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Very recently, Ahmed et al. introduced the notion of quaternion-valued metric as a generalization of metric and proved a common
fixed point theorem in the context of quaternion-valuedmetric space. In this paper, we will show that the quaternion-valuedmetric
spaces are subspaces of cone metric spaces. Consequently, the fixed point results in such spaces can be derived as a consequence of
the corresponding existing fixed point result in the setting cone metric spaces.

1. Introduction

Recently, Azam et al. [1] introduced the notion of complex-
valued metric space, as a generalization of Banach-valued
metric space which is also known as a cone metric space.
The authors [1] proved several fixed point theorems in the
context of complex-valued metric space. Inspired from these
results, Ahmed et al. [2] defined the concept of quaternion-
valued metric space, as a generalization of complex-valued
metric space, and proved a common fixed point theorem in
the context of such spaces.

In this paper, we announce that the quaternion-valued
metric spaces, introduced by Ahmed et al. [2], are subspaces
of cone metric spaces. Consequently, the fixed point results
in such spaces can be concluded from the classical versions
in cone metric spaces. Consequently, the fixed point results
in such spaces can be concluded from the classical versions
in cone metric spaces. On the other hand, several results
have been reported on the equivalence of cone metric space
and metric space; see, for example, [3–9]. In particular, by
the help of scalarization function, Du [3] proved that several
fixed point results in the context of cone metric spacecan be
concluded from the existing associated results in the setting

of metric space. Furthermore, if the cone is normal, then
there is a metric induced by Banach-valued metric. Hence,
most of the announced fixed point results in the setting cone
metric space can be deduced from related existing results in
the literature in the context of the metric space.

1.1. Complex-ValuedMetric Spaces. First we recall the concept
of complex-valuedmetric space which is given by Azam et al.
in [1].

Let C be the set of complex numbers and 𝑧
1
, 𝑧
2
∈ C.

Define a partial order ≾ on C as follows:
𝑧
1
≾ 𝑧
2

iff Re (𝑧
1
) ≤ Re (𝑧

2
) , Im (𝑧

1
) ≤ Im (𝑧

2
) . (1)

It follows that
𝑧
1
≾ 𝑧
2 (2)

if one of the following conditions is satisfied:
(ℎ
1
)Re (𝑧

1
) = Re (𝑧

2
) ; Im (𝑧

1
) < Im (𝑧

2
) ,

(ℎ
2
)Re (𝑧

1
) < Re (𝑧

2
) ; Im (𝑧

1
) = Im (𝑧

2
) ,

(ℎ
3
)Re (𝑧

1
) < Re (𝑧

2
) ; Im (𝑧

1
) < Im (𝑧

2
) ,

(ℎ
4
)Re (𝑧

1
) = Re (𝑧

2
) ; Im (𝑧

1
) = Im (𝑧

2
) .

(3)
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In particular, we will write 𝑧
1
⋨𝑧
2
if 𝑧
1
̸= 𝑧
2
and one of (ℎ

1
),

(ℎ
2
), and (ℎ

3
) is satisfied and we will write 𝑧

1
≺ 𝑧
2
if only (ℎ

3
)

is satisfied. Note that

0 ≾ 𝑧
1
⋦ 𝑧
2
󳨐⇒

󵄨
󵄨
󵄨
󵄨
𝑧
1

󵄨
󵄨
󵄨
󵄨
<
󵄨
󵄨
󵄨
󵄨
𝑧
2

󵄨
󵄨
󵄨
󵄨
, (4)

where | ⋅ | represents modulus or magnitude of 𝑧, and

𝑧
1
≾ 𝑧
2
, 𝑧

2
≺ 𝑧
3
󳨐⇒ 𝑧
1
≺ 𝑧
3
. (5)

Definition 1 (see [1]). Let 𝑋 be a nonempty set. A function
𝑑 : 𝑋 × 𝑋 → C is called a complex-valued metric on𝑋, if it
satisfies the following conditions:

(𝑏
1
): 0 ≾ 𝑑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0, if and
only if 𝑥 = 𝑦,

(𝑏
2
): 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝑋,

(𝑏
3
): 𝑑(𝑥, 𝑦) ≾ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Here, the pair (𝑋, 𝑑) is called a complex-valued metric space.

Let {𝑥
𝑛
} be a sequence in 𝑋 and ∈ 𝑋. If for every 𝑐 ∈ C,

with 0 ≺ 𝑐, there is 𝑛
0
∈ N such that, for all 𝑛 > 𝑛

0
, 𝑑(𝑥
𝑛
, 𝑥) ≺

𝑐, then {𝑥
𝑛
} is said to be convergent, {𝑥

𝑛
} converges to 𝑥, and

𝑥 is the limit point of {𝑥
𝑛
}. We denote this by lim

𝑛
𝑥
𝑛
= 𝑥,

or 𝑥
𝑛
→ 𝑥, as 𝑛 → ∞. If for every 𝑐 ∈ C with 0 ≺ 𝑐

there is 𝑛
0
∈ N such that for all 𝑛 > 𝑛

0
, 𝑑(𝑥
𝑛
, 𝑥
𝑛+𝑚

) ≺

𝑐, then {𝑥
𝑛
} is called a Cauchy sequence in (𝑋, 𝑑). If every

Cauchy sequence is convergent in (𝑋, 𝑑), then (𝑋, 𝑑) is called
a complete complex-valued metric space.

Lemma 2 (see [1, Lemma 2, Azam et al.]). Let (𝑋, 𝑑) be a
complex-valued metric space and let {𝑥

𝑛
} be a sequence in.

Then {𝑥
𝑛
} converges to 𝑥 if and only if |𝑑(𝑥

𝑛
, 𝑥)| → 0 as

𝑛 → ∞.

Lemma 3 (see [1, Lemma 3, Azam et al.]). Let (𝑋, 𝑑) be a
complex-valued metric space and let {𝑥

𝑛
} be a sequence in.

Then {𝑥
𝑛
} is a Cauchy sequence if and only if |𝑑(𝑥

𝑛
, 𝑥
𝑛+𝑚

)| →

0 as 𝑛 → ∞.

