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In this work, we study the problem of reconstructing shapes from simple nonasymptotic densities measured only along shape
boundaries. The particular density we study is also known as the integral area invariant and corresponds to the area of a disk
centered on the boundary that is also inside the shape. It is easy to show uniqueness when these densities are known for all radii in
a neighborhood of 𝑟 = 0, but much less straightforward when we assume that we only know the area invariant and its derivatives
for only one 𝑟 > 0. We present variations of uniqueness results for reconstruction (modulo translation and rotation) of polygons
and (a dense set of) smooth curves under certain regularity conditions.

1. Introduction

This work discusses the integral area invariant introduced by
Manay et al. [1], particularly with regard to reconstructability
of shapes.This topic has been considered previously by Fidler
et al. [2, 3] for the case of star-shaped regions. Recent results
have shown local injectivity in the neighborhood of a circle
[4] and for graphs in a neighborhood of constant functions
[5].

The present work does not assume a star-shaped con-
dition but does make use of a tangent-cone graph-like
condition which is local to the integral area circle. We also
present an interpretation of the integral area invariant as a
nonasymptotic density. This is based on a poster presented
by the authors [6].

Our tangentially graph-like and tangent-cone graph-like
conditions (Definitions 5 and 7 in Section 2) restrict our
attention to shapes with boundaries that can locally (i.e.,
within radius 𝑟) be viewed as graphs of functions in a
Cartesian plane in one particular orientation (in the case
of tangentially graph-like) or a particular set of orientations
(for tangent-cone graph-like). Intuitively, these conditions
guarantee that the boundary does not turn too sharply within
the given radius and that working locally in Euclidean space
is the same as working locally on the boundary of our shapes

(i.e., the shape boundary does not pass through any given
invariant circlemultiple times, Section 2.2).These simplifying
assumptions allow us to explicitly analyze what happens
when we move along the boundary and to work locally
without worrying about global effects.

We show that the tangent-cone graph-like property can
be preserved when approximating a shape with a poly-
gon (Section 3) and discuss what the derivatives of these
nonasymptotic densities represent (Section 4) and show that
all tangentially graph-like boundaries can be reconstructed
(modulo translations and rotations) given sufficient infor-
mation about the nonasymptotic density and its derivatives
(Section 5 and Appendix A).

The main contribution of this paper is to show (under
our tangent-cone graph-like condition) that all polygons
(Theorem 29 in Section 6) and a 𝐶1-dense set of 𝐶2 bound-
aries (Theorem 30 in Section 7) are reconstructible (modulo
translations and rotations). We briefly discuss and sketch the
proofs of these two theorems.

Theorem 1. For a polygonΩ which is tangent-cone graph-like
with radius 𝑟, suppose that one has the integral area invariant
𝑔(𝑠, 𝑟) where 𝑠 is parameterized by arc length. Suppose that
for all 𝑠 one knows 𝑔(𝑠, 𝑟) and its first derivatives with respect
to 𝑟 (disk radius) and 𝑠 (position along the boundary). This
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information is sufficient to completely determine Ω up to
translation and rotation; that is, one can recover the side lengths
and angles of Ω.

The proof of this theorem uses the discontinuities in the
𝑠 derivative to determine the locations of vertices (and thus
the side lengths between them). We combine the 𝑟 derivative
and the one-sided 𝑠 derivative information when centered on
a vertex to recover the angles at which the polygon enters
and exits the circle (which might not be the polygon vertex
angle if the circle contains another vertex). Doing this with
the other one-sided 𝑠derivative gives the same thing but using
the orientation determined by the other polygon side incident
to the vertex. The combination of these yields the polygon’s
angle at each vertex.

Theorem 2. Define G ≡ {𝛾 | 𝛾 is a 𝐶2 simple closed curve and
tangentially graph-like for 𝑟 = 𝑟}. Suppose that, for 𝑟 = 𝑟, for
all 𝑠 ∈ [0, 𝐿], and for each 𝛾 ∈ G, one knows the first-, second-,
and third-order partial derivatives of 𝑔

𝛾
(𝑠, 𝑟). Then the set of

reconstructible 𝛾 ∈ G is 𝐶1 dense inG where reconstructability
is modulo reparametrization, translation, and rotation.

The first part of the proof shows that the derivative
information can be used to obtain the curvature. However, it
is not the curvature at the boundary point where the circle
is centered but rather the curvature at each of the points
where the boundary enters and exits the circle. Although the
Euclidean distance to these points is known, the arc length
distances are not and can vary from point to point. Thus the
sequences of curvatures we obtain also lose the arc length
parameterization of our area invariant. The rest of the proof
is concerned with finding the arc length distance from the
center to the entry and exit points which effectively recovers
the curvature for all points. This relies on matching up the
unique features of exit angle sequences with each other which
in turn relies on the existence of unique maxima andminima
in these sequences. While this is not true in general, it can
be arranged to be so by a suitable small perturbation of the
boundary (which is why our result is one of density rather
than for all shapes).

This is a theoretical paper about a measure that is useful
in applications: we do not pretend that the reconstruction
techniques in our proofs are practically useful. In fact,
the reconstructions we use to show uniqueness would be
seriously disturbed by the noise that any practical applica-
tion would encounter. We do, however, comment on some
possible approaches to reconstruction (Section 8) using the
OrthoMads direct search algorithm [7] to successfully
reconstruct shapes which are not predicted by our theory.

2. Notation and Preliminaries

Unless otherwise specified, we will be assuming throughout
this paper that Ω ⊂ R2 is a compact set with simple
closed, piecewise continuously differentiable boundary 𝜕Ω

of length 𝐿. Let 𝛾 : [0, 𝐿] → 𝜕Ω be a continuous arc-
length parameterization of 𝜕Ω (see Figure 1). We will adopt

r

𝛾(s)

Ω

𝛾 ≡ 𝜕Ω

Figure 1: Notation and basic setup.

the convention that 𝛾 traverses 𝜕Ω in a counterclockwise
direction so it always keeps the interior of Ω on the left
(there is no compelling reason for this particular choice, but
adopting a consistent convention allows us to avoid some
ambiguities later). Note that 𝛾(0) = 𝛾(𝐿) and that 𝛾 restricted
to [0, 𝐿) is a bijection. Denote by 𝐷(𝑝, 𝑟) the closed disk and
𝐶(𝑝, 𝑟) the circle of radius 𝑟 centered at the point 𝑝 ∈ R2.

In geometric measure theory, the𝑚-dimensional density
of a set 𝐴 ⊆ R𝑛 at a point 𝑝 ∈ R𝑛 is given by

Θ
𝑚
(𝐴, 𝑝) = lim

𝑟↓0

H𝑚
(𝐴 ∩ 𝐷 (𝑝, 𝑟))

𝛼
𝑚
𝑟
𝑚

, (1)

where H𝑚 is the 𝑚-dimensional Hausdorff measure and 𝛼
𝑚

is the volume of the unit ball inR𝑚 [8]. In the current context,
the 2-dimensional density ofΩ at 𝛾(𝑠) is simply

Θ
2
(Ω, 𝛾 (𝑠)) = lim

𝑟↓0

Area (Ω ∩ 𝐷 (𝛾 (𝑠) , 𝑟))

𝜋𝑟
2

. (2)

While we can evaluate this for all 𝑠 ∈ [0, 𝐿), just knowing
the density at every point along the boundary is generally
insufficient to reconstruct the original shape. If 𝛾(𝑠) exists,
then Area(Ω ∩ 𝐷(𝛾(𝑠), 𝑟)) is approximated arbitrarily well
for sufficiently small 𝑟 by replacing 𝜕Ω with its tangent line
(which gives us an area of exactly 𝜋𝑟

2
/2). Hence, we have

Θ
2
(Ω, 𝛾(𝑠)) = 1/2 at any point where 𝛾 is differentiable. That

is, just knowingΘ2 (i.e., the limit) is insufficient to distinguish
any two shapes with 𝐶

1 boundary.
Contrast this with the situation where we know Area(Ω∩

𝐷(𝛾(𝑠), 𝑟)) for every 𝑠 ∈ [0, 𝐿) and 𝑟 > 0 (i.e., we have all of
the values needed to compute the limit as well). This added
information is sufficient to uniquely identify 𝐶

2 curves by
recovering their curvature at every point (see Appendix A).

One natural question to ask (and the focus of the present
work) is whether failing to pass to the limit (i.e., using some
fixed radius 𝑟 instead of the limit or all 𝑟 > 0) and collecting
the values for all points along the boundary preserves enough
information to reconstruct the original shape. That is, can
a nonasymptotic density (perhaps along with information
about its derivatives) be used as a signature for shapes?
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Figure 2: (a) Tangentially and (b) tangent-cone graph-like.

2.1. Definitions

Definition 3. In the current context, the integral area invari-
ant [1] is denoted by 𝑔 : [0, 𝐿) ×R+

→ R+ and given by

𝑔 (𝑠, 𝑟) = ∫

𝐷(𝛾(𝑠),𝑟)∩Ω

𝑑𝑥 = Area (Ω ∩ 𝐷 (𝛾 (𝑠) , 𝑟)) . (3)

Remark 4. Note the lack of the normalizing factor 𝜋𝑟
2 in

the definition of 𝑔(𝑠, 𝑟). Since we presume that 𝑟 is fixed and
known for the situations we study, it is trivial to convert data
between the forms 𝑔(𝑠, 𝑟) and 𝑔(𝑠, 𝑟)/𝜋𝑟2; we choose to leave
out the normalizing factor in the definition of 𝑔(𝑠, 𝑟) as it is
the integral area invariant of Manay et al. [1] and this form
proves useful when computing derivatives in Section 4.

We introduce the tangentially graph-like condition as a
simplifying assumption for the shapes we consider.

Definition 5. For a fixed radius 𝑟, one says that 𝜕Ω is graph-
like (GL) at a point 𝑝 ∈ 𝜕Ω (or graph-like on 𝐷(𝑝, 𝑟))
if it is possible to impose a Cartesian coordinate system
such that the set of points 𝜕Ω ∩ 𝐷(𝑝, 𝑟) is the graph of
some function 𝑓 in this coordinate system. Without loss of
generality, one adopts the convention that 𝑝 is the origin so
that 𝑓(0) = 0. One defines tangentially graph-like (TGL) in
the same way but further requires that 𝜕Ω be continuously
differentiable and 𝑓


(0) = 0 (noting that 𝑓 is 𝐶1 because 𝜕Ω

is).This is illustrated in Figure 2(a).Without loss of generality
(and in keeping with our convention that 𝛾 traverses 𝜕Ω

counterclockwise), one assumes that the interior of Ω is “up”
in the circle (i.e., (0, 𝜖) ∈ Ω for sufficiently small 𝜖 > 0). If 𝜕Ω
is (tangentially) graph-like on𝐷(𝑝, 𝑟) for all 𝑝 ∈ 𝜕Ω, one says
that 𝜕Ω is (tangentially) graph-like for radius 𝑟.

