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The complex convexity of Musielak-Orlicz function spaces equipped with the 𝑝-Amemiya norm is mainly discussed. It is obtained
that, for any Musielak-Orlicz function space equipped with the 𝑝-Amemiya norm when 1 ≤ 𝑝 < ∞, complex strongly extreme
points of the unit ball coincide with complex extreme points of the unit ball. Moreover, criteria for them in above spaces are given.
Criteria for complex strict convexity and complex midpoint locally uniform convexity of above spaces are also deduced.

1. Introduction

Let (𝑋, ‖ ⋅ ‖) be a complex Banach space over the complex
field C, let 𝑖 be the complex number satisfying 𝑖2 = −1, and
let 𝐵(𝑋) and 𝑆(𝑋) be the closed unit ball and the unit sphere
of 𝑋, respectively. In the sequel, N and R denote the set of
natural numbers and the set of real numbers, respectively.

In the early 1980s, a huge number of papers in the area of
the geometry of Banach spaces were directed to the complex
geometry of complex Banach spaces. It is well known that the
complex geometric properties of complex Banach spaces have
applications in various branches, among others in Harmonic
Analysis Theory, Operator Theory, Banach Algebras, 𝐶∗-
Algebras, Differential EquationTheory, QuantumMechanics
Theory, and Hydrodynamics Theory. It is also known that
extreme points which are connected with strict convexity of
the whole spaces are the most basic and important geometric
points in geometric theory of Banach spaces (see [1–6]).

In [7], Thorp and Whitley first introduced the concepts
of complex extreme point and complex strict convexity
when they studied the conditions under which the Strong
Maximum Modulus Theorem for analytic functions always
holds in a complex Banach space.

A point 𝑥 ∈ 𝑆(𝑋) is said to be a complex extreme point of
𝐵(𝑋) if for every nonzero𝑦 ∈ 𝑋 there holds sup

|𝜆|≤1
‖𝑥+𝜆𝑦‖ >

1. A complex Banach space 𝑋 is said to be complex strictly
convex if every element of 𝑆(𝑋) is a complex extreme point
of 𝐵(𝑋).

In [8], we further studied the notions of complex strongly
extreme point and complex midpoint locally uniform con-
vexity in general complex spaces.

A point 𝑥 ∈ 𝑆(𝑋) is said to be a complex strongly extreme
point of 𝐵(𝑋) if for every 𝜀 > 0 we have Δ

𝑐
(𝑥, 𝜀) > 0, where

Δ
𝑐
(𝑥, 𝜀) = inf {1 − |𝜆| : ∃𝑦 ∈ 𝑋s.t. 𝜆𝑥 ± 𝑦

 ≤ 1,

𝜆𝑥 ± 𝑖𝑦
 ≤ 1,

𝑦
 ≥ 𝜀} .

(1)

A complex Banach space 𝑋 is said to be complex midpoint
locally uniformly convex if every element of 𝑆(𝑋) is a complex
strongly extreme point of 𝐵(𝑋).

Let (𝑇, Σ, 𝜇) be a nonatomic and complete measure space
with 𝜇(𝑇) < ∞. By Φ we denote a Musielak-Orlicz function;
that is, Φ : 𝑇 × [0, +∞) → [0, +∞] satisfies the following:

(1) for each 𝑢 ∈ [0,∞], Φ(𝑡, 𝑢) is a 𝜇-measurable
function of 𝑡 on 𝑇;

(2) for 𝜇-a.e. 𝑡 ∈ 𝑇,Φ(𝑡, 0) = 0, lim
𝑢→∞

Φ(𝑡, 𝑢) = ∞ and
there exists 𝑢 > 0 such thatΦ(𝑡, 𝑢) < ∞;

(3) for 𝜇-a.e. 𝑡 ∈ 𝑇, Φ(𝑡, 𝑢) is convex on the interval
[0,∞) with respect to 𝑢.

