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We investigate the conditions under which the symmetric functions 𝐹
𝑛,𝑘
(x, 𝑟) = ∏

1≤𝑖1<𝑖2<⋅⋅⋅<𝑖𝑘≤𝑛
𝑓((∑

𝑘

𝑗=1
𝑥
𝑟

𝑖𝑗

)
1/𝑟

) , 𝑘 = 1, 2, . . . , 𝑛, are
Schur 𝑚-power convex for 𝑥 ∈ R𝑛

++
and 𝑟 > 0. As a consequence, we prove that these functions are Schur geometrically convex

and Schur harmonically convex, which generalizes some known results. By applying the theory of majorization, several inequalities
involving the 𝑝th power mean and the arithmetic, the geometric, or the harmonic means are presented.

1. Introduction

LetR𝑛 = {(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) : 𝑥
𝑖
∈ R, 𝑖 = 1, 2, . . . , 𝑛} andR𝑛

++
=

{(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) : 𝑥
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛}. In particular, R

++
=

(0,∞). For x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), we denote by

x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

ln (x) = (ln𝑥
1
, ln𝑥
2
, . . . , ln𝑥

𝑛
) ,

1

x
= (

1

𝑥
1

,
1

𝑥
2

, . . . ,
1

𝑥
𝑛

) .

(1)

The Hamy symmetric function [1, 2] is defined as

𝐹
𝑛
(x, 𝑟) = 𝐹

𝑛
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
; 𝑟) = ∑

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑟
≤𝑛

(

𝑟

∏

𝑗=1

𝑥
𝑖
𝑗

)

1/𝑟

,

𝑟 = 1, 2, . . . , 𝑛.

(2)

The properties and applications of Hamy symmetric
function can be found in the book of Bullen et al. [1].

Throughout the paper, let 𝐼 ⊂ R
++

and 𝐼𝑛 ⊂ R𝑛
++
.

In 2007, Guan [3] defined a more general symmetric
function: let 𝑓 : 𝐼𝑛 → R

++
, and

𝑟

∑

𝑛

(𝑓 (𝑥)) = ∑

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑟
≤𝑛

𝑓(

𝑟

∏

𝑗=1

𝑥
1/𝑟

𝑖
𝑗

) ,

𝑟 = 1, 2, . . . , 𝑛,

(3)

where 𝑖
1
, 𝑖
2
, . . . , 𝑖

𝑛
are nonnegative integers, 𝑟 ∈ 𝑁 = {1, 2,

3, . . .}. Guan proved that the above symmetric function is
Schur geometrically convex on 𝐼𝑛.

In 2010, Rovent,a [4] defined the following symmetric
function. Let 𝑓 : 𝐼 → R

++
be a log-convex function

𝐹
𝑘
(x) = ∑

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

𝑘

∏

𝑗=1

𝑓(𝑥
𝑖
𝑗

) ,

𝑘 = 1, 2, . . . , 𝑛.

(4)

Rovent,a proved that (4) is a Schur convex function on 𝐼𝑛.
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In 2010,Meng et al. [5] proved the dual form of the Hamy
symmetric function

𝐻
𝑛
(x, 𝑟) = ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(

𝑟

∑

𝑗=1

𝑥
1/𝑟

𝑖
𝑗

) ,

𝑘 = 1, 2, . . . , 𝑛,

(5)

was Schur harmonically convex in R𝑛
++
.

In 2013, Shi and Zhang [6] investigated the following dual
form of 𝐹

𝑘
(x):

𝐹
∗

𝑘
(x) = ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

𝑘

∑

𝑗=1

𝑓(𝑥
𝑖
𝑗

) , 𝑘 = 1, 2, . . . , 𝑛. (6)

They proved that 𝐹∗
𝑘
(x) is Schur convex, Schur geometrically

and harmonically convex on 𝐼𝑛.
Recently, Yang [7–9] generalized the notion of Schur

convexity to Schur m-power convexity, which contains the
Schur convexity, Schur geometrical convexity, and Schur
harmonic convexity. Moreover, he discussed Schur m-power
convexity of Stolarsky means [7], Gini means [8], and
Daróczy means [9]. Wang and Yang showed that generalized
Hamy symmetric function [10] and a class of symmetric
functions [11] are Schurm-power convex.

Now we define the more general dual form of symmetric
function.

Definition 1. Let Ω ⊂ R𝑛
++

be a symmetric convex set with
nonempty interior and 𝑓 : Ω → R

++
is continuous on Ω

and differentiable in the interior of Ω. For 𝑟 > 0, define the
symmetric functions 𝐹

𝑛,𝑘
(x, 𝑟) by

𝐹
𝑛,𝑘
(x, 𝑟) = ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

𝑓((

𝑘

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟

) ,

𝑘 = 1, 2, . . . , 𝑛.

(7)

In this paper, we investigate the Schurm-power convexity
of the above more general dual form of symmetric functions.
In particular, we obtain that the abovemore general dual form
of symmetric functions is Schur geometrically convex and
Schur harmonically convex, which generalizes some known
results. As a consequence, we are able to prove a number
of new inequalities concerning the 𝑝th power mean, the
arithmetic mean, and the geometric and the harmonic mean.

2. Definitions and Lemmas

We first recall several definitions as follows.

Definition 2 (see [12, 13]). Let x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) and y =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ R𝑛.

(1) x ≥ ymeans 𝑥
𝑖
≥ 𝑦
𝑖
for all 𝑖 = 1, 2, . . . , 𝑛.

(2) Let Ω ⊂ R𝑛, 𝑓 : Ω → R is said to be increasing if
x ≥ y implies 𝑓(x) ≥ 𝑓(y). 𝑓 is said to be decreasing
if and only if −𝑓 is increasing.

Definition 3 (see [12, 13]). Suppose that x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)

and y = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ R𝑛 are two 𝑛-tuples real numbers.

(1) y majorizes x (in symbols x ≺ y), if ∑𝑘
𝑖=1
𝑥
[𝑖]
≤

∑
𝑘

𝑖=1
𝑦
[𝑖]
, (𝑘 = 1, 2, . . . , 𝑛 − 1) and∑𝑛

𝑖=1
𝑥
[𝑖]
= ∑
𝑛

𝑖=1
𝑦
[𝑖]
,

where 𝑥
[1]
≥ 𝑥
[2]
≥ ⋅ ⋅ ⋅ ≥ 𝑥

[𝑛]
, 𝑦
[1]
≥ 𝑦
[2]
≥ ⋅ ⋅ ⋅ ≥ 𝑦

[𝑛]

are rearrangements of x and y in a descending order.
(2) A real-valued function 𝑓 : Ω ⊂ R𝑛 → R is said to be

Schur convex onΩ if

x ≺ y on Ω 󳨐⇒ 𝑓 (x) ≤ 𝑓 (y) . (8)

𝑓 is a Schur concave function onΩ if and only if−𝑓 is a Schur
convex function.

Definition 4 (see [14]). Suppose x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) and y =

(𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) ∈ R𝑛 are two 𝑛-tuples real numbers. Let Ω ⊂

R𝑛
++
. A function 𝑓 : Ω → R

++
is called Schur geometrically

convex if

ln x ≺ ln y on Ω 󳨐⇒ 𝜑 (x) ≤ 𝜑 (y) . (9)

𝑓 is Schur geometrically concave if −𝑓 is Schur geometrically
convex.

The following Theorem is basic and plays an important
role in the theory of the Schur geometrically convex function.

Lemma 5 (see [14]). Let 𝜑(x) = 𝜑(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) be sym-

metric and continuous on Ω ⊂ R𝑛
++

and differentiable in Ω0.
Then 𝜑 : Ω → R

++
is Schur geometrically convex (Schur

geometrically concave) if and only if

(ln𝑥
1
− ln𝑥

2
) (𝑥
1

𝜕𝜑

𝜕𝑥
1

− 𝑥
2

𝜕𝜑

𝜕𝑥
2

) ≥ 0 (≤ 0) . (10)

Definition 6 (see [15, 16]). Let Ω ∈ R𝑛.

(1) A setΩ is called harmonically convex if xy/(𝜆x + (1 −
𝜆y)) ∈ Ω for every x, y ∈ Ω and 𝜆 ∈ [0, 1], where
xy = ∑𝑛

𝑖=1
𝑥
𝑖
𝑦
𝑖
and 1/x = (1/𝑥

1
, . . . , 1/𝑥

𝑛
).

(2) A function 𝜑 : Ω → R
++

is called Schur harmon-
ically convex on Ω if 1/x ≺ 1/y implies 𝜑(x) ≤
𝜑(y). 𝑓 is Schur harmonically concave if −𝑓 is Schur
harmonically convex.

Lemma 7 (see [15, 16]). Let Ω ∈ R𝑛
++

be a symmetric
and harmonically convex set with inner points and let 𝜑 :

Ω → R
++

be a continuously symmetric function which is
differentiable in Ω0. Then 𝜑 is Schur harmonically convex
(Schur harmonically concave) on Ω if and only if

(𝑥
1
− 𝑥
2
) (𝑥
2

1

𝜕𝜑

𝜕𝑥
1

− 𝑥
2

2

𝜕𝜑

𝜕𝑥
2

) ≥ 0 (≤ 0) . (11)

Schur convex, Schur geometrically convex, and Schur harmon-
ically convex were introduced by Marshall et al. [13], Zhang
[14], and Chu and Sun [15], respectively, and played a key
role in analytic inequalities [1–36]. Moreover, the theory of
convex functions and Schur convex functions is one of the most
important research fields in modern analysis and geometry.
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Recently, Yang presents the Schur 𝑓-convexity in [7] as
follows.

Definition 8 (see [7–9]). Let Ω ⊆ R𝑛 be a set with nonempty
interior and𝑓 a strictly monotone function defined onΩ. Let

𝑓 (x) = (𝑓 (𝑥
1
) , 𝑓 (𝑥

2
) , . . . , 𝑓 (𝑥

𝑛
)) ,

𝑓 (y) = (𝑓 (𝑦
1
) , 𝑓 (𝑦

2
) , . . . , 𝑓 (𝑦

𝑛
)) .

(12)

Then function 𝜑 : Ω → R is said to be Schur f -convex onΩ
if 𝑓(x) ≺ 𝑓(y) onΩ implies 𝜓(x) ≤ 𝜓(y).
𝜓 is said to be Schur f -concave if −𝜓 is Schur f -convex.

Take 𝑓(𝑥) = 𝑥, ln𝑥, 𝑥−1 in Definition 8, it yields the
Schur convexity, Schur geometrical convexity, and Schur
harmonic convexity. It is clear that the Schur f -convexity is
a generalization of the Schur convexity mentioned above. In
general, we have the following.

Definition 9 (see [7–9]). Let 𝑓 : R
++
→ R be defined by

𝑓(𝑥) = (𝑥
𝑚

− 1)/𝑚 if 𝑚 ̸= 0 and 𝑓(𝑥) = ln𝑥 if 𝑚 = 0. Then
function 𝜓 : Ω ⊆ R𝑛

++
→ R is said to be Schur m-power

convex on Ω if 𝑓(x) ≺ 𝑓(y) on Ω implies 𝜓(x) ≤ 𝜓(y).
𝜓 is said to be Schur m-power concave if −𝜓 is Schur m-

power convex.

Lemma 10 (see [7–9]). Let 𝜓 : Ω ⊆ R𝑛
++
→ R be continuous

onΩ and differentiable inΩ0. Then𝜓 is schur𝑚-power convex
(Schur𝑚-power concave) onΩ if and only if 𝜓 is symmetric on
Ω and

𝑥
𝑚

1
− 𝑥
𝑚

2

𝑚
(𝑥
1−𝑚

1

𝜕𝜑

𝜕𝑥
1

− 𝑥
1−𝑚

2

𝜕𝜑

𝜕𝑥
2

)

≥ 0 (≤ 0) , 𝑖𝑓 𝑚 ̸= 0,

(ln𝑥
1
− ln𝑥

2
) (𝑥
1

𝜕𝜑

𝜕𝑥
1

− 𝑥
2

𝜕𝜑

𝜕𝑥
2

)

≥ 0 (≤ 0) , 𝑖𝑓 𝑚 ̸= 0,

(13)

hold for any x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ Ω

0 with 𝑥
1
̸= 𝑥
2
, where

Ω ⊆ R𝑛
++

is a symmetric set with nonempty interior Ω0.

The following lemma is clearly due to the monotonicity
property of the function 𝑥𝑝 on R

++
.

Lemma 11 (see [10]). For 𝑥
1
, 𝑥
2
> 0 with 𝑥

1
̸= 𝑥
2
, let 𝑈 be

defined by

𝑈 (𝑝; 𝑥
1
, 𝑥
2
) :=

{{{{

{{{{

{

𝑥
𝑝

1
− 𝑥
𝑝

2

𝑝 (𝑥
1
− 𝑥
2
)
, 𝑖𝑓 𝑝 ̸= 0,

ln𝑥
1
− ln𝑥

2

𝑥
1
− 𝑥
2

, 𝑖𝑓 𝑝 = 0.

(14)

Then sgn ((𝑥𝑝
1
− 𝑥
𝑝

2
)/𝑝(𝑥

1
− 𝑥
2
)) = 1, (i.e., 𝑈(𝑝; 𝑥

1
, 𝑥
2
) >

0.)

Remark 12 (see [10]). By Lemma 11, we see that

sgn(
𝑥
𝑝

1
− 𝑥
𝑝

2

𝑝
) = sgn (𝑥

1
− 𝑥
2
) if 𝑝 ̸= 0,

sgn (ln𝑥
1
− ln𝑥

2
) = sgn (𝑥

1
− 𝑥
2
) .

(15)

Then the two discrimination inequalities in Lemma 10 are
equivalent to

(𝑥
1
− 𝑥
2
) (𝑥
1−𝑚

1

𝜕𝜑

𝜕𝑥
1

− 𝑥
1−𝑚

2

𝜕𝜑

𝜕𝑥
2

) ≥ (≤) 0. (16)

Definition 13 (see [3, 17]). Function 𝑓 : 𝐼 ⊂ 𝑅
++
→ 𝑅
++

is
said to be multipicatively convex if

𝑥, 𝑦 ∈ 𝐼, 𝜇 ∈ [0, 1] 󳨐⇒ 𝑓(𝑥
1−𝜇

𝑦
𝜇

) ≤ 𝑓(𝑥)
1−𝜇

𝑓(𝑦)
𝜇

. (17)

The following results have been proven, respectively.

Lemma 14 (see [17]). A continuous function 𝑓 : 𝐼 ⊂ 𝑅
++
→

𝑅
++

is multiplicatively convex if and only if

𝑥, 𝑦 ∈ 𝐼 󳨐⇒ 𝑓 (√𝑥𝑦) ≤ √𝑓 (𝑥) 𝑓 (𝑦), (18)

or

𝑥
1
, . . . , 𝑥

𝑛
∈ 𝐼 󳨐⇒ 𝑓 ( 𝑛√𝑥

1
, . . . , 𝑥

𝑛
) ≤

𝑛
√𝑓 (𝑥

1
) ⋅ ⋅ ⋅ 𝑓 (𝑥

𝑛
).

(19)

Lemma 15 (see [17]). Assume that 𝑓 : 𝐼 ⊂ 𝑅
++
→ 𝑅

++

is a differential function. Then the following assertions are
equivalent.

(i) f is multiplicatively convex.

(ii) The function 𝑥𝑓󸀠(𝑥)/𝑓(𝑥) is nondecreasing.

Moreover, if𝑓 is twice differentiable, then𝑓 is multiplica-
tively convex if and only if

𝑥 [𝑓 (𝑥) 𝑓
󸀠󸀠

(𝑥) − 𝑓
󸀠
2

(𝑥)] + 𝑓 (𝑥) 𝑓
󸀠

(𝑥) ≥ 0 ∀𝑥 > 0.

(20)

3. Main Results and Proof

Our main results are stated as follows.

Theorem 16. If 𝑓 is increasing and multiplicatively convex,
then for 𝑚 ≤ 0 and 𝑟 > 0, 𝐹

𝑛,𝑘
(x, 𝑟) defined in (7) are Schur

m-power convex on Ω, where 𝑘 = 1, 2, . . . , 𝑛.

Take𝑚 = 0, −1 in Theorem 16, we get the following Cor-
ollaries.

Corollary 17. If 𝑓 is increasing and multiplicatively convex,
then for any 𝑘 = 1, 2, . . . , 𝑛 and 𝑟 > 0, 𝐹

𝑛,𝑘
(x, 𝑟) defined in (7)

are Schur geometrically convex on Ω.
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Corollary 18. If 𝑓 is increasing and multiplicatively convex,
then for any 𝑘 = 1, 2, . . . , 𝑛 and 𝑟 > 0, 𝐹

𝑛,𝑘
(x, 𝑟) defined in (7)

are Schur harmonically convex function on Ω.

Theorem 19. Let x = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ R𝑛
++
, and ∑𝑛

𝑖=1
𝑥
𝑖
= 𝑠.

If 𝑓 is increasing and multiplicatively convex, then for any 𝑘 =
1, 2, . . . , 𝑛 and 𝑟 > 0, one has

𝐹
𝑛,𝑘
(
𝑛 − 𝜇

𝑠 − 𝜇x
, 𝑟) ≤ 𝐹

𝑛,𝑘
(
1

x
, 𝑟) , 0 ≤ 𝜇 ≤ 1;

𝐹
𝑛,𝑘
(
𝑛 + 𝜇

𝑠 + 𝜇x
, 𝑟) ≤ 𝐹

𝑛,𝑘
(
1

x
, 𝑟) , 0 ≤ 𝜇 ≤ 1.

(21)

To prove themain results, we first establish some lemmas.

Lemma 20. Let the function 𝑓 : 𝐼 ⊂ R
++

→ R
++

be
continuous on Ω and differentiable in the interior of Ω. For
𝑚 ≤ 0, if 𝑓 is increasing and multiplicatively convex, then
𝑥
1−𝑚

𝑓
󸀠

(𝑥)/𝑓(𝑥) is increasing.

Proof. Since 𝑓 is multiplicatively convex, and by using
Lemma 15, we can easily see that 𝑥𝑓󸀠(𝑥)/𝑓(𝑥) is increasing.
Further, by applying 𝑓(𝑥) ≥ 0 and the monotonicity of 𝑓, it
follows that 𝑥1−𝑚𝑓󸀠(𝑥)/𝑓(𝑥) is also increasing for 𝑥 > 0 and
𝑚 ≤ 0.

Lemma 21. If 𝑟 > 0, 𝑐 > 0 and 𝑚 ≤ 0, the function 𝑔(𝑥) =
(𝑥
𝑟

− 𝑐)
(𝑟−𝑚)/𝑟

/𝑥
𝑟 is increasing.

Proof. We can easily derive that

𝑔
󸀠

(𝑥) =
1

𝑥2𝑟
[
𝑟 − 𝑚

𝑟
(𝑥
𝑟

− 𝑐)
−𝑚/𝑟

⋅ 𝑟𝑥
𝑟−1

⋅ 𝑥
𝑟

− 𝑟𝑥
𝑟−1

(𝑥
𝑟

− 𝑐)
(𝑟−𝑚)/𝑟

]

=
1

𝑥2𝑟
𝑟𝑥
𝑟−1

(𝑥
𝑟

− 𝑐)
−𝑚/𝑟

[−
𝑚

𝑟
𝑥
𝑟

+ 𝑐] ≥ 0.

(22)

So the function 𝑔(𝑥) is increasing.

Lemma 22. Let 𝑓 : Ω ⊂ R𝑛
++
→ R

++
be continuous on Ω

and differentiable in the interior of Ω. For 𝑚 ≤ 0 and 𝑟 > 0, if
𝑓 is increasing and multiplicatively convex, then

𝐼 = 𝐹
𝑛,2
(x, 𝑟) (𝑥

1
− 𝑥
2
) (𝑥
𝑟−𝑚

1
− 𝑥
𝑟−𝑚

2
)

×

𝑓
󸀠

[(𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟

]

(𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟−1

≥ 0,

(23)

𝐼𝐼 = 𝐹
𝑛,2
(x, 𝑟) (𝑥

1
− 𝑥
2
)

×

𝑛

∑

𝑗=3

{{

{{

{

𝑓
󸀠

[(𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

⋅ (𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟−1

⋅ 𝑥
𝑟−𝑚

1

−

𝑓
󸀠

[(𝑥
𝑟

2
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

𝑓 [(𝑥
𝑟

2
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

⋅ (𝑥
𝑟−𝑚

2
+ 𝑥
𝑟

𝑗
)
1/𝑟−1

⋅ 𝑥
𝑟

2

}}

}}

}

≥ 0.

(24)

Proof. Firstly, we prove that (23) holds. Since𝑚 ≤ 0 and 𝑟 > 0,
then

(𝑥
1
− 𝑥
2
) (𝑥
𝑟−𝑚

1
− 𝑥
𝑟−𝑚

2
) ≥ 0. (25)

So, we deduce that 𝐼 ≥ 0.
Secondly, we prove that (24) holds. Set 𝑢 = (𝑥𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟,

V = (𝑥𝑟
2
+ 𝑥
𝑟

𝑗
)
1/𝑟, obviously, 𝑢, V ∈ Ω. One can easily find that

𝐼𝐼 = 𝐹
𝑛,2
(x, 𝑟) 𝑥1 − 𝑥2

𝑢 − V
(𝑢 − V)

×

𝑛

∑

𝑗=3

{

{

{

𝑢𝑓
󸀠

(𝑢)

𝑓 (𝑢)
⋅

(𝑢
𝑟

− 𝑥
𝑟

𝑗
)
(𝑟−𝑚)/𝑟

𝑢𝑟

−
V𝑓󸀠 (V)
𝑓 (V)

⋅

(𝑢
𝑟

− 𝑥
𝑟

𝑗
)
(𝑟−𝑚)/𝑟

V𝑟
}

}

}

.

(26)

Because 𝑓 is multiplicatively convex, and by Lemma 15, we
get

(𝑢 − V) (
𝑢𝑓
󸀠

(𝑢)

𝑓 (𝑢)
−
V𝑓󸀠 (V)
𝑓 (V)

) ≥ 0. (27)

On the other hand, for 𝑟 > 0 and 𝑚 ≤ 0, we easily know
that the functions 𝑥𝑟 and (𝑥𝑟 + 𝑥𝑟

𝑗
)
1/𝑟 are increasing about 𝑥.

By applying Lemma 21, we have

(𝑥
1
− 𝑥
2
) (𝑥
𝑟

1
− 𝑥
𝑟

2
) ≥ 0;

𝑥
1
− 𝑥
2

𝑢 − V
=

(𝑥
1
− 𝑥
2
)
2

(𝑥
1
− 𝑥
2
) (𝑢 − V)

≥ 0;

(𝑢 − V)
{

{

{

𝑢𝑓
󸀠

(𝑢)

𝑓 (𝑢)
⋅

(𝑢
𝑟

− 𝑥
𝑟

𝑗
)
(𝑟−𝑚)/𝑟

𝑢𝑟

−
V𝑓󸀠 (V)
𝑓 (V)

⋅

(𝑢
𝑟

− 𝑥
𝑟

𝑗
)
(𝑟−𝑚)/𝑟

V𝑟
}

}

}

≥ 0.

(28)

Because the function 𝑓 is increasing and 𝑓 ≥ 0, and
applying (27)-(28), we obtain 𝐼𝐼 ≥ 0.
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Lemma 23. Let 𝑓 : Ω ⊂ R𝑛
++
→ R

++
be continuous on Ω

and differentiable in the interior of Ω. If 𝑓 is increasing and
multiplicatively convex, then for𝑚 ≤ 0 and 𝑟 > 0, one has

𝐼𝐼𝐼 = 𝐹
𝑛,𝑘
(x, 𝑟) (𝑥

1
− 𝑥
2
) (𝑥
𝑟−𝑚

1
− 𝑥
𝑟−𝑚

2
)

× ∑

2≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘−2
≤𝑛

𝑓
󸀠

[(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

≥ 0,

𝐼𝑉 = 𝐹
𝑛,𝑘
(x, 𝑟) (𝑥

1
− 𝑥
2
)

× ∑

3≤𝑖
1
<𝑖
2
<...<𝑖
𝑘−1
≤𝑛

{{{

{{{

{

𝑓
󸀠

[(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

⋅ (𝑥
𝑟

1
+

𝑘−1

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟−1

⋅ 𝑥
𝑟−𝑚

1
−

𝑓
󸀠

[(𝑥
𝑟

2
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

𝑓 [(𝑥
𝑟

2
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

⋅ (𝑥
𝑟

2
+

𝑘−1

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟−1

⋅ 𝑥
𝑟−𝑚

2

}}}

}}}

}

≥ 0.

(29)

Proof. Set 𝑢 = (𝑥𝑟
1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)
1/𝑟

, V = (𝑥𝑟
1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)
1/𝑟

; it is
easy that 𝑢, V ∈ Ω. Then

𝐼𝑉 = 𝐹
𝑛,𝑘
(x, 𝑟) 𝑥1 − 𝑥2

𝑢 − V
(𝑢 − V)

× ∑

3≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘−1
≤𝑛

{
𝑢𝑓
󸀠

(𝑢)

𝑓 (𝑢)
⋅
(𝑢
𝑟

− 𝑤)
(𝑟−𝑚)/𝑟

𝑢𝑟

−
V𝑓󸀠 (V)
𝑓 (V)

⋅
(V𝑟 − 𝑤)(𝑟−𝑚)/𝑟

V𝑟
} ,

(30)

where 𝑤 = ∑𝑘−1
𝑗=1
𝑥
𝑟

𝑖
𝑗

.
By (27)-(28) and the monotonicity property of the non-

negative function 𝑓, we get that 𝐼𝐼𝐼 ≥ 0, 𝐼𝑉 ≥ 0.

Proof of Theorem 16. By Lemma 10 and Remark 12, we only
need to prove that

(𝑥
1
− 𝑥
2
) (𝑥
1−𝑚

1

𝜕𝐹
𝑛,𝑘
(x, 𝑟)
𝑥
1

− 𝑥
1−𝑚

2

𝜕𝐹
𝑛,𝑘
(x, 𝑟)
𝑥
2

) ≥ 0. (31)

To prove the above inequality, we consider the following
three cases for 𝑘.

Case 1. For 𝑘 = 1. It is clear that 𝐹
𝑛,1
(x, 𝑟) = ∏𝑛

𝑖=1
𝑓(𝑥
𝑖
). From

(31), it follows that

Δ
1
= (𝑥
1
− 𝑥
2
) (𝑥
1−𝑚

1

𝜕𝐹
𝑛,1
(x, 𝑟)
𝑥
1

− 𝑥
1−𝑚

2

𝜕𝐹
𝑛,1
(x, 𝑟)
𝑥
2

)

= (𝑥
1
− 𝑥
2
) (𝑥
1−𝑚

1

𝑓
󸀠

(𝑥
1
)

𝑓 (𝑥
1
)
− 𝑥
1−𝑚

2

𝑓
󸀠

(𝑥
2
)

𝑓 (𝑥
2
)
)

𝑛

∏

𝑖=1

𝑓 (𝑥
𝑖
) .

(32)

By Lemma 20, and 𝑓(𝑥) ≥ 0, it follows that Δ
1
≥ 0.

Case 2. For 𝑘 = 2, 𝑟 > 0, we have 𝐹
𝑛,2
(x, 𝑟) =

∏
1≤𝑖<𝑗≤𝑛

𝑓[(𝑥
𝑟

𝑖
+ 𝑥
𝑟

𝑗
)
1/𝑟

]. We can easily derive that

ln𝐹
𝑛,2
(x, 𝑟) = ∑

1≤𝑖<𝑗≤𝑛

ln𝑓 [(𝑥𝑟
𝑖
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

=

𝑛

∑

𝑗=2

ln𝑓[(𝑥𝑟
1
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

+ ∑

2≤𝑖<𝑗≤𝑛

ln𝑓[(𝑥𝑟
𝑖
+ 𝑥
𝑟

𝑗
)
1/𝑟

] .

(33)

By differentiating the above equation with respect to 𝑥
1
, we

obtain

𝜕𝐹
𝑛,2
(x, 𝑟)
𝑥
1

= 𝐹
𝑛,2
(x, 𝑟) ⋅

𝜕 ln𝐹
𝑛,2
(x, 𝑟)

𝑥
1

= 𝐹
𝑛,2
(x, 𝑟) ⋅

{{

{{

{

𝑛

∑

𝑗=2

𝑓
󸀠

[(𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

⋅ (𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟−1

⋅ 𝑥
𝑟−1

1

}}

}}

}

= 𝐹
𝑛,2
(x, 𝑟)

{

{

{

𝑓
󸀠

[(𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟

]

⋅ (𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟−1

⋅ 𝑥
𝑟−1

1

+

𝑛

∑

𝑗=3

𝑓
󸀠

[(𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

⋅ (𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟−1

⋅ 𝑥
𝑟−1

1

}

}

}

.

(34)
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Similarly, we have

𝜕𝐹
𝑛,2
(x, 𝑟)
𝑥
2

= 𝐹
𝑛,2
(x, 𝑟)

×

{

{

{

𝑓
󸀠

[(𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟

]

⋅ (𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟−1

⋅ 𝑥
𝑟−1

2

+

𝑛

∑

𝑗=3

𝑓
󸀠

[(𝑥
𝑟

2
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

𝑓 [(𝑥
𝑟

2
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

⋅ (𝑥
𝑟

2
+ 𝑥
𝑟

𝑗
)
1/𝑟−1

⋅ 𝑥
𝑟−1

2

}

}

}

.

(35)

So, from (34) and (35), and by applying Lemma 22, we
have

Δ
2
= (𝑥
1
− 𝑥
2
) (𝑥
1−𝑚

1

𝜕𝐹
𝑛,2
(x, 𝑟)
𝑥
1

− 𝑥
1−𝑚

2

𝜕𝐹
𝑛,2
(x, 𝑟)
𝑥
2

)

= 𝐹
𝑛,2
(x, 𝑟) (𝑥

1
− 𝑥
2
) (𝑥
𝑟−𝑚

1
− 𝑥
𝑟−𝑚

2
)

𝑓
󸀠

[(𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟

]

× (𝑥
𝑟

1
+ 𝑥
𝑟

2
)
1/𝑟−1

+ 𝐹
𝑛,2
(x, 𝑟) (𝑥

1
− 𝑥
2
)

⋅

𝑛

∑

𝑗=3

{{

{{

{

𝑓
󸀠

[(𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

⋅ (𝑥
𝑟

1
+ 𝑥
𝑟

𝑗
)
1/𝑟−1

⋅ 𝑥
𝑟−𝑚

1

−

𝑓
󸀠

[(𝑥
𝑟

2
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

𝑓 [(𝑥
𝑟

2
+ 𝑥
𝑟

𝑗
)
1/𝑟

]

⋅ (𝑥
𝑟

2
+ 𝑥
𝑟

𝑗
)
1/𝑟−1

⋅ 𝑥
𝑟−𝑚

2

}}

}}

}

= 𝐼 + 𝐼𝐼 ≥ 0.

(36)

So we get that Δ
2
≥ 0.

Case 3. For 3 ≤ 𝑘 ≤ 𝑛, 𝑟 > 0, similarly to the discussion of
Case 2, we have

ln𝐹
𝑛,2
(x, 𝑟) = ∑

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

ln𝑓[

[

(

𝑘

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

]

= ∑

2≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘−1
≤𝑛

ln𝑓[

[

(𝑥
𝑟

1
+

𝑘−1

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

]

+ ∑

2≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

ln𝑓[

[

(

𝑘

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

]

.

(37)

By differentiating to the above with respect to 𝑥
1
, we have

𝜕𝐹
𝑛,𝑘
(x, 𝑟)
𝑥
1

= 𝐹
𝑛,𝑘
(x, 𝑟) ⋅

𝜕 ln𝐹
𝑛,𝑘
(x, 𝑟)

𝑥
1

= 𝐹
𝑛,𝑘
(x, 𝑟) ⋅ ∑

2≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘−1
≤𝑛

𝑓
󸀠

[(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

⋅ (𝑥
𝑟

1
+

𝑘−1

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟−1

⋅ 𝑥
𝑟−1

1

= 𝐹
𝑛,𝑘
(x, 𝑟)

{{{

{{{

{

∑

3≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘−2
≤𝑛

𝑓
󸀠

[(𝑥
𝑟

1
+ 𝑥
𝑟

2
+ ∑
𝑘−2

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ 𝑥
𝑟

2
+ ∑
𝑘−2

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

⋅ (𝑥
𝑟

1
+ 𝑥
𝑟

2
+

𝑘−2

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟−1

⋅ 𝑥
𝑟−1

1

+ ∑

3≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘−1
≤𝑛

𝑓
󸀠

[(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

⋅ (𝑥
𝑟

1
+

𝑘−1

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟−1

⋅ 𝑥
𝑟−1

1

}}}

}}}

}

.

(38)

Similarly, we can have
𝜕𝐹
𝑛,𝑘
(x, 𝑟)
𝑥
2

= 𝐹
𝑛,𝑘
(x, 𝑟) ⋅

𝜕 ln𝐹
𝑛,𝑘
(x, 𝑟)

𝑥
2

= 𝐹
𝑛,𝑘
(x, 𝑟)

{{{

{{{

{

∑

3≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘−2
≤𝑛

𝑓
󸀠

[(𝑥
𝑟

1
+ 𝑥
𝑟

2
+ ∑
𝑘−2

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ 𝑥
𝑟

2
+ ∑
𝑘−2

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

⋅ (𝑥
𝑟

1
+ 𝑥
𝑟

2
+

𝑘−2

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟−1

⋅ 𝑥
𝑟−1

1

+ ∑

3≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘−1
≤𝑛

𝑓
󸀠

[(𝑥
𝑟

2
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

𝑓 [(𝑥
𝑟

2
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

⋅ (𝑥
𝑟

2
+

𝑘−1

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟−1

⋅ 𝑥
𝑟−1

2

}}}

}}}

}

.

(39)
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From (38) and (39), we have

Δ
3
= (𝑥
1
− 𝑥
2
) (𝑥
1−𝑚

1

𝜕𝐹
𝑛,𝑘
(x, 𝑟)

𝑥
1−𝑚

1

− 𝑥
1−𝑚

2

𝜕𝐹
𝑛,𝑘
(x, 𝑟)
𝑥
2

)

= 𝐹
𝑛,𝑘
(x, 𝑟) (𝑥

1
− 𝑥
2
) (𝑥
𝑟−𝑚

1
− 𝑥
𝑟−𝑚

2
)

× ∑

2≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘−2
≤𝑛

𝑓
󸀠

[(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

+ 𝐹
𝑛,𝑘
(x, 𝑟) (𝑥

1
− 𝑥
2
)

× ∑

3≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘−1
≤𝑛

{{{

{{{

{

𝑓
󸀠

[(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

𝑓 [(𝑥
𝑟

1
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

⋅ (𝑥
𝑟

1
+

𝑘−1

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟−1

⋅ 𝑥
𝑟−𝑚

1

−

𝑓
󸀠

[(𝑥
𝑟

2
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

𝑓 [(𝑥
𝑟

2
+ ∑
𝑘−1

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

⋅ (𝑥
𝑟

2
+

𝑘−1

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟−1

⋅ 𝑥
𝑟−𝑚

2

}}}

}}}

}

= 𝐼𝐼𝐼 + 𝐼𝑉 ≥ 0.

(40)

So we get that Δ
2
≥ 0. So the proof of Theorem 16 is

complete.

Proof of Theorem 19. Let 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ R𝑛

++
, and

∑
𝑛

𝑖=1
𝑥
𝑖
= 𝑠. From [13, 14], we have
𝑠 − 𝜇𝑥

𝑛 − 𝜇
= (
𝑠 − 𝜇𝑥

1

𝑛 − 𝜇
,
𝑠 − 𝜇𝑥

2

𝑛 − 𝜇
, . . . ,

𝑠 − 𝜇𝑥
𝑛

𝑛 − 𝜇
)

≺ (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥,

𝑠 + 𝜇𝑥

𝑛 + 𝜇
= (
𝑠 + 𝜇𝑥

1

𝑛 + 𝜇
,
𝑠 + 𝜇𝑥

2

𝑛 + 𝜇
, . . . ,

𝑠 + 𝜇𝑥
𝑛

𝑛 + 𝜇
)

≺ (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑥.

(41)

From (41), and contacting Corollaries 17 and 18, we get
(21).

4. Applications

Let 𝑥
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛 be 𝑛 positive real numbers and set

x = {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
}. The 𝑝th power mean of of order 𝑝 ∈ R

of 𝑥
𝑖
is defined by

𝑀
𝑝
(x) =

{{

{{

{

(
𝑥
𝑝

1
+ 𝑥
𝑝

2
+ ⋅ ⋅ ⋅ + 𝑥

𝑝

𝑛

𝑛
)

1/𝑝

, 𝑝 ̸= 0;

√𝑥1𝑥2 ⋅ ⋅ ⋅ 𝑥𝑛, 𝑝 = 0.

(42)

In particular, for 𝑝 = 1, 𝑝 = 0, and 𝑝 = 1 we, respectively,
get the arithmetic, the geometric, and the harmonic means of
𝑥
𝑖
, and set 𝐴

𝑛
(x) = 𝑀

1
(x) = (1/𝑛)∑𝑛

𝑖=1
𝑥
𝑖
, 𝐺
𝑛
(x) = 𝑀

0
(x) =

(∏
𝑛

𝑖=1
𝑥
𝑖
)
1/𝑛,𝐻

𝑛
(x) = 𝑀

−1
(x) = 𝑛/∑𝑛

𝑖=1
(1/𝑥
𝑖
).

In this section, some applications of the results in
Section 3 are given. Some analytic inequalities are established.
In particular, several inequalities involving the 𝑝th power
mean and the arithmetic, the geometric, or the harmonic
means are presented.

4.1. Analytic Inequalities. To establish some analytic inequal-
ities, we first give a lemma.

Lemma 24 (see [20]). Let 𝑥
𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑛. Then the

following relations is known:

(𝐴
𝑛
(x) , 𝐴

𝑛
(x) , . . . , 𝐴

𝑛
(x)) ≺ (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ;

ln (𝐺
𝑛
(x) , 𝐺

𝑛
(x) , . . . , 𝐺

𝑛
(x)) ≺ ln (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ;

(
1

𝐻
𝑛
(x)
,
1

𝐻
𝑛
(x)
, . . . ,

1

𝐻
𝑛
(x)
) ≺ (

1

𝑥
1

,
1

𝑥
2

, . . . ,
1

𝑥
𝑛

) .

(43)

By applying Lemma 24 and Theorem 16, Corollaries 17
and 18, we can get the following several theorems and
corollaries.

Theorem 25. For 𝑟 > 0 and 𝑘 = 1, 2, . . . , 𝑛, the symmetric
functions

𝑈
𝑘
(x, 𝑟) = ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

tan(
𝑘

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟

(44)

are Schur 𝑚-power convex in R𝑛
++

when 𝑚 ≤ 0. In particular,
𝑈
𝑘
(x, 𝑟) are Schur geometrically convex and Schur harmoni-

cally convex in R𝑛
++
.

Proof. For𝑥 ∈ R
++
, let𝑓(𝑥) = tan𝑥.Then𝑓󸀠(𝑥) = 1/cos2𝑥 =

sec2𝑥 ≥ 0 and

𝑥 [𝑓 (𝑥) 𝑓
󸀠󸀠

(𝑥) − (𝑓
󸀠

(𝑥))
2

] + 𝑓 (𝑥) 𝑓
󸀠

(𝑥)

= sec2𝑥 (𝑥 sec2𝑥 − 2𝑥 + tan𝑥) .
(45)

Let 𝑔(𝑥) = 𝑥 sec2𝑥 − 2𝑥 + tan𝑥; then 𝑔󸀠(𝑥) = 2(1 +

𝑥 tan𝑥)sec2𝑥 − 2 ≥ 0, and 𝑔(𝑥) is increasing. From the
monotonicity of 𝑔(𝑥), we get that

𝑥 [𝑓 (𝑥) 𝑓
󸀠󸀠

(𝑥) − (𝑓
󸀠

(𝑥))
2

] + 𝑓 (𝑥) 𝑓
󸀠

(𝑥)

= sec2𝑥𝑔 (𝑥) ≥ 𝑔 (0) = 0.
(46)

Therefore, 𝑓(𝑥) is increasing and multiplicatively convex in
R𝑛
++
. By applyingTheorem 16, we obtain the result.

By usingTheorem 25 and Lemma 24, we get the following
inequalities.
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Corollary 26. For x ∈ R𝑛
++
, then

𝑛

∏

𝑖=1

(tan 1
𝑥
𝑖

)

1/𝑛

≥ tan( 1

𝐴 (x)
) ;

𝑛

∏

𝑖=1

(tan𝑥
𝑖
)
1/𝑛

≥ tan𝐺 (x) ;

𝑛

∏

𝑖=1

(tan𝑥
𝑖
)
1/𝑛

≥ tan𝐻(x) .

(47)

Theorem 27. For 𝑟 > 0 and 𝑘 = 1, 2, . . . , 𝑛, the symmetric
functions

𝑉
𝑘
(x, 𝑟) = ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

arcsin(
𝑘

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟

(48)

are Schur 𝑚-power convex in (0, 1)𝑛 when 𝑚 ≤ 0. In
particular, 𝑉

𝑘
(x, 𝑟) are Schur geometrically convex and Schur

harmonically convex in (0, 1)𝑛.

Proof. For 𝑥 ∈ (0, 1), let 𝑓(𝑥) = arcsin𝑥. Then 𝑓󸀠(𝑥) =
1/√1 − 𝑥2 ≥ 0 and

𝑥 [𝑓 (𝑥) 𝑓
󸀠󸀠

(𝑥) − (𝑓
󸀠

(𝑥))
2

] + 𝑓 (𝑥) 𝑓
󸀠

(𝑥)

=
arcsin𝑥 − 𝑥√1 − 𝑥2

(1 − 𝑥2)√1 − 𝑥2
.

(49)

Let ℎ (𝑥) = arctan𝑥 − 𝑥2 arctan𝑥 − 𝑥; then ℎ󸀠(𝑥) =
2𝑥
2

/√1 − 𝑥2 ≥ 0, and ℎ(𝑥) is increasing. From the
monotonicity of ℎ(𝑥), we get that

𝑥 [𝑓 (𝑥) 𝑓
󸀠󸀠

(𝑥) − (𝑓
󸀠

(𝑥))
2

] + 𝑓 (𝑥) 𝑓
󸀠

(𝑥)

=
ℎ (𝑥)

(1 − 𝑥2)√1 − 𝑥2
≥ ℎ (0) = 0.

(50)

Therefore, 𝑓(𝑥) is increasing and multiplicatively convex in
R𝑛
++
. By applyingTheorem 16, we obtain the result.

By usingTheorem 27 and Lemma 24, we get the following
inequalities.

Corollary 28. For x ∈ (0, 1)𝑛, then
𝑛

∏

𝑖=1

(arcsin 1
𝑥
𝑖

)

1/𝑛

≥ arcsin( 1

𝐴 (x)
) ;

𝑛

∏

𝑖=1

(arcsin𝑥
𝑖
)
1/𝑛

≥ arcsin𝐺 (x) ;

𝑛

∏

𝑖=1

(arcsin𝑥
𝑖
)
1/𝑛

≥ arcsin𝐻(x) .

(51)

Theorem 29. For 𝑟 > 0 and 𝑘 = 1, 2, . . . , 𝑛, the symmetric
functions

𝑀
𝑘
(x, 𝑟) = ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(

𝑘

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟

(52)

are Schur m-power convex in R𝑛
++

when 𝑚 ≤ 0. In particular,
𝑀
𝑘
(x, 𝑟) are Schur geometrically convex in R𝑛

++
and Schur

harmonically convex in R𝑛
++
.

Proof. Let 𝑓(𝑥) = 𝑥, 𝑥 ∈ R
++
. We can easily see that 𝑓(𝑥)

is increasing and multiplicatively convex inR
++
. By applying

Theorem 16, we obtain the result.

By using Theorem 29 and Lemma 24, we obtain the
following results.

Corollary 30. Let x ∈ R
++
, for 𝑟 > 0 and 𝑘 = 1, 2, . . . , 𝑛; one

has

(𝑘
1/𝑟

1

𝐴
𝑛
(x)
)

𝐶
𝑘

𝑛

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(

𝑘

∑

𝑗=1

1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟

, (53)

(𝑘
1/𝑟

𝐺
𝑛
(x))
𝐶
𝑘

𝑛

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(

𝑘

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟

, (54)

(𝑘
1/𝑟

𝐻
𝑛
(x))
𝐶
𝑘

𝑛

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(

𝑘

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟

. (55)

In particular, take 𝑘 = 1 in (53); we get the known A-G-
H inequality. And take 𝑘 = 𝑛 in (53); we get the following
inequalities:

(

𝑛

∑

𝑖=1

1

𝑥
𝑟

𝑖

)

1/𝑟

⋅

𝑛

∑

𝑖=1

𝑥
𝑖
≥ 𝑛
1/𝑟+1

. (56)

Theorem 31. For 𝑟 > 0 and 𝑘 = 1, 2, . . . , 𝑛, the symmetric
functions

𝑁
𝑘
(x, 𝑟) = ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(∑
𝑘

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

1 − (∑
𝑘

𝑗=1
𝑥
𝑘

𝑖
𝑗

)

1/𝑟

(57)

are Schurm-power convex on (0, 1)𝑛 when𝑚 ≤ 0. In particular,
𝑁
𝑘
(x, 𝑟) are Schur geometrically convex on (0, 1)𝑛 and Schur

harmonically convex on (0, 1)𝑛.

Proof. Let 𝑓(𝑥) = 𝑥/(1 − 𝑥), 𝑥 ∈ (0, 1). Then 𝑓󸀠(𝑥) =
(1/(1 − 𝑥)

2

) ≥ 0, and

𝑥 [𝑓 (𝑥) 𝑓
󸀠󸀠

(𝑥) − 𝑓
󸀠
2

(𝑥)] + 𝑓 (𝑥) 𝑓
󸀠

(𝑥) =
𝑥
2

(1 − 𝑥)
4
≥ 0.

(58)

So 𝑓(𝑥) is increasing and multiplicatively convex in (0, 1). By
applyingTheorem 16, we obtain the result.

By using Theorem 31 and Lemma 24, we obtain the
following results.
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Corollary 32. Let x ∈ (0, 1)𝑛, for 𝑟 > 0 and 𝑘 = 1, 2, . . . , 𝑛,
one has

(
𝑘
1/𝑟

𝐺
𝑛
(x)

1 − 𝑘1/𝑟𝐺
𝑛
(x)
)

𝐶
𝑘

𝑛

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(∑
𝑘

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

1 − (∑
𝑘

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

,

(
𝑘
1/𝑟

𝐻
𝑛
(x)

1 − 𝑘1/𝑟𝐻
𝑛
(x)
)

𝐶
𝑘

𝑛

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(∑
𝑘

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

1 − (∑
𝑘

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

.

(59)

In particular, take 𝑘 = 1 or 𝑘 = 𝑛 in (59), we get the
following inequalities:

(
𝐺
𝑛
(x)

1 − 𝐺
𝑛
(x)
)

𝑛

≤

𝑛

∏

𝑖=1

𝑥
𝑖

1 − 𝑥
𝑖

,

(
𝐻
𝑛
(x)

1 − 𝐻
𝑛
(x)
)

𝑛

≤

𝑛

∏

𝑖=1

𝑥
𝑖

1 − 𝑥
𝑖

,

𝐺
𝑛
(x)

1 − 𝑛1/𝑟𝐺
𝑛
(x)
≤

𝑀
𝑟
(x)

1 − 𝑛1/𝑟𝑀
𝑟
(x)
,

𝐻
𝑛
(x)

1 − 𝑛1/𝑟𝐻
𝑛
(x)
≤

𝑀
𝑟
(x)

1 − 𝑛1/𝑟𝑀
𝑟
(x)
.

(60)

Theorem 33. For 𝑟 > 0 and 𝑘 = 1, 2, . . . , 𝑛, the symmetric
functions

𝐼
𝑘
(x, 𝑟) = ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

1 + (∑
𝑘

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

1 − (∑
𝑘

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

(61)

are Schurm-power convex on (0, 1)𝑛 when𝑚 ≤ 0. In particular,
𝐼
𝑘
(x, 𝑟) are Schur geometrically convex and Schur harmonically

convex on (0, 1)𝑛.

Proof. Let 𝑓(𝑥) = 𝑥/(1 − 𝑥), 𝑥 ∈ (0, 1). Then 𝑓󸀠(𝑥) =
(2/(1 − 𝑥)

2

) ≥ 0, and

𝑥 [𝑓 (𝑥) 𝑓
󸀠󸀠

(𝑥) − 𝑓
󸀠
2

(𝑥)] + 𝑓 (𝑥) 𝑓
󸀠

(𝑥) =
2 − 𝑥
2

(1 − 𝑥)
4
≥ 0.

(62)

So 𝑓(𝑥) is increasing and multiplicatively convex in (0, 1). By
applyingTheorem 16, we obtain the result.

By usingTheorem 33 and Lemma 24, we get the following
inequalities.

Corollary 34. Let x ∈ (0, 1)𝑛, for 𝑟 > 0 and 𝑘 = 1, 2, . . . , 𝑛;
one has

(
1 + 𝑘
1/𝑟

𝐺
𝑛
(x)

1 − 𝑘1/𝑟𝐺
𝑛
(x)
)

𝐶
𝑘

𝑛

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

1 + (∑
𝑘

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

1 − (∑
𝑘

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

,

(
1 + 𝑘
1/𝑟

𝐻
𝑛
(x)

1 − 𝑘1/𝑟𝐻
𝑛
(x)
)

𝐶
𝑘

𝑛

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

1 + (∑
𝑘

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

1 − (∑
𝑘

𝑗=1
𝑥
𝑟

𝑖
𝑗

)

1/𝑟

.

(63)

In particular, take 𝑘 = 1 or 𝑘 = 𝑛 in (63); we get the
following inequalities:

(
1 + 𝐺
𝑛
(x)

1 − 𝐺
𝑛
(x)
)

𝑛

≤

𝑛

∏

𝑖=1

1 + 𝑥
𝑖

1 − 𝑥
𝑖

,

(
1 + 𝐻

𝑛
(x)

1 − 𝐻
𝑛
(x)
)

𝑛

≤

𝑛

∏

𝑖=1

1 + 𝑥
𝑖

1 − 𝑥
𝑖

,

1 + 𝑛
1/𝑟

𝐺
𝑛
(x)

1 − 𝑛1/𝑟𝐺
𝑛
(x)
≤
1 + 𝑛
1/𝑟

𝑀
𝑟
(x)

1 − 𝑛1/𝑟𝑀
𝑟
(x)
,

1 + 𝑛
1/𝑟

𝐻
𝑛
(x)

1 − 𝑛1/𝑟𝐻
𝑛
(x)
≤
1 + 𝑛
1/𝑟

𝑀
𝑟
(x)

1 − 𝑛1/𝑟𝑀
𝑟
(x)
.

(64)

Theorem 35. For 𝑟 > 0 and 𝑘 = 1, 2, . . . , 𝑛, the symmetric
functions

𝑇
𝑘
(x, 𝑟) = ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

[

[

(

𝑘

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

1/𝑟

]

]

(∑
𝑟

𝑗=1
𝑥
𝑟

𝑖𝑗
)
1/𝑟

(65)

are Schur 𝑚-power convex on (𝑒−1, +∞)𝑛 when 𝑚 ≤ 0. In
particular, 𝑇

𝑘
(x, 𝑟) are Schur geometrically convex and Schur

harmonically convex on (𝑒−1, +∞)𝑛.

Proof. Let 𝑓(𝑥) = 𝑥𝑥, 𝑥 ∈ (𝑒−1, +∞). Then 𝑓󸀠(𝑥) = 𝑥𝑥(ln𝑥 +
1) ≥ 0, and

𝑥 [𝑓 (𝑥) 𝑓
󸀠󸀠

(𝑥) − 𝑓
󸀠
2

(𝑥)] + 𝑓 (𝑥) 𝑓
󸀠

(𝑥)

= 𝑓
2

(𝑥) (ln𝑥 + 2) ≥ 0.
(66)

So 𝑓(𝑥) is increasing and multiplicatively convex on
(𝑒
−1

, +∞). By applyingTheorem 16, we obtain the result.

By usingTheorem 35 and Lemma 24, we get the following
inequalities.

Corollary 36. Let x ∈ (𝑒
−1

, +∞)
𝑛, for 𝑟 > 0 and 𝑘 =

1, 2, . . . , 𝑛; one has

(𝑘
1/𝑟

1

𝐴
𝑛
(x)
)

𝑘
1/𝑟
(1/𝐴
𝑛
(x))𝐶𝑘
𝑛

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅ <𝑖

𝑘
≤𝑛

(

𝑘

∑

𝑗=1

1

𝑥
𝑟

𝑖
𝑗

)

(1/𝑟)(∑
𝑘

𝑗=1
(1/𝑥
𝑟

𝑖𝑗
))

1/𝑟

,

(𝑘
1/𝑟

𝐺
𝑛
(x))
𝑘
1/𝑟
𝐺
𝑛
(x)𝐶𝑘
𝑛

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(

𝑘

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

(1/𝑟) (∑
𝑘

𝑗=1
𝑥
𝑟

𝑖𝑗
)

1/𝑟

,
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(𝑘
1/𝑟

𝐻
𝑛
(x))
𝑘
1/𝑟
𝐻
𝑛
(x)𝐶𝑘
𝑛

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(

𝑘

∑

𝑗=1

𝑥
𝑟

𝑖
𝑗

)

(1/𝑟) (∑
𝑘

𝑗=1
𝑥
𝑟

𝑖𝑗
)

1/𝑟

.

(67)

In particular, take 𝑘 = 1 or 𝑘 = 𝑛 in (67); we get the
following inequalities:

(
1

𝐴
𝑛
(x)
)

𝑛/𝐴
𝑛
(x)
≤

𝑛

∏

𝑖=1

(
1

𝑥
𝑖

)

1/𝑥
𝑖

,

(𝐺
𝑛
(x))𝑛⋅𝐺𝑛(x) ≤

𝑛

∏

𝑖=1

𝑥
𝑥
𝑖

𝑖
,

(𝐻
𝑛
(x))𝑛⋅𝐻𝑛(x) ≤

𝑛

∏

𝑖=1

𝑥
𝑥
𝑖

𝑖
,

(𝑛
1/𝑟

1

𝐴
𝑛
(x)
)

𝑛
1/𝑟
(1/𝐴
𝑛
(x))
≤ (𝑛
1/𝑟

𝑀
𝑟
(
1

x
))

𝑛
1/𝑟
𝑀
𝑟
(1/x)
,

(𝑛
1/𝑟

𝐺
𝑛
(x))
𝑛
1/𝑟
𝐺
𝑛
(x)
≤ (𝑛
1/𝑟

𝑀
𝑟
(x))
𝑛
1/𝑟
𝑀
𝑟
(x)
,

(𝑛
1/𝑟

𝐻
𝑛
(x))
𝑛
1/𝑟
𝐻
𝑛
(x)
≤ (𝑛
1/𝑟

𝑀
𝑟
(x))
𝑛
1/𝑟
𝑀
𝑟
(x)
.

(68)

4.2. Geometric Inequalities. In this section, some geometric
inequalities of 𝑛-dimensional simplex are established by use
of the results of Theorem 16.

Lots of geometric inequalities for an 𝑛-dimensional sim-
plex are established (see [37–42]). In this section, applying the
above Lemma and the main results in Section 2, we establish
some interesting geometric inequalities on 𝑛-dimensional
simplex in 𝑛-dimensional Euclidean space 𝐸𝑛.

In what follows, Let Ω = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛+1
} be an

𝑛-dimensional simplex in 𝑛-dimensional Euclidean space
𝐸
𝑛

(𝑛 ≥ 2) with 𝑉 the volume. We denote by ℎ
𝑖
, 𝑟
𝑖
,

𝐹
𝑖
(𝑖 = 1, 2, . . . , 𝑛 + 1), and 𝑟 the altitudes, the radii of

excircles, the areas of lateral surfaces, and the inradius of
Ω, respectively. For a given point 𝑃 in Ω, let 𝐵

𝑖
stand for

the intersection point of straight line 𝐴
𝑖
𝑃 and hyperplane

𝑎
𝑖
= {𝐴
1
⋅ ⋅ ⋅ 𝐴
𝑖−1
𝐴
𝑖+1
⋅ ⋅ ⋅ 𝐴
𝑛+1
}.

We first give some lemmas.

Lemma 37. Let Ω = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛+1
} be an 𝑛-dimensional

simplex in 𝑛-dimensional Euclidean space 𝐸𝑛 (𝑛 ≥ 2). The
following relation is

(1) (
1

𝑛 + 1
,
1

𝑛 + 1
, . . . ,

1

𝑛 + 1
) ≺ (

𝑟

ℎ
1

,
𝑟

ℎ
2

, . . . ,
𝑟

ℎ
𝑛+1

) ; (69)

(2) (
𝑛 − 1

𝑛 + 1
,
𝑛 − 1

𝑛 + 1
, . . . ,

𝑛 − 1

𝑛 + 1
) ≺ (

𝑟

𝑟
1

,
𝑟

𝑟
2

, . . . ,
𝑟

𝑟
𝑛+1

) ;

(70)

(3) (
1

𝑛 + 1
,
1

𝑛 + 1
, . . . ,

1

𝑛 + 1
)

≺ (
𝑟
1

ℎ
1
+ 2𝑟
1

,
𝑟
2

ℎ
2
+ 2𝑟
2

, . . . ,
𝑟
𝑛+1

ℎ
𝑛+1
+ 2𝑟
𝑛+1

) ;

(71)

(4) (
1

𝑛 + 1
,
1

𝑛 + 1
, . . . ,

1

𝑛 + 1
)

≺ (

󵄨󵄨󵄨󵄨𝑃𝐵1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐴1𝐵1
󵄨󵄨󵄨󵄨

,

󵄨󵄨󵄨󵄨𝑃𝐵2
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐴2𝐵2
󵄨󵄨󵄨󵄨

, . . . ,

󵄨󵄨󵄨󵄨𝑃𝐵𝑛+1
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝐴𝑛+1𝐵𝑛+1
󵄨󵄨󵄨󵄨

) ,

(72)

where 𝐹 = ∑𝑛+1
𝑖=1
𝐹
𝑖
.

Proof. By the formula [37, 38]

𝐹
𝑖
ℎ
𝑖
= 𝑛𝑉,

𝑛+1

∑

𝑖=1

𝐹
𝑖
𝑟 = 𝑛𝑉,

𝑛+1

∑

𝑖=1

(𝐹 − 2𝐹
𝑖
) 𝑟
𝑖
= 𝑛𝑉, (73)

where 𝐹 = ∑𝑛+1
𝑖=1
𝐹
𝑖
. From these we get

𝑛+1

∑

𝑖=1

𝑟

ℎ
𝑖

=

𝑛+1

∑

𝑖=1

𝐹
𝑖
𝑟

𝐹
𝑖
ℎ
𝑖

=
∑
𝑛+1

𝑖=1
𝐹
𝑖
𝑟

𝑛𝑉
=
𝑛𝑉

𝑛𝑉
= 1, (74)

𝑛+1

∑

𝑖=1

𝑟

𝑟
𝑖

=

𝑛+1

∑

𝑖=1

(𝐹 − 2𝐹
𝑖
) 𝑟

(𝐹 − 2𝐹
𝑖
) 𝑟
𝑖

=
∑
𝑛+1

𝑖=1
(𝐹 − 2𝐹

𝑖
) 𝑟

𝑛𝑉
=
(𝑛 − 1) 𝑛𝑉

𝑛𝑉
= 𝑛 − 1,

(75)

𝑛+1

∑

𝑖=1

𝑟
𝑖

ℎ
𝑖
+ 2𝑟
𝑖

=

𝑛+1

∑

𝑖=1

(𝐹 − 2𝐹
𝑖
) 𝐹
𝑖
𝑟
𝑖

(𝐹 − 2𝐹
𝑖
) 𝐹
𝑖
(ℎ
𝑖
+ 2𝑟
𝑖
)

=

𝑛+1

∑

𝑖=1

𝑛𝑉𝐹
𝑖

𝑛𝑉 (𝐹 − 2𝐹
𝑖
) + 2𝑛𝑉𝐹

𝑖

=

𝑛+1

∑

𝑖=1

𝐹
𝑖

𝐹
= 1.

(76)

By Definition 3, and using (74), (75), and (76), respec-
tively, we obtain (69), (70), and (71). In addition, (72) follows
from Definition 3 and the fact that∑𝑛+1

𝑖=1
|𝑃𝐵
𝑖
|/|𝐴
𝑖
𝐵
𝑖
| = 1. So

the proof is complete.

Applying Lemma 37 and Theorem 29, we establish some
interesting geometric inequalities on 𝑛-dimensional simplex
in 𝑛-dimensional Euclidean space 𝐸𝑛.

Theorem 38. Let Ω = {𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑛+1
} be an 𝑛-

dimensional simplex in 𝑛-dimensional Euclidean space 𝐸𝑛 (𝑛 ≥
2). For 𝑡 > 0 and 𝑘 = 1, 2, . . . , 𝑛, one has

(𝑟 ⋅ 𝑘
1/𝑡

(𝑛 + 1))
𝐶
𝑘

𝑛+1

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(

𝑘

∑

𝑗=1

ℎ
𝑡

𝑖
𝑗

)

1/𝑡

;

(𝑟 ⋅ 𝑘
1/𝑡
𝑛 + 1

𝑛 − 1
)

𝐶
𝑘

𝑛+1

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

(

𝑘

∑

𝑗=1

𝑟
𝑡

𝑖
𝑗

)

1/𝑡

;
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(𝑟 ⋅ 𝑘
1/𝑡

(𝑛 + 1))
𝐶
𝑘

𝑛+1

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

[

[

𝑘

∑

𝑗=1

(

ℎ
𝑖
𝑗

+ 2𝑟
𝑖
𝑗

𝑟
𝑖
𝑗

)

𝑡

]

]

1/𝑡

;

(𝑟 ⋅ 𝑘
1/𝑡

(𝑛 + 1))
𝐶
𝑘

𝑛+1

≤ ∏

1≤𝑖
1
<𝑖
2
<⋅⋅⋅<𝑖
𝑘
≤𝑛

[
[

[

𝑘

∑

𝑗=1

(

󵄨󵄨󵄨󵄨󵄨󵄨
𝑃𝐴
𝑖
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨󵄨
𝑃𝐵
𝑖
𝑗

󵄨󵄨󵄨󵄨󵄨󵄨

)

𝑡

]
]

]

1/𝑡

.

(77)

In particular, take 𝑘 = 1 in (77), we get the following
inequality

𝑟 (𝑛 + 1) ≤

𝑛+1

∏

𝑖=1

ℎ
1/(𝑛+1)

𝑖
; 𝑟 (

𝑛 + 1

𝑛 − 1
) ≤

𝑛+1

∏

𝑖=1

𝑟
1/(𝑛+1)

𝑖
;

(𝑛 + 1) ≤

𝑛+1

∏

𝑖=1

(
ℎ
𝑖

𝑟
𝑖

+ 2)

1/(𝑛+1)

;

(𝑛 + 1) ≤

𝑛+1

∏

𝑖=1

(

󵄨󵄨󵄨󵄨𝑃𝐵𝑖
󵄨󵄨󵄨󵄨

𝑃𝐴
𝑖
|
)

1/(𝑛+1)

.

(78)
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inequalities satisfied by convex functions,”Messenger of Mathe-
matics, vol. 58, pp. 145–152, 1929.

[24] Y. M. Chu, W. F. Xia, and T. H. Zhao, “Schur convexity for a
class of symmetric functions,” Science China. Mathematics, vol.
53, no. 2, pp. 465–474, 2010.

[25] F.Qi, J. Sándor, S. S.Dragomir, andA. Sofo, “Notes on the Schur-
convexity of the extended mean values,” Taiwanese Journal of
Mathematics, vol. 9, no. 3, pp. 411–420, 2005.

[26] G.D.Anderson,M.K.Vamanamurthy, andM.Vuorinen, “Gen-
eralized convexity and inequalities,” Journal of Mathematical
Analysis and Applications, vol. 335, no. 2, pp. 1294–1308, 2007.



12 Abstract and Applied Analysis

[27] D.-M. Li and H.-N. Shi, “Schur convexity and Schur-
geometrically concavity of generalized exponent mean,”
Journal of Mathematical Inequalities, vol. 3, no. 2, pp. 217–225,
2009.

[28] S. Toader and G. Toader, “Complementaries of Greek means
with respect to Gini means,” International Journal of Applied
Mathematics & Statistics, vol. 11, no. N07, pp. 187–192, 2007.

[29] W.-F. Xia and Y.-M. Chu, “Schur-convexity for a class of
symmetric functions and its applications,” Journal of Inequalities
and Applications, vol. 2009, Article ID 493759, 15 pages, 2009.

[30] M. Shaked, J. G. Shanthikumar, and Y. L. Tong, “Parametric
Schur convexity and arrangement monotonicity properties of
partial sums,” Journal of Multivariate Analysis, vol. 53, no. 2, pp.
293–310, 1995.

[31] H.-N. Shi, Y.-M. Jiang, and W.-D. Jiang, “Schur-convexity and
Schur-geometrically concavity of Gini means,” Computers &
Mathematics with Applications, vol. 57, no. 2, pp. 266–274, 2009.

[32] A. Forcina and A. Giovagnoli, “Homogeneity indices and
Schur-convex functions,” Statistica, vol. 42, no. 4, pp. 529–542,
1982.

[33] Zh.-H. Yang, “Necessary and sufficient condition for Schur con-
vexity of the two-parameter symmetric homogeneous means,”
Applied Mathematical Sciences, vol. 5, no. 61–64, pp. 3183–3190,
2011.

[34] Zh.-H. Yang, “Necessary and sufficient conditions for Schur
geometrical convexity of the four-parameter homogeneous
means,” Abstract and Applied Analysis, vol. 2010, Article ID
830163, 16 pages, 2010.

[35] Zh.-H. Yang, “Schur harmonic convexity of Gini means,”
International Mathematical Forum. Journal for Theory and
Applications, vol. 6, no. 13–16, pp. 747–762, 2011.

[36] H. N. Shi, Theory of Majorization and Analytic Inequalities,
Harbin Institute of Technology Press, Harbin, China, 2013.

[37] Z. Shan, Geometric Inequalities (in Chinese), Shanghai Educa-
tion Press, Shanghai, China, 1980.
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