It is instructive to consider what is not considered graph-
like or tangentially graph-like. Violations of the graph-like
condition are generally due to a radius that is too large
(certainly, choosing a radius so large that all ofΩ is in the disk

will do it). For example, a unit side length square is not graph-
like with radius (1/2) + 𝜖 for any 𝜖 > 0 (position the circle
at the center of a side; see Figure 3(a)). Notice that the same
square is graph-like with any radius 1/2 or below. A shape can
fail to be tangentially graph-like while still being graph-like if
it fails to be a graph in the required orientation but works in
some other (see Figure 3(b)).

We would like to consider shapes with corners but our
tangentially graph-like condition requires that the boundary
be differentiable everywhere. The following definitions allow
us to generalize the tangentially graph-like condition to this
situation by using one-sided derivatives.

Definition 6. Given a piecewise 𝐶1 function 𝛾 : [0, 𝐿] → R2,
one defines the tangent cone of 𝛾 at a point 𝑠 (which is denoted
by 𝑇

𝛾
(𝑠)) in terms of the one-sided derivatives. In particular,

one lets 𝑇
𝛾
(𝑠) = {𝛼Γ

−
+ 𝛽Γ

+
| 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 > 0} where

Γ
−
= lim

𝑡↑𝑠
𝛾

(𝑡) and Γ+ = lim

𝑡↓𝑠
𝛾

(𝑡).

Definition 7. One extends the tangentially graph-like notion
to boundaries that are piecewise 𝐶

1 by defining 𝜕Ω to be
tangent-cone graph-like (TCGL) at a point 𝛾(𝑠) ∈ 𝜕Ω if it
is graph-like at 𝛾(𝑠) for every orientation in the tangent cone
of 𝜕Ω at 𝑠. More precisely, for every 𝑤 ∈ 𝑇

𝛾
(𝑠) and every pair

of distinct points 𝑢, V ∈ 𝜕Ω ∩ 𝐷(𝑝, 𝑟), one has ⟨𝑤, 𝑢 − V⟩ ̸= 0.
See Figure 2(b).

Remark 8. It is clear that 𝑇
𝛾
(𝑠) in Definition 6 is a convex

cone.The tangent cone is dependent on the direction inwhich
𝛾 traverses 𝜕Ω (which by convention was counterclockwise)
since an arc-length traversal 𝛾(𝑠, 𝑟) = 𝛾(𝐿 − 𝑠, 𝑟) would have
different tangent cones (namely, 𝑤 ∈ 𝑇

𝛾
(𝑠) iff −𝑤 ∈ 𝑇

𝛾
(𝑠)).

However, these differences are irrelevant to the application of
Definition 7.

Remark 9. Note that when 𝜕Ω is 𝐶
1, there is only one

direction in 𝑇
𝛾
(𝑠) for each 𝑠 (i.e., the tangent to 𝜕Ω at

𝛾(𝑠)). Thus, the definitions of tangentially graph-like and
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Figure 3: (a)The square is not graph-like with the indicated radius (no orientation makes it a graph). (b)The rounded rectangle is graph-like
but not tangentially graph-like with the indicated center and radius.

tangent-cone graph-like coincide when 𝜕Ω is 𝐶1 and every
tangentially graph-like boundary is tangent-cone graph-like.

2.2. Two-Arc Property. The graph-like condition implies (in
proof of the following lemma) that Ω will never be entirely
contained in the disk, no matter where on the boundary we
center it. That is, some part of Ω lies outside of 𝐷(𝑝, 𝑟) for
every 𝑝 ∈ 𝜕Ω.

Lemma 10. Let 𝑟 ∈ R+ and 𝑝 ∈ 𝜕Ω. If 𝜕Ω is graph-like on
𝐷(𝑝, 𝑟), then |𝜕Ω ∩ 𝐶(𝑝, 𝑟)| ≥ 2.

Proof. Suppose by way of contradiction that |𝜕Ω ∩ 𝐶(𝑝, 𝑟)| <

2. Since 𝜕Ω is a simple closed curve, we have 𝜕Ω ⊆ 𝐷(𝑝, 𝑟).
As 𝜕Ω is graph-like at 𝑝 with radius 𝑟, there exists some
orientation for which 𝜕Ω ∩ 𝐷(𝑝, 𝑟) = 𝜕Ω is the graph of a
well-defined function. However, 𝜕Ω is a simple closed curve
so it is not the graph of a function in any orientation, yielding
a contradiction.

The next result is the reason we find the tangent-cone
graph-like condition useful. It says that if 𝜕Ω is tangent-cone
graph-like with radius 𝑟, then, for every 𝑝 ∈ 𝜕Ω, the disk
𝐷(𝑝, 𝑟) has only two points of intersection with 𝜕Ω and these
are transverse. In other words, this means that when working
locally in the disk 𝐷(𝑝, 𝑟), we need only to consider a single
piece of 𝜕Ω.

Theorem 11. If 𝜕Ω is tangent-cone graph-like with radius 𝑟 ∈
R+ at 𝑝 ∈ 𝜕Ω, then |𝜕Ω ∩ 𝐶(𝑝, 𝑟)| = 2 and 𝜕Ω crosses 𝐶(𝑝, 𝑟)
transversely at these points. As a result, for every 𝑞

1
, 𝑞

2
∈

𝜕Ω ∩ 𝐷(𝑝, 𝑟), there is a unique arc along 𝜕Ω between them
in𝐷(𝑝, 𝑟).

Proof. ByLemma 10,we have that |𝜕Ω∩𝐶(𝑝, 𝑟)| ≥ 2. Note that
𝜕Ω contains an interior point (𝑝) and at least two boundary
points of the disk 𝐷(𝑝, 𝑟) (since |𝜕Ω ∩ 𝐶(𝑝, 𝑟)| ≥ 2). As 𝜕Ω
is connected and simply closed, there must exist an arc of 𝜕Ω
within the disk going from some point on 𝐶(𝑝, 𝑟) through 𝑝

to another point on 𝐶(𝑝, 𝑟).

Suppose |𝜕Ω ∩ 𝐶(𝑝, 𝑟)| > 2; that is, there are other points
of intersection. Letting 𝑞 denote one of these, there are two
cases to consider (illustrated in Figure 4).

(a) 𝜕Ω Does Not Cross 𝐶(𝑝, 𝑟) at 𝑞. As 𝜕Ω is tangent-
cone graph-like at 𝑞, then 𝜕Ω ∩ 𝐶(𝑞, 𝑟) is a graph in every
orientation in the tangent cone of 𝜕Ω at 𝑞. In particular, note
that the tangent line to 𝐶(𝑝, 𝑟) at 𝑞 is in this cone. However,
the line from 𝑝 to 𝑞 is normal to this line and thus 𝜕Ω ∩

𝐶(𝑞, 𝑟) is not graph-like in this orientation, a contradiction.
Therefore, this case cannot occur. This argument applies to
all points in 𝜕Ω ∩ 𝐶(𝑝, 𝑟) so we immediately have the result
that 𝜕Ω always crosses 𝐶(𝑝, 𝑟) transversely.

(b) 𝜕ΩCrosses𝐶(𝑝, 𝑟) at 𝑞.There exists 𝑞 ∈ 𝜕Ω∩𝐶(𝑝, 𝑟) such
that there is a path along 𝜕Ω in 𝐷(𝑝, 𝑟) from 𝑞 to 𝑞

. That is,
there exist 𝑠

1
, 𝑠

2
∈ [0, 𝐿) (without loss of generality, 𝑠

1
< 𝑠

2
)

such that 𝛾(𝑠
1
) = 𝑞, 𝛾(𝑠

2
) = 𝑞

, and the image of [𝑠
1
, 𝑠

2
] under

𝛾 is contained in 𝐷(𝑝, 𝑟) (but does not include 𝑝, since it is
on another arc and 𝜕Ω is simple). Thus, 𝛾 enters 𝐶(𝑝, 𝑟) at 𝑠

1

and exits at 𝑠
2
.

If we can find 𝑠 ∈ [𝑠
1
, 𝑠

2
] and 𝑤 in the tangent cone of 𝜕Ω

at 𝛾(𝑠) satisfying ⟨𝑤, 𝑝 − 𝛾(𝑠)⟩ = 0, we will contradict that 𝜕Ω
is tangent-cone graph-like.

Define V : [𝑠
1
, 𝑠

2
] → R2 by

V (𝑠) =
{

{

{

lim
𝑡↓𝑠
1

𝛾

(𝑠) , 𝑠 = 𝑠

1
,

lim
𝑡↑𝑠

𝛾

(𝑠) , 𝑠 ∈ (𝑠

1
, 𝑠

2
] .

(4)

Note that V(𝑠) is in the tangent cone of 𝜕Ω at 𝛾(𝑠) so that 𝜕Ω∩

𝐷(𝛾(𝑠), 𝑟) is graph-like using the orientation given by V(𝑠).
Define 𝜙(𝑠) : [𝑠

1
, 𝑠

2
] → R by 𝜙(𝑠) = ⟨V(𝑠), 𝑝 − 𝛾(𝑠)⟩.

Note that from 𝛾(𝑠
1
) both V(𝑠

1
) and 𝑝 − 𝛾(𝑠

1
) are directions

pointing into the circle so 𝜙(𝑠
1
) > 0. Similarly, V(𝑠

2
) points

out and 𝑝 − 𝛾(𝑠
2
) points in so that 𝜙(𝑠

2
) < 0.

Observe that V (and therefore 𝜙) is piecewise continuous
since 𝛾 is piecewise𝐶1. By a piecewise continuous analogue of
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Figure 4: Additional points of intersection violate the TCGL condition.

the intermediate value theorem, there exists 𝑠 ∈ [𝑠
1
, 𝑠

2
] such

that
lim
𝑡→ 𝑠
−

𝜙 (𝑡) ≤ 0 ≤ lim
𝑡→ 𝑠
+

𝜙 (𝑡) . (5)

By continuity of the inner product and 𝛾, we have

lim
𝑡→ 𝑠
−

𝜙 (𝑡) = ⟨ lim
𝑡→ 𝑠
−

𝛾

(𝑡) , 𝑝 − 𝛾 (𝑠)⟩ . (6)

Similarly, lim
𝑡→ 𝑠
+𝜙(𝑡) = ⟨lim

𝑡→ 𝑠
+𝛾


(𝑡), 𝑝 − 𝛾(𝑠)⟩.

If 𝛾 is differentiable at 𝑠, then 𝜙(𝑠) = lim
𝑡→ 𝑠

𝜙(𝑡) = 0 and
we have our contradiction. Otherwise, let 𝑤

1
= lim

𝑡→ 𝑠
−𝛾


(𝑡)

and 𝑤
2
= lim

𝑡→ 𝑠
+𝛾


(𝑡). As both 𝑤

1
and 𝑤

2
are in the convex

tangent cone of 𝜕Ω at 𝛾(𝑠), any positive linear combination of
them is as well. Letting 𝜓(𝜆) = 𝜆𝑤

1
+ (1 − 𝜆)𝑤

2
, we have

⟨𝜓 (0) , 𝑝 − 𝛾 (𝑠)⟩ ≤ 0 ≤ ⟨𝜓 (1) , 𝑝 − 𝛾 (𝑠)⟩ . (7)

Noting that 𝜓 is continuous in 𝜆, we apply the intermediate
value theorem to obtain 𝜆 ∈ (0, 1) such that ⟨𝜓(𝜆), 𝑝−𝛾(𝑠)⟩ =
0. Letting 𝑤 = 𝜓(𝜆), we obtain our contradiction.