Let 𝐿𝑐(𝜇) be the space of all 𝜇-equivalence classes of
complex and Σ-measurable functions defined on 𝑇. For each
𝑥 ∈ 𝐿
𝑐
(𝜇), we define on 𝐿𝑐(𝜇) the convex modular of 𝑥 by

𝐼
Φ
(𝑥) = ∫

𝑇

Φ (𝑡, |𝑥 (𝑡)|) 𝑑𝑡. (2)
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We define supp 𝑥 = {𝑡 ∈ 𝑇 : |𝑥(𝑡)| ̸= 0} and the Musielak-
Orlicz space 𝐿

Φ
generated by the formula

𝐿
Φ
= {𝑥 ∈ 𝐿

𝑐
(𝜇) : 𝐼

Φ
(𝜆𝑥) < ∞ for some 𝜆 > 0} . (3)

Set

𝑒 (𝑡) = sup {𝑢 ≥ 0 : Φ (𝑡, 𝑢) = 0} ,

𝐸 (𝑡) = sup {𝑢 ≥ 0 : Φ (𝑡, 𝑢) < ∞} ;
(4)

then 𝑒(𝑡) and 𝐸(𝑡) are 𝜇-measurable (see [9]).
The notion of 𝑝-Amemiya norm has been introduced in

[10]; for any 1 ≤ 𝑝 ≤ ∞ and 𝑢 > 0, define

𝑠
𝑝
(𝑢) = {

(1 + 𝑢
𝑝
)
1/𝑝

, for 1 ≤ 𝑝 < ∞,

max {1, 𝑢} , for 𝑝 = ∞.
(5)

Furthermore, define 𝑠
Φ,𝑝
(𝑥) = 𝑠

𝑝
∘𝐼
Φ
(𝑥) for all 1 ≤ 𝑝 ≤ ∞

and 𝑥 ∈ 𝐿𝑐(𝜇). Notice that the function 𝑠
𝑝
is increasing on 𝑅

+

for 1 ≤ 𝑝 < ∞; however, the function 𝑠
∞
is increasing on the

interval [1,∞) only.
For 𝑥 ∈ 𝐿

𝑐
(𝜇), define the 𝑝-Amemiya norm by the

formula

‖𝑥‖Φ,𝑝 = inf
𝑘>0

1

𝑘
𝑠
Φ,𝑝
(𝑘𝑥) , 1 ≤ 𝑝 ≤ ∞. (6)

For convenience, from now on, we write 𝐿
Φ,𝑝

=

(𝐿
Φ
, ‖ ⋅ ‖
Φ,𝑝
); it is easy to see that 𝐿

Φ,𝑝
is a Banach space. For

1 ≤ 𝑝 < ∞, 𝑥 ∈ 𝐿
Φ,𝑝

, set

𝐾
𝑝
(𝑥) = {𝑘 > 0 : ‖𝑥‖Φ,𝑝 =

1

𝑘
{1 + 𝐼

𝑝

Φ
(𝑘𝑥)}
1/𝑝

} . (7)

2. Main Results

We begin this section from the following useful lemmas.

Lemma 1 (see [9]). For any 𝜀 > 0, there exists 𝛿 ∈ (0, 1/2)
such that if 𝑢, V ∈ C and

|V| ≥
𝜀

8
max
𝑒
|𝑢 + 𝑒V| , (8)

then

|𝑢| ≤
1 − 2𝛿

4
Σ
𝑒 |𝑢 + 𝑒V| , (9)

where

max
𝑒
|𝑢 + 𝑒V| = max {|𝑢 + V| , |𝑢 − V| , |𝑢 + 𝑖V| , |𝑢 − 𝑖V|} ,

Σ
𝑒 |𝑢 + 𝑒V| = |𝑢 + V| + |𝑢 − V| + |𝑢 + 𝑖V| + |𝑢 − 𝑖V| .

(10)

Lemma 2. If lim
𝑢→∞

(Φ(𝑡, 𝑢)/𝑢) = ∞ for 𝜇-a.e. 𝑡 ∈ 𝑇, then
𝐾
𝑝
(𝑥) ̸= 0 for any 𝑥 ∈ 𝐿

Φ,𝑝
\ {0}, where 1 ≤ 𝑝 < ∞.

