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The essential task of risk investment is to select an optimal tracking portfolio among various portfolios. Statistically, this process can
be achieved by choosing an optimal restricted linearmodel.This paper develops a statistical procedure to do this, based on selecting
appropriate weights for averaging approximately restricted models. The method of weighted average least squares is adopted to
estimate the approximately restricted models under dependent error setting. The optimal weights are selected by minimizing a
k-class generalized information criterion (k-GIC), which is an estimate of the average squared error from the model average fit.
This model selection procedure is shown to be asymptotically optimal in the sense of obtaining the lowest possible average squared
error. Monte Carlo simulations illustrate that the suggested method has comparable efficiency to some alternative model selection
techniques.

1. Introduction

The essential task of risk investment aims to select an optimal
tracking portfolio among numerous portfolios of stocks.
Given a desired target and a series of stocks, a tracking
portfolio is comprised by every nonempty subset of the
given group of stocks so as to track the target to a certain
degree. Because of the number of nonempty subsets of stocks,
there exists a mass of possible tracking portfolios. Among
all possible portfolios, we should find an optimal tracking
portfolio whose return is closest to the targets. Statistically,
a tracking portfolio is built by a group of stocks, which
is equivalent to fitting a restricted linear model with the
target’s return as the dependent variable and returns on
stocks in the group as the regressors. Since the coefficient
of a regressor indicates the proportion of the investment
in the corresponding stock within the total investment in
the portfolio, the linear model is restricted such that all
coefficients in the model sum to one. Thus, the task of
choosing an optimal tracking portfolio can be accomplished
by selecting an optimal restricted linear model.

In this paper, a model average technique is developed
for examining the selection problem of restricted linear

models. Model selection has played an important role in
econometrics and statistics over the past decades. The goal
of model selection is to choose a model which gives the well-
posed fit for observational data. So, the investigation ofmodel
selection is an indispensable process in empirical analysis.
This work proposes a procedure of minimizing 𝑘-class gen-
eralized information criterion to select the optimal weights
for constrained linear models. Under some conditions, we
examine the asymptotic behaviors of the selection program.

Various methods have been suggested to study the
problems of model selection. Knight and Fu [1] discussed
the lasso-type estimators with least squares methods. To
simultaneously estimate parameters and select important
variables, Fan andPeng [2] proposed amethodof nonconcave
penalized likelihood and demonstrated that this technique
had an oracle property when the number of parameters was
infinite. Zou and Yuan [3] investigated the oracle theory
of model selection based on composite quantile regression.
Caner [4] considered model selection by the generalized
method of moments estimator. In the empirical likelihood
framework, Tang and Leng [5] studied the parametric
estimator and variable selection for diverging numbers of
parameters. Jennifer et al. [6] explored the ability of automatic
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selection algorithms to handle the selection problems of both
variables and principal components.

Model averaging is another popular and widely used
technique for model selection. The method is to average
the estimators corresponding to different candidate mod-
els. Bayesian and frequentist are two main perspectives
of thought in model averaging. Although their spirit and
objectives are similar, the two techniques are different in
inference and selection of models. In view of the Bayesian
model averaging, the basic paradigm was introduced by
Leamer [7]. Owing to the difficulty of implementing, the
approach was basically ignored until the 2000s. About recent
developments of this method, the readers can refer to Brown
et al. [8] and Rodney and Herman [9]. Compared with
Bayesian model averaging, since the method of frequentist
model averaging focused on model selection rather than
model averaging, it has been considered bymany authors, for
instance, Hjort and Claeskens [10], Hansen [11], Liang et al.
[12], Zhang and Liang [13], and Hansen and Racine [14].

Generally speaking, different methods of model selection
need to construct distinct model selection criteria including
AIC [15], Mallows’ C

𝐿
[16], CV [17], BIC [18], GCV [19],

GMM J-statistic [20], and FPE
𝛼
[21]. Zhang et al. [22]

employed the generalized information criterion for selecting
the regularization parameters. To choose basis functions of
splines, Xu and Huang [23] showed the optimal property
of a LsoCV criterion and designed an efficient Newton-
type algorithm for this criterion. Focusing on the divergence
measure of Kullback-Leibler, So and Ando [24] defined a
generalized predictive information criterion using the bias
correction of an expected weighted loglikelihood estimator.
Groen and Kapetanios [25] examined the criteria of AIC and
BIC to discuss consistent estimates of a factor-augmented
regression.

The literature mentioned above pays more attention to
the unconstrained models with independently and identi-
cally distributed random errors. Recently, Lai and Xie [26]
discussed model selection for constrained models, which
were limited to the homoscedastic cases. Instead of using
unrestricted models or homoscedastic models, we develop a
𝑘-class generalized information criterion (𝑘-GIC) to discuss
the selecting problems of approximately constrained linear
models with dependent errors. The 𝑘-GIC is an extension
of the GIC

𝜆
𝑛

proposed by Shao [27] and includes some
conventional model selection criteria, such as BIC and GIC.
We employ the technique of weighted average least squares to
estimate the approximately constrained models and choose
the weights through minimizing the 𝑘-class generalized
information criterion. Our main result demonstrates that the
𝑘-class generalized information criterion is asymptotically
equivalent to the average squared error. In other words,
the selected weights from 𝑘-GIC are asymptotically optimal.
Moreover, we highlight two new results which enrich the
works of Lai and Xie [26]. One is that an estimate of
variance is given and the estimate is proved to be consistent.
Another is that the selected weights from 𝑘-GIC are shown
to be still asymptotically optimal, when the true variance
is replaced by the suggested estimate. The finite sample
properties of model selection are performed by Monte Carlo

simulation.The results of simulation reveal that the proposed
method of model selection is dominant over some alternative
approaches.

The remainder of this paper begins with an illustration
of the model set-up and average estimator in Section 2.
Section 3 calculates the average squared error of the model
average estimator. The 𝑘-GIC criterion is introduced and
its asymptotic optimality is derived in Section 4. Section 5
states some results from simulation evidence and Section 6
is conclusions.

2. Model Set-Up and Average Estimator

The core in risk investment is to build a tracking portfolio
of stocks whose return mimics that of a chosen investment
target. Let 𝑦

𝑖
be the return from investing in a selected target

and 𝑥
𝑖,𝑗

be the historical return of the 𝑗th stock at time 𝑖.
Assume that 𝑝 stocks are available for building a tracking
portfolio of the target. Then, a tracking portfolio consisting
of all 𝑝 stocks can be represented by

𝑦
𝑖
=

𝑝

∑

𝑗=1

𝑥
𝑖,𝑗
𝜃
𝑗
+ 𝑒
𝑖
, (1)

where 𝜃
𝑗
is unknown parameter and 𝑒

𝑖
is random error. The

left-hand side of (1) is the return of investing one dollar in
the target. The right-hand side is the return of investing one
dollar in the portfolio consisting of all 𝑝 stocks plus random
noise.

Because each parameter 𝜃
𝑗
stands for the proportion of

investment on the corresponding stock to the total invest-
ment in the tracking portfolio, the sum of all parameters is
one, namely,

𝜃
1
+ ⋅ ⋅ ⋅ + 𝜃

𝑝
= 1, (2)

which means the 100 percent of the whole investment.
In practice, there exist a large number of stocks. These

stocks compose various portfolios thatmay track the target to
some degree. Among all possible tracking portfolios, an ideal
tracking portfolio should be the onewhose return is closest to
the target’s return.Therefore, we need to find such an optimal
tracking portfolio. Because of the dependance between a
tracking portfolio and a restricted linear model, the aim of
finding the optimal tracking portfolio can be accomplished
by choosing an optimal restricted linear model.

In the following, we extendmodels (1) and (2) to consider
a generalized constrained linear model for the problem of
building an optimal tracking portfolio. Suppose that 𝑦

𝑖
, 𝑖 =

1, . . . , 𝑛 is a random observation at fixed value (𝑥
𝑖
, 𝑧
𝑖
), where

𝑥
𝑖
= (𝑥
𝑖,1
, . . . , 𝑥

𝑖,𝑝
) is fixed-dimensional explanatory variable

and 𝑧
𝑖
= (𝑧
𝑖,1
, . . . , 𝑧

𝑖,∞
) is countably infinite-dimensional

explanatory variable. Consider the constrained linear model

𝑦
𝑖
=

𝑝

∑

𝑗=1

𝑥
𝑖,𝑗
𝜃
𝑗
+

∞

∑

𝑙=1

𝑧
𝑖,𝑙
𝜓
𝑙
+ 𝑒
𝑖
, subject to (3)

𝑟
𝑠
𝜃
𝑠
=

∞

∑

𝑘=1

𝑎
𝑠,𝑘
𝜓
𝑘
+ 𝑏
𝑠
, (𝑠 = 1, . . . , 𝑝) , (4)
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where 𝑝 is a positive integer, 𝜃
𝑗
and 𝜓

𝑙
are parameters, 𝑒

𝑖
is

random error, 𝑟
𝑠
is a constant for restricting the 𝑠th parameter

𝜃
𝑠
, and 𝑎

𝑠,𝑘
and 𝑏
𝑠
are some constants. Assume that𝜙(𝑧

𝑖,𝑙
, 𝜓
𝑙
) =

∑
∞

𝑙=1
𝑧
𝑖,𝑙
𝜓
𝑙
and 𝜙(𝑎

𝑠,𝑘
, 𝜓
𝑘
) = ∑

∞

𝑘=1
𝑎
𝑠,𝑘
𝜓
𝑘
converge in mean

square.
In (3), the explanatory variable 𝑥

𝑖,𝑗
is involved in the

model on theoretical grounds or other reasons and 𝑧
𝑖,𝑙
is the

additional explanatory variable that we need to make sure
whether it should be included in the model. In the context
of building tracking portfolio, the fixed explanatory variable
𝑥
𝑖,𝑗
stands for the historical return of the 𝑗th stock at time 𝑖,

which must be selected by investors because of their personal
preference or the stable earning of this stock. In a tracking
portfolio, investors need to select some alternative stocks
from numerous stocks to realize their expected return. So,
the additional explanatory variable 𝑧

𝑖,𝑙
indicates the historical

return of the 𝑙th alternative stock at time 𝑖. Since 𝑧
𝑖,𝑙

can
be viewed as a series expansion, the identity (3) includes
semiparametric models as special form. In fact, the model
(3) generalizes the models considered by Lai and Xie [26]
and Liang et al. [12]. In addition, the parameters 𝜃

𝑗
and 𝜓

𝑙

denote, respectively, the proportion of the 𝑗th required stock
and the 𝑙th alternative stock in a tracking portfolio. In (4), the
parameter 𝜃

𝑠
is adjusted by a linear combination of 𝜓

𝑘
and

𝑏
𝑠
. The economic significance of (4) is that the proportion

of each fixed investment varies with the proportion of all
alternative investments. When investors change their prefer-
ence or have acquired new information on alternative stocks,
they are capable of adjusting the proportion between required
stocks and alternative stocks according to (4). This implies
that the increase or decrease of alternative stocks can affect
the proportion of each required stock in a portfolio. Besides, if
we assume that 𝜓

𝑘
= 0, 𝑘 = 1, . . . ,∞, the model (4) becomes

𝑟
𝑠
𝜃
𝑠
= 𝑏
𝑠
which which has been discussed by Lai and Xie [26].

Particularly, if set 𝑟
1
= ⋅ ⋅ ⋅ = 𝑟

𝑝
= 1, 𝑎

1,1
+ ⋅ ⋅ ⋅ + 𝑎

𝑝,1
= ⋅ ⋅ ⋅ =

𝑎
1,∞

+ ⋅ ⋅ ⋅ + 𝑎
𝑝,∞

= −1, and 𝑏
1
+ ⋅ ⋅ ⋅ + 𝑏

𝑝
= 1, the restricted

equation (4) turns into (2).
Denote an index set U = {K

1
, . . . ,K

𝑀
}, where 𝑀 is a

positive integer. LetΘ = (𝜃
1
, . . . , 𝜃

𝑝
)
𝑇 andΨ = (𝜓

1
, . . . , 𝜓

∞
)
𝑇,

where “𝑇” stands for the transpose operation. Due to the
uncertain number of 𝑧

𝑖,𝑙
in formula (3), we consider a

sequence of approximately restricted models (3) and (4) with
K
𝑚

∈ U, where the 𝑚th model includes the first K
𝑚

elements of 𝑧
𝑖
, that is, 𝑧

𝑖,1
, . . . , 𝑧

𝑖,K
𝑚

, and the parameter of 𝜃
𝑠

is restricted by a linear combination withK
𝑚
elements of Ψ

and a constant 𝑏
𝑠
. Hence, the 𝑚th approximately restricted

models (3) and (4) are

𝑦
𝑖
=

𝑝

∑

𝑗=1

𝑥
𝑖,𝑗
𝜃
𝑗
+

K
𝑚

∑

𝑙=1

𝑧
𝑖,𝑙
𝜓
𝑙
+ 𝑑
𝑖
+ 𝑒
𝑖
, subject to (5)

𝑟
𝑠
𝜃
𝑠
=

K
𝑚

∑

𝑘=1

𝑎
𝑠,𝑘
𝜓
𝑘
+ 𝑑


𝑠
+ 𝑏
𝑠
, (𝑠 = 1, . . . , 𝑝) , (6)

where 𝑑
𝑖
= ∑
∞

𝑙=K
𝑚
+1
𝑧
𝑖,𝑙
𝜓
𝑙
and 𝑑

𝑠
= ∑
∞

𝑘=K
𝑚
+1
𝑎
𝑠,𝑘
𝜓
𝑘
are the

approximation errors.
Set 𝑌 = (𝑦

1
, . . . , 𝑦

𝑛
)
𝑇, 𝑎𝑚
𝑠

= (𝑎
𝑠,1
, . . . , 𝑎

𝑠,K
𝑚

)
𝑇, 𝐴𝑚
ℵ
=

(𝑎
𝑚
𝑇

1
, . . . , 𝑎

𝑚
𝑇

𝑝
)
𝑇, 𝐷 = (𝑑

1
, . . . , 𝑑

𝑛
)
𝑇, 𝐷 = (𝑑



1
, . . . , 𝑑



𝑝
)
𝑇,

Ψ
𝑚
= (𝜓
1
, . . . , 𝜓K

𝑚

)
𝑇, 𝐵 = (𝑏

1
, . . . , 𝑏

𝑝
)
𝑇, and 𝑒 = (𝑒

1
, . . . , 𝑒

𝑛
)
𝑇.

By matrix notation, the𝑚th approximately restricted models
(5) and (6) can be rewritten as

𝑌 = 𝑋Θ + 𝑍
𝑚
Ψ
𝑚
+ 𝐷 + 𝑒, subject to (7)

𝑅Θ = 𝐴
𝑚

ℵ
Ψ
𝑚
+ 𝐷

+ 𝐵, (8)

where 𝑋 is a 𝑛 × 𝑝 matrix whose 𝑖𝑗th element is 𝑥
𝑖,𝑗
, 𝑍
𝑚
is a

𝑛 × K
𝑚
matrix whose 𝑖𝑗th element is 𝑧

𝑖,𝑗
, and 𝑅 is a 𝑝 × 𝑝

diagonal matrix whose 𝑖th diagonal element is 𝑟
𝑖
.

Hypothesize that {𝑒
𝑖
}
𝑛

𝑖=1
satisfies 𝐸(𝑒

𝑖
| 𝑥
𝑖
, 𝑧
𝑖
) = 0 and its

conditional covariance matrixΩ
𝑛
= 𝐸(𝑒𝑒

𝑇
| 𝑋, 𝑍

𝑚
) is

Ω
𝑛
= (

𝜎
2

1

1

⋅ ⋅ ⋅ 
𝑛−1


1

𝜎
2

2
⋅ ⋅ ⋅ 
𝑛−2

...
... ⋅ ⋅ ⋅

...

𝑛−1


𝑛−2

⋅ ⋅ ⋅ 𝜎
2

𝑛

), (9)

in which 𝐸(𝑒
𝑖
𝑒
𝑖
| 𝑥
𝑖
, 𝑧
𝑖
) = 𝜎

2

𝑖
and 𝐸(𝑒

𝑖
𝑒
𝑖+𝑗

| 𝑥
𝑖
, 𝑧
𝑖
) = 
𝑗
with

𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑛 − 1. Clearly, the random errors
follow a heteroscedastic stationary Gaussian process.

Substituting (8) into (7), it yields

𝑌
𝑢
= 𝑍
𝑚,𝑢
Ψ
𝑚
+ 𝑈, (10)

where 𝑌
𝑢
= 𝑌 − 𝑋𝑅

−1
𝐵, 𝑈 = 𝐷 + 𝑋𝑅

−1
𝐷

+ 𝑒, and 𝑍

𝑚,𝑢
=

𝑍
𝑚
+ 𝑋𝑅
−1
𝐴
𝑚

ℵ
. By the method of least squares, the estimator

of Ψ
𝑚
is

Ψ̂
𝑚
= (𝑍
𝑇

𝑚,𝑢
𝑍
𝑚,𝑢
)
−1

𝑍
𝑇

𝑚,𝑢
𝑌
𝑢
, (11)

where (𝑍𝑇
𝑚,𝑢
𝑍
𝑚,𝑢
)
−1 denotes the inverse of 𝑍𝑇

𝑚,𝑢
𝑍
𝑚,𝑢

. In the
𝑚th approximating model (7), we set 𝜇

𝑚
= 𝑋Θ + 𝑍

𝑚
Ψ
𝑚
, so

that 𝜇 = 𝐸(𝑌 | 𝑋, 𝑍
𝑚
) = 𝜇
𝑚
+ 𝐷. Thus, the estimator of 𝜇

𝑚
is

𝜇
𝑚
= 𝑋Θ̂ + 𝑍

𝑚
Ψ̂
𝑚
= 𝜂 + 𝑃

𝑚
𝑌, (12)

where 𝜂 = (𝐼−𝑃
𝑚
)𝑋𝑅
−1
𝐵 and 𝑃

𝑚
= 𝑍
𝑚,𝑢
(𝑍
𝑇

𝑚,𝑢
𝑍
𝑚,𝑢
)
−1

𝑍
𝑇

𝑚,𝑢
is

the “hat” matrix.
Let 𝑤 = (𝑤

1
, . . . , 𝑤

𝑀
)
𝑇 be a weight vector, where𝑀 < 𝑛.

Define a weight setW as

W = {𝑤 | 𝑤
𝑚
∈ [0, 1] , 𝑚 = 1, . . . ,𝑀,

𝑀

∑

𝑚=1

𝑤
𝑚
= 1} . (13)

For all𝑚 ≤ 𝑀, the weighted average estimator of Ψ
𝑚
is

Ψ̂
𝑤
=

𝑀

∑

𝑚=1

𝑤
𝑚
Ψ̂
𝑚
=

𝑀

∑

𝑚=1

𝑤
𝑚
(𝑍
𝑇

𝑚,𝑢
𝑍
𝑚,𝑢
)
−1

𝑍
𝑇

𝑚,𝑢
𝑌
𝑢
. (14)

Naturally, the weighted average estimator of Θ̂ is

Θ̂
𝑤
= 𝑅
−1
𝐵 + 𝑅

−1
𝐴
𝑚

ℵ
Ψ̂
𝑤
. (15)

Furthermore, the weighted average estimator of 𝜇 is

𝜇 (𝑤) =

𝑀

∑

𝑚=1

𝑤
𝑚
𝜇
𝑚
= 𝜂 (𝑤) + 𝑃 (𝑤)𝑌, (16)
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where 𝑃(𝑤) = ∑
𝑀

𝑚=1
𝑤
𝑚
𝑃
𝑚
and 𝜂(𝑤) = (𝐼 − 𝑃(𝑤))𝑋𝑅

−1
𝐵.

It can be seen that the weighted estimator 𝜇(𝑤) is an
average estimator of 𝜇

𝑚
, 𝑚 = 1, . . . ,𝑀. The weighted “hat”

matrix 𝑃(𝑤) depends on nonrandom regressor 𝑍
𝑚,𝑢

and
weight vector 𝑤. In general conditions, the matrix 𝑃(𝑤) is
symmetric, but not idempotent.

For a positive integerG, let 𝜉 be the maximal value of 𝜎2
𝜄
,

𝜄 = 1, . . . , 𝑛, and let 𝜆
𝑗
, 𝑗 = 1, . . . ,G be the nonzero eigenvalue

ofΩ
𝑛
. Assume that both 𝜆

𝑗
and 
𝜄
are summable, namely,

Γ =

G

∑

𝑗=1

𝜆
𝑗
< ∞,

W = 𝜉 + 2

𝑛−1

∑

𝜄=1

𝜄
 < ∞.

(17)

Since the covariance matrix Ω
𝑛
determines the algebraic

structure of the model average estimator, we discuss its
properties in the following.

Lemma 1. For any 𝑛 dimensional vectors 𝑎 = (𝑎
1
, . . . , 𝑎

𝑛
)
𝑇 and

𝑏 = (𝑏
1
, . . . , 𝑏

𝑛
)
𝑇, one has |𝑎𝑇Ω

𝑛
𝑏| ≤ ‖𝑎‖‖𝑏‖W, where ‖ ⋅ ‖ is

the Euclidean norm.

Proof. Through the definition ofΩ
𝑛
, one has


𝑎
𝑇
Ω
𝑛
𝑏

=



𝑛

∑

𝑙=1

𝑎
𝑙
𝑏
𝑙
𝜎
2

𝑙
+

𝑛−1

∑

𝑖=1


𝑖

𝑛−𝑖

∑

𝑙=1

(𝑎
𝑙+𝑖
𝑏
𝑙
+ 𝑎
𝑙
𝑏
𝑙+𝑖
)



≤ 𝜉



𝑛

∑

𝑙=1

𝑎
𝑙
𝑏
𝑙



+



𝑛−1

∑

𝑖=1


𝑖





𝑛−𝑖

∑

𝑙=1

(𝑎
𝑙+𝑖
𝑏
𝑙
+ 𝑎
𝑙
𝑏
𝑙+𝑖
)



.

(18)

ApplyingCauchy-Schwarz inequality, for 𝑖 ∈ {1, . . . , 𝑛−1},
one gets

𝑛−𝑖

∑

𝑙=1

𝑎
𝑙+𝑖
𝑏
𝑙
≤ √

𝑛−𝑖

∑

𝑙=1

𝑎2
𝑙+𝑖

𝑛−𝑖

∑

𝑙=1

𝑏2
𝑙

≤ √

𝑛

∑

𝑙=1

𝑎2
𝑙

𝑛

∑

𝑙=1

𝑏2
𝑙
= ‖𝑎‖ ‖𝑏‖ .

(19)

Similarly, ∑𝑛−𝑖
𝑙=1
𝑎
𝑙
𝑏
𝑙+𝑖
≤ ‖𝑎‖‖𝑏‖ holds. Therefore,


𝑎
𝑇
Ω
𝑛
𝑏

≤ ‖𝑎‖ ‖𝑏‖(𝜉 + 2

𝑛−1

∑

𝑖=1


𝑖
) = ‖𝑎‖ ‖𝑏‖W. (20)

Because the matrix 𝑃(𝑤) takes an important role in ana-
lyzing the problems of model selection, we state some of its
properties. We set 𝜏 = max{K

1
, . . . ,K

𝑀
}. Let 𝜆(𝑃(𝑤)) and

𝜆max(𝑃(𝑤)) denote the eigenvalue and the largest eigenvalue
of 𝑃(𝑤), respectively.

Lemma 2. One has (i) tr(𝑃(𝑤)) ≤ 𝜏 and (ii) 0 ≤ 𝜆(𝑃(𝑤)) ≤ 1,
where tr(⋅) denotes the trace operation.

Proof. It follows from tr(𝑃
𝑚
) = K

𝑚
and tr(𝑃(𝑤)) =

∑
𝑀

𝑚=1
𝑤
𝑚
K
𝑚
≤ 𝜏 that (i) is established. Next, we consider

(ii). Without loss of generality, let 𝜆
1,𝑚

≥ ⋅ ⋅ ⋅ ≥ 𝜆
𝑛,𝑚

and
𝜑
1,𝑚
, . . . , 𝜑

𝑛,𝑚
be the eigenvalues and standardly orthogonal

eigenvectors of 𝑃
𝑚
, respectively. Observe that 𝑃

𝑚
is idempo-

tent, which implies that 𝜆
𝑖,𝑚

∈ {0, 1}, 𝑖 = 1, . . . , 𝑛. For any
𝜛 ∈ R𝑛, it can be seen that

𝜆 (𝑃 (𝑤)) =
𝜛
𝑇
𝑃 (𝑤)𝜛

𝜛𝑇𝜛

=

𝑀

∑

𝑚=1

𝑤
𝑚

𝜛
𝑇
𝑃
𝑚
𝜛

𝜛𝑇𝜛

=

𝑀

∑

𝑚=1

𝑤
𝑚

𝜒
𝑇
Ξ
𝑚
𝜒

𝜒𝑇𝜒

=

𝑀

∑

𝑚=1

𝑤
𝑚

𝑛

∑

𝑖=1

𝜆
𝑖,𝑚

𝜒𝑖

2

𝜒𝑇𝜒
,

(21)

where Ξ
𝑚
= diag(𝜆

1,𝑚
, . . . , 𝜆

𝑛,𝑚
), 𝜛 = Φ

𝑚
𝜒, and Φ

𝑚
=

(𝜑
1,𝑚
, . . . , 𝜑

𝑛,𝑚
). Due to 𝜆

𝑖,𝑚
∈ {0, 1}, 𝑖 = 1, . . . , 𝑛, it means

that

𝜆 (𝑃 (𝑤)) ≤

𝑀

∑

𝑚=1

𝑤
𝑚

𝑛

∑

𝑖=1

1

𝜒𝑖

2

𝜒𝑇𝜒
=

𝑀

∑

𝑚=1

𝑤
𝑚
= 1,

𝜆 (𝑃 (𝑤)) ≥

𝑀

∑

𝑚=1

𝑤
𝑚

𝑛

∑

𝑖=1

0

𝜒𝑖

2

𝜒𝑇𝜒
= 0.

(22)

From Lemma 2(ii), we know that 𝑃(𝑤) is nonnegative
definite.

Lemma 3. Let 𝛼 denote the number of eigenvalues of 𝑃(𝑤).
Then (𝛼−1 tr(𝑃(𝑤)))2 ≤ 𝛼−1 tr(𝑃2(𝑤)).

Proof. Let 𝜆
1
, . . . , 𝜆

𝛼
be the eigenvalues of 𝑃(𝑤). (i) If 𝜆

1
=

⋅ ⋅ ⋅ = 𝜆
𝛼
= 0, we know that Lemma 3 holds. (ii) Let

𝜆
1
̸= 0, . . . , 𝜆

𝛼
̸= 0 and 𝜆

𝛼+1
= ⋅ ⋅ ⋅ = 𝜆

𝛼
= 0. It is easy to see

that ∑𝛼
𝑖=1
(𝜆
𝑖
− 𝜆)
2

≥ 0, where 𝜆 = 𝛼−1 tr(𝑃(𝑤)). Thus, it can
be shown that
𝛼

∑

𝑖=1

(𝜆
𝑖
− 𝜆)
2

=

𝛼

∑

𝑖=1

𝜆
2

𝑖
− 2𝜆

𝛼

∑

𝑖=1

𝜆
𝑖
+ 𝛼𝜆
2

= tr (𝑃2 (𝑤)) − 𝛼(𝛼−1 tr (𝑃 (𝑤)))
2

≥ 0,

(23)

which implies that (𝛼−1 tr(𝑃(𝑤)))2 ≤ 𝛼−1 tr(𝑃2(𝑤)).

Lemma 4. For any 𝑤 ∈ W, there exists C
1

= C2

such that tr(𝑃(𝑤)Ω
𝑛
) ≤ CΓ, tr (Ω

𝑛
𝑃(𝑤))

2
≤ C
1
Γ
2 and

tr (Ω
𝑛
𝑃
𝑇
(𝑤)𝑃(𝑤))

2

≤ C
1
Γ tr(𝑃(𝑤)Ω

𝑛
𝑃
𝑇
(𝑤)), in which C =

𝑠𝑢𝑝
𝑤∈W𝜆max(𝑃(𝑤)).

Proof. Notice that 𝜆min(A)𝜆max(B) ≤ 𝜆max(AB) ≤

𝜆max(A)𝜆max(B) and tr(AB) ≤ 𝜆max(A) tr(B) ≤
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tr(A) tr(B), where A and B are any positive semidefinite
matrices.

Since 𝑃(𝑤) and Ω
𝑛
are symmetric and nonnegative

definite, the first inequality is established by tr(𝑃(𝑤)Ω
𝑛
) ≤

𝜆max(𝑃(𝑤)) tr(Ω𝑛). Let 𝜆𝑖 be eigenvalue of 𝑃(𝑤). From the
symmetric property of 𝑃(𝑤), we know that there exists a
𝑛 × 𝑛 orthogonal matrix Ψ such that 𝑃(𝑤) = ΨΥΨ

𝑇,
where Υ = diag(𝜆

1
, . . . , 𝜆

𝑛
). Then, it yields tr(Ω

𝑛
𝑃(𝑤)) =

tr(Υ1/2Ψ𝑇Ω
𝑛
ΨΥ
1/2
), where Υ

1/2
Ψ
𝑇

Ω
𝑛
ΨΥ
1/2 is symmetric

and nonnegative definite. The second inequality holds
because

tr (Ω
𝑛
𝑃 (𝑤))

2
≤ [tr (Ω

𝑛
𝑃 (𝑤))]

2

≤ [𝜆max (𝑃 (𝑤)) tr(Ω𝑛)]
2

≤ C
1
Γ
2
.

(24)

For the last formula, we note that

tr (Ω
𝑛
𝑃
𝑇
(𝑤) 𝑃 (𝑤))

2

= tr (𝑃 (𝑤)Ω𝑛𝑃
𝑇
(𝑤))
2

≤ 𝜆max (𝑃 (𝑤)Ω𝑛𝑃
𝑇
(𝑤)) tr (𝑃 (𝑤)Ω𝑛𝑃

𝑇
(𝑤))

≤ 𝜆max (𝑃
2
(𝑤)) 𝜆max (Ω𝑛) tr (𝑃 (𝑤)Ω𝑛𝑃

𝑇
(𝑤))

≤ 𝜆
2

max (𝑃 (𝑤)) 𝜆max (Ω𝑛) tr (𝑃 (𝑤)Ω𝑛𝑃
𝑇
(𝑤))

≤ C
1
Γ tr (𝑃 (𝑤)Ω𝑛𝑃

𝑇
(𝑤)) .

(25)

This completes the proof of Lemma 4.

Lemma 5. Let A be a symmetric matrix and 𝑋 be a random
vector with zero expectation. Then, one has Var(𝑋𝑇A𝑋) =
2 tr(Var(𝑋)AVar(𝑋)A), where Var(⋅) is the operation of
variance.

Proof. The proof of this lemma is provided in Lai and Xie
[26].

3. Average Squared Error

Denote an average squared error by

𝐿
𝑛 (𝑤) =

1

𝑛

𝜇 − 𝜇(𝑤)

2

𝑘
=
(𝜇 − 𝜇 (𝑤))

𝑇
𝑘 (𝜇 − 𝜇 (𝑤))

𝑛
, (26)

where 𝑘 is a fixed positive integer which is often used to
eliminate the boundary effect. Andrews [28] suggested that
the 𝑘 can take the value of 𝜎−2, when errors obeyed an
independent and identical distribution with variance 𝜎2. The
most common situation is 𝑘 = 1. The average squared
error 𝐿

𝑛
(𝑤) can be viewed as a measure of accuracy between

𝜇(𝑤) and 𝜇. Obviously, an optimal estimator can obtain the
minimum value of 𝐿

𝑛
(𝑤). In other words, we should select

a weight vector 𝑤 from W to make that the average squared
error 𝐿

𝑛
(𝑤) takes value that is as small as possible.

In order to investigate the problem of weight selection, we
give the expression of conditional expected average squared
error as follows:

𝑅
𝑛 (𝑤) = 𝐸 (𝐿𝑛 (𝑤) | 𝑋, 𝑍𝑚) . (27)

From the definition of𝑅
𝑛
(𝑤), the following lemma can be

obtained.

Lemma6. The conditional expected average squared error can
be rewritten as

𝑅
𝑛 (𝑤) =

𝑀(𝑤)𝜇 − 𝜂(𝑤)

2

𝑘

𝑛
+
𝑘 tr (𝑃 (𝑤)Ω𝑛𝑃

𝑇
(𝑤))

𝑛
, (28)

where𝑀(𝑤) = 𝐼 − 𝑃(𝑤).

Proof. A straight calculation of 𝐿
𝑛
(𝑤) leads to

𝑛𝐿
𝑛 (𝑤)

= (𝜇 − 𝜇 (𝑤))
𝑇
𝑘 (𝜇 − 𝜇 (𝑤))

= (𝜇 − 𝜂 (𝑤) − 𝑃 (𝑤) (𝜇 + 𝑒))
𝑇

× 𝑘 (𝜇 − 𝜂 (𝑤) − 𝑃 (𝑤) (𝜇 + 𝑒))

= [𝜇
𝑇
𝑀
𝑇
(𝑤) − 𝜂

𝑇
(𝑤) − 𝑒

𝑇
𝑃
𝑇
(𝑤)]

× 𝑘 [𝑀 (𝑤) 𝜇 − 𝜂 (𝑤) − 𝑃 (𝑤) 𝑒]

=
𝑀(𝑤)𝜇 − 𝜂(𝑤)


2

𝑘
− 𝑘(𝜇 − 𝑋𝑅

−1
𝐵)
𝑇

𝑀
𝑇
(𝑤) 𝑃 (𝑤) 𝑒

+ 𝑘𝑒
𝑇
𝑃
𝑇
(𝑤) 𝑃 (𝑤) 𝑒 − 𝑘𝑒

𝑇
𝑃
𝑇
(𝑤)𝑀 (𝑤) (𝜇 − 𝑋𝑅

−1
𝐵) .

(29)

Using 𝐸(𝑒𝑇𝑃𝑇(𝑤)𝑃(𝑤)𝑒 | 𝑋, 𝑍
𝑚
) = tr(𝑃(𝑤)Ω

𝑛
𝑃
𝑇
(𝑤))

and taking conditional expectations on both sides of the
above equality give rise to Lemma 6.

4. The 𝑘-Class Generalized Information
Criterion and Asymptotic Optimality

As the value of𝜇 is unknown, the average squared error𝐿
𝑛
(𝑤)

cannot be used directly to select the weight vector𝑤.Thus, we
suggest a 𝑘-class generalized information criterion (𝑘-GIC)
to choose the weight vector. Further, we will prove that the
selected weight vector from 𝑘-GIC minimizes the average
squared error 𝐿

𝑛
(𝑤).

The 𝑘-GIC for the restricted model average estimator is

𝐶
𝑛 (𝑤) =

𝑌 − 𝜇 (𝑤)

2

𝑘

𝑛
+
2ℏ

𝑛
tr (𝑃 (𝑤)Ω𝑛) , (30)

where ℏ is larger than one and satisfies assumption (35) men-
tioned below. The 𝑘-class generalized information criterion
extends the generalized information criterion (GIC

𝜆
𝑛

) pro-
posed by Shao [27]. Because the ℏ can take different values,
the 𝑘-GIC includes some common information criteria for
model selection such as theMallows C

𝐿
criterion (𝑘 = ℏ = 1),

the GIC criterion (𝑘 = 1, ℏ → ∞), the FPE
𝛼
criterion

(𝑘 = 1, ℏ > 1), and the BIC criterion (𝑘 = 1, ℏ = log(𝑛)).
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Lemma 7. If 𝑘 = ℏ, we have 𝐸(𝐶
𝑛
(𝑤) | 𝑋, 𝑍

𝑚
) = 𝑅

𝑛
(𝑤) +

𝑘Γ/𝑛.

Proof. Recalling the definition of 𝐶
𝑛
(𝑤), one gets

𝑛𝐶
𝑛 (𝑤) = (𝑌 − 𝜇 (𝑤))

𝑇
𝑘 (𝑌 − 𝜇 (𝑤)) + 2𝑘 tr (𝑃 (𝑤)Ω𝑛)

= [𝑀 (𝑤)𝑌 − 𝜂 (𝑤)]
𝑇
𝑘 [𝑀 (𝑤)𝑌 − 𝜂 (𝑤)]

+ 2𝑘 tr (𝑃 (𝑤)Ω𝑛)

= 2𝑘 tr (𝑃 (𝑤)Ω𝑛) + 𝑘𝑒
𝑇
𝑀
𝑇
(𝑤)𝑀 (𝑤) 𝑒

+ 𝑘(𝑀 (𝑤) 𝜇 − 𝜂 (𝑤))
𝑇
𝑀(𝑤) 𝑒

+ 𝑘𝑒
𝑇
𝑀
𝑇
(𝑤) (𝑀 (𝑤) 𝜇 − 𝜂 (𝑤))

+
𝑀(𝑤)𝜇 − 𝜂(𝑤)


2

𝑘
.

(31)

Observe that

𝑘𝑒
𝑇
𝑀
𝑇
(𝑤)𝑀 (𝑤) 𝑒 = 𝑒

𝑇
(𝐼 − 𝑃 (𝑤))

𝑇
𝑘 (𝐼 − 𝑃 (𝑤)) 𝑒

= 𝑘𝑒
𝑇
𝑒 − 𝑘𝑒

𝑇
𝑃
𝑇
(𝑤) 𝑒 − 𝑘𝑒

𝑇
𝑃 (𝑤) 𝑒

+ 𝑘𝑒
𝑇
𝑃
𝑇
(𝑤) 𝑃 (𝑤) 𝑒.

(32)

Notice that 𝐸(𝑘𝑒
𝑇
𝑒 | 𝑋, 𝑍

𝑚
) = 𝑘 tr(Ω

𝑛
) and

𝐸(𝑘𝑒
𝑇
𝑃
𝑇
(𝑤)𝑒 | 𝑋, 𝑍

𝑚
) = 𝑘 tr(𝑃𝑇(𝑤)Ω

𝑛
). Moreover, we

have that 𝐸(𝑘𝑒𝑇𝑃(𝑤)𝑒 | 𝑋, 𝑍
𝑚
) = 𝑘 tr(𝑃(𝑤)Ω

𝑛
) and

𝐸(𝑘𝑒
𝑇
𝑃
𝑇
(𝑤)𝑃(𝑤)𝑒 | 𝑋, 𝑍

𝑚
) = 𝑘 tr(𝑃(𝑤)Ω

𝑛
𝑃
𝑇
(𝑤)).

Thus, taking conditional expectations on both sides of
(31), we obtain

𝑛𝐸 (𝐶
𝑛 (𝑤) | 𝑋, 𝑍𝑚) = 𝑘 tr (Ω𝑛) +

𝑀(𝑤)𝜇 − 𝜂(𝑤)

2

𝑘

+ 𝑘 tr (𝑃 (𝑤)Ω𝑛𝑃
𝑇
(𝑤)) .

(33)

It follows from (33) and Lemma 6 that Lemma 7 is
established as desired.

Lemma 7 shows that 𝐶
𝑛
(𝑤) is equivalent to the con-

ditional expected average squared error plus an error bias.
Particularly, when 𝑛 approaches to infinite, 𝐶

𝑛
(𝑤) is an

unbiased estimation of 𝑅
𝑛
(𝑤).

The 𝑘-GIC criterion is defined so as to select the optimal
weight vector 𝑤. The optimal weight vector 𝑤 is chosen by
minimizing 𝐶

𝑛
(𝑤).

Obviously, the well-posed estimators of parameters are
Θ̂
𝑤 and Ψ̂𝑤 with the weight vector 𝑤. Under some regular

conditions, we intend to demonstrate that the selection
procedure is asymptotically optimal in the following sense:

𝐿
𝑛 (𝑤)

inf
𝑤∈W𝐿𝑛 (𝑤)

𝑝

→ 1. (34)

If the formula (34) holds, we know that the selected
weight vector 𝑤 from 𝐶

𝑛
(𝑤) can realize the minimum value

of 𝐿
𝑛
(𝑤). In other words, the weight vector 𝑤 is equivalent

to the selected weight vector by minimizing 𝐿
𝑛
(𝑤) and is the

optimal weight vector for 𝜇(𝑤). The asymptotic optimality of
𝐶
𝑛
(𝑤) can be established under the following assumptions.

Assumptions 1. Write 𝛼
𝑛
= inf
𝑤∈W𝑛𝑅𝑛(𝑤). As 𝑛 → ∞, we

assume that

lim inf
𝑤∈W

ℏ
2

𝛼
𝑛

→ 0, (35)

∑

𝑤∈W

1

(𝑛𝑅
𝑛 (𝑤))

𝑁

→ 0 (36)

for a large ℏ and any positive integer 1 ≤ 𝑁 < ∞.
The above assumptions have been employed by many

literatures of model selection. For instance, the expression
(35) was used by Shao [27] and the formula (36) was adopted
by Li [29], Andrews [28], Shao [27], and Hansen [11].

The following lemma offers a bridge for proving the
asymptotic optimality of 𝐶

𝑛
(𝑤).

Lemma 8. We have
𝑀(𝑤)𝑌 − 𝜂(𝑤)


2

𝑘
= 𝑛𝐿
𝑛 (𝑤) − 2⟨𝑒

𝑇
, 𝑃(𝑤)𝑒⟩

𝑘

+ 2⟨𝑒
𝑇
,𝑀(𝑤)𝜇 − 𝜂(𝑤)⟩

𝑘
+ ‖𝑒‖
2

𝑘
.

(37)

Proof. Using 𝜇(𝑤) = 𝑃(𝑤)𝑌 + 𝜂(𝑤), 𝑌 = 𝜇 + 𝑒, and the
definition of 𝐿

𝑛
(𝑤), one obtains

𝑀(𝑤)𝑌 − 𝜂(𝑤)

2

𝑘
=
𝜇 + 𝑒 − 𝑃(𝑤)𝑌 − 𝜂(𝑤)


2

𝑘

= ‖𝑒‖
2

𝑘
+
𝜇 − 𝑃(𝑤)𝑌 − 𝜂(𝑤)


2

𝑘

+ 2⟨𝑒
𝑇
, 𝜇 − 𝜂(𝑤) − 𝑃(𝑤)𝑌⟩

𝑘

= ‖𝑒‖
2

𝑘
+ 𝑛𝐿
𝑛 (𝑤)

+ 2⟨𝑒
𝑇
, 𝜇 − 𝜂(𝑤) − 𝑃(𝑤)(𝜇 + 𝑒)⟩

𝑘

= ‖𝑒‖
2

𝑘
+ 𝑛𝐿
𝑛 (𝑤)

+ 2⟨𝑒
𝑇
, (𝐼 − 𝑃(𝑤))𝜇 − 𝜂(𝑤) − 𝑃(𝑤)𝑒⟩

𝑘

= ‖𝑒‖
2

𝑘
+ 𝑛𝐿
𝑛 (𝑤)

+ 2⟨𝑒
𝑇
,𝑀(𝑤)𝜇 − 𝜂(𝑤)⟩

𝑘

− 2⟨𝑒
𝑇
, 𝑃(𝑤)𝑒⟩

𝑘
.

(38)

This completes the proof of Lemma 8.

Lemma 8 and ‖𝑌 − 𝜇(𝑤)‖2
𝑘
= ‖𝑀(𝑤)𝑌 − 𝜂(𝑤)‖

2

𝑘
imply

that

𝐶
𝑛 (𝑤) = 𝐿𝑛 (𝑤) +

2⟨𝑒
𝑇
,𝑀(𝑤)𝜇 − 𝜂(𝑤)⟩

𝑘

𝑛

+
‖𝑒‖
2

𝑘

𝑛
+
2ℏ tr (𝑃 (𝑤)Ω𝑛)

𝑛
− 2

⟨𝑒
𝑇
, 𝑃(𝑤)𝑒⟩

𝑘

𝑛
.

(39)
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The goal is to choose𝑤 by minimizing 𝐶
𝑛
(𝑤). From (39),

one only needs to select 𝑤 through minimizing

𝐿
𝑛 (𝑤) +

2⟨𝑒
𝑇
,𝑀(𝑤)𝜇 − 𝜂(𝑤)⟩

𝑘

𝑛

+

2ℏ tr (𝑃 (𝑤)Ω𝑛) − 2⟨𝑒
𝑇
, 𝑃(𝑤)𝑒⟩

𝑘

𝑛
,

(40)

where 𝑤 ∈W.
Compared with 𝐿

𝑛
(𝑤), it is sufficient to establish

that 𝑛
−1
⟨𝑒
𝑇
,𝑀(𝑤)𝜇 − 𝜂(𝑤)⟩

𝑘
and 𝑛

−1
ℏ tr(𝑃(𝑤)Ω

𝑛
) −

𝑛
−1
⟨𝑒
𝑇
, 𝑃(𝑤)𝑒⟩

𝑘
are uniformly negligible for any 𝑤 ∈ W.

More specifically, to prove (34), we need to check

sup
𝑤∈W

⟨𝑒
𝑇
,𝑀(𝑤)𝜇 − 𝜂(𝑤)⟩

𝑘

𝑛𝑅
𝑛 (𝑤)

𝑝

→ 0, (41)

sup
𝑤∈W


ℏ tr (𝑃 (𝑤)Ω𝑛) − ⟨𝑒

𝑇
, 𝑃(𝑤)𝑒⟩

𝑘



𝑛𝑅
𝑛 (𝑤)

𝑝

→ 0, (42)

sup
𝑤∈W



𝐿
𝑛 (𝑤) − 𝑅𝑛 (𝑤)

𝑅
𝑛 (𝑤)



𝑝

→ 0, (43)

where “
𝑝

→” denotes the convergence in probability.
Following the idea of Li [29], we testify the main result

of our work that the minimizing of 𝑘-class generalized
information criterion is asymptotically optimal.Now,we state
the main theorem.

Theorem9. Under assumptions (35) and (36), theminimizing
of 𝑘-class generalized information criterion𝐶

𝑛
(𝑤) is asymptot-

ically optimal, namely, (34) holds.

Proof. The asymptotically optimal property of 𝑘-GIC needs
to show that (41), (42), and (43) are valid.

Firstly, we prove that (41) holds. For any 𝜁 > 0, by
Chebyshev’s inequality, one has

Pr
{

{

{

sup
𝑤∈W


⟨𝑒
𝑇
,𝑀(𝑤)𝜇 − 𝜂(𝑤)⟩

𝑘



𝑛𝑅
𝑛 (𝑤)

> 𝜁
}

}

}

≤ ∑

𝑤∈W

𝐸[⟨𝑒
𝑇
,𝑀(𝑤)𝜇 − 𝜂(𝑤)⟩

𝑘
]
2

(𝜁𝑛𝑅
𝑛 (𝑤))

2
,

(44)

which, by Lemma 1, is no greater than

𝜁
−2
𝑘W ∑

𝑤∈W

𝑛
−2𝑀(𝑤)𝜇 − 𝜂(𝑤)


2

𝑘
(𝑅
𝑛 (𝑤))

−2
. (45)

Recalling the definition of 𝑅
𝑛
(𝑤), we get ‖𝑀(𝑤)𝜇 −

𝜂(𝑤)‖
2

𝑘
≤ 𝑛𝑅

𝑛
(𝑤). Then, (45) does not exceed

𝜁
−2
𝑘W∑

𝑤∈W (𝑛𝑅
𝑛
(𝑤))
−1. By assumption (36), one knows

that (45) tends to zero in probability.Thus, (41) is established.

To prove (42), it suffices to testify that

𝑘 tr (𝑃 (𝑤)Ω𝑛) − ⟨𝑒
𝑇
, 𝑃(𝑤)𝑒⟩

𝑘

𝑛𝑅
𝑛 (𝑤)

𝑝

→ 0, (46)

(ℏ − 𝑘) tr (𝑃 (𝑤)Ω𝑛)
𝑛𝑅
𝑛 (𝑤)

𝑝

→ 0. (47)

By Chebyshev’s inequality and Lemmas 4 and 5, for any
𝜖 > 0, we have

Pr{ sup
𝑤∈W



tr (𝑃 (𝑤)Ω𝑛) − ⟨𝑒
𝑇
, 𝑃 (𝑤) 𝑒⟩

𝑛𝑅
𝑛 (𝑤)



> 𝜖}

≤ ∑

𝑤∈W

𝐸[tr(𝑃(𝑤)Ω
𝑛
) − ⟨𝑒

𝑇
, 𝑃(𝑤)𝑒⟩]

2

(𝜖𝑛𝑅
𝑛
(𝑤))
2

=
1

𝜖2
∑

𝑤∈W

Var (𝑒𝑇𝑃 (𝑤) 𝑒)

(𝑛𝑅
𝑛
(𝑤))
2

≤
2C
1
Γ
2

𝜖2
∑

𝑤∈W

1

(𝑛𝑅
𝑛
(𝑤))
2
.

(48)

From (36), we know that (48) is close to zero. Thus, (46)
is reasonable.

Recalling Lemma 4 and (35), it yields

(ℏ − 𝑘) tr (𝑃 (𝑤)Ω𝑛)


𝑛𝑅
𝑛 (𝑤)

≤


C (ℏ − 𝑘) Γ



𝑛𝑅
𝑛 (𝑤)

→ 0, (49)

which derives (47). Then, (42) is proved.
Next, we show that the expression (43) also holds. A

straightforward calculation leads to

𝜇 − 𝜇(𝑤)

2

𝑘
−
𝑀(𝑤)𝜇 − 𝜂(𝑤)


2

𝑘

=
𝜇 − 𝜂(𝑤) − 𝑃(𝑤)𝑌


2

𝑘
−
𝑀(𝑤)𝜇 − 𝜂(𝑤)


2

𝑘

=
𝜇 − 𝜂(𝑤) − 𝑃(𝑤)𝜇 − 𝑃(𝑤)𝑒


2

𝑘
−
𝑀(𝑤)𝜇 − 𝜂(𝑤)


2

𝑘

=
𝑀(𝑤)𝜇 − 𝜂(𝑤) − 𝑃(𝑤)𝑒


2

𝑘
−
𝑀(𝑤)𝜇 − 𝜂(𝑤)


2

𝑘

= ‖𝑃(𝑤)𝑒‖
2

𝑘
− 2⟨𝜇

𝑇
𝑀
𝑇
(𝑤) − 𝜂

𝑇
(𝑤), 𝑃(𝑤)𝑒⟩

𝑘
.

(50)

From the identity (50), we know that

𝐿
𝑛 (𝑤) − 𝑅𝑛 (𝑤) = −

2⟨𝜇
𝑇
𝑀
𝑇
(𝑤) − 𝜂

𝑇
(𝑤), 𝑃(𝑤)𝑒⟩

𝑘

𝑛

+
‖𝑃(𝑤)𝑒‖

2

𝑘
− 𝑘 tr (𝑃 (𝑤)Ω𝑛𝑃

𝑇
(𝑤))

𝑛
.

(51)
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Obviously, the proof of (43) needs to verify that

sup
𝑤∈W

‖𝑃(𝑤)𝑒‖
2

𝑘
− 𝑘 tr (𝑃 (𝑤)Ω𝑛𝑃

𝑇
(𝑤))

𝑛𝑅
𝑛 (𝑤)

𝑝

→ 0,

sup
𝑤∈W

⟨𝜇
𝑇
𝑀
𝑇
(𝑤) − 𝜂

𝑇
(𝑤), 𝑃(𝑤)𝑒⟩

𝑘

𝑛𝑅
𝑛 (𝑤)

𝑝

→ 0.

(52)

To prove (52), it should be noticed that
tr(𝑃(𝑤)Ω

𝑛
𝑃
𝑇
(𝑤)) = 𝐸(𝑒

𝑇
𝑃
𝑇
(𝑤)𝑃(𝑤)𝑒) and ‖𝑃(𝑤)𝑒‖

2

𝑘
=

⟨𝑒
𝑇
𝑃
𝑇
(𝑤), 𝑃(𝑤)𝑒⟩

𝑘
. In addition,

𝑃 (𝑤) (𝑀 (𝑤) 𝜇 − 𝜂 (𝑤))

2
≤ 𝜆
2

max (𝑃 (𝑤))
𝑀(𝑤)𝜇 − 𝜂(𝑤)


2

≤
𝑀(𝑤)𝜇 − 𝜂(𝑤)


2
.

(53)

Thus, there exist any 𝜁 > 0 and 𝜖 > 0 such that

Pr{ sup
𝑤∈W

‖𝑃(𝑤)𝑒‖
2

𝑘
− 𝑘 tr (𝑃 (𝑤)Ω𝑛𝑃

𝑇
(𝑤))

𝑛𝑅
𝑛 (𝑤)

> 𝜁

}

≤ ∑

𝑤∈W

𝐸[‖𝑃(𝑤)𝑒‖
2

𝑘
− 𝑘𝐸 (𝑒

𝑇
𝑃
𝑇
(𝑤) 𝑃 (𝑤) 𝑒)]

2

(𝑛𝑅
𝑛 (𝑤) 𝜁

)
2

=
𝑘
2

𝜁2
∑

𝑤∈W

Var (𝑒𝑇𝑃𝑇 (𝑤) 𝑃 (𝑤) 𝑒)

(𝑛𝑅
𝑛
(𝑤))
2

≤
2𝑘C
1
Γ

𝜁2
∑

𝑤∈W

𝑘 tr (𝑃 (𝑤)Ω𝑛𝑃
𝑇
(𝑤))

(𝑛𝑅
𝑛
(𝑤))
2

≤
2𝑘C
1
Γ

𝜁2
∑

𝑤∈W

1

(𝑛𝑅
𝑛 (𝑤))

,

(54)

Pr
{

{

{

sup
𝑤∈W

⟨𝜇
𝑇
𝑀
𝑇
(𝑤) − 𝜂

𝑇
(𝑤), 𝑃(𝑤)𝑒⟩

𝑘

𝑛𝑅
𝑛 (𝑤)

> 𝜖

}

}

}

≤ ∑

𝑤∈W

𝐸[⟨𝜇
𝑇
𝑀
𝑇
(𝑤) − 𝜂

𝑇
(𝑤), 𝑃(𝑤)𝑒⟩

𝑘
]
2

(𝑛𝑅
𝑛
(𝑤)𝜖)

2

≤ ∑

𝑤∈W

𝑃(𝑤)(𝑀(𝑤)𝜇 − 𝜂(𝑤))

2

𝑘
𝑘W

(𝑛𝑅
𝑛
(𝑤)𝜖)

2

≤ 𝜖
−2
𝑘W ∑

𝑤∈W

𝑛
−2𝑀(𝑤)𝜇 − 𝜂(𝑤)


2

𝑘
(𝑅
𝑛 (𝑤))

−2
.

(55)

Combining (36) and (45), one knows that both (54)
and (55) tend to zero. In other words, (43) is confirmed.
We conclude that the expressions (41), (42), and (43) are
reasonable. This completes the proof of Theorem 9.

In practice, the covariance of errors is usually unknown
and needs to be estimated. However, it is difficult to build a
good estimate for Ω

𝑛
in virtue of the special structure of Ω

𝑛
.

In the special case, when the random errors are independent
and identical distribution with variance 𝜎2, the consistent
estimator of𝜎2 can be built for the constrainedmodels (7) and
(8). Let 𝑚 = 𝑄 in 𝜇

𝑚
and 𝜏 = tr(𝑃

𝑄
), where 𝑄 corresponds

to a “large” approximatingmodel. Denote �̂�2
𝑄
= (𝑛−𝜏


)
−1
(𝑌−

𝜇
𝑄
)
𝑇
(𝑌 − 𝜇

𝑄
). The coming theorem will show that �̂�2

𝑄
is a

consistent estimate of 𝜎2.

Theorem 10. If 𝜏/𝑛 → 0 when 𝜏 → ∞ and 𝑛 → ∞, we
have �̂�2

𝑄

𝑝

→ 𝜎
2 as 𝑛 → ∞.

Proof. Writing Λ = 𝐷 + 𝑋𝑅
−1
𝐷
, one obtains

(𝑌 − 𝜇
𝑄
)
𝑇
(𝑌 − 𝜇

𝑄
)

𝑛 − 𝜏
=
𝑒
𝑇
𝑀
𝑄
𝑒

𝑛 − 𝜏
+

𝑀𝑄Λ

2

𝑛 − 𝜏
+
2𝑒
𝑇
𝑀
𝑄
Λ

𝑛 − 𝜏
,

(56)

where𝑀
𝑄
= 𝐼 − 𝑃

𝑄
.

Since 𝐸(𝑒𝑇𝑀
𝑄
𝑒) = 𝜎

2
(𝑛 − 𝜏


), it leads to

𝐸

𝑒
𝑇
𝑀
𝑄
𝑒 − 𝜎
2
(𝑛 − 𝜏


)


2

= 𝐸

𝑒
𝑇
𝑀
𝑄
𝑒 − 𝐸(𝑒

𝑇
𝑀
𝑄
𝑒)


2

= Var (𝑒𝑇𝑀
𝑄
𝑒) = 2𝜎

4 tr (𝑀
𝑄
) .

(57)

For any 𝜀 > 0, it follows from (57) that

Pr{


𝑒
𝑇
𝑀
𝑄
𝑒

𝑛 − 𝜏
− 𝜎
2



> 𝜀} ≤
𝐸

𝑒
𝑇
𝑀
𝑄
𝑒 − (𝑛 − 𝜏


)𝜎
2

2

𝜀2(𝑛 − 𝜏)
2

≤
2𝜎
4

𝜀2 (𝑛 − 𝜏)
→ 0.

(58)

Equation (58) implies that (𝑛 − 𝜏)−1(𝑒𝑇𝑀
𝑄
𝑒)
𝑝

→ 𝜎
2. Let

I
𝑄,𝑡

be the 𝑡th diagonal element of the “hat” matrix 𝑃
𝑄
.Then,

0 ≤ 1−I
𝑄,𝑡
< 1 is the 𝑡th diagonal element of𝑀

𝑄
and satisfies

∑
𝑛

𝑡=1
(1 −I

𝑄,𝑡
) = 𝑛 − 𝜏

.
Because 𝜙(𝑧

𝑖,𝑙
, 𝜓
𝑙
) and 𝜙(𝑎

𝑠,𝑘
, 𝜓
𝑘
) converge to mean

square, we have 𝐸(Λ2
𝑄,𝑡
) → 0 as 𝜏 → ∞, where Λ

𝑄,𝑡
is

the 𝑡th element of Λ, 𝑡 = 1, . . . , 𝑛. Notice that

𝐸 (Λ
𝑇
𝑀
𝑄
Λ)

(𝑛 − 𝜏)
=

1

𝑛 − 𝜏

𝑛

∑

𝑡=1

𝐸 (Λ
2

𝑄,𝑡
𝑀
𝑄,𝑡
)

=
1

𝑛 − 𝜏

𝑛

∑

𝑡=1

𝐸 (Λ
2

𝑄,𝑡
) [1 −I

𝑄,𝑡
]

≤ max
𝑡

{𝐸 (Λ
2

𝑄,𝑡
)}

1

𝑛 − 𝜏

𝑛

∑

𝑡=1

[1 −I
𝑄,𝑡
]

= max
𝑡

{𝐸 (Λ
2

𝑄,𝑡
)} → 0.

(59)

The above expression implies that the second term on the
right hand of (56) approaches to zero. By the similar proof of
(59), we obtain that the final term on the right-hand of (56)
also tends to zero. The proof of Theorem 10 is complete.
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In the case of independently and identically distributed
errors, if we replace 𝜎2 by �̂�2

𝑄
in the 𝑘-GIC, the 𝑘-GIC can be

simplified to

𝐶
𝑛 (𝑤) =

𝑌 − 𝜇(𝑤)

2

𝑘

𝑛
+
2ℏ�̂�
2

𝑄
tr (𝑃 (𝑤))
𝑛

. (60)

Here, we intend to illustrate that the model selection pro-
cedure of minimizing 𝐶

𝑛
(𝑤) is also asymptotically optimal.

Theorem11. Assume that the random error 𝑒 is i.i.d withmean
zero and variance 𝜎2. Under the conditions (35) and (36), the
𝐶
𝑛
(𝑤) is still asymptotically valid.

Proof. Using a similar technique of deriving (39), we obtain

𝑛𝐶
𝑛 (𝑤) =

𝑌 − 𝜇(𝑤)

2

𝑘
+ 2ℏ�̂�

2

𝑄
tr (𝑃 (𝑤))

= 𝑛𝐿
𝑛 (𝑤) + 2⟨𝑒

𝑇
,𝑀(𝑤)𝜇 − 𝜂(𝑤)⟩

𝑘

+ 2ℏ�̂�
2

𝑄
tr (𝑃 (𝑤)) − 2⟨𝑒𝑇, 𝑃(𝑤)𝑒⟩

𝑘
+ ‖𝑒‖
2

𝑘

= 2ℏ (�̂�
2

𝑄
− 𝜎
2
) tr (𝑃 (𝑤)) + 2⟨𝑒𝑇,𝑀(𝑤)𝜇 − 𝜂(𝑤)⟩

𝑘

+ 𝑛𝐿
𝑛 (𝑤) + 2ℏ𝜎

2 tr (𝑃 (𝑤))

− 2⟨𝑒
𝑇
, 𝑃(𝑤)𝑒⟩

𝑘
+ ‖𝑒‖
2

𝑘
.

(61)

With an appropriate modification of the proofs (41)–(43),
one only needs to verify

sup
𝑤∈W

ℏ

𝜎
2
− �̂�
2

𝑄


tr (𝑃 (𝑤))

𝑛𝑅
𝑛 (𝑤)

𝑝

→ 0, (62)

which is equivalent to showing

sup
𝑤∈W

ℏ
2
((1/𝑛)


𝜎
2
− �̂�
2

𝑄


tr(𝑃(𝑤)))

2

𝑅2
𝑛
(𝑤)

𝑝

→ 0. (63)

From the proof of Theorem 10, we have

Pr{


ℏ𝑒
𝑇
𝑀
𝑄
𝑒

𝑛 − 𝜏
− ℏ𝜎
2



> 𝜀

𝑅
−1/2

𝑛
(𝑤)}

≤ ℏ
2
𝐸

𝑒
𝑇
𝑀
𝑄
𝑒 − (𝑛 − 𝜏


)𝜎
2

2

𝜀2(𝑛 − 𝜏)
2
𝑅
𝑛 (𝑤)

≤
2ℏ
2
𝜎
4

𝜀2 (𝑛 − 𝜏) 𝑅
𝑛 (𝑤)

,

(64)

where 𝜀 > 0.
By assumption (35), one knows that the above equation

is close to zero. Thus, we obtain {𝑅
𝑛
(𝑤)}
−1
|ℏ𝜎
2
− ℏ�̂�
2

𝑄
|
2 𝑝

→

0. It follows from Lemma 3 and the definition of 𝑅
𝑛
(𝑤)

that (𝑛−1 tr(𝑃(𝑤)))2 is no greater than 𝑅
𝑛
(𝑤). Then, the

formula (63) is confirmed. Therefore, we conclude that the
minimizing of 𝐶

𝑛
(𝑤) is also asymptotically optimal.

5. Monte Carlo Simulation

In this section, Monte Carlo simulations are performed
to investigate the finite sample properties of the proposed
restricted linearmodel selection.This data generating process
is

𝑦
𝑖
= 𝑥
𝑖
𝜃 +

1000

∑

𝑙=1

𝑧
𝑖,𝑙
𝜓
𝑙
+ 𝑒
𝑖
,

subject to 𝜃 = −

1000

∑

𝑙=1

𝜓
𝑙
+ 1, 𝑖 = 1, . . . , 𝑛,

(65)

where 𝑥
𝑖
follows 𝑡(3) distribution, 𝑧

𝑖,1
= 1, and 𝑧

𝑖,𝑙
,

𝑙 = 2, . . . , 1000 is independently and identically distributed
𝑁(0, 1). The parameter 𝜓

𝑙
, 𝑙 = 1, . . . , 1000 is determined by

the rule 𝜓
𝑙
= 𝜁𝑙
−1, where 𝜁 is a parameter which is selected

to control the population �̃�2 = 𝜁
2
/(1 + 𝜁

2
). The error 𝑒

𝑖
is

independent of 𝑥
𝑖
and 𝑧
𝑖,𝑙
. We consider two cases of the error

distribution.

Case 1. 𝑒
𝑖
is independently and identically distributed

𝑁(0, 1).

Case 2. 𝑒
1
, . . . , 𝑒

𝑛
obey multivariate normal distribution

𝑁(0,Ω
𝑛
), whereΩ

𝑛
is a 𝑛×𝑛 dimensional covariance matrix.

The 𝑗th diagonal element ofΩ
𝑛
is 𝜎2
𝑗
generated from uniform

distribution on (0, 1). The 𝑗𝑙th (𝑗 ̸= 𝑙) nondiagonal element of
Ω
𝑛
isΩ𝑗𝑙
𝑛
= exp(−0.5|𝑥

𝑖𝑗
− 𝑥
𝑖𝑙
|
2
), where 𝑥

𝑖𝑗
and 𝑥

𝑖𝑙
denote the

𝑗th and 𝑙th elements of 𝑥
𝑖
, respectively.

The sample size is varied between 𝑛 = 50, 100, 150 and
200. The number of models is determined by 𝑀 = ⌊3𝑛

1/3
⌋,

where ⌊𝑠⌋ stands for the integer part of 𝑠. We set 𝜁 so that
�̃�
2 varies on a grid between 0.1 and 0.9. The number of

simulation trials is Π = 500. For the 𝑘-GIC, the value of 𝑘
takes one and ℏ adopts the effective number of parameters.

To assess the performance of 𝑘-GIC, we consider five
estimators which are (1) AIC model selection estimators
(AIC), (2) BIC model selection estimators (BIC), (3) leave-
one-out cross-validated model selection estimator (CV, [17]),
(4) Mallows model averaging estimators (MMA, [11]), and
(5) 𝑘-GIC model selection estimator (𝑘-GIC). Following
Machado [30], the AIC and BIC are defined, respectively, as

AIC
𝑚
= 2𝑛 ln {1

𝑛

𝑌 − 𝜇𝑚

2
} + 2K

𝑚
,

BIC
𝑚
= 2𝑛 ln {1

𝑛

𝑌 − 𝜇𝑚

2
} + ln (𝑛)K𝑚.

(66)

We employ the out-of-sample prediction error to evaluate
each estimator. For each replication, {𝑦

ℓ
, 𝑥
ℓ
, 𝑧
ℓ
}
100

ℓ=1
are gener-

ated as out-of-sample observations. In the𝜋th simulation, the
prediction error is

PE (𝜋) = 1

100

100

∑

ℓ=1

(𝑦
ℓ
− 𝜇
ℓ (𝑤))

2
, (67)
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Figure 1: Results for Monte Carlo design.

where𝑤 is selected by one of the five methods.Then, the out-
of-sample prediction error is calculated by

PE = 1

Π

Π

∑

𝜋=1

PE (𝜋) , (68)

where Π = 500 is the number of replication. Obviously, the
smaller PE implies the better method of model estimator.
We consider PE under homoscedastic errors at first. The
prediction error calculations are summarized in Figure 1.The
four panels in each graph depict results for a variety of sample
sizes. In each panel, PE is displayed on the 𝑦-axis and �̃�2 is
displayed on the 𝑥-axis.

We find that the 𝑘-GIC estimators are almost the best
estimators among those considered. When �̃�2 is very large,

the MMA estimators can sometimes be marginally preferred
to the 𝑘-GIC estimators. In each panel, the AIC and CV have
quite similar prediction errors. For a smaller �̃�2, the AIC
obtains a higher prediction error than CV. However, the AIC
estimators yield smaller PE𝑠 than the CV estimators, when
�̃�
2 is increasing. In many situations, the PE𝑠 of BIC estimator

with a large �̃�2 are quite poor relative to the other methods.
Next, we discuss PE under correlative errors and the PE

calculation is summarized in Figure 2. Broadly speaking,
the conclusions are similar to those found in homoscedastic
cases. The 𝑘-GIC estimator frequently yields the most accu-
rate estimators followed by the MMA estimator, and both
average estimators enjoy significantly smaller PE𝑠 than the
other three estimators over a large portion of the �̃�2 space.
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Figure 2: Results for Monte Carlo design.

When �̃�2 ≤ 0.2, the BIC estimator outperforms the 𝑘-GIC
estimator. Again, the AIC estimator is habitually the worst
performing estimator with the CV being a close second in a
large region of the �̃�2 space. Besides, their relative efficiency
relies closely on sample size with the BIC estimator revealing
increasing PE and the remaining four estimators showing
decreasing PE, as 𝑛 increases.

6. Conclusions

In risk investment, an important subject is to find an optimal
portfolio. The commonly used techniques are the opti-
mization methods based on the scheme of mean-variance.
However, those methods are cumbersome in computing
and cannot obtain the closed solutions for some complex

problems. To make up the defects of mean-variance, an
alternative methodology for obtaining an optimal portfolio
is to use model selection. This paper attempts to develop
a statistical program to consider the selection problem of
optimal tracking portfolio. We build the theoretical models
of tracking portfolios by constrained linear models. Then,
the selection problems of optimal portfolio boil down to
choosing an optimal constrained linear model.

In the setting of unrestricted models or homoscedastic
models, a large number of works investigate the problems
of model selection. In distinction, we discuss the model
selection for constrained models with dependent errors. The
restricted models are estimated by the method of weighted
average least squares. Thus, the selection of an optimal
constrained model is equivalent to finding a series of optimal
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weights. We select the weights by minimizing a 𝑘-class gen-
eralized information criterion (𝑘-GIC), which is an estimate
of the average squared error from the model average fit. The
procedure of selecting weights is proved to be asymptotically
optimal. Through Monte Carlo simulation, the performance
of 𝑘-GIC is compared against that of four other methods. It
is found that the 𝑘-GIC gives the best performance in most
cases.

There are two limitations of our results which are open
for further research. First, what is the asymptotic distribution
of the parametric estimators? Second, can the theory be
generalized to allow for continuous weights?These questions
remain to be answered by future research. In this work, we
mainly adopt the method of regression analysis to solve the
selection problem. In fact, some alternative mathematical
tools can also be employed to explore the theoretical prop-
erties of model selection. For example, the optimal model
can be selected by the methods of linear optimization or
quadratic programming and we can apply the techniques of
linear functional analysis and stochastic control to consider
the inferences of parametric estimator. Besides, we mention
that the applications of this study can also be extended to
some other fields including risk management, ruin theory,
and factor analysis.
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