Therefore, there are no other points of intersection and
|𝜕Ω ∩ 𝐶(𝑝, 𝑟)| = 2.

Definition 12. One says that Ω has the two-arc property for
a given radius 𝑟 if, for every point 𝑝 ∈ 𝜕Ω, one has that
𝐷(𝑝, 𝑟) divides 𝜕Ω into two connected arcs: 𝜕Ω∩𝐷(𝑝, 𝑟) and
𝜕Ω \ 𝐷(𝑝, 𝑟). Instead of considering how𝐷(𝑝, 𝑟) divides 𝜕Ω,
one can equivalently frame the definition in terms of how 𝜕Ω

divides𝐶(𝑝, 𝑟).That is,Ωhas the two-arc property if the circle
𝐶(𝑝, 𝑟) is divided into two connected arcs by 𝜕Ω for every
𝑝 ∈ 𝜕Ω.

Corollary 13. If Ω is tangent-cone graph-like for some radius
𝑟, then it has the two-arc property.

Proof. This is a trivial consequence of Theorem 11.

Corollary 14. IfΩ is tangentially graph-like for some radius 𝑟,
then it has the two-arc property for radius 𝑟.

Remark 15. While the assumption of the two-arc property for
disks of radius 𝑟 = 𝑟 does not imply the two-arc property for
all 𝑟 < 𝑟 (see Figure 5), it is the case that TGL for 𝑟 = 𝑟 does
imply that 𝛾 is TGL for all 0 < 𝑟 < 𝑟. The fact that 𝛾 is TGL
for all 0 < 𝑟 < 𝑟 follows easily from the definition of TGL and
the fact that𝐷(𝑝, 𝑟) ⊊ 𝐷(𝑝, 𝑟).

Figure 5:The two-arc property for 𝑟 = 𝑟 does not imply that it holds
for all 𝑟 < 𝑟.

2.3. Notation. Suppose that 𝜕Ω is tangent-cone graph-like
with radius 𝑟 and we have some 𝑠 ∈ [0, 𝐿) such that 𝜕Ω is
tangentially graph-like at 𝛾(𝑠) with radius 𝑟. Since 𝜕Ω is TGL
at 𝛾(𝑠), it has two points of intersection with 𝐶(𝛾(𝑠), 𝑟) by
Theorem 11. In the orientation forced by the TGL condition,
one of these points of intersection must be on the right side
of the circle and one must be on the left side.

With reference to Figure 6 we define 𝑠
+
(𝑠) and 𝑠

−
(𝑠) ∈

[0, 𝐿) so that 𝛾(𝑠+(𝑠)) is the point of intersection on the
right and 𝛾(𝑠

−
(𝑠)) is the point of intersection on the left. The

notation is motivated by the fact that 0 < 𝑠
−
(𝑠) < 𝑠 <

𝑠
+
(𝑠) < 𝐿 in general due to our convention that 𝛾 traverses

𝜕Ω counterclockwise. The only case where this is not true is
when 𝛾(𝐿) = 𝛾(0) is in the disk but even then it will hold for a
suitably shifted 𝛾 that starts at some point outside the current
disk.

The quantities 𝜃
1
(𝑠) and 𝜃

2
(𝑠) are the angles that the rays

from the origin to the right and left points of intersection,
respectively, make with the positive 𝑥 axis. We can assume
𝜃
1
(𝑠) ∈ (−𝜋/2, 𝜋/2) and 𝜃

2
(𝑠) ∈ (𝜋/2, 3𝜋/2).

We define ]
1
(𝑠) as the angle between the vector 𝛾(𝑠+(𝑠)) −

𝛾(𝑠) and the vector lim
𝑡↓𝑠
+
(𝑠)
𝛾

(𝑡), the one-sided tangent to 𝜕Ω

at the point of intersection on the right.
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𝜃2

𝜃1

D ∩ Ω
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𝛾(s)
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D = D(𝛾(s), r)

�1

�2

Figure 6: Notation and conventions.

That is, we are measuring the angle between the outward
normal to the disk at the point of intersection and the actual
direction 𝛾 is going as it exits the disk. We define ]

2
(𝑠)

similarly. We have ]
1
, ]

2
∈ (−𝜋/2, 𝜋/2) due to the fact that

all circle crossings are transverse byTheorem 11.
When the proper 𝑠 to use is implied by context, we

will often simply write 𝑠
+, 𝑠−, 𝜃

1
, 𝜃

2
, ]

1
, and ]

2
in place of

𝑠
+
(𝑠), 𝑠

−
(𝑠), and so forth.

2.4. Calculus on Tangent Cones. The following result is a
version of the intermediate value theorem for elements of the
tangent cones.

Lemma 16. Suppose that 𝜕Ω is tangent-cone graph-like on
𝐷(𝛾(𝑠), 𝑟) and 𝑠

1
< 𝑠

2
such that 𝛾(𝑠

1
), 𝛾(𝑠

2
) ∈ 𝐷(𝛾(𝑠), 𝑟).

Further suppose that 𝑤
1
∈ 𝑇

𝛾
(𝑠

1
), 𝑤

2
∈ 𝑇

𝛾
(𝑠

2
), and 𝛼 ∈ (0, 1),

and let 𝑤
= 𝛼𝑤

1
+ (1 − 𝛼)𝑤

2
. Then, there exists 𝑠 ∈ [𝑠

1
, 𝑠

2
]

such that either 𝑤 or −𝑤 is in 𝑇
𝛾
(𝑠


).

Proof. Let 𝑛 be a unit vector inR2 with 𝑛 ⊥ (𝛼𝑤
1
+(1−𝛼)𝑤

2
).

We have 𝛼⟨𝑛, 𝑤
1
⟩ = −(1 − 𝛼)⟨𝑛, 𝑤

2
⟩. It suffices to consider

only ⟨𝑛, 𝑤
1
⟩ ≤ 0 ≤ ⟨𝑛, 𝑤

2
⟩ as the argument is identical in the

other case. Note that since 0 ≤ ⟨𝑛, 𝑤
2
⟩ = 𝑐

1
⟨𝑛, lim

𝑡↑𝑠
2

𝛾

(𝑡)⟩ +

𝑐
2
⟨𝑛, lim

𝑡↓𝑠
2

𝛾

(𝑡)⟩ for some nonnegative constants 𝑐

1
, 𝑐

2
not

both zero, at least one of the inner products on the right is
nonnegative. Using the notation of Definition 6, we define
𝑀

2
= arg max

Γ∈{Γ
+
,Γ
−
}
⟨𝑛, Γ⟩ and have ⟨𝑛,𝑀

2
⟩ ≥ 0. We

similarly define𝑀
1
with respect to 𝑤

1
such that ⟨𝑛,𝑀

1
⟩ ≤ 0.

Define

V (𝑡) =
{

{

{

𝑀
𝑖
, 𝑡 = 𝑠

𝑖
, 𝑖 = 1, 2

lim
𝑡↑𝑡

𝛾

(𝑠)

(8)

and 𝜙(𝑡) = ⟨𝑛, V(𝑡)⟩. Since 𝜙(𝑠
1
) ≤ 0 ≤ 𝜙(𝑠

2
), the argument

proceeds as in Theorem 11 to yield 𝑠 ∈ [𝑠
1
, 𝑠

2
] and 𝑤 ∈ 𝑇

𝛾
(𝑠)

such that ⟨𝑛, 𝑤⟩ = 0. Thus, 𝑤 = 𝑘𝑤
 for some 𝑘 ̸= 0. In

particular, 𝑤
= (1/𝑘)𝑤 so either 𝑤

∈ 𝑇
𝛾
(𝑠) or −𝑤

∈ 𝑇
𝛾
(𝑠)

(depending on the sign of 𝑘).

In addition to the intermediate value theorem, we have an
analogous mean value theorem for tangent cone elements.

Lemma 17. Suppose that 𝛾 : [𝑎, 𝑏] → R2 is a simple,
arc-length parameterized curve with piecewise continuous
derivative defined on (𝑎, 𝑏) except possibly on finitely many
points. Further suppose that the image of 𝛾 has no cusps. Then
there exists 𝑐 in (𝑎, 𝑏) such that either 𝛾(𝑏) − 𝛾(𝑎) or −(𝛾(𝑏) −
𝛾(𝑎)) is in 𝑇

𝛾
(𝑐).

Proof. Let 𝑛 be a unit vector with ⟨𝛾(𝑏) − 𝛾(𝑎), 𝑛⟩ = 0.
Consider 𝜓(𝑡) = ⟨𝛾(𝑡), 𝑛⟩ and note that 𝜓

(𝑡) = ⟨𝛾

(𝑡), 𝑛⟩ is

defined wherever 𝛾(𝑡) is differentiable. We have ∫

𝑏

𝑎
𝜓

(𝑡) =

𝜓(𝑏) − 𝜓(𝑎) = ⟨𝛾(𝑏) − 𝛾(𝑎), 𝑛⟩ = 0. Thus, either 𝜓
(𝑡) =

0 everywhere it is defined or it takes on both positive and
negative values. In particular, there exists a point 𝑐 ∈ (𝑎, 𝑏)

such that either 𝜓
(𝑐) = 0 or lim

𝑡↑𝑐
𝜓

(𝑡) ≤ 0 ≤ lim

𝑡↓𝑐
𝜓

(𝑡).

If 𝜓
(𝑐) = 0, then we have ⟨𝛾(𝑐), 𝑛⟩ = 0 so that 𝛾(𝑐) =

𝑘(𝜙(𝑏) − 𝜙(𝑎)) for some 𝑘 ̸= 0. As 𝛾(𝑐) ∈ 𝑇
𝛾
(𝑐), we have

(𝑘/|𝑘|)(𝜙(𝑏) − 𝜙(𝑎)) ∈ 𝑇
𝛾
(𝑐) which gives us our conclusion.

If lim
𝑡↑𝑐
𝜓

(𝑡) ≤ 0 ≤ lim

𝑡↓𝑐
𝜓

(𝑡), there exists 𝛼 ∈ (0, 1)

such that 0 = 𝛼lim
𝑡↑𝑐
𝜓

(𝑡) + (1 − 𝛼)lim

𝑡↓𝑐
𝜓

(𝑡). Note that

lim
𝑡↑𝑐
𝜓

(𝑡) = ⟨𝑤

1
, 𝑛⟩ and lim

𝑡↓𝑐
𝜓

(𝑡) = ⟨𝑤

2
, 𝑛⟩ for some

𝑤
1
, 𝑤

2
∈ 𝑇

𝛾
(𝑐) and let 𝑤

= 𝛼𝑤
1
+ (1 − 𝛼)𝑤

2
.

By the convexity of 𝑇
𝛾
(𝑐), we have 𝑤


∈ 𝑇

𝛾
(𝑐) with

⟨𝑤

, 𝑛⟩ = 0 which follows as in the previous case.

The following lemma tells us that the tangent-cone graph-
like condition is sufficient to apply Lemma 17.

Lemma 18. If 𝜕Ω is tangent-cone graph-like for some radius 𝑟,
then 𝜕Ω has no cusps.

Proof. Suppose 𝜕Ω has a cusp at 𝛾(𝑠). Then, using the
terminology of Definition 6 and the fact that 𝛾 is arc length
parameterized, we have Γ+ = −Γ

−. We let 𝑤 = 0 and note
that 𝑤 = Γ

+
+ Γ

−
∈ 𝑇

𝛾
(𝑠). Letting 𝑢, V ∈ 𝜕Ω ∩ 𝐷(𝛾(𝑠), 𝑟) with

𝑢 ̸= V, we have ⟨𝑤, 𝑢 − V⟩ = 0, contradicting the fact that 𝜕Ω
is tangent-cone graph-like. Therefore, 𝜕Ω has no cusps.

2.5. TCGL Boundary Properties. The following technical
lemmas allow us to bound various distances and areas
encountered in tangent-cone graph-like boundaries.

Lemma 19. Suppose that 𝜕Ω is tangent-cone graph-like with
radius 𝑟 and points 𝑝

1
, 𝑝

2
∈ 𝜕Ω with 𝑑(𝑝

1
, 𝑝

2
) < 𝑟. Then one

of the arcs (call it 𝑃) along 𝜕Ω between 𝑝
1
and 𝑝

2
is such that,

for any two points 𝑞
1
, 𝑞

2
∈ 𝑃, one has 𝑑(𝑞

1
, 𝑞

2
) < 𝑟.

Proof. Note that 𝑝
2
∈ 𝐷(𝑝

1
, 𝑟) so that there is an arc along

𝜕Ω from 𝑝
1
to 𝑝

2
which is fully contained in the interior of

𝐷(𝑝
1
, 𝑟) byTheorem 11. We will call this arc 𝑃.

For all 𝑥 on 𝑃, let 𝑃
𝑥
denote the subpath of 𝑃 from 𝑝

1
to 𝑥

(so 𝑃 = 𝑃
𝑝
2

). We claim that 𝑃
𝑥
is contained in 𝐷(𝑥, 𝑟) for all

𝑥 on 𝑃 (thus, 𝑃 is contained in 𝐷(𝑝
2
, 𝑟)). Indeed, if this were

not the case, then there must be some 𝑥 on 𝑃 such that 𝑃
𝑥
is

contained in𝐷(𝑥, 𝑟) but𝐶(𝑥, 𝑟)∩𝑃
𝑥
is nonempty (i.e., we can
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move the disk along 𝑃 until some part of the subpath hits the
boundary). That is, the subpath 𝑃

𝑥
has a tangency with the

disk𝐷(𝑥, 𝑟) which is impossible because of Theorem 11.
Let 𝑞

1
∈ 𝑃 and note that since 𝑃

𝑥
is contained in 𝐷(𝑥, 𝑟)

for all 𝑥 on 𝑃, we have that 𝑃 is contained in 𝐷(𝑞
1
, 𝑟).

Therefore, 𝑑(𝑞
1
, 𝑞

2
) < 𝑟 for all 𝑞

1
, 𝑞

2
∈ 𝑃 as desired.

Lemma 20. If 𝑞
1
= 𝛾(𝑠

1
), 𝑞

2
= 𝛾(𝑠

2
) ∈ 𝑃 where 𝑃 is as in the

previous lemma, then the arc length between 𝑞
1
and 𝑞

2
along 𝑃

is at most √2𝑑(𝑞
1
, 𝑞

2
).

Proof. SinceΩ is tangentially graph-like, for any𝑤
1
∈ 𝑇

𝛾
(𝑠

1
),

𝑤
2
∈ 𝑇

𝛾
(𝑠

2
), the angle between 𝑤

1
and 𝑤

2
is at most 𝜋/2.

Since this is true for all 𝑞 ∈ 𝑃, there is a point 𝑞 = 𝛾(𝑠

) ∈ 𝑃

and 𝑤

∈ 𝑇

𝛾
(𝑠


) such that the angle between 𝑤

 and tangent
vectors for any other point 𝑞 ∈ 𝑃 is at most 𝜋/4.

This means that 𝑃 is the graph of a Lipschitz function
𝑔 of rank 1 in the orientation defined by 𝑤

. This does
not necessarily imply that 𝐷(𝑞


, 𝑟) ∩ 𝜕Ω, 𝐷(𝑝

1
, 𝑟) ∩ 𝜕Ω, or

𝐷(𝑝
2
, 𝑟) ∩ 𝜕Ω is the graph of a Lipschitz function; we explore

a Lipschitz condition for the disks in Section 3. Let 𝑥
1
, 𝑥

2
∈

[−𝑟, 𝑟] with 𝑝
1

= (𝑥
1
, 𝑔(𝑥

1
)), 𝑝

2
= (𝑥

2
, 𝑔(𝑥

2
)). Then the

arclength from 𝑝
1
to 𝑝

2
is given by

∫

𝑥
2

𝑥
1

√1 + 𝑔

(𝑥)

2
𝑑𝑥

≤ ∫

𝑥
2

𝑥
1

√2 𝑑𝑥 = √2 (𝑥
2
− 𝑥

1
) ≤ √2𝑑 (𝑝

1
, 𝑝

2
) .

(9)

Lemma 21. If 𝛾 is tangent-cone graph-like with radius 𝑟 and
0 ≤ 𝑠

1
≤ 𝑠

2
< 𝐿 with 𝑑(𝛾(𝑠

1
), 𝛾(𝑠

2
)) = 𝛿 < 𝑟, then the

image of [𝑠
1
, 𝑠

2
] together with the straight line from 𝛾(𝑠

1
) to

𝛾(𝑠
2
) encloses a region with 𝑂(𝛿2) area.

Proof. By Lemma 20, we have that the image of [𝑠
1
, 𝑠

2
] under

𝛾 has arc length 𝑠
2
−𝑠

1
≤ √2𝛿.Therefore, the region of interest

has perimeter at most (√2 + 1)𝛿 so by the isoperimetric
inequality it has area at most ((√2 + 1)

2
/4𝜋)𝛿

2 from which
the conclusion follows.

3. TCGL Polygonal Approximations

IfΩ is tangent-cone graph-likewith radius 𝑟, it can sometimes
be nice to know that there is an approximating polygon to Ω
which is also tangent-cone graph-like. The following lemmas
explore this idea.

Lemma 22. If 𝜕Ω is TCGL with radius 𝑟, then, for each 𝜖 ∈

(0, 𝑟), there exists a polygonal approximation to 𝜕Ω that is
TCGL with radius 𝑟 − 𝜖 and such that every point on 𝜕Ω is
within distance 𝜖/6 of the polygon.

Proof. First, choose a finite number of points along the
boundary such that the arc length along 𝛾 between any two
neighboring points is no more than 𝜖/3. These will be the
vertices of our polygon. Similarly to 𝛾, we let𝜙 be an arclength
parameterization of this polygon so that they both encounter
their common points in the same order.

The fine spacing between vertices guarantees that we
obtain the 𝜖/6 bound. Indeed, given any point 𝑝 ∈ 𝜕Ω and its
neighboring vertices V

1
and V

2
, the arc length along 𝜕Ω from

V
1
to 𝑝 plus that from 𝑝 to V

2
is at most 𝜖/3 by assumption.

Since Euclidean distance is bounded above by arc length, we
have 𝑑(𝑝, V

1
)+𝑑(𝑝, V

2
) ≤ 𝜖/3.This bound in turn implies that

at least one of 𝑑(𝑝, V
1
) and 𝑑(𝑝, V

2
) is bounded above by 𝜖/6.

Consider a point 𝑝 = 𝜙(𝑡) on a side of the polygon (i.e.,
not a vertex) and its neighboring vertices V

1
= 𝜙(𝑡

1
) = 𝛾(𝑠

1
)

and V
2
= 𝜙(𝑡

2
) = 𝛾(𝑠

2
) (chosen with 𝑡

1
< 𝑡 < 𝑡

2
and 𝑠

1
< 𝑠

2
).

By Lemma 17, there exists 𝑠 ∈ (𝑠
1
, 𝑠

2
) such that V

2
−V

1
∈ 𝑇

𝛾
(𝑠).

Note that this is the onlymember of𝑇
𝜙
(𝑡) up to positive scalar

multiplication.
Combining the arcs along 𝛾 and 𝜙 between V

1
and V

2
, we

obtain a closed curve with total length at most 2𝜖/3, so that
the distance between any two points on the curve is at most
𝜖/3. That is, for any 𝑠


∈ [𝑠

1
, 𝑠

2
] and 𝑡


∈ [𝑡

1
, 𝑡

2
], we have

𝑑(𝛾(𝑠

), 𝜙(𝑡


)) ≤ 𝜖/3.

Let 𝑥 ∈ 𝐷(𝜙(𝑡), 𝑟 − 𝜖). Then 𝑑(𝑥, 𝛾(𝑠)) ≤ 𝑑(𝑥, 𝜙(𝑡)) +

𝑑(𝜙(𝑡), 𝛾(𝑠)) ≤ 𝑟 − (2𝜖/3) so that𝐷(𝜙(𝑡), 𝑟 − 𝜖) is contained in
𝐷(𝛾(𝑠), 𝑟 − (2𝜖/3)).

Let 𝑎, 𝑏 be distinct points on the polygon in 𝐷(𝜙(𝑡), 𝑟 −

𝜖) and consider the line connecting them. This line also
intersects 𝑎, 𝑏 on 𝛾 such that we have 𝑎 ̸= 𝑏

, 𝑑(𝑎, 𝑎) ≤ 𝜖/3,
and 𝑑(𝑏, 𝑏


) ≤ 𝜖/3 so that 𝑎, 𝑏 ∈ 𝜕Ω ∩ 𝐷(𝛾(𝑠), 𝑟). As 𝑎 − 𝑏 =

𝑐(𝑎

− 𝑏


) for some scalar 𝑐 > 0, we have

⟨V
2
− V

1
, 𝑎 − 𝑏⟩ = 𝑐 ⟨V

2
− V

1
, 𝑎


− 𝑏


⟩ ̸= 0, (10)

since 𝛾 is TCGL at 𝛾(𝑠)with radius 𝑟 and V
2
−V

1
∈ 𝑇

𝛾
(𝑠).Thus,

𝜙 is TCGL at 𝑝 with radius 𝑟 − 𝜖.
The case where 𝑝 = 𝜙(𝑡) is a vertex is similar but we must

consider an arbitrary vector 𝑤 ∈ 𝑇
𝜙
(𝑡) in the inner product.

We wish to show that, for every 𝑤 ∈ 𝑇
𝜙
(𝑡), there is a 𝑠 such

that either𝑤 or−𝑤 ∈ 𝑇
𝛾
(𝑠


) and 𝑑(𝑝, 𝛾(𝑠)) ≤ 𝜖/3, after which

the proof follows as in the first case with𝑤 (or −𝑤) in place of
V
2
− V

1
. We let 𝛾(𝑠) = 𝜙(𝑡) = 𝑝 and let V

1
= 𝜙(𝑡

1
) = 𝛾(𝑠

1
) and

V
2
= 𝜙(𝑡

2
) = 𝛾(𝑠

2
) be the neighboring vertices (so 𝑡

1
< 𝑡 < 𝑡

2

and 𝑠
1
< 𝑠 < 𝑠

2
).

As above, there exist 𝑠
1
, 𝑠



2
such that 𝑠

1
≤ 𝑠



1
≤ 𝑠 ≤ 𝑠



2
≤ 𝑠

2
,

𝛾(𝑠) − 𝛾(𝑠
1
) ∈ 𝑇

𝛾
(𝑠



1
), and 𝛾(𝑠

2
) − 𝛾(𝑠) ∈ 𝑇

𝛾
(𝑠



2
). Note that

𝑇
𝜙
(𝑡) is exactly the set of positive linear combinations of these

vectors. By Lemma 16, for every 𝑤 ∈ 𝑇
𝜙
(𝑡), there is a 𝑠


∈

[𝑠


1
, 𝑠



2
] such that 𝑤 ∈ 𝑇

𝛾
(𝑠


). As 𝑑(𝑝, 𝛾(𝑠)) < 𝜖/3, the proof is

complete.

Definition 23. One says that Ω is tangentially graph-like and
Lipschitz (TGLL) with radius 𝑟 if Ω is tangentially graph-
like with radius 𝑟 and there is some constant 0 < 𝐾 < ∞

such that, for every 𝑝 ∈ 𝜕Ω, the arc 𝐷(𝑝, 𝑟) ∩ 𝜕Ω is the
graph of a Lipschitz function (in the same orientation used by
the tangentially graph-like definition) and that the Lipschitz
constant is at most𝐾.
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Remark 24. Note that tangentially graph-like does not imply
tangentially graph-like and Lipschitz: taking 𝛾 to be a square
with side length 5 whose corners are replaced by quarter
circles of radius 1 and then considering disks of radius √2

centered on 𝛾 yields one example.
Because 𝛾 is arclength parameterized by 𝑠, ‖𝛾(𝑠)‖ = 1 for

all 𝑠. Since 𝛾 is assumed 𝐶
1 on its compact domain [0, 𝐿], 𝛾

is uniformly continuous: for any 𝜖 > 0, there is a 𝛿
𝜖
such that

if |𝑠
2
− 𝑠

1
| < 𝛿

𝜖
, then ‖𝛾


(𝑠

2
) − 𝛾


(𝑠

1
)‖ < 𝜖.

We will use the fact that 𝛾 always crosses 𝜕𝐷 transversely
to prove that 𝛾 is in fact TGLL on slightly bigger disks of
radius 𝑟 + 𝛿 as long as one takes a somewhat bigger Lipschitz
constant �̂�. It is then an immediate result of Lemma 22 that
we can find an approximating polygon that is TCGL with
radius 𝑟.

Lemma 25. If 𝛾 is TGLL with radius 𝑟, then it is TGLL with
radius 𝑟 + 𝛿 for some 𝛿 > 0 and there is an approximating
polygon 𝑃

𝛾
which is TCGL with radius 𝑟.

Proof. Step 1. Show that the quantities ]
1
and ]

2
are continu-

ous as a function of 𝑠 ∈ [0, 𝐿] (see Figure 6).
Define 𝑅2

(𝑠, 𝑡) ≡ ‖𝛾(𝑠) − 𝛾(𝑡)‖
2. Taking the derivative, we

get

𝐷𝑅 = [⟨

𝛾 (𝑠) − 𝛾 (𝑡)

𝑅 (𝑠, 𝑡)

, 𝛾

(𝑠)⟩ ,⟨

𝛾 (𝑡) − 𝛾 (𝑠)

𝑅 (𝑠, 𝑡)

, 𝛾

(𝑡)⟩] .

(11)

Because ]
1
and ]

2
are both less than 𝜋/2 and 𝛾 is graph-like

in the disk, we have that both elements of this derivative are
nowhere zero. By the implicit function theorem, we get that
𝑠
−
(𝑠) and 𝑠

+
(𝑠) are continuous functions of 𝑠. From this it

follows that ]
1
and ]

2
are continuous on [0, 𝐿].

Step 2. From the previous step and the compactness of [0, 𝐿],
we get that ]

1
(𝑠) and ]

2
(𝑠) are both bounded by 𝑀] < 𝜋/2.

We define 𝜖] ≡ 𝜋/2 − 𝑀] > 0. Fix a 𝑡 ∈ [0, 𝐿]. Define
𝜌(𝑠) by 𝜌

2
(𝑠) = 𝑅

2
(𝑠, 𝑡) = ‖𝛾(𝑠) − 𝛾(𝑡)‖

2. Then ̇
�̂�(𝑠) =

⟨(𝛾(𝑠) − 𝛾(𝑡))/𝜌, 𝛾

(𝑠)⟩ = ⟨𝑛

𝑡
(𝑠), 𝛾


(𝑠)⟩ where 𝑛

𝑡
(𝑠) = (𝛾(𝑠) −

𝛾(𝑡))/‖𝛾(𝑠) − 𝛾(𝑡)‖ = (𝛾(𝑠) − 𝛾(𝑡))/𝜌, the external normal to
𝜕𝐷(𝛾(𝑡), 𝜌) at 𝛾(𝑠) (see Figure 7). On any interval in 𝑠 where
̇
�̂�(𝑠) > 0wehave that 𝜌(𝑠) is one to one and strictly increasing.
Define 𝑠

∗
≡ 𝑠

+
(𝑡) and 𝑠

∗
≡ 𝑠

−
(𝑡). We showed above that

̇
�̂�(𝑠

∗
) = ⟨𝑛

𝑡
(𝑠

∗
), 𝛾


(𝑠

∗
)⟩ ≥ cos(𝑀]) > 0.

For ⟨𝑛
𝑡
(𝑠), 𝛾


(𝑠)⟩ = 0, 𝑛

𝑡
(𝑠) and 𝛾

 will have to have
together turned by at least 𝜋/2 − 𝑀] radians. And until they
have turned this far, ⟨𝑛

𝑡
(𝑠), 𝛾


(𝑠)⟩ > 0. But ̇𝑛

𝑡
(𝑠) ≤ 1/𝜌 ≤

1/𝑟min for some 𝑟min > 0. (Choosing 𝑟min = 𝑟/2 works.)
And 𝛾

 is uniformly continuous on [0, 𝐿]. Therefore, there
is a 𝛿

𝑠
such that on [𝑠

∗
, 𝑠

∗
+ 𝛿

𝑠
], 𝑛

𝑡
(𝑠), and 𝛾

 both turn by
less than 𝜖]/3. Therefore, for 𝑠 ∈ [𝑠

∗
, 𝑠

∗
+ 𝛿

𝑠
], we have that

⟨𝑛
𝑡
(𝑠), 𝛾


(𝑠)⟩ > cos(𝜋/2 − 𝜖]/3) and 𝛾([𝑠

∗
, 𝑠

∗
+ 𝛿

𝑠
)) intersects

𝐶 = 𝜕𝐷(𝛾(𝑡), 𝜌) once for each 𝜌 ∈ [𝑟, 𝑟 + 𝛿
𝑟
], where 𝛿

𝑟
≡

𝛿
𝑠
cos(𝜋/2 − 𝜖]/3).
A completely analogous argument works to show that

𝛾([𝑠
∗
− 𝛿

𝑠
, 𝑠

∗
]) intersects 𝐶 = 𝜕𝐷(𝛾(𝑡), 𝜌) once for each

𝜌 ∈ [𝑟, 𝑟 + 𝛿
𝑟
].

Figure 7: TGLL implies TCGL: notation.

Define 𝑑(𝑡) to be the distance from𝐷(𝛾(𝑡), 𝑟) to 𝛾\𝛾([𝑠
∗
−

𝛿
𝑠
, 𝑠

∗
+ 𝛿

𝑠
]). Since 𝛾 is TGL, 𝑑(𝑡) is greater than zero for all 𝑡

and is continuous in 𝑡. Therefore, there is a smallest distance
𝛿
𝑑
such that 𝑑(𝑡) ≥ 𝛿

𝑑
for all 𝑡. Define 𝛿

𝛾
𝑜

= min(𝛿
𝑑
/2, 𝛿

𝑟
/2).

Therefore, 𝜕𝐷(𝛾(𝑡), 𝜌) intersects 𝛾 exactly twice for 𝜌 ∈

[𝑟, 𝑟 + 𝛿
𝛾
𝑜

] for any 𝑡 ∈ [0, 𝐿].
A similar argument shows that 𝜕𝐷(𝛾(𝑡), 𝜌) intersects 𝛾

exactly twice for 𝜌 ∈ [𝑟 − 𝛿
𝛾
𝑖

, 𝑟] for any 𝑡 ∈ [0, 𝐿]. Defining
𝛿
𝛾
≡ min(𝛿

𝛾
𝑖

, 𝛿
𝛾
𝑜

), we get that 𝜕𝐷(𝛾(𝑡), 𝜌) intersects 𝛾 exactly
twice for 𝜌 ∈ [𝑟 − 𝛿

𝛾
, 𝑟 + 𝛿

𝛾
], with the additional fact that

⟨𝑛
𝑡
(𝑠), 𝛾


(𝑠)⟩ > cos(𝜋/2 − 𝜖]/3) at all those intersections.

Step 3. TGLL implies that there is a constant𝐾 < ∞ such that
𝛾∩𝐷(𝛾(𝑡), 𝑟) is the graph of a function whose x-axis direction
is parallel to 𝛾(𝑡) and this function is Lipschitz with Lipschitz
constant𝐾.

Since 𝛾 is uniformly continuous, there will be a 𝛿
1
such

that if |𝑢 − V| < 𝛿
1
, then ∠(𝛾


(𝑢), 𝛾


(V)) < arctan 2𝐾 −

arctan𝐾. Define 𝛿
𝐾,𝑠

= min(𝛿
𝑠
, 𝛿

1
). Define 𝛿

𝐾,𝑟
=

min(𝛿
𝛾
, 𝛿

𝐾,𝑠
cos(𝜋/2 − 𝜖]/3)). Then 𝛾 ∩𝐷(𝛾(𝑡), 𝑟 + 𝛿

𝐾,𝑟
) is the

graph of a Lipschitz function with Lipschitz constant at most
2𝐾 when 𝛾


(𝑡) is used as the x-axis direction. That is, for all

𝑡, 𝛾 is TGLL with Lipschitz constant 2𝐾 for disks of radius
𝑟 + 𝛿

𝐾,𝑟
. The result follows by Lemma 22.

4. Derivatives of 𝑔(𝑠,𝑟)

Lemma 26. Using the notation of Figure 6, we have
(𝜕/𝜕𝑟)𝑔(𝑠, 𝑟) = (𝜃

2
− 𝜃

1
)𝑟. That is, the derivative exists and

equals the length of the curve 𝐶(𝛾(𝑠), 𝑟) ∩ Ω.

Proof. We have the following (see Figure 8):

𝜕

𝜕𝑟

𝑔 (𝑠, 𝑟)

= lim
Δ𝑟→0

Area (Ω ∩ 𝐷 (𝛾 (𝑠) , 𝑟 + Δ𝑟)) − Area (Ω ∩ 𝐷 (𝛾 (𝑠) , 𝑟))

Δ𝑟

.

(12)
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This difference of areas can be modeled by the difference in
the circular sectors of𝐷(𝛾(𝑠), 𝑟+Δ𝑟) and𝐷(𝛾(𝑠), 𝑟)with angle
𝜃
1
− 𝜃

2
. The actual area depends on the image of 𝛾 outside of

𝐷(𝛾(𝑠), 𝑟), but this correction will be a subset of the circular
segment of𝐷(𝛾(𝑠), 𝑟+Δ𝑟)which is tangent to𝐷(𝛾(𝑠), 𝑟) at the
point 𝛾 exits. This has area 𝑂(Δ𝑟2) by Lemma 21.

Thus we have
𝜕

𝜕𝑟

𝑔 (𝑠, 𝑟)

= lim
Δ𝑟→0

(𝜃
1
− 𝜃

2
) 𝑟Δ𝑟 + (1/2) (𝜃

1
− 𝜃

2
) Δ𝑟

2
+ 𝑂 (Δ𝑟

2
)

Δ𝑟

= (𝜃
1
− 𝜃

2
) 𝑟.

(13)

Lemma 27. Using the notation of Figures 6 and 9, one has
(𝜕/𝜕𝑠)𝑔(𝑠, 𝑟) = ℎ

2
− ℎ

1
= 𝑟 sin(𝜃

2
) − 𝑟 sin(𝜃

1
).

Proof. We have

𝜕

𝜕𝑠

𝑔 (𝑠, 𝑟)

= lim
Δ𝑠→0

Area (Ω ∩ 𝐷 (𝛾 (𝑠 + Δ𝑠) , 𝑟)) − Area (Ω ∩ 𝐷 (𝛾 (𝑠) , 𝑟))

Δ𝑠

.

(14)

The situation is illustrated in Figure 9 where we can see that
the area being added as we go from 𝑠 to 𝑠 + Δ𝑠 is the shaded
region on the right with height 𝑟 − ℎ

1
and, considering first-

order terms only, uniform width Δ𝑠 so has area (𝑟 − ℎ
1
)Δ𝑠.

Similarly, we are subtracting the area (𝑟 − ℎ
2
)Δ𝑠 on the left.

Therefore, we have

𝜕

𝜕𝑠

𝑔 (𝑠, 𝑟) = lim
Δ𝑠→0

(𝑟 − ℎ
1
) Δ𝑠 − (𝑟 − ℎ

2
) Δ𝑠

Δ𝑠

= ℎ
2
− ℎ

1
. (15)

5. Reconstructing Shapes from T-Like Data

In this section, we consider the case where nonasymptotic
densities and first derivatives are known along a T-shaped set
(i.e., for all 𝑠with a fixed radius 𝑟 and for all 𝑟 ≤ 𝑟with a fixed
𝑠). We show that this information is sufficient to guarantee
reconstructability modulo reparametrizations, translations,
and rotations.

Lemma 28. Assume that 𝛾 is TGL for 𝑟 (and thus all 𝑟 ≤

𝑟). Then if one knows 𝑔(𝑠, 𝑟), 𝑔
𝑠
(𝑠, 𝑟) = 𝜕𝑔(𝑠, 𝑟)/𝜕𝑠, and

𝑔
𝑟
(𝑠, 𝑟) = 𝜕𝑔(𝑠, 𝑟)/𝜕𝑟 for (𝑠, 𝑟) ∈ ([0, 𝐿] × {𝑟}) ∪ ({𝑠} × (0, 𝑟]),

one can reconstruct 𝛾(𝑠) ∈ R2 for all 𝑠 ∈ [0, 𝐿] modulo
reparametrizations, translation, and rotations (see Figure 10).

Proof. As was shown in Section 4, 𝑔
𝑟
gives us the length of

the arc 𝜕𝐷(𝑠, 𝑟) ∩ Ω and 𝑔
𝑠
tells us precisely what position

this arc is along 𝜕𝐷(𝑠, 𝑟) with respect to the direction 𝛾

(𝑠).

The assumption of TGL for 𝑟 = 𝑟 implies TGL for 0 <

𝑟 < 𝑟 (see Remark 15) and this implies that 𝛾 has the 2-
arc property and transverse intersections with 𝜕𝐷(𝑠, 𝑟) for all

≈ ℋ1(𝜕D ∩ Ω)Δr

r + Δr

r

𝛾

𝜕g/𝜕r = ℋ1(𝜕D ∩ Ω)

Figure 8: Deriving 𝜕𝑔/𝜕𝑟 as the arclength of the circular segment.

disks corresponding to (𝑠, 𝑟) ∈ ([0, 𝐿] × {𝑟}) ∪ ({𝑠} × [0, 𝑟]).
Since we care only about reconstructing a curve 𝛾 isometric
to the original curve, we choose 𝛾(𝑠) = (0, 0) ∈ R2 and
𝛾

(𝑠) = (1, 0). Taken together, 𝑔

𝑠
(𝑠, 𝑟) and 𝑔

𝑟
(𝑠, 𝑟) locate both

points in 𝜕𝐷(𝑠, 𝑟)∩𝛾 for all 𝑟 ∈ [0, 𝑟].This yields 𝛾∩𝐷(𝛾(𝑠), 𝑟).
Now, simply increase 𝑠, sliding the center of a disk of radius
𝑟 along 𝛾 ∩ 𝐷(𝛾(𝑠), 𝑟), using 𝑔

𝑟
(𝑠, 𝑟) to find the element of

𝛾 ∩ 𝐷(𝛾(𝑠), 𝑟) outside 𝐷(𝛾(𝑠), 𝑟), and using the fact that the
other element of 𝛾∩𝐷(𝛾(𝑠), 𝑟) is inside𝐷(𝛾(𝑠), 𝑟) and known.
This process can be continued until the entire curve is traced
out in R2.

6. TCGL Polygon Is Reconstructible from 𝑔
𝑟

and 𝑔
𝑠

without Tail

Theorem 29. For a tangent-cone graph-like polygonΩ, know-
ing 𝑔(𝑠, 𝑟), 𝑔

𝑟
(𝑠, 𝑟), and 𝑔

𝑠
(𝑠, 𝑟) for all 𝑠 ∈ [0, 𝐿) and a

particular 𝑟 for which 𝜕Ω is tangent-cone graph-like is sufficient
to completely determine Ω up to translation and rotation; that
is, one can recover the side lengths and angles of Ω.

Proof. For a given 𝑠 and 𝑟 where 𝑔
𝑟
and 𝑔

𝑠
exist, we can

use them to obtain 𝑟(𝜃
2
− 𝜃

1
) as the length of the circular

arc between the entry and exit points by Lemma 26 and
𝑟(sin 𝜃

2
− sin 𝜃

1
) as the difference in heights of the entry and

exit points by Lemma 27.
We wish to recover 𝜃

1
and 𝜃

2
from these quantities. Note

that if (𝜃
1
, 𝜃

2
) = (𝜙

1
, 𝜙

2
) is one possible solution, then so is

(𝜃
1
, 𝜃

2
) = (2𝜋 − 𝜙

2
, 2𝜋 − 𝜙

1
) and so solutions always come in

pairs.
We can imagine placing a circular arc with angle 𝑔

𝑟
/𝑟 on

our circle and sliding it around until the endpoints have the
appropriate height difference, yielding 𝜃

1
and 𝜃

2
. Note that

sinceΩ is tangent-cone graph-like, one endpoint must be on
the left side of the circle and the other must be on the right
and we cannot slide either endpoint to or beyond the vertical
line through the center of the circle.

Therefore, as we slide the right endpoint down, the left
endpoint slides up so that the height difference as a function
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𝛾

h1

h2Δs

𝜕g/𝜕s = h2 − h1

Δarea ≈ Δs(h2 − h1)

Figure 9: Deriving 𝜕𝑔/𝜕𝑠 as the difference in heights of the entry
and exit points.

Distance along curve s s = L

r = r̂

s = 0

s
=
ŝ

r = 0

r = diam(𝛾)

D
isk

 ra
di

us
r

Figure 10: T-like data: we restrict the domain of 𝑔(𝑠, 𝑟) to a fixed
radius 𝑟 plus any vertical segment from 𝑟 = 0 to 𝑟 = 𝑟.

of the slide is strictly monotonic. Therefore, the slide that
gives us 𝜃

1
and 𝜃

2
is unique for a given starting arc placement.

However, there are two starting arc placements: the first calls
the angle for the right endpoint 𝜃

1
and the left endpoint 𝜃

2
(so

the interior of Ω is “up” in the circle) and the second swaps
these (so the interior of Ω is “down”). Since we have adopted
the convention that 𝜕Ω is traversed in a counterclockwise
direction (so the interior ofΩ is up in the circles), we therefore
pick the first option; this gives us a unique solution for 𝜃

1
and

𝜃
2
.
This procedure works whenever 𝑔

𝑟
and 𝑔

𝑠
exist which is

certainly true whenever the density disk does not touch a
vertex of Ω either at its center or on its boundary because
if we avoid these cases, then there is only one graph-like
orientation to deal with and 𝜕Ω is 𝐶∞ for all the points that
enter into the computation. In fact, with a moment’s thought,
we can make a stronger statement than this: 𝑔

𝑟
always exists

and 𝑔
𝑠
exists as long as the center of the density disk is not a

vertex of the polygon.
We can identify the 𝑠 values at which 𝑔

𝑠
(𝑠, 𝑟) does not

exist to obtain the arc length positions of the vertices (and
therefore obtain side lengths). For a given 𝑠 corresponding to

a vertex, we can find 𝑔
𝑟
and the one-sided derivatives 𝑔

𝑠−
and

𝑔
𝑠+
.These correspond to the graph-like orientations required

by the polygon sides adjacent to the current vertex.
Referring to Figure 11, the one-sided derivatives along

with the argument at the beginning of the proof yield the
angles 𝜃

1
, 𝜃

2
, 𝜙

1
, and 𝜙

2
. Thus, we can calculate 𝜓 = 𝜃

1
− 𝜙

1

which means that the polygon vertex at 𝑠 has angle 𝜋 − 𝜓.
Doing this for all 𝑠 corresponding to vertices, we can

determine all of the angles of the polygon. With the side
lengths identified earlier, this completely determines the
polygon Ω up to translation and rotation.

7. Simple Closed Curves Are Generically
Reconstructible Using Fixed Radius Data

We will assume that 𝛾 is TGL for the radius 𝑟. We will also
assume that we know the first, second, and third derivatives
of 𝑔(𝑠, 𝑟) for 𝑟 = 𝑟. Under these assumptions, 𝛾 is generically
reconstructible. By generic we mean the admittedly weak
condition of density—reconstructible curves are 𝐶1 dense in
the space of 𝐶2 simple closed curves.

Theorem 30. Define G ≡ {𝛾 | 𝛾 as a 𝐶
2 simple closed

curve and TGL for 𝑟 = 𝑟}. Suppose that, for 𝑟 = 𝑟, for all
𝑠 ∈ [0, 𝐿], and for each 𝛾 ∈ G, one knows the first-, second-
, and third-order partial derivatives of 𝑔

𝛾
(𝑠, 𝑟). Then the set of

reconstructible 𝛾 ∈ G is 𝐶1 dense inG where reconstructability
is modulo reparametrization, translation, and rotation.

Proof. In Section 4 we showed that 𝜕𝑔(𝑠, 𝑟)/𝜕𝑟 = 𝑟(𝜃
2
− 𝜃

1
)

and 𝜕𝑔(𝑠, 𝑟)/𝜕𝑠 = 𝑟(sin(𝜃
2
)− sin(𝜃

1
)), where the notation is as

in Figure 6. Because 𝛾 is TGL, we can solve for 𝜃
1
and 𝜃

2
from

these two derivatives as in the proof of Theorem 29.

Claim 1. The following equations hold: 𝜕2𝑔(𝑠, 𝑟)/𝜕𝑟2 = 𝜃
2
−

𝜃
1
+𝑟(𝜕𝜃

2
/𝜕𝑟−𝜕𝜃

1
/𝜕𝑟) and 𝜕2𝑔(𝑠, 𝑟)/𝜕𝑟𝜕𝑠 = sin(𝜃

2
)−sin(𝜃

1
)+

𝑟(cos(𝜃
2
)(𝜕𝜃

2
/𝜕𝑟) − cos(𝜃

1
)(𝜕𝜃

1
/𝜕𝑟)).

Proof of Claim 1. Simply differentiate the expressions we
already have for 𝜕𝑔(𝑠, 𝑟)/𝜕𝑟 and 𝜕𝑔(𝑠, 𝑟)/𝜕𝑠.

We wish to express this in terms of ]
1
and ]

2
. Note that

if we expand the circle radius by Δ𝑟, the right exit point 𝑠
+
(𝑠)

moves approximately (i.e., considering first-order terms only)
a distance of 𝑘 ≡ Δ𝑟 sec(]

1
) (so 𝜕𝑘/𝜕𝑟 = sec]

1
, a fact we will

use later to compute curvature). Therefore,

𝜕𝜃
1

𝜕𝑟

= lim
Δ𝑟→0

((arctan(
𝑟 sin 𝜃

1
+ 𝑘 sin (𝜃

1
+ ]

1
)

𝑟 cos 𝜃
1
+ 𝑘 cos (𝜃

1
+ ]

1
)

) − 𝜃
1
)

×(Δ𝑟)
−1
) .

(16)

Straightforward techniques yield 𝜕𝜃
1
/𝜕𝑟 = tan ]

1
/𝑟 and a

similar calculation shows that 𝜕𝜃
2
/𝜕𝑟 = tan ]

2
/𝑟 .
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𝜃2

𝜃1

𝛾(s)

𝛾(s−)

𝛾(s+)

𝛾(s)

𝛾(s−)

𝛾(s+)
𝜓 𝜙1

𝜙2

Figure 11: Using 𝑔
𝑠−
and 𝑔

𝑠+
to obtain the polygon angle at 𝑠.

Therefore, rewriting the second derivatives of 𝑔(𝑠, 𝑟) in
terms of ]

1
and ]

2
, we get

𝜕
2
𝑔 (𝑠, 𝑟)

𝜕𝑟
2

= 𝜃
2
− 𝜃

1
+ tan (]

2
) − tan (]

1
) ,

𝜕
2
𝑔 (𝑠, 𝑟)

𝜕𝑟𝜕𝑠

= sin (𝜃
2
) − sin (𝜃

1
) + cos (𝜃

2
) tan (]

2
)

− cos (𝜃
1
) tan (]

1
) .

(17)

Using these 2 derivatives, together with the previous
two, we can solve for ]

1
= arctan(𝑟(𝜕𝜃

1
/𝜕𝑟)) and

]
2

= arctan(𝑟(𝜕𝜃
1
/𝜕𝑟)) whenever cos(𝜃

1
) ̸= cos(𝜃

2
). Since

we are assuming that the curve is a simple closed curve,
cos(𝜃

1
) ̸= cos(𝜃

2
) is always true.

Claim 2. Knowing 𝜕3𝑔(𝑠, 𝑟)/𝜕𝑟3 and 𝜕
3
𝑔(𝑠, 𝑟)/𝜕𝑟

2
𝜕𝑠 gives us

𝜅(𝑠
+
(𝑠)) and 𝜅(𝑠−(𝑠)), the curvatures of 𝛾 at 𝑠+(𝑠) and 𝑠−(𝑠).

Proof of Claim 2. Computing, we get

𝜕
3
𝑔 (𝑠, 𝑟)

𝜕𝑟
3

=

𝜕𝜃
2

𝜕𝑟

−

𝜕𝜃
1

𝜕𝑟

+ sec2 (]
2
)

𝜕]
2

𝜕𝑟

− sec2 (]
1
)

𝜕]
1

𝜕𝑟

𝜕
3
𝑔 (𝑠, 𝑟)

𝜕𝑟
2
𝜕𝑠

= cos (𝜃
2
)

𝜕𝜃
2

𝜕𝑟

− cos (𝜃
1
)

𝜕𝜃
1

𝜕𝑟

− sin (𝜃
2
)

𝜕𝜃
2

𝜕𝑟

tan (]
2
) + sin (𝜃

1
)

𝜕𝜃
1

𝜕𝑟

tan (]
1
)

+ cos (𝜃
2
) sec2 (]

2
)

𝜕]
2

𝜕𝑟

− cos (𝜃
1
) sec2 (]

1
)

𝜕]
1

𝜕𝑟

.

(18)

Since ]
2
≡ 𝜕]

2
/𝜕𝑟 and ]

1
≡ 𝜕]

1
/𝜕𝑟 are the only unknowns,

we end up having to invert

[

1 −1

cos (𝜃
2
) cos (𝜃

1
)
] (19)

again and this is always nonsingular, giving us ]
1
and ]

2
as a

function of 𝑠, the coordinate of the center of the disk.

Relative to the horizontal, the angle of the curve at 𝑠+(𝑠)
is 𝜃

1
+ ]

1
so the rate of change in angle as we expand the

circle is (𝜕𝜃
1
/𝜕𝑟) + ]

1
. Recalling that rate of movement of

this exit point as we expand the circle is given by 𝜕𝑘/𝜕𝑟 =

sec ]
1
, we have that the curvature is given by 𝜅(𝑠

+
(𝑠)) =

(𝜕𝑘/𝜕𝑟)(𝜕𝜃
1
/𝜕𝑟 + ]

1
) = sec ]

1
(𝜕𝜃

1
/𝜕𝑟 + ]

1
). Similarly,

𝜅(𝑠
−
(𝑠)) = sec (]

2
)(𝜕𝜃

2
/𝜕𝑟 + ]

2
).

Claim 3. Generically, we can deduce 𝑠+(𝑠) from knowledge of
]
1
(𝑠), ]

2
(𝑠), 𝜃

1
(𝑠), and 𝜃

2
(𝑠).

Proof. We outline the proof without some of the explicit
constructions that follow without much trouble from the
outline. We have that 𝜃

1
(𝑠

−
(𝑠)) + ]

1
(𝑠

−
(𝑠)) = 𝜋 − 𝜃

2
(𝑠) − ]

2
(𝑠)

and 𝜃
1
(𝑠) + ]

1
(𝑠) = 𝜋 − 𝜃

2
(𝑠

+
(𝑠)) − ]

2
(𝑠

+
(𝑠)). All four of

these quantities (the left- and right-hand sides of each of the 2
equations) are the turning angles between the tangent to the
curve at the center of the disk and the tangent to the curve at
a point 𝑟 away from the center of the disk.

Nowwe use this correspondence between the 𝜃+] curves
to solve for 𝑠−(𝑠) and 𝑠

+
(𝑠). But these curves can differ by

a homeomorphism of the domain. Thus, we can only find
the correspondence if there is a distinguished point on those
curves as well as no places where the values attained are
constant. The turning angle curves, having isolated critical
points and a unique maximum or minimum, are enough.

To get isolated extrema, start by approximating the curve
𝛾 with another one 𝛾 that agrees in 𝐶

1 at a large but finite
number of points {𝑠

𝑖
}
𝑁

𝑖=1
(i.e., agrees in tangent direction

as well as position) and has isolated critical points in the
derivative of the tangent direction. Now perturb 𝛾 to one
that is 𝐶

1 close (but not 𝐶
2 close) by using oscillations

about the curve so that the 2nd and 3rd derivatives are
never simultaneously below the bounds on the 2nd and 3rd
derivatives of the curve we started with. We do this in a
way that alternates around the curve. See Figure 12. In a
bit more detail, suppose that max{𝑑2𝛾/𝑑𝑠2, 𝑑3𝛾/𝑑𝑠3} < 𝐿

1
.

Choose a starting point on the curve; 𝑠 = 0 works. Now
begin perturbing 𝛾 at the point 𝑠

𝑟
in the positive 𝑠 direction

such that |𝛾(𝑠
𝑟
) − 𝛾(0)| = 𝑟. We name the newly perturbed

curve ̂
�̂� and we keep 𝐿

1
< max{𝑑2̂�̂�/𝑑𝑠2, 𝑑3̂�̂�/𝑑𝑠3} < 𝐿

2
.
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L1 < max{d
2𝛾/ds2, d3𝛾/ds3} < L2

L2 < max{d
2𝛾/ds2, d3𝛾/ds3} < L3

Figure 12: In this schematic figure, we illustrate the alternating
perturbation around the curve, keeping the curve 𝐶1 close to and
messing with the second and third derivatives to eliminate any
critical points other than isolated maxima and minima. Here, the
perturbation is of course greatly exaggerated.

Figure 13: A twist perturbation. Notice that if the twist is applied
precisely at a global max of the turning angle (as measured by the
tangent here and the one lagging it in 𝑠), we will increase the turning
angle there and will end up with a unique global maximum.

We continue perturbing until we have reached 𝑠
2𝑟

defined
by |𝛾(𝑠

2𝑟
) − 𝛾(𝑠

𝑟
)| = 𝑟. We begin perturbing again when we

reach 𝑠
3𝑟
. Continue in this fashion around 𝛾. The last piece,

shown in green in the figure, will require a perturbation that
is distinct in size due to the fact that it will interact with the
perturbation that starts at 𝑠

𝑟
. On this last piece, we enforce

𝐿
2
< max{𝑑2̂�̂�/𝑑𝑠2, 𝑑3̂�̂�/𝑑𝑠3} < 𝐿

3
. All these perturbations

can be chosen with isolated singularities in derivatives, thus
giving us 𝜃+] curves that aremonotonic between isolated sin-
gularities. (In fact, we might as well choose all perturbations
to be piecewise polynomial perturbations. This immediately
gives us the isolated singularities and monotonicity that we
want.)

Finally, if there is not a distinct maximum, we can choose
one of the maxima and add a small twist to the curve at that
point. See Figure 13. The idea is that a small twist, applied
to leading edge of the tangents we are comparing to get the
turning angle, will increase the angle most at the center of the
twist. If this corresponds to a nonunique global maximum,
we end up with a unique global maximum.

Now the correspondence scheme works.That is, we know
that the global maximums must match, and because the
turning angle curves are monotonic between isolated critical
points, we can find the homeomorphisms in 𝑠 that move the
turning angle curves into correspondence.

Taken together, the last two claims give us the curvature as
a function of arclength. This determines 𝛾 up to translations
and rotations.

8. Numerical Experiments

In this section, we consider a numerical curve reconstruction
for the situation in which 𝑔(𝑠, 𝑟) is known for a given
radius 𝑟 but no derivative information is available. This
reconstruction ismore strict than the scenarios of Sections 5–
7. Ourmotivation is to explore whether any 𝛾 can be uniquely
and practically reconstructed with this limited information.

We consider 𝛾
𝑎
(𝑠) ∈ P𝑁, the set of simple polygons of𝑁

ordered vertices {(𝑥
1
, 𝑦

1
), . . . , (𝑥

𝑁
, 𝑦

𝑁
)} parameterized by the

set {𝑠
𝑘
}
𝑁

𝑘=1
with 𝑠

𝑘
= 𝑘/𝑁, as

𝑥
𝑘
=

𝑚−1

∑

𝑗=0

𝑎
1,𝑗

cos(
2𝜋𝑗𝑠

𝑘

𝑁

) + 𝑎
2,𝑗

sin(
2𝜋𝑗𝑠

𝑘

𝑁

) ,

𝑦
𝑘
=

𝑚−1

∑

𝑗=0

𝑎
3,𝑗

cos(
2𝜋𝑗𝑠

𝑘

𝑁

) + 𝑎
4,𝑗

sin(
2𝜋𝑗𝑠

𝑘

𝑁

) ,

(20)

for some coefficients 𝑎
𝑖,𝑗

∈ R. In this way, the polygon 𝛾 is a
discrete approximation of a 𝐶∞ curve. The sides of 𝛾

𝑎
(𝑠) are

not necessarily of equal length.
We take the vector signature 𝑔

𝑎
(𝑠, 𝑟) ∈ R𝑁 to be the

discrete area densities of 𝛾
𝑎
(𝑠) computed at each vertex. Given

such a signature for fixed radius 𝑟 and fixed partition 𝑠, we
seek 𝑎∗ satisfying

𝑎
∗
∈ arg min

𝑏∈R4𝑚





𝑔
𝑏
(𝑠, 𝑟) − 𝑔

𝑎
(𝑠, 𝑟)






2

2

s.t. 𝛾
𝑏
∈ P

𝑁
.

(21)

Equation (21) represents a nonlinearly constrained opti-
mization problem with continuous nonsmooth objective.
The constraint ensures that polygons are simple though any
optimal reconstruction 𝛾

𝑎
∗ is not expected to lie on the

feasible region boundary except in cases of noisy signatures.
This approach to reconstructing curves seeks a polygon that
matches a given discrete signature, rather than an analytic
sequential point construction procedure.

We use the direct search OrthoMads algorithm [7] to
solve this problem. Mads class algorithms do not require
objective derivative information [7, 9] and converge to
second-order stationary points under reasonable conditions
on nonsmooth functions [10]. We implement our constraint
using the extreme barrier method [11] in which the objective
value is set to infinity whenever constraints are not satisfied.
We utilize the standard implementation with partial polling
and minimal spanning sets of 4𝑚 + 1 directions.

We performed a series of numerical tests using the
synthetic shamrock curve shown in black in the upper
portion of Figure 14. This curve is given as a polygon in
P256 with discretization coefficients 𝑎 ∈ R4×20 (𝑚 = 20).
A sequence of reconstructions was performed with all
integer values 8 ≤ 𝑚 ≤ 20. The 𝑚 = 8 reconstruction
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begins with initial coefficients, 𝑎
𝑖,𝑗
, which determine a

regular 256-gon with approximately the same interior area
as the shamrock (as determined by the signature 𝑔

𝑎
(𝑠, 𝑟). In

particular, the value(s) 𝑎
𝑖,𝑗
supplied initially are those which

define the best fit circle (𝑚 = 1), which can be computed
directly. That is, only 𝑎

1,0
and 𝑎

4,0
are nonzero. Subsequent

reconstructions begin with initial coefficients optimal
to the previous relatively coarse reconstruction. Curve
reconstructions for 𝑚 = 12 (blue) and 𝑚 = 18 (red) are
compared to the shamrock in the upper portion of Figure 14.
Reconstructions for 𝑚 ≥ 20 are visually indistinguishable
from the actual curve and are not shown. Corresponding
area density signatures are shown in the lower portion of
Figure 14. A representative disk of radius 𝑟 is shown in green
along with corresponding location in the signature; note
that the shamrock is not tangent-cone graph-like with this
radius.

When comparing and interpreting the shamrock curves,
it is important to note that the scale of the curves is deter-
mined entirely by the fit parameters 𝑎

𝑖,𝑗
. On the other hand,

as the density signature is independent of curve rotation, the
rotation is eyeball adjusted for easy visual comparison. Also
note that the two-arc property does not hold for this example
so our reconstructability results do not apply. The accuracies
of both the curve reconstruction and area density signature
fit suggest that somewhat more general reconstructability
results hold. In particular, we speculate that general simple
polygons may be reconstructible from 𝑔(𝑠, 𝑟) for fixed 𝑟 and
no derivative information.

9. Conclusions

We have studied the integral area invariant with particular
emphasis on the tangent-cone graph-like condition. In par-
ticular, we have shown that all TCGL polygons and a 𝐶

1-
dense set of𝐶2 TGL curves are reconstructible using only the
integral area invariant for a fixed radius along the boundary
and its derivatives.

We also showed that TCGL boundaries can be approxi-
mated by TCGL polygons, determined what the derivatives
represented, and commented on other sets of data sufficient
for reconstruction (namely, both T-like and all radii in a
neighborhood of 0).

These reconstructions are all modulo translations, rota-
tions, and reparametrizations. The arc length parameteriza-
tion plays a special role here since any two such parame-
terizations of a boundary will differ only by a shift and can
easily be placed into correspondence. The situation becomes
more complicated in higher dimensions as boundaries are no
longer canonically parameterized by a single variable which
is a fundamental assumption of our results and methods. It is
not immediately obvious how to resolve the issues created by
higher dimensions except that it may be possible to modify
some of the machinery to work with star convex regions
which restore some semblance of canonical representation.

Another space which is open for further development is
that of reconstruction algorithms. This is doubly true since

Figure 14: Shamrock reconstruction: comparing the original curve
with those found for 𝑚 = 12 and 𝑚 = 18. Curves for 𝑚 ≥ 20

are visually indistinguishable from the original curve. The shape
signatures are given at the bottom.

our theoretical reconstructions are unstable and the numer-
ical examples in the present work do not have guaranteed
reconstruction. However, even without these guarantees, the
numerical examples hint atmore expansive reconstructability
results.

Appendix

A. Easy Reconstructability

For completeness, we include a short proof of the fact
that knowing 𝑔(𝑠, 𝑟) for all 𝑠 and 𝑟 very easily gives us
reconstructability.This follows from the fact that knowing the
asymptotic behavior of𝑔(𝑠, 𝑟) as 𝑟 → 0 for any 𝑠 gives us 𝜅(𝑠).
That in turn implies that knowing𝑔(𝑠, 𝑟) in any neighborhood
of the set (𝑠, 𝑟) ∈ [0, 𝐿]×{𝑟 = 0} also gives us𝜅(𝑠) and therefore
the curve.

Theorem A.1. Suppose that 𝜕Ω is 𝐶2 and there exists 𝜖 > 0

such that one knows 𝑔(𝑠, 𝑟) for all (𝑠, 𝑟) ∈ [0, 𝐿) × (0, 𝜖).
This information is enough to determine the curvature of
every point on 𝜕Ω. In particular, if 𝛾 : [0, 𝐿) → 𝜕Ω

is a counterclockwise arclength parameterization of 𝜕Ω, then
𝜅(𝛾(𝑠)) = −3𝜋lim

𝑟→0
(𝜕/𝜕𝑟)(𝑔(𝑠, 𝑟)/𝜋𝑟

2
).

Proof. Fix 𝑠 ∈ [0, 𝐿). If the curvature of 𝛾 at 𝑠 is positive, we
consider what happens if we replace Ω with the disk whose
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𝜕ΩR

r

𝛾(s)

(a)

𝜕Ω

R

r

𝛾(s)

(b)

Figure 15: Using the osculating circle as a surrogate for 𝜕Ω in the (a) positive and (b) negative curvature cases.

boundary is the osculating circle of 𝜕Ω at 𝛾(𝑠) (call its radius
𝑅). We have the following expression for the new normalized
nonasymptotic density (see Figure 15(a)):

𝑔 (𝑠, 𝑟)

𝜋𝑟
2

=

1

𝜋𝑟
2
∫

𝑝

−𝑝

√𝑟
2
− 𝑥

2
− (𝑅 − √𝑅

2
− 𝑥

2
) 𝑑𝑥, (A.1)

where 𝑥 = 𝑝 is the positive solution to √𝑟
2
− 𝑥

2
= 𝑅 −

√𝑅
2
− 𝑥

2. Differentiating with respect to 𝑟 and taking the
limit as 𝑟 goes to 0 give us −1/3𝜋𝑅. That is, for the case
where Ω is locally a disk, the curvature at 𝛾(𝑠) is given by
−3𝜋lim

𝑟→0
(𝜕/𝜕𝑟)(𝑔(𝑠, 𝑟)/𝜋𝑟

2
).

If the curvature of 𝜕Ω at 𝛾(𝑠) is negative, we can set up
a similar surrogate (see Figure 15(b)) and again obtain that
𝜅(𝛾(𝑠)) = −3𝜋lim

𝑟→0
(𝜕/𝜕𝑟)(𝑔(𝑠, 𝑟)/𝜋𝑟

2
).

Lastly, this calculation gives the right result in the curva-
ture 0 case when 𝜕Ω is locally a straight line (so 𝑔(𝑠, 𝑟)/𝜋𝑟2 =
(1/𝜋𝑟

2
) ∫

𝑟

−𝑟

√𝑟
2
− 𝑥

2
𝑑𝑥 = 1/2 for sufficiently small 𝑟 and

−3𝜋lim
𝑟→0

(𝜕/𝜕𝑟)(𝑔(𝑠, 𝑟)/𝜋𝑟
2
) = 0).

For the casewhere 𝜕Ω is not locally a circle or straight line,
the corrections to the integrals are of order𝑂(𝑥3) as 𝑟 goes to
0 and have no impact on the final answer so the curvature
at 𝛾(𝑠) is always given by −3𝜋lim

𝑟→0
(𝜕/𝜕𝑟)(𝑔(𝑠, 𝑟)/𝜋𝑟

2
). The

available data (the values 𝑔(𝑠, 𝑟) for all 𝑠 ∈ [0, 𝐿) and all
𝑟 ∈ (0, 𝜖)) are sufficient to compute the relevant derivative and
limit so we can use this process to determine the curvature of
every point on the 𝐶2 curve 𝜕Ω.
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