1.2. Quaternion Metric Space. Now, we recollect the basic
definitions and concept on quaternion-valued metric spaces.

The skew field of quaternion denoted byHmeans to write
each element 𝑞 ∈ H in the form 𝑞 = 𝑥

0
+𝑥
1
𝑖+𝑥
2
𝑗+𝑥
3
𝑘;𝑥
𝑛
∈ R,

where 1, 𝑖, 𝑗, and 𝑘 are the basis elements ofH and 𝑛 = 1, 2, 3.
For these elements we have the multiplication rules 𝑖2 = 𝑗2 =
𝑘
2
= −1, 𝑖𝑗 = −𝑗𝑖 = 𝑘, 𝑘𝑗 = −𝑗𝑘 = −𝑖, and 𝑘𝑖 = −𝑖𝑘 = 𝑗. The

conjugate element 𝑞 is given by 𝑞 = 𝑥
0
− 𝑥
1
𝑖 − 𝑥
2
𝑗 − 𝑥
3
𝑘.

The quaternion modulus has the form of |𝑞| =

√𝑥
2

0
+ 𝑥
2

1
+ 𝑥
2

2
+ 𝑥
2

3
. A quaternion q may be viewed as a four-

dimensional vector (𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
).

Define a partial order ≾ on H as follows.
𝑞
1
≾ 𝑞
2
if and only if Re(𝑞

1
) ≤ Re(𝑞

2
), Im
𝑠
(𝑞
1
) ≤ Im

𝑠
(𝑞
2
),

𝑞
1
, 𝑞
2
∈ H, 𝑠 = 𝑖, 𝑗, 𝑘where Im

𝑖
= 𝑥
1
, Im
𝑗
= 𝑥
2
, and Im

𝑘
= 𝑥
3
.

It follows that 𝑞
1
≾ 𝑞
2
if one of the following conditions holds:

(I) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
1

(𝑞
1
) = Im

𝑠
1

(𝑞
2
) where 𝑠

1
= 𝑗, 𝑘;

Im
𝑖
(𝑞
1
) < Im

𝑖
(𝑞
2
),

(II) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
2

(𝑞
1
) = Im

𝑠
2

(𝑞
2
) where 𝑠

2
= 𝑖, 𝑘;

Im
𝑗
(𝑞
1
) < Im

𝑗
(𝑞
2
),

(III) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
3

(𝑞
1
) = Im

𝑠
3

(𝑞
2
) where 𝑠

3
= 𝑖, 𝑗;

Im
𝑘
(𝑞
1
) < Im

𝑘
(𝑞
2
),

(IV) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
1

(𝑞
1
) < Im

𝑠
1

(𝑞
2
); Im
𝑖
(𝑞
1
) =

Im
𝑖
(𝑞
2
),

(V) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
2

(𝑞
1
) < Im

𝑠
2

(𝑞
2
); Im
𝑗
(𝑞
1
) =

Im
𝑗
(𝑞
2
),

(VI) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
3

(𝑞
1
) < Im

𝑠
3

(𝑞
2
); Im
𝑘
(𝑞
1
) =

Im
𝑘
(𝑞
2
),

(VII) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
(𝑞
1
) < Im

𝑠
(𝑞
2
),

(VIII) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
(𝑞
1
) = Im

𝑠
(𝑞
2
),

(IX) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
1

(𝑞
1
) = Im

𝑠
1

(𝑞
2
); Im
𝑖
(𝑞
1
) <

Im
𝑖
(𝑞
2
),

(X) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
2

(𝑞
1
) = Im

𝑠
2

(𝑞
2
); Im
𝑗
(𝑞
1
) <

Im
𝑗
(𝑞
2
),

(XI) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
3

(𝑞
1
) = Im

𝑠
3

(𝑞
2
); Im
𝑘
(𝑞
1
) <

Im
𝑘
(𝑞
2
),

(XII) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
1

(𝑞
1
) < Im

𝑠
1

(𝑞
2
); Im
𝑖
(𝑞
1
) =

Im
𝑖
(𝑞
2
),

(XIII) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
2

(𝑞
1
) < Im

𝑠
2

(𝑞
2
); Im
𝑖
(𝑞
1
) =

Im
𝑖
(𝑞
2
),

(XIV) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
3

(𝑞
1
) < Im

𝑠
3

(𝑞
2
); Im
𝑖
(𝑞
1
) =

Im
𝑖
(𝑞
2
),

(XV) Re(𝑞
1
) < Re(𝑞

2
); Im
𝑠
(𝑞
1
) < Im

𝑠
(𝑞
2
),

(XVI) Re(𝑞
1
) = Re(𝑞

2
); Im
𝑠
(𝑞
1
) = Im

𝑠
(𝑞
2
).

Remark 4. In particular, we write 𝑞
1
⋦ 𝑞
2
if 𝑞
1
̸= 𝑞
2
and one

from (I) to (XVI) is satisfied. Also, we will write 𝑞
1
< 𝑞
2
if

only (XV) is satisfied. It should be remarked that

𝑞
1
≾ 𝑞
2
󳨐⇒

󵄨
󵄨
󵄨
󵄨
𝑞
1

󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑞
2

󵄨
󵄨
󵄨
󵄨
. (6)

Ahmed et al. [2] introduced the definition of the
quaternion-valued metric space as follows.

Definition 5. Let 𝑋 be a nonempty set. A function 𝑑H : 𝑋 ×

𝑋 → H is called a quaternion-valued metric on 𝑋, if it
satisfies the following conditions:

(𝑑
1
): 0 ≾ 𝑑H(𝑥, 𝑦)0 for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑H(𝑥, 𝑦) = 0, if and
only if, 𝑥 = 𝑦,

(𝑑
2
): 𝑑H(𝑥, 𝑦) = 𝑑H(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝑋,

(𝑑
3
): 𝑑H(𝑥, 𝑦) ≾ 𝑑H(𝑥, 𝑧) + 𝑑H(𝑦, 𝑧), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then, (𝑋, 𝑑H) is called a quaternion-valued metric space.