Proof. For any 𝑥 ∈ 𝐿
Φ,𝑝

\ {0}, there exists 𝛼 > 0 such that
𝜇{𝑡 ∈ 𝑇 : |𝑥(𝑡)| ≥ 𝛼} > 0. Let 𝑇

1
= {𝑡 ∈ 𝑇 : |𝑥(𝑡)| ≥ 𝛼} and

define the subsets

𝐹
𝑛
= {𝑡 ∈ 𝑇

1
:
Φ (𝑡, 𝑢)

𝑢
≥
4‖𝑥‖Φ,𝑝

𝛼 ⋅ 𝜇𝑇
1

, 𝑢 ≥ 𝑛} (11)

for each 𝑛 ∈ N. It is easy to see that 𝐹
1
⊆ F
2
⊆ ⋅ ⋅ ⋅ ⊆ 𝐹

𝑛
⊆ ⋅ ⋅ ⋅

and lim
𝑛→∞

𝜇𝐹
𝑛
= 𝜇𝑇
1
. Then there exists 𝑛

0
∈ N such that

𝜇𝐹
𝑛0
> (1/2)𝜇𝑇

1
.

It follows from the definition of 𝑝-Amemiya norm that
there is a sequence {𝑘

𝑛
} satisfying

‖𝑥‖Φ,𝑝 = lim
𝑛→∞

1

𝑘
𝑛

{1 + 𝐼
𝑝

Φ
(𝑘
𝑛
𝑥)}
1/𝑝

. (12)

For any 𝑘 > 0, we have

1

𝑘
{1 + 𝐼

𝑝

Φ
(𝑘𝑥)}
1/𝑝

=
1

𝑘
{1 + [∫

𝑇

Φ (𝑡, 𝑘 |𝑥 (𝑡)|) 𝑑𝑡]

𝑝

}

1/𝑝

≥

∫
𝐹𝑛0

Φ (𝑡, 𝑘 |𝑥 (𝑡)|) 𝑑𝑡

𝑘

≥ ∫
𝐹𝑛0

Φ (𝑡, 𝑘𝛼)

𝑘
𝑑𝑡

= 𝛼∫
𝐹𝑛0

Φ (𝑡, 𝑘𝛼)

𝑘𝛼
𝑑𝑡.

(13)

If 𝑘 > 𝑛
0
/𝛼, notice that

1

𝑘
{1 + 𝐼

𝑝

Φ
(𝑘𝑥)}
1/𝑝

≥ 𝛼 ⋅
4‖𝑥‖Φ,𝑝

𝛼 ⋅ 𝜇𝑇
1

⋅ 𝜇𝐹
𝑛0
> 2‖𝑥‖Φ,𝑝, (14)

which means the sequence {𝑘
𝑛
} is bounded. Hence, without

loss of generality, we assume that 𝑘
𝑛
→ 𝑘
0
as 𝑛 → ∞.

We can also choose the monotonic increasing or decreasing
subsequence of {𝑘

𝑛
} that converges to the number 𝑘

0
. Apply-

ing Levi Theorem and Lebesgue Dominated Convergence
Theorem, we obtain

‖𝑥‖Φ,𝑝 = lim
𝑛→∞

1

𝑘
𝑛

{1 + 𝐼
𝑝

Φ
(𝑘
𝑛
𝑥)}
1/𝑝

=
1

𝑘
0

{1 + 𝐼
𝑝

Φ
(𝑘
0
𝑥)}
1/𝑝

(15)

which implies 𝑘
0
∈ 𝐾
𝑝
(𝑥).

In order to exclude the case when such sets 𝐾
𝑝
(𝑥) are

empty for 𝑥 ∈ 𝐿
Φ,𝑝
\{0}, in the sequel we will assume, without

any special mention, that lim
𝑢→∞

(Φ(𝑡, 𝑢)/𝑢) = ∞ for 𝜇-a.e.
𝑡 ∈ 𝑇.

Theorem 3. