡) of (4) is said to be oscillatory if it is neither
eventually positive nor eventually negative. Otherwise it is
said to be nonoscillatory. The equation itself is said to be
oscillatory if all its solutions are oscillatory.

Recently, there has been an increasing interest in studying
the oscillation behavior of second-order dynamic equations
on time scales; see for example [4–10] and the references
contained therein. In [5], the authors presented some criteria
for the oscillation and asymptotic behavior of (4) in the case
where

𝛼 ≥ 𝛽 > 0, 𝛿
Δ
(𝑡) > 0. (5)

Also, we note further that in the proof of [5], the authors used
the chain rule in the form

(𝑥 (𝛿 (𝑡)))
Δ
= 𝑥
Δ
(𝛿 (𝑡)) 𝛿

Δ
(𝑡) ,

𝛿 (𝜎 (𝑡)) = 𝜎 (𝛿 (𝑡)) .
(6)

So the natural question which arises is can we find some
new oscillation conditions for (4) which do not require (5)
and (6) and, in addition, improve the main results in [5]?

The purpose of this paper is to give an affirmative answer
to this question. That is, we shall establish some new criteria
for the oscillation of (4) which improve the main results in
[5]. We also demonstrate that our results cover certain cases
which were not covered in [5]. Finally, we give two examples
to illustrate the main results.

2. Main Results

For notational simplicity, define

𝑅 (𝑡) := ∫
𝑡

𝑡0

𝑟
−1/𝛼

(𝑠) Δ𝑠;

𝜃 (𝑡, 𝑢) := (∫
𝑡

𝑢

𝑟
−1/𝛼

(𝑠) Δ𝑠)

−1

∫
𝛿(𝑡)

𝑢

𝑟
−1/𝛼

(𝑠) Δ𝑠,

𝑡 > 𝑢 ≥ 𝑡
0
.

(7)

We begin with the following lemmas.

Lemma 1. Assume that (4) has a positive solution 𝑥(𝑡) on
[𝑡
0
,∞)T . Then for sufficiently large 𝑇, one has

𝑍 (𝑡) > 0, 𝑍
Δ
(𝑡) > 0,

(𝑟 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑍
Δ
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛼−1

𝑍
Δ
(𝑡))
Δ

≤ 0,

𝑡 ∈ [𝑇,∞)T .

(8)

Proof. Assume that (4) has a nonoscillatory solution on
[𝑡
0
,∞)T . Without loss of generality, we assume that there

exists a 𝑇 ∈ [𝑡
0
,∞)T such that 𝑥(𝑡), 𝑥(𝜏(𝑡)), 𝑥(𝛿(𝑡)) > 0 on

[𝑇,∞)T . Then it follows that 𝑍(𝑡) ≥ 𝑥(𝑡) > 0. From (4), we
have

(𝑟 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑍
Δ
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛼−1

𝑍
Δ
(𝑡))
Δ

= −𝑞 (𝑡) 𝑥
𝛽
(𝛿 (𝑡)) ≤ 0. (9)

Hence, 𝑟(𝑡)|𝑍Δ(𝑡)|𝛼−1𝑍Δ(𝑡) is decreasing on [𝑇,∞)T . We now
claim that 𝑍Δ(𝑡) > 0 on 𝑡 ∈ [𝑇,∞)T . If not, then there exists
a 𝑡
1
∈ [𝑇,∞)T such that 𝑍Δ(𝑡

1
) < 0. Therefore,

𝑟 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑍
Δ
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛼−1

𝑍
Δ
(𝑡)

≤ 𝑟 (𝑡
1
)
󵄨󵄨󵄨󵄨󵄨
𝑍
Δ
(𝑡
1
)
󵄨󵄨󵄨󵄨󵄨

𝛼−1

𝑍
Δ
(𝑡
1
) := −𝑐 < 0, 𝑡 ≥ 𝑡

1
,

(10)

that is,

𝑍
Δ
(𝑡) ≤ −[

𝑐

𝑟 (𝑡)
]

1/𝛼

. (11)

Integrating (11) from 𝑡
1
to 𝑡, we find from (𝐴1) that

𝑍 (𝑡) ≤ 𝑍 (𝑡
1
) − 𝑐
1/𝛼

∫
𝑡

𝑡1

1

𝑟1/𝛼 (𝑠)
Δ𝑠 󳨀→ −∞ as 𝑡 → ∞,

(12)

which implies that 𝑍(𝑡) is eventually negative. This contra-
dicts the fact that 𝑍(𝑡) > 0 on [𝑇,∞)T . Thus, 𝑍Δ(𝑡) > 0 on
[𝑇,∞)T . This completes the proof.

Lemma 2. Assume that (4) has a positive solution 𝑥(𝑡) on
[𝑡
0
,∞)T . Then for sufficiently large 𝑡

1
,

𝑍 (𝛿 (𝑡))

𝑍 (𝑡)
≥ 𝜃 (𝑡, 𝑡

1
) , 𝑡 ≥ 𝑡

1
. (13)

Proof. As in the proof of Lemma 1, there is a 𝑡
1
∈ [𝑡
0
,∞)T so

that

𝑍 (𝑡) > 0, 𝑍
Δ
(𝑡) > 0,

(𝑟 (𝑡) (𝑍
Δ
(𝑡))
𝛼

)
Δ

≤ 0,

𝑡 ∈ [𝑡
1
,∞)

T
.

(14)
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Since 𝑟(𝑡)(𝑍Δ(𝑡))𝛼 is decreasing on [𝑡
1
,∞)T , we can choose

𝑡
2
> 𝑡
1
so that 𝛿(𝑡) ≥ 𝑡

1
, for 𝑡 ≥ 𝑡

2
. Then

𝑍 (𝑡) − 𝑍 (𝛿 (𝑡)) = ∫
𝑡

𝛿(𝑡)

1

𝑟1/𝛼 (𝑠)
[𝑟 (𝑠) (𝑍

Δ
(𝑠))
𝛼

]
1/𝛼

Δ𝑠

≤ [𝑟 (𝛿 (𝑡)) (𝑍
Δ
(𝛿 (𝑡)))

𝛼

]
1/𝛼

∫
𝑡

𝛿(𝑡)

1

𝑟1/𝛼 (𝑠)
Δ𝑠,

(15)

consequently,

𝑍 (𝑡)

𝑍 (𝛿 (𝑡))
≤ 1 +

[𝑟 (𝛿 (𝑡)) (𝑍
Δ
(𝛿 (𝑡)))

𝛼

]
1/𝛼

𝑍 (𝛿 (𝑡))
∫
𝑡

𝛿(𝑡)

1

𝑟1/𝛼 (𝑠)
Δ𝑠.

(16)

Also, we have, for 𝑡 ≥ 𝑡
2

𝑍 (𝛿 (𝑡)) > 𝑍 (𝛿 (𝑡)) − 𝑍 (𝑡
1
)

= ∫
𝛿(𝑡)

𝑡1

1

𝑟1/𝛼 (𝑠)
[𝑟 (𝑠) (𝑍

Δ
(𝑠))
𝛼

]
1/𝛼

Δ𝑠

≥ [𝑟 (𝛿 (𝑡)) (𝑍
Δ
(𝛿 (𝑡)))

𝛼

]
1/𝛼

∫
𝛿(𝑡)

𝑡1

1

𝑟1/𝛼 (𝑠)
Δ𝑠,

(17)

hence,

[𝑟 (𝛿 (𝑡)) (𝑍
Δ
(𝛿 (𝑡)))

𝛼

]
1/𝛼

𝑍 (𝛿 (𝑡))
≤ (∫
𝛿(𝑡)

𝑡1

1

𝑟1/𝛼 (𝑠)
Δ𝑠)

−1

. (18)

Therefore, by combining inequalities (16) and (18) we have

𝑍 (𝑡)

𝑍 (𝛿 (𝑡))
≤ (∫
𝑡

𝑡1

1

𝑟1/𝛼 (𝑠)
Δ𝑠)(∫

𝛿(𝑡)

𝑡1

1

𝑟1/𝛼 (𝑠)
Δ𝑠)

−1

, (19)

from which we have

𝑍 (𝛿 (𝑡))

𝑍 (𝑡)
≥ 𝜃 (𝑡, 𝑡

1
) . (20)

This completes the proof.

Lemma 3 (see [11]). Let 𝜙(𝑢) = 𝑎𝑢 − 𝑏𝑢(𝜆+1)/𝜆, where 𝑎 ≥ 0,
𝑏 > 0, 𝜆 > 0, and 𝑢 ∈ [0,∞). Then

𝜙 (𝑢) ≤
𝜆𝜆

(𝜆 + 1)
𝜆+1

𝑎𝜆+1

𝑏𝜆
. (21)

For the positive solution 𝑥(𝑡) of (4), it follows from 𝑍(𝑡)

and Lemma 1 that, for 𝑡 ≥ 𝑇,

𝑥 (𝑡) = 𝑍 (𝑡) − 𝑝 (𝑡) 𝑥 (𝜏 (𝑡)) ≥ 𝑍 (𝑡) − 𝑝 (𝑡) 𝑍 (𝜏 (𝑡))

≥ (1 − 𝑝 (𝑡)) 𝑍 (𝑡) ,
(22)

which implies

𝑥
𝛽
(𝛿 (𝑡)) ≥ (1 − 𝑝 (𝛿 (𝑡)))

𝛽
𝑍
𝛽
(𝛿 (𝑡)) . (23)

Combining (23) (𝐴4), (4) one obtains

(𝑟 (𝑡) (𝑍
Δ
(𝑡))
𝛼

)
Δ

≤ −𝑞 (𝑡) (1 − 𝑝 (𝛿 (𝑡)))
𝛽
𝑍
𝛽
(𝛿 (𝑡))

= −𝑝 (𝑡) 𝑍
𝛽
(𝛿 (𝑡)) ,

(24)

where 𝑝(𝑡) := 𝑞(𝑡)(1 − 𝑝(𝛿(𝑡)))
𝛽.

One may now state and prove the main results. In these,
one shall consider the two cases 𝛼 ≥ 𝛽 and 𝛼 < 𝛽.

Theorem 4. Let 𝛼 ≥ 𝛽. Assume that there exist a positive rd-
continuous differentiable function 𝜉(𝑡) and a constant 𝑀 > 0

such that, for some 𝑇 ≥ 𝑡
0
,

lim sup
𝑡→∞

∫
𝑡

𝑡0

(𝜉 (𝑠) 𝑝 (𝑠) 𝜃
𝛽
(𝑠, 𝑇)

−
𝑀𝛼𝛼𝑟 (𝑠) (𝑅 (𝜎 (𝑠)))

𝛼−𝛽
(𝜉Δ
+
(𝑠))
𝛼+1

(𝛼 + 1)
𝛼+1

𝛽𝛼𝜉𝛼 (𝑠)
)Δ𝑠

= ∞,

(25)

where 𝜉Δ
+
(𝑠) := max{𝜉Δ(𝑠), 0}. Then (4) is oscillatory on

[𝑡
0
,∞)T .

Proof. Let 𝑥(𝑡) be a nonoscillatory solution 𝑥(𝑡) of (4)
on [𝑡

0
,∞)T . Without loss of generality, we assume that

there exists a 𝑇 ∈ [𝑡
0
,∞)T (sufficiently large) such that

𝑥(𝑡), 𝑥(𝜏(𝑡)), 𝑥(𝛿(𝑡)) > 0 on [𝑇,∞)T , and 𝑍(𝑡) satisfies the
conclusions of Lemmas 1 and 2 on [𝑇,∞)T . Consider the
Riccati substitution

𝑤 (𝑡) = 𝜉 (𝑡)
𝑟 (𝑡) (𝑍

Δ
(𝑡))
𝛼

𝑍𝛽 (𝑡)
, 𝑡 ≥ 𝑇. (26)

Then 𝑤(𝑡) > 0. By [2, Theorem 1.20], Lemma 2, and (24), we
have

𝑤
Δ
(𝑡) = (𝑟 (𝑡) (𝑍

Δ
(𝑡))
𝛼

)
Δ 𝜉 (𝑡)

𝑍𝛽 (𝑡)

+ (𝑟 (𝑡) (𝑍
Δ
(𝑡))
𝛼

)
𝜎

(
𝜉 (𝑡)

𝑍𝛽 (𝑡)
)

Δ

≤ −𝜉 (𝑡) 𝑝 (𝑡) (
𝑍 (𝛿 (𝑡))

𝑍 (𝑡)
)

𝛽

+ (𝑟 (𝑡) (𝑍
Δ
(𝑡))
𝛼

)
𝜎

×
𝜉Δ (𝑡) 𝑍

𝛽
(𝑡) − 𝜉 (𝑡) (𝑍

𝛽
(𝑡))
Δ

𝑍𝛽 (𝑡) (𝑍𝛽 (𝑡))
𝜎

≤ −𝜉 (𝑡) 𝑝 (𝑡) 𝜃
𝛽
(𝑡, 𝑇) +

𝜉Δ (𝑡)

𝜉 (𝜎 (𝑡))
𝑤
𝜎
(𝑡)

−
𝜉 (𝑡)

𝜉 (𝜎 (𝑡))
𝑤
𝜎
(𝑡)

(𝑍𝛽 (𝑡))
Δ

𝑍𝛽 (𝑡)
.

(27)



4 Abstract and Applied Analysis

By the Pötzsche chain rule [2, Theorem 1.87],

(𝑍
𝛽
(𝑡))
Δ

= 𝛽{∫
1

0

[(1 − ℎ) 𝑍 (𝑡) + ℎ𝑍 (𝜎 (𝑡))]
𝛽−1dℎ}𝑍

Δ
(𝑡)

≥
{

{

{

𝛽(𝑍 (𝑡))
𝛽−1

𝑍Δ (𝑡) , 𝛽 > 1,

𝛽(𝑍 (𝜎 (𝑡)))
𝛽−1

𝑍Δ (𝑡) , 0 < 𝛽 ≤ 1.

(28)

Thus,

(𝑍𝛽 (𝑡))
Δ

𝑍𝛽 (𝑡)
≥

{{{{

{{{{

{

𝛽
𝑍
Δ
(𝑡)

𝑍 (𝑡)
, 𝛽 > 1,

𝛽
(𝑍 (𝜎 (𝑡)))

𝛽−1

𝑍𝛽 (𝑡)
𝑍Δ (𝑡) , 0 < 𝛽 ≤ 1.

(29)

Noting that 𝑍(𝑡) is increasing on [𝑇,∞)T , we get 𝑍(𝑡) ≤

𝑍(𝜎(𝑡)) for 𝑡 ∈ [𝑇,∞)T . Thus,

(𝑍𝛽 (𝑡))
Δ

𝑍𝛽 (𝑡)
≥ 𝛽

𝑍Δ (𝑡)

𝑍 (𝜎 (𝑡))
. (30)

Substituting (30) into (27), we obtain

𝑤
Δ
(𝑡) ≤ − 𝜉 (𝑡) 𝑝 (𝑡) 𝜃

𝛽
(𝑡, 𝑇) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤
𝜎
(𝑡)

−
𝛽𝜉 (𝑡)

𝜉 (𝜎 (𝑡))
𝑤
𝜎
(𝑡)

𝑍Δ (𝑡)

𝑍 (𝜎 (𝑡))
, 𝑡 ≥ 𝑇.

(31)

Noting that 𝑟1/𝛼(𝑡)𝑍Δ(𝑡) is decreasing, we have
𝑟1/𝛼(𝑡)𝑍Δ(𝑡) ≥ (𝑟1/𝛼(𝑡)𝑍Δ(𝑡))

𝜎. It follows from the definition
of 𝑤(𝑡) that

𝑍
Δ
(𝑡) ≥

1

(𝑟 (𝑡) 𝜉 (𝜎 (𝑡)))
1/𝛼

𝑤
1/𝛼

(𝜎 (𝑡)) 𝑍
𝛽/𝛼

(𝜎 (𝑡)) . (32)

Substituting (32) into (31), we obtain

𝑤
Δ
(𝑡) ≤ − 𝜉 (𝑡) 𝑝 (𝑡) 𝜃

𝛽
(𝑡, 𝑇) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤
𝜎
(𝑡)

−
𝛽𝜉 (𝑡) 𝑤

(𝛼+1)/𝛼
(𝜎 (𝑡))

𝑟1/𝛼 (𝑡) 𝜉(𝛼+1)/𝛼 (𝜎 (𝑡)) 𝑍(𝛼−𝛽)/𝛼 (𝜎 (𝑡))
, 𝑡 ≥ 𝑇.

(33)

Since 𝑟1/𝛼(𝑡)𝑍Δ(𝑡) is decreasing, there exists a constant𝑀
1
>

0 such that 𝑟1/𝛼(𝑡)𝑍Δ(𝑡) ≤ 𝑀
1
for 𝑡 ≥ 𝑇, which implies

𝑍
Δ
(𝑡) ≤

𝑀
1

𝑟1/𝛼 (𝑡)
, 𝑡 ≥ 𝑇. (34)

Integrating both sides of (34) from 𝑇 to 𝑡, we get

𝑍 (𝑡) ≤ 𝑍 (𝑇) +𝑀
1 (𝑅 (𝑡) − 𝑅 (𝑇))

= 𝑅 (𝑡) (𝑀1 +
𝑍 (𝑇) −𝑀

1
𝑅 (𝑇)

𝑅 (𝑡)
) .

(35)

Hence, there exists a 𝑇
1
≥ 𝑇 such that 𝑍(𝑡) ≤ (𝑀

1
+ 1)𝑅(𝑡)

for 𝑡 ≥ 𝑇
1
. Then,

𝑍
(𝛼−𝛽)/𝛼

(𝜎 (𝑡)) ≤ (𝑀
1
+ 1)
(𝛼−𝛽)/𝛼

(𝑅 (𝜎 (𝑡)))
(𝛼−𝛽)/𝛼

= 𝑀
2(𝑅 (𝜎 (𝑡)))

(𝛼−𝛽)/𝛼
, 𝑡 ≥ 𝑇

1
,

(36)

where 𝑀
2
= (𝑀

1
+ 1)
(𝛼−𝛽)/𝛼. Substituting (36) into (33), we

get

𝑤
Δ
(𝑡) ≤ −𝜉 (𝑡) 𝑝 (𝑡) 𝜃

𝛽
(𝑡, 𝑇) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤
𝜎
(𝑡)

−
𝛽𝜉 (𝑡) 𝑤

(𝛼+1)/𝛼
(𝜎 (𝑡))

𝑀
2
𝑟1/𝛼 (𝑡) 𝜉(𝛼+1)/𝛼 (𝜎 (𝑡)) (𝑅 (𝜎 (𝑡)))

(𝛼−𝛽)/𝛼

= −𝜉 (𝑡) 𝑝 (𝑡) 𝜃
𝛽
(𝑡, 𝑇) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤
𝜎
(𝑡)

− Ψ (𝑡) 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡))

≤ −𝜉 (𝑡) 𝑝 (𝑡) 𝜃
𝛽
(𝑡, 𝑇) +

𝜉Δ
+
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤
𝜎
(𝑡)

− Ψ (𝑡) 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡)) , 𝑡 ≥ 𝑇
1
,

(37)

where

Ψ (𝑡) :=
𝛽𝜉 (𝑡)

𝑀
2
𝑟1/𝛼 (𝑡) 𝜉(𝛼+1)/𝛼 (𝜎 (𝑡)) (𝑅 (𝜎 (𝑡)))

(𝛼−𝛽)/𝛼
. (38)

Taking 𝑎 = 𝜉Δ
+
(𝑡)/𝜉(𝜎(𝑡)), 𝑏 = Ψ(𝑡), from Lemma 3 and (37),

we obtain

𝑤
Δ
(𝑡) ≤ −𝜉 (𝑡) 𝑝 (𝑡) 𝜃

𝛽
(𝑡, 𝑇)

+
𝛼
𝛼

(𝛼 + 1)
𝛼+1

Ψ𝛼 (𝑡)
(

𝜉Δ
+
(𝑡)

𝜉 (𝜎 (𝑡))
)

𝛼+1

= −𝜉 (𝑡) 𝑝 (𝑡) 𝜃
𝛽
(𝑡, 𝑇)

+
𝑀𝛼𝛼𝑟 (𝑡) (𝑅 (𝜎 (𝑡)))

𝛼−𝛽
(𝜉Δ
+
(𝑡))
𝛼+1

(𝛼 + 1)
𝛼+1

𝛽𝛼𝜉𝛼 (𝑡)
,

𝑡 ≥ 𝑇
1
,

(39)

where 𝑀 = 𝑀𝛼
2
. Integrating both sides of (39) from 𝑇

1
to 𝑡,

we have

∫
𝑡

𝑇1

(𝜉 (𝑠) 𝑝 (𝑠) 𝜃
𝛽
(𝑠, 𝑇)

−
𝑀𝛼𝛼𝑟 (𝑠) (𝑅 (𝜎 (𝑠)))

𝛼−𝛽
(𝜉Δ
+
(𝑠))
𝛼+1

(𝛼 + 1)
𝛼+1

𝛽𝛼𝜉𝛼 (𝑠)
)Δ𝑠

≤ 𝑤 (𝑇
1
) − 𝑤 (𝑡) < 𝑤 (𝑇

1
) .

(40)

Taking lim sup of both sides of this last inequality as 𝑡 → ∞,
we get a contradiction to (25). This completes the proof.
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Theorem 5. Let 𝛼 < 𝛽. Assume that there exist a positive rd-
continuous differentiable function 𝜉(𝑡) and a constant 𝐾 > 0

such that, for some 𝑇 ≥ 𝑡
0
,

lim sup
𝑡→∞

∫
𝑡

𝑡0

(𝜉 (𝑠) 𝑝 (𝑠) 𝜃
𝛽
(𝑠, 𝑇) −

𝛼𝛼𝑟 (𝑠) (𝜉
Δ

+
(𝑠))
𝛼+1

𝐾(𝛼 + 1)
𝛼+1

𝛽𝛼𝜉𝛼 (𝑠)
)Δ𝑠

= ∞,

(41)

where 𝜉Δ
+
(𝑠) is defined as Theorem 4. Then (4) is oscillatory on

[𝑡
0
,∞)T .

Proof. Assume that 𝑥(𝑡) is a nonoscillatory solution of (4).
Proceeding as in the proof of Theorem 4 we get that (33)
holds, that is,

𝑤
Δ
(𝑡) ≤ − 𝜉 (𝑡) 𝑝 (𝑡) 𝜃

𝛽
(𝑡, 𝑇) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤
𝜎
(𝑡)

−
𝛽𝜉 (𝑡) 𝑤

(𝛼+1)/𝛼
(𝜎 (𝑡))

𝑟1/𝛼 (𝑡) 𝜉(𝛼+1)/𝛼 (𝜎 (𝑡))
𝑍
(𝛽−𝛼)/𝛼

(𝜎 (𝑡)) , 𝑡 ≥ 𝑇.

(42)

Since𝛽 > 𝛼 and𝑍(𝑡) is increasing on [𝑇,∞)T , then there exist
a 𝑇
2
≥ 𝑇 and a positive constant 𝑐

1
such that 𝑍(𝛽−𝛼)/𝛼(𝜎(𝑡)) ≥

𝑐
1
for 𝑡 ≥ 𝑇

2
. Consequently,

𝑤
Δ
(𝑡) ≤ − 𝜉 (𝑡) 𝑝 (𝑡) 𝜃

𝛽
(𝑡, 𝑇) +

𝜉
Δ
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤
𝜎
(𝑡)

−
𝑐
1
𝛽𝜉 (𝑡) 𝑤

(𝛼+1)/𝛼
(𝜎 (𝑡))

𝑟1/𝛼 (𝑡) 𝜉(𝛼+1)/𝛼 (𝜎 (𝑡))
, 𝑡 ≥ 𝑇

2
.

(43)

Let

Ψ (𝑡) :=
𝑐
1
𝛽𝜉 (𝑡)

𝑟1/𝛼 (𝑡) 𝜉(𝛼+1)/𝛼 (𝜎 (𝑡))
, (44)

then Ψ(𝑡) > 0, and

𝑤
Δ
(𝑡) ≤ − 𝜉 (𝑡) 𝑝 (𝑡) 𝜃

𝛽
(𝑡, 𝑇) +

𝜉Δ
+
(𝑡)

𝜉 (𝜎 (𝑡))
𝑤 (𝜎 (𝑡))

− Ψ (𝑡) 𝑤
(𝛼+1)/𝛼

(𝜎 (𝑡)) , 𝑡 ≥ 𝑇
2
.

(45)

The remainder of the proof is similar to that of Theorem 4
and is therefore omitted.This completes the proof for the case
𝛼 < 𝛽.

Remark 6. Theorems 4 and 5 remove the Conditions (5)
and (6). Moreover, the authors in [5] established oscillation
theorems for (4) only for the case 𝛼 ≥ 𝛽 > 0. Our results
here hold without this assumption, so our results improve the
main results [5].

Remark 7. The results established here are valid for general
time scales, with no additional restrictions, for example, T =

R, T = Z, and T = ℎZ with ℎ > 0, T = 𝑞
N0 with 𝑞 > 1, and

T = N2
0
; see [2, 3].

3. Some Examples

In this section, we give two examples to illustrate our main
results.

Example 1. Let T = 2N0 (N
0

= N⋃{0}), 𝛼 = 3, 𝛽 = 2.
Consider the neutral nonlinear dynamic equation

Δ
2
(Δ
2
𝑍(2
𝑘
))
3

+
𝛿2 (2𝑘)

𝜃2 (2𝑘, 1)

󵄨󵄨󵄨󵄨󵄨
𝑥 (𝛿 (2

𝑘
))
󵄨󵄨󵄨󵄨󵄨
𝑥 (𝛿 (2

𝑘
)) = 0,

𝑘
0
= 0,

(46)

where 𝜏(2
𝑘
) satisfies (𝐴3), and 𝑍(2

𝑘
) = 𝑥(2

𝑘
) + (2

𝑘
−

1)/2
𝑘
𝑥(𝜏(2
𝑘
)).

Here,

𝑟 (2
𝑘
) = 1, 𝑝 (2

𝑘
) =

2𝑘 − 1

2𝑘
, 𝑞 (2

𝑘
) =

𝛿2 (2𝑘)

𝜃2 (2𝑘, 1)
.

(47)

It is clear that (𝐴1) holds, and 𝑝(2𝑘) = 𝑞(2𝑘)(1 −𝑝(𝛿(2𝑘)))
𝛽
=

1/𝜃2(2𝑘, 1), 𝑅(𝜎(2𝑘)) = 2𝑘+1 − 1.
Let 𝜉(2𝑘) = 2𝑘. Noting that∑∞

𝑘=0
𝑟−1/𝛼(2𝑘)2𝑘 = ∞ implies

lim
𝑘→∞

𝜃(2𝑘, 2𝑘𝑇)/𝜃(2𝑘, 1) = 1 for 𝑘
𝑇
≥ 1, we get

lim sup
𝑡→∞

∫
𝑡

𝑡0

(𝜉 (𝑠) 𝑝 (𝑠) 𝜃
𝛽
(𝑠, 𝑇)

−
𝑀𝛼
𝛼
𝑟 (𝑠) (𝑅 (𝜎 (𝑠)))

𝛼−𝛽
(𝜉
Δ

+
(𝑠))
𝛼+1

(𝛼 + 1)
𝛼+1

𝛽𝛼𝜉𝛼 (𝑠)
)Δ𝑠

= lim sup
𝑘→∞

𝑘−1

∑
𝑖=0

(2
𝑖
𝜃2 (2𝑖, 2𝑘𝑇)

𝜃2 (2𝑖, 1)
−
33𝑀(2𝑖+1 − 1)

442322𝑖
)2
𝑖

≥ lim sup
𝑘→∞

𝑘−1

∑
𝑖=0

(2
𝑖
−
𝑀(2
𝑖+1

− 1)

22𝑖
)2
𝑖
= ∞.

(48)

Thus, byTheorem 4, (46) is oscillatory.

Example 2. Consider the neutral dynamic equation

(
1

𝜎1+𝛼 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑍
Δ
(𝑡)

󵄨󵄨󵄨󵄨󵄨

𝛼−1

𝑍
Δ
(𝑡))

Δ

+
(1 + 𝛿 (𝑡))

𝛽

𝛿𝛽 (𝑡) 𝜃𝛽 (𝑡, 𝑡0)
|𝑥 (𝛿 (𝑡))|

𝛽−1
𝑥 (𝛿 (𝑡)) = 0,

𝑡
0
> 0,

(49)

where 𝛽 > 𝛼 > 0 are constants, 𝜏(𝑡) satisfies (𝐴3), and 𝑍(𝑡) =
𝑥(𝑡) + 1/(𝑡 + 1)𝑥(𝜏(𝑡)).
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For (4), we let

𝑟 (𝑡)=
1

𝜎1+𝛼 (𝑡)
, 𝑝 (𝑡)=

1

𝑡 + 1
, 𝑞 (𝑡)=

(1 + 𝛿 (𝑡))
𝛽

𝛿𝛽 (𝑡) 𝜃𝛽 (𝑡, 𝑡0)
.

(50)

Since

∫
∞

𝑡0

1

𝑟1/𝛼 (𝑠)
Δ𝑠 = ∫

∞

𝑡0

𝜎
(1+𝛼)/𝛼

(𝑠) Δ𝑠 = ∞, (51)

then (𝐴1) holds and 𝑝(𝑡) = 𝑞(𝑡)(1 − 𝑝(𝛿(𝑡)))
𝛽
= 1/𝜃2(𝑡, 𝑡

0
).

Let 𝜉(𝑡) = 𝑡. Noting that ∫∞
𝑡0

𝑟−1/𝛼(𝑡)Δ𝑡 = ∞ implies
lim
𝑡→∞

𝜃(𝑡, 𝑇)/𝜃(𝑡, 𝑡
0
) = 1 for 𝑇 ≥ 𝑡

0
, we have

lim sup
𝑡→∞

∫
𝑡

𝑡0

(𝜉 (𝑠) 𝑝 (𝑠) 𝜃
𝛽
(𝑠, 𝑇)

−
𝛼𝛼𝑟 (𝑠) (𝜉

Δ

+
(𝑠))
𝛼+1

𝐾(𝛼 + 1)
𝛼+1

𝛽𝛼𝜉𝛼 (𝑠)
)Δ𝑠

= lim sup
𝑡→∞

∫
𝑡

𝑡0

(𝑠
𝜃2 (𝑠, 𝑇)

𝜃2 (𝑠, 𝑡
0
)
−

𝛼
𝛼

𝐾(𝛼 + 1)
𝛼+1

𝛽𝛼𝜎1+𝛼 (𝑠) 𝑠𝛼
)Δ𝑠

≥ lim sup
𝑡→∞

∫
𝑡

𝑡0

(𝑠 −
1

𝐾𝛽𝛼𝑠1+2𝛼
)Δ𝑠

≥ lim sup
𝑡→∞

1

2
∫
𝑡

𝑡0

𝑠Δ𝑠 = ∞.

(52)

Thus, byTheorem 5, (49) is oscillatory.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

Qiaoshun Yang was supported by The Foundation of Hunan
Educational Department (no. 13C753) and The Main Foun-
dation of Jishou University (no. 2012JSUJGA23). The work
of Lynn Erbe was performed during a visit to Zhongshan
(Sun Yat-sen) University in Guangzhou, China. Baoguo Jia
was supported by The National Natural Science Foundation
of China (no. 11271380); The Guangdong Province Key
Laboratory of Computational Science; and The Guangdong
Province Natural Science Foundation (S2013010013050).

References

[1] S. Hilger, “Analysis on measure chains—a unified approach to
continuous and discrete calculus,” Results in Mathematics, vol.
18, no. 1-2, pp. 18–56, 1990.

[2] M. Bohner and A. Peterson,Dynamic Equations on Time Scales:
An Introduction with Applications, Birkhäuser, Boston, Mass,
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