Let {𝑥
𝑛
} be a sequence in 𝑋 and ∈ 𝑋. If for every 𝑐 ∈ C,

with 0 < 𝑐, there is 𝑛
0
∈ N such that, for all 𝑛 > 𝑛

0
,𝑑H(𝑥𝑛, 𝑥) <

𝑐, then {𝑥
𝑛
} is said to be convergent, {𝑥

𝑛
} converges to 𝑥, and

𝑥 is the limit point of {𝑥
𝑛
}. We denote this by lim

𝑛
𝑥
𝑛
= 𝑥, or

𝑥
𝑛
→ 𝑥, as 𝑛 → ∞. If for every 𝑐 ∈ C with 0 < 𝑐 there

is 𝑛
0
∈ N such that, for all 𝑛 > 𝑛

0
, 𝑑H(𝑥𝑛, 𝑥𝑛+𝑚) < 𝑐, then

{𝑥
𝑛
} is called a Cauchy sequence in (𝑋, 𝑑H). If every Cauchy

sequence is convergent in (𝑋, 𝑑H), then (𝑋, 𝑑H) is called a
complete quaternion-valued metric space.
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Lemma 6 (see [2, Lemma 2.1, Ahmed et al.]). Let (𝑋, 𝑑) be
a quaternion-valued metric space and let {𝑥

𝑛
} be a sequence

in. Then {𝑥
𝑛
} converges to 𝑥 if and only if |𝑑(𝑥

𝑛
, 𝑥)| → 0 as

𝑛 → ∞.

Lemma 7 (see [2, Lemma 2.2, Ahmed et al.]). Let (𝑋, 𝑑H) be
a quaternion-valuedmetric space and let {𝑥

𝑛
} be a sequence in.

Then {𝑥
𝑛
} is a Cauchy sequence if and only if |𝑑H(𝑥𝑛, 𝑥𝑛+𝑚)| →

0 as 𝑛 → ∞.

1.3. ConeMetric Space. Let𝐸 be a real Banach space. A subset
𝑃 of 𝐸 is called a cone, if and only if the following holds:

(𝑎
1
): 𝑃 is closed, nonempty, and 𝑃 ̸= {0},

(𝑎
2
): 𝑎, 𝑏 ∈ R, 𝑎, 𝑏 ≥ 0, and 𝑥, 𝑦 ∈ 𝑃 imply that 𝑎𝑥+𝑏𝑦 ∈ 𝑃,

(𝑎
3
): 𝑥 ∈ 𝑃 and −𝑥 ∈ 𝑃 imply that 𝑥 = 0.

Given a cone 𝑃 ⊂ 𝐸, we define a partial ordering ≤ with
respect to 𝑃 by 𝑥 ≤ 𝑦, if and only if 𝑦 − 𝑥 ∈ 𝑃. We write
𝑥 < 𝑦 to indicate that 𝑥 ≤ 𝑦 but 𝑥 ̸= 𝑦, while 𝑥 ≪ 𝑦 stands
for 𝑦 − 𝑥 ∈ int𝑃, where int𝑃 denotes the interior of 𝑃.

The cone𝑃 is called normal, if there exist a number𝐾 > 0

such that 0 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝐾‖𝑦‖, for all 𝑥, 𝑦 ∈ 𝐸.
The least positive number satisfying this is called the normal
constant [10]. It is proved that the normal constant can not be
less then 1 (see [11]). For more details on cone metric space,
we refer, for example, to [10–16].

In this paper, 𝐸 denotes a real Banach space, 𝑃 denotes a
cone in 𝐸 with int𝑃 ̸= 0, and ≤ denotes partial ordering with
respect to 𝑃.

Definition 8 (see [10]). Let 𝑋 be a nonempty set. A function
𝑑 : 𝑋 ×𝑋 → 𝐸 is called a cone metric on𝑋, if it satisfies the
following conditions:

(𝑏
1
): 𝑑(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑋 and 𝑑(𝑥, 𝑦) = 0, if and
only if, 𝑥 = 𝑦,

(𝑏
2
): 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), for all 𝑥, 𝑦 ∈ 𝑋,

(𝑏
3
): 𝑑(𝑥, 𝑦) ≤ 𝑑(𝑥, 𝑧) + 𝑑(𝑦, 𝑧), for all 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then, (𝑋, 𝑑) is called a cone metric space.

The following definitions and lemmas have been chosen
from [10, 16].

Definition 9. Let (𝑋, 𝑑) be a conemetric space and let {𝑥
𝑛
}
𝑛∈N

be a sequence in 𝑋 and 𝑥 ∈ 𝑋. If, for all 𝑐 ∈ 𝐸 with 0 ≪ 𝑐,
there is 𝑛

0
∈ N such that for all 𝑛 > 𝑛

0
, 𝑑(𝑥
𝑛
, 𝑥
0
) ≪ 𝑐, then

{𝑥
𝑛
}
𝑛∈N is said to be convergent, {𝑥

𝑛
}
𝑛∈N converges to 𝑥, and

𝑥 is the limit of {𝑥
𝑛
}
𝑛∈N.

Definition 10. Let (𝑋, 𝑑) be a cone metric space and let
{𝑥
𝑛
}
𝑛∈N be a sequence in 𝑋. If for all 𝑐 ∈ 𝐸 with 0 ≪ 𝑐, there

is 𝑛
0
∈ N such that, for all 𝑚, 𝑛 > 𝑛

0
, 𝑑(𝑥
𝑛
, 𝑥
𝑚
) ≪ 𝑐, then

{𝑥
𝑛
}
𝑛∈N is called a Cauchy sequence in𝑋.

Definition 11. Let (𝑋, 𝑑) be a cone metric space. If every
Cauchy sequence is convergent in 𝑋, then 𝑋 is called a
complete cone metric space.

Definition 12. Let (𝑋, 𝑑) be a cone metric space. A self-map
𝑇 on 𝑋 is said to be continuous, if lim

𝑛→∞
𝑥
𝑛
= 𝑥 implies

lim
𝑛→∞

𝑇(𝑥
𝑛
) = 𝑇(𝑥) for all sequence {𝑥

𝑛
}
𝑛∈N in𝑋.

Lemma 13. Let (𝑋, 𝑑) be a normal cone metric space and let 𝑃
be a normal cone. Let {𝑥

𝑛
}
𝑛∈N be a sequence in𝑋.Then, {𝑥

𝑛
}
𝑛∈N

converges to 𝑥, if and only if

lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑥) = 0. (7)

Lemma 14. Let (𝑋, 𝑑) be a cone metric space and let {𝑥
𝑛
}
𝑛∈N

be a sequence in𝑋. If {𝑥
𝑛
}
𝑛∈N is convergent, then it is a Cauchy

sequence.

Lemma 15. Let (𝑋, 𝑑) be a cone metric space and let 𝑃 be a
normal cone in𝐸. Let {𝑥

𝑛
}
𝑛∈N be a sequence in𝑋.Then, {𝑥

𝑛
}
𝑛∈N

is a Cauchy sequence, if and only if lim
𝑚,𝑛→∞

𝑑(𝑥
𝑚
, 𝑥
𝑛
) = 0.

2. Main Result

Let (𝑋, 𝑑H) be a quaternion-valued metric space where H is
the skew field of quaternion number 𝑞; that is,

H = {𝑥
0
+ 𝑥
1
𝑖 + 𝑥
2
𝑗 + 𝑥
3
𝑘 : (𝑥
0
, 𝑥
1
, 𝑥
2
, 𝑥
3
) ∈ R
4
} . (8)

Define

PH = {𝑥0 + 𝑥1𝑖 + 𝑥2𝑗 + 𝑥3𝑘 : 𝑥0 ≥ 0,

𝑥
1
≥ 0, 𝑥

2
≥ 0, 𝑥

3
≥ 0} .

(9)

It is apparent thatPH ⊂ H. Assume 0H is the zero of H from
now on. Note that (H, | ⋅ |) is a real Banach space.

Lemma 16. PH is a normal cone in real Banach space (H, | ⋅ |).

Proof. Precisely,PH is nonempty, closed andPH ̸= (0H). Also
for all 𝛼, 𝛽 ∈ R+, and 𝑝, 𝑞 ∈ PH we have 𝛼𝑝 + 𝛽𝑞 ∈ PH and
PH ∩ (−PH) = (0H). Notice that the normality of the cone
PH follows from Remark 4.

Lemma 17. Any quaternion-valued metric space (𝑋, 𝑑H) is a
cone metric space.

Proof. For all 𝑝, 𝑞 ∈ H define

𝑝 ⫅ 𝑞 iff 𝑞 − 𝑝 ∈ PH. (10)

≾ defines a partial ordered onH and one can easily verify that
(𝑋, 𝑑H) is a cone metric space with respect to ⫅.

Lemma 18. The partial ordered ≾ defined in Lemma 17 is
equivalent to ⫅.

Proof. Assume 𝑝 = 𝑝
0
+ 𝑝
1
𝑖 + 𝑝
2
𝑗 + 𝑝
3
𝑘 and 𝑞 = 𝑞

0
+ 𝑞
1
𝑖 +

𝑞
2
𝑗 + 𝑞
3
𝑘. 𝑝 ⫅ 𝑞, if and only if 𝑞 − 𝑝 ∈ PH, if and only if

𝑞
0
−𝑝
0
≥ 0, 𝑞

1
−𝑝
1
≥ 0, 𝑞

2
−𝑝
2
≥ 0, and 𝑞

3
−𝑝
3
≥ 0. In other

words, Re(𝑝) ≤ Re(𝑞), Im
𝑠
(𝑝) ≤ Im

𝑠
(𝑞), 𝑠 = 𝑖, 𝑗, 𝑘 where

Im
𝑖
(𝑝) = 𝑝

1
, Im
𝑗
(𝑝) = 𝑝

2
and Im

𝑘
(𝑝) = 𝑝

3
and Im

𝑖
(𝑞) = 𝑞

1
,

Im
𝑗
(𝑞) = 𝑞

2
and Im

𝑘
(𝑞) = 𝑞

3
, if and only if 𝑝 ≾ 𝑞.



4 Abstract and Applied Analysis

Lemma 19. A sequence {𝑥
𝑛
} in (𝑋, 𝑑H) is convergent in the

context of quaternion-valued metric space if and only if {𝑥
𝑛
}

is convergent in the setting of of cone metric space.

Proof. Let {𝑥
𝑛
} be sequence in 𝑋. {𝑥

𝑛
} converges to 𝑥 ∈ 𝑋

as the concept of quaternion-valued metric space if and only
if |𝑑(𝑥

𝑛
, 𝑥)| → 0 as 𝑛 → ∞ (see Lemma 6) if and only if

{𝑥
𝑛
} converges to 𝑥 as the concept of cone metric space by

considering H as the Banach space endowed with the cone
PH (see Lemma 13).

Let (𝑋, 𝑑C) be a complex-valued metric space where C is
the skew field of complex number 𝑧; that is,

C = {𝑥 + 𝑦𝑖 : (𝑥, 𝑦) ∈ R
2
} . (11)

Define

PC = {𝑥 + 𝑦𝑖 : 𝑥 ≥ 0, 𝑦 ≥ 0} . (12)

It is apparent thatPC ⊂ C. Assume 0C is the zero of C from
now on. Note that (C, | ⋅ |) is a real Banach space.

Lemma 20. PC is a normal cone in real Banach space (C, | ⋅ |).

Proof. Precisely,PC is nonempty, closed andPC ̸= (0C). Also
for all 𝛼, 𝛽 ∈ R+, and 𝑝, 𝑞 ∈ PC we have 𝛼𝑝 + 𝛽𝑞 ∈ PC and
PC ∩ (−PC) = (0C).

Lemma21. Any complex-valuedmetric space (𝑋, 𝑑C) is a cone
metric space.

Proof. For all 𝑝, 𝑞 ∈ C define

𝑝 ⫅ 𝑞 iff 𝑞 − 𝑝 ∈ PC. (13)

≾ defines a partial ordered onC and one can easily verify that
(𝑋, 𝑑C) is a cone metric space with respect to ⫅.

Lemma 22. The partial ordered ≾ defined in Lemma 21 is
equivalent to ⫅.

We omitted the proof of Lemma 22 since it is the mimic
of the proof Lemma 18.

Lemma 23. A sequence {𝑥
𝑛
} in (𝑋, 𝑑C) is convergent as the

concept of complex-valued metric space if and only if {𝑥
𝑛
} is

convergent as the concept of cone metric space.

We omit the proof of Lemma 23 above due to Lemma 19.

Definition 24. Let (𝑋, 𝑑) be a complete conemetric space. For
all𝑥, 𝑦 ∈ 𝑋. A conemetric space (𝑋, 𝑑) is said to bemetrically
convex if𝑋has the property that, for each𝑥, 𝑦 ∈ 𝑋with𝑥 ̸= 𝑦,
there exists 𝑧 ∈ 𝑋, 𝑥 ̸= 𝑦 ̸= 𝑧 such that

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)

󵄩
󵄩
󵄩
󵄩
=
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑥, 𝑦)

󵄩
󵄩
󵄩
󵄩
. (14)

The following lemma finds immediate applications which
is straightforward from [17].

Lemma 25. Let (𝑋, 𝑑) be a metrically convex quaternion-
valued metric space, and let 𝐾 be a nonempty closed subset of
𝑋. If 𝑥 ∈ 𝐾 and 𝑦 ∈ 𝐾, then there exists a point 𝑧 ∉ 𝜕𝐾 (where
𝜕𝐾 stands for the boundary of 𝐾) such that

𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦) . (15)

Definition 26. Let 𝐾 be a nonempty subset of a cone metric
space (𝑋, 𝑑) and 𝐹, 𝑇 : 𝐾 → 𝑋. The pair (𝐹, 𝑇) is said to be
weakly commuting if, for each 𝑥, 𝑦 ∈ 𝐾 such that 𝑥 = 𝐹𝑦 and
𝑇𝑦 ∈ 𝐾, we have

𝑑 (𝑇𝑥, 𝐹𝑇𝑦) ≤ 𝑑 (𝑇𝑦, 𝐹𝑦) (16)

(see also [12, Hadžić and Gajić]).

DenoteR by the collection of all continuous and increas-
ing mappings such that 𝜑 : [0, +∞) → [0, +∞) such that
𝜑
−1
(0) = {0}.

Lemma 27. Let 𝜑 : [0, +∞) → [0, +∞) be an increasing
function. Then,

𝜑 (𝑡
𝑛
) 󳨀→ 0 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡

𝑛
󳨀→ 0. (17)

Proof. Suppose that 𝜑(𝑡
𝑛
) → 0 and 𝑡

𝑛
󴀀󴀂󴀠 0. Then there exists

𝑛
0
> 0 and 𝛿 > 0 such that 0 < 𝛿 < 𝑡

𝑛
, for all 𝑛 ≥ 𝑛

0
. Since 𝜑

is increasing, we have

0 < 𝜑 (𝛿) ≤ 𝜑 (𝑡
𝑛
) (18)

and this is a contradiction since 𝜑(𝑡
𝑛
) → 0.

Definition 28. Let 𝐾 be a nonempty subset of a cone metric
space (𝑋, 𝑑) and let 𝐹, 𝑇 : 𝐾 → 𝑋 be two mappings. We say
that 𝐹 is generalized 𝑇-contractive if

𝜑 (
󵄩
󵄩
󵄩
󵄩
𝑑 (𝐹𝑥, 𝐹𝑦)

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑏 [𝜑 (‖𝑑 (𝑇𝑥, 𝐹𝑥)‖) + 𝜑 (

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑇𝑦, 𝐹𝑦)

󵄩
󵄩
󵄩
󵄩
)]

+ 𝑐min {𝜑 (󵄩󵄩󵄩
󵄩
𝑑 (𝑇𝑥, 𝐹𝑦)

󵄩
󵄩
󵄩
󵄩
) ,

𝜑 (
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑇𝑦, 𝐹𝑥)

󵄩
󵄩
󵄩
󵄩
)} .

(19)

For all 𝑥, 𝑦 ∈ 𝐾, with 𝑥 ̸= 𝑦, 𝑏, 𝑐 ≥ 0, 2𝑏+𝑐 < 1, and let 𝜑 ∈ R.

Proposition 29. Let (𝑋, 𝑑) be a complete Banach-valued
metric space, which is metrically onvex. Let 𝐾 be a nonempty
closed subset of 𝑋 and 𝜑 ∈ R, and let 𝐹, 𝑇 : 𝐾 → 𝑋 be such
that 𝐹 is generalized 𝑇-contractive. Suppose also we have

(i) 𝜕𝐾 ⊂ 𝑇𝐾 and 𝐹𝐾 ⊂ 𝑇𝐾,
(ii) 𝑇𝑥 ∈ 𝜕𝐾 ⇒ 𝐹𝑥 ∈ 𝐾,
(iii) 𝐹 and 𝑇 are weakly commuting,
(iv) 𝑇 is continuous on 𝐾.

Then, there exists a unique common fixed point 𝑧 in 𝐾 such
that 𝑧 = 𝑇𝑧 = 𝐹𝑧.
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Proof. We construct the sequences {𝑥
𝑛
} and {𝑦

𝑛
} in the

following way.
Let 𝑥 ∈ 𝐾. Then there exists a point 𝑥

0
∈ 𝐾 such that

𝑥 = 𝑇𝑥
0
as 𝜕𝐾 ⊆ 𝑇𝐾. From 𝑇𝑥

0
∈ 𝜕𝐾 and the implication

𝑇𝑥 ∈ 𝜕𝐾 ⇒ 𝐹𝑥 ∈ 𝐾, we conclude that 𝐹𝑥
0
∈ 𝐾 ∩ 𝐹𝐾 ⊆ 𝑇𝐾.

Now, let 𝑥
1
∈ 𝐾 be such that

𝑦
1
= 𝑇𝑥
1
= 𝐹𝑥
0
∈ 𝐾. (20)

Let 𝑦
2
= 𝐹𝑥
1
and assume that 𝑦

2
∈ 𝐾, and then

𝑦
2
∈ 𝐾 ∩ 𝐹𝐾 ⊂ 𝑇𝐾 (21)

which implies that there exists a point 𝑥
2
∈ 𝐾 such that 𝑦

2
=

𝑇𝑥
2
. Suppose 𝑦

2
∉ 𝐾, and then there exists a point 𝑝 ∈ 𝜕𝐾

(using Lemma 25), such that

𝑑 (𝑇𝑥
1
, 𝑝) + 𝑑 (𝑝, 𝑦

2
) = 𝑑 (𝑇𝑥

1
, 𝑦
2
) . (22)

Since 𝑝 ∈ 𝜕𝐾 ⊆ 𝑇𝐾, there exists a point 𝑥
2
∈ 𝐾 such that

𝑝 = 𝑇𝑥
2
and so

𝑑 (𝑇𝑥
1
, 𝑇𝑥
2
) + 𝑑 (𝑇𝑥

2
, 𝑦
2
) = 𝑑 (𝑇𝑥

1
, 𝑦
2
) . (23)

Let 𝑦
3
= 𝐹𝑥
2
. Thus, repeating the forgoing arguments, we

obtain two sequences {𝑥
𝑛
} and {𝑦

𝑛
} such that

(i) 𝑦
𝑛+1

= 𝐹𝑥
𝑛
,

(ii) 𝑦
𝑛
∈ 𝐾 ⇒ 𝑦

𝑛
= 𝑇𝑥
𝑛
,

(iii) 𝑦
𝑛
∉ 𝐾 ⇒ 𝑇𝑥

𝑛
∈ 𝜕𝐾, and

𝑑 (𝑇𝑥
𝑛−1
, 𝑇𝑥
𝑛
) + 𝑑 (𝑇𝑥

𝑛
, 𝑦
𝑛
) = 𝑑 (𝑇𝑥

𝑛−1
, 𝑦
𝑛
) . (24)

Denote

𝑃 = {𝑇𝑥
𝑖
∈ {𝑇𝑥

𝑛
} : 𝑇𝑥

𝑖
= 𝑦
𝑖
} ,

𝑄 = {𝑇𝑥
𝑖
∈ {𝑇𝑥

𝑛
} : 𝑇𝑥

𝑖
̸= 𝑦
𝑖
} .

(25)

Obviously, the two consecutive terms of {𝑇𝑥
𝑛
} cannot lie in

𝑄. Let us denote 𝑟
𝑛
= 𝑑(𝑇𝑥

𝑛
; 𝑇𝑥
𝑛+1
). We have the following

three cases.

Case 1. If 𝑇𝑥
𝑛
, 𝑇𝑥
𝑛+1

∈ 𝑃.

Case 2. If 𝑇𝑥
𝑛
∈ 𝑃 and 𝑇𝑥

𝑛+1
∈ 𝑄.

Case 3. If 𝑇𝑥
𝑛
∈ 𝑄 𝑇𝑥

𝑛+1
∈ 𝑃 and so 𝑇𝑥

𝑛−1
∈ 𝑃.

Proving the above cases are similar to [2, Theorem 3.1].
Also we see that for all 𝑛 ∈ N we get

𝜑 (
󵄩
󵄩
󵄩
󵄩
𝑡
𝑛

󵄩
󵄩
󵄩
󵄩
) ≤ (

𝑏 + 𝑐

1 − 𝑏

)

𝑛

𝜑 (
󵄩
󵄩
󵄩
󵄩
𝑡
0

󵄩
󵄩
󵄩
󵄩
) . (26)

Letting 𝑛 → ∞, we have 𝜑(‖𝑡
𝑛
‖) → 0. Since 𝜑 ∈ R, we

have ‖𝑡
𝑛
‖ → 0. So that {𝑇𝑥

𝑛
} is a Cauchy sequence and

hence it converges to a point 𝑧 ∈ 𝐾. Now there exists a
subsequence {𝑇𝑥

𝑛
𝑘

} of {𝑇𝑥
𝑛
}which is contained in𝑃.Without

loss of generality, we may denote {𝑇𝑥
𝑛
𝑘

} = {𝑇𝑥
𝑛
}. Since 𝑇

is continuous, {𝑇𝑇𝑥
𝑛
} converges to 𝑇𝑧. We are going now to

show that𝑇 and𝐹have commonfixed point (𝑇𝑧 = 𝐹𝑧). Using
the weak commutativity of 𝑇 and 𝐹, we obtain that

𝑇𝑥
𝑛
= 𝐹𝑥
𝑛−1
, 𝑇𝑥

𝑛−1
∈ 𝐾, (27)

and then

𝑑 (𝑇𝑇𝑥
𝑛
, 𝐹𝑇𝑥
𝑛−1
) ≤ 𝑑 (𝑇𝑥

𝑛−1
, 𝐹𝑥
𝑛−1
) = 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1
) .

(28)

This implies that

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑇𝑇𝑥

𝑛
, 𝐹𝑇𝑥
𝑛−1
)
󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛−1
)
󵄩
󵄩
󵄩
󵄩
. (29)

On letting 𝑛 → ∞, we obtain

𝑑 (𝑇𝑧, 𝐹𝑇𝑥
𝑛−1
) 󳨀→ 0. (30)

It means that 𝐹𝑇𝑥
𝑛−1

→ 𝑇𝑧.
Now, consider

𝜑 (
󵄩
󵄩
󵄩
󵄩
𝑑 (𝐹𝑇𝑥

𝑛−1
, 𝐹𝑧)

󵄩
󵄩
󵄩
󵄩
) ≤ 𝑏 [𝜑 (

󵄩
󵄩
󵄩
󵄩
𝑑 (𝑇𝑇𝑥

𝑛−1
, 𝐹𝑇𝑥
𝑛−1
)
󵄩
󵄩
󵄩
󵄩
)

+𝜑 (‖𝑑 (𝑇𝑧, 𝐹𝑧)‖)]

+ 𝑐min {𝜑 (󵄩󵄩󵄩
󵄩
𝑑 (𝑇𝑇𝑥

𝑛−1
, 𝐹𝑧)

󵄩
󵄩
󵄩
󵄩
) ,

𝜑 (
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑇𝑧, 𝐹𝑇𝑥

𝑛−1
)
󵄩
󵄩
󵄩
󵄩
)} .

(31)

Taking limit on both sides of (31) yields

𝜑 (‖𝑑 (𝑇𝑧, 𝐹𝑧)‖) ≤ 𝑏𝜑 (‖𝑑 (𝑇𝑧, 𝐹𝑧)‖) , (32)

which is a contradiction, thus giving 𝜑(||𝑑(𝑇𝑧, 𝐹𝑧)||) = 0

which implies ||𝑑(𝑇𝑧, 𝐹𝑧)|| = 0, so that 𝑑(𝑇𝑧, 𝐹𝑧) = 0 and
hence 𝑇𝑧 = 𝐹𝑧.

To show that 𝑇𝑧 = 𝑧, consider

𝜑 (
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑇𝑥
𝑛
, 𝑇𝑧)

󵄩
󵄩
󵄩
󵄩
) = 𝜑 (

󵄩
󵄩
󵄩
󵄩
𝑑 (𝐹𝑥
𝑛−1
, 𝐹𝑧)

󵄩
󵄩
󵄩
󵄩
)

≤ 𝑏 [𝜑 (
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑇𝑥
𝑛−1
, 𝐹𝑥
𝑛−1
)
󵄩
󵄩
󵄩
󵄩
)

+ 𝜑 (‖𝑑 (𝑇𝑧, 𝐹𝑧)‖)]

+ 𝑐min {𝜑 (󵄩󵄩󵄩
󵄩
𝑑 (𝑇𝑥
𝑛−1
, 𝐹𝑧)

󵄩
󵄩
󵄩
󵄩
) ,

𝜑 (
󵄩
󵄩
󵄩
󵄩
𝑑 (𝑇𝑧, 𝐹𝑥

𝑛−1
)
󵄩
󵄩
󵄩
󵄩
)} .

(33)

Taking limit on both sides of (33) yields

𝜑 (‖𝑑 (𝑇𝑧, 𝑧)‖ ≤ 𝑐𝜑 (‖𝑑 (𝑇𝑧, 𝑧)‖) , (34)

which is a contradiction, thereby giving 𝜑(‖𝑑(𝑧, 𝑇𝑧)‖) = 0

which implies ‖𝑑(𝑧, 𝑇𝑧)‖ = 0, so that 𝑑(𝑧, 𝑇𝑧) = 0 and hence
𝑧 = 𝑇𝑧.
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Thus, we have shown that 𝑧 = 𝑇𝑧 = 𝐹𝑧, so 𝑧 is a common
fixed point of 𝐹 and 𝑇. To show that 𝑧 is unique, let 𝑤 be
another fixed point of 𝐹 and 𝑇, and then

𝜑 (‖𝑑 (𝑤, 𝑧)‖) = 𝜑 (‖𝑑 (𝑇𝑤, 𝑇𝑧)‖)

= 𝜑 (‖𝑑 (𝐹𝑤, 𝐹𝑧)‖)

≤ 𝑏 [𝜑 (‖𝑑 (𝑇𝑧, 𝐹𝑧)‖) + 𝜑 (‖𝑑 (𝑇𝑤, 𝐹𝑤)‖)]

+ 𝑐min {𝜑 (‖𝑑 (𝑇𝑧, 𝐹𝑤)‖) ,

𝜑 (‖𝑑 (𝑇𝑤, 𝐹𝑧)‖)}

= 𝑐𝜑 (‖𝑑 (𝑤, 𝑧)‖) ,

(35)

which is a contradiction, therefore giving 𝜑(‖𝑑(𝑤, 𝑧)‖) = 0

which implies that ‖𝑑(𝑤, 𝑧)‖ = 0, so that 𝑑(𝑤, 𝑧) = 0; thus,
𝑤 = 𝑧.

Theorem 30 (see [2]). Let (𝑋, 𝑑H) be a complete quaternion-
valued metric space which is metrically convex and 𝐾 a
nonempty closed subset of𝑋 and 𝜑 ∈ R. Let 𝐹, 𝑇 : 𝐾 → 𝑋 be
such that 𝐹 is generalized𝑇-contractive satisfying the following
conditions:

(i) 𝜕𝐾 ⊂ 𝑇𝐾 and 𝐹𝐾 ⊂ 𝑇𝐾,
(ii) 𝑇𝑥 ∈ 𝜕𝐾 ⇒ 𝐹𝑥 ∈ 𝐾,
(iii) 𝐹 and 𝑇 are weakly commuting,
(iv) 𝑇 is continuous on 𝐾,

and then there exists a unique common fixed point 𝑧 in𝐾 such
that 𝑧 = 𝑇𝑧 = 𝐹𝑧.

Theorem 31. Theorem 30 is a consequence of Proposition 29.

Proof. Let (𝑋, 𝑑H) be a complete quaternion-valued metric
space and 𝐾 a nonempty closed subset of. Then (𝑋, 𝑑H) is a
complete cone-valued metric space with cone PH = {𝑥

0
+

𝑥
1
𝑖 + 𝑥
2
𝑗 + 𝑥
3
𝑘 : 𝑥
0
≥ 0, 𝑥

1
≥ 0, 𝑥

2
≥ 0, 𝑥

3
≥ 0}. Further, we

have that 𝐹 is generalized 𝑇-contractive in cone metric space
if and only if 𝐹 is generalized 𝑇-contractive in quaternion
metric space. The rest follows from Proposition 29.

3. Further Comment on Cone Metric Spaces

3.1. By Using a Scalarization Function. In 2010, Du [3] intro-
duced the notion of TVS-valued metric space, also known as
TVS-cone metric space (TVS-CMS), as a real generalization
of Banach-valued metric space. Let 𝑌 be a locally convex
Hausdorff t.v.s. with its zero vector 𝜃, 𝐾 a proper, closed,
convex pointed cone in 𝑌 with 𝐾 ̸= 0, 𝑒 ∈ int(𝐾), and ≾

𝐾
a

partial ordering with respect to 𝐾.

Definition 32 (see [3]). Let 𝑋 be a nonempty set. Suppose
that a vector-valued function 𝑝 : 𝑋 × 𝑋 → 𝑌 satisfies the
following:
(𝑐
1
): 𝜃≾
𝐾
𝑝(𝑥, 𝑦) for all𝑥, 𝑦 ∈ 𝑋 and𝑝(𝑥, 𝑦) = 𝜃 if and only

if 𝑥 = 𝑦,

(𝑐
2
): 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋,

(𝑐
3
): 𝑝(𝑥, 𝑦)≾

𝐾
𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦), forall 𝑥, 𝑦, 𝑧 ∈ 𝑋.

Then, the function 𝑝 is called TVS-cone metric on 𝑋.
Furthermore, the pair (𝑋, 𝑝) is called a TVS-cone metric
space (in short, TVS-CMS).

On his paper, Du [3] concluded that, for a TVS-valued
metric space (𝑋, 𝑝), one can define a function 𝑑

𝑝
: 𝑋 × 𝑋 →

[0,∞) by 𝑑
𝑝
= 𝜉
𝑒
∘ 𝑝 forming a metric, where 𝜉

𝑒
: 𝑌 → R,

defined by

𝜉
𝑒
(𝑦) = inf {𝑟 ∈ R : 𝑦 ∈ 𝑟𝑒 − 𝐾} , ∀𝑦 ∈ 𝑌, (36)

is a nonlinear scalarization function (see e.g., [18–20]). In this
part, whenever we write ≾, we mean ≾

𝐾
.

Proposition 33 (see [3, 4]). Let (𝑋, 𝑝) be a TVS-CMS, 𝑥 ∈ 𝑋,
and {𝑥

𝑛
}
𝑛∈N a sequence in𝑋. Set 𝑑

𝑝
= 𝜉
𝑒
∘𝑝.Then the following

statements hold:

(i) {𝑥
𝑛
}
𝑛∈N converges to 𝑥 in TVS-CMS (𝑋, 𝑝) if and only

if 𝑑
𝑝
(𝑥
𝑛
, 𝑥) → 0 as 𝑛 → ∞,

(ii) {𝑥
𝑛
}
𝑛∈N is a Cauchy sequence in TVS-CMS (𝑋, 𝑝) if

and only if {𝑥
𝑛
}
𝑛∈N is a Cauchy sequence in (𝑋, 𝑑

𝑝
),

(iii) (𝑋, 𝑝) is a complete TVS-CMS if and only if (𝑋, 𝑑
𝑝
) is

a complete metric space.

From Proposition 33, the following result was derived
easily.

Proposition 34 (see [3]). Let (𝑋, 𝑝) is complete TVS-CMS
and 𝑇 : 𝑋 → 𝑋 satisfies the contractive condition:

𝑝 (𝑇𝑥, 𝑇𝑦) ≾ 𝑘𝑝 (𝑥, 𝑦) (37)

for all 𝑥, 𝑦 ∈ 𝑋 and 0 ≤ 𝑘 < 1. Then, 𝑇 has a unique fixed
point in 𝑋. Moreover, for each 𝑥 ∈ 𝑋, the iterative sequence
{𝑇
𝑛
𝑥}
∞

𝑛=1
converges to fixed point.

Proposition 35 (see [3]). The Banach contraction principle
and Proposition 34 are equivalent.

Definition 36. Let 𝐾 be a nonempty subset of a metric space
(𝑋, 𝑑) and let 𝐹, 𝑇 : 𝐾 → 𝑋 be two mappings. We say that 𝐹
is generalized 𝑇-contractive of type A if

𝜑 (𝑑 (𝐹𝑥, 𝐹𝑦)) ≤ 𝑏 [𝜑 (𝑑 (𝑇𝑥, 𝐹𝑥)) + 𝜑 (𝑑 (𝑇𝑦, 𝐹𝑦))]

+ 𝑐min {𝜑 (𝑑 (𝑇𝑥, 𝐹𝑦)) , 𝜑 (𝑑 (𝑇𝑦, 𝐹𝑥))} .
(38)

For all 𝑥, 𝑦 ∈ 𝐾, with 𝑥 ̸= 𝑦, 𝑏, 𝑐 ≥ 0, 2𝑏+𝑐 < 1, and let 𝜑 ∈ R.

Proposition 37. Let (𝑋, 𝑑) be a complete metric space, let 𝐾
be a nonempty closed subset of 𝑋 and 𝜑 ∈ R, and let 𝐹, 𝑇 :

𝐾 → 𝑋 be such that 𝐹 is generalized 𝑇-contractive of type A.
If the following are satisfied:

(i) 𝜕𝐾 ⊂ 𝑇𝐾 and 𝐹𝐾 ⊂ 𝑇𝐾,
(ii) 𝑇𝑥 ∈ 𝜕𝐾 ⇒ 𝐹𝑥 ∈ 𝐾,
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(iii) 𝐹 and 𝑇 are weakly commuting,
(iv) 𝑇 is continuous on 𝐾,

then there exists a unique common fixed point 𝑧 in𝐾 such that
𝑧 = 𝑇𝑧 = 𝐹𝑧.

We skip the proof of Proposition 37 since it can be derived
by themimic of Proposition 29. On the other hand, regarding
Proposition 35, we can conclude that Proposition 37 implies
Proposition 29.

3.2. By Using a Metric-Type Space

Definition 38 (see, e.g., [5]). Let𝑋 be a set. Let𝐷 : 𝑋 ×𝑋 →

[0,∞) be a function which satisfies
(1) 𝐷(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,
(2) 𝐷(𝑥, 𝑦) = 𝐷(𝑦, 𝑥), for any 𝑥, 𝑦 ∈ 𝑋,
(3) 𝐷(𝑥, 𝑦) ≤ 𝐾(𝐷(𝑥, 𝑧

1
) +𝐷(𝑧

2
, 𝑧
3
) + ⋅ ⋅ ⋅ + 𝐷(𝑧

𝑛−1
, 𝑧
𝑛
) +

𝐷(𝑧
𝑛
, 𝑦)) for any 𝑥, 𝑦, 𝑧

1
, . . . , 𝑧

𝑛
∈ 𝑋,

for some constant 𝐾 > 0. The pair (𝑋,𝐷) is called a metric-
type space.

Proposition 39. Let (𝑋, 𝑑) be a metric cone over the Banach
space 𝐸 with the cone 𝑃 which is normal with the normal
constant 𝐾. The mapping 𝐷 : 𝑋 × 𝑋 → [0,∞) defined by
𝐷(𝑥, 𝑦) = ‖𝑑(𝑥, 𝑦)‖ is a function which satisfies

(1) 𝐷(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦,
(2) 𝐷(𝑥, 𝑦) = 𝐷(𝑦, 𝑥), for any 𝑥, 𝑦 ∈ 𝑋,
(3) 𝐷(𝑥, 𝑦) ≤ 𝐾(𝐷(𝑥, 𝑧

1
) +𝐷(𝑧

2
, 𝑧
3
) + ⋅ ⋅ ⋅ + 𝐷(𝑧

𝑛−1
, 𝑧
𝑛
) +

𝐷(𝑧
𝑛
, 𝑦)) for any 𝑥, 𝑦, 𝑧

1
, . . . , 𝑧

𝑛
∈ 𝑋.

Remark 40. In Definition 38, (3), the term 𝑧
𝑖
needs not to be

distinct. Hence, metric type space turns into b-metric space
when we deal with cone metric space (see, e.g., [21, 22]).

Remark 41. Furthermore, by Lemma 20, PH is a normal
cone. Hence, some resuls of [2] and Theorem 30, are equiva-
lent to the corresponding results in the context ofmetric-type
space (see also [5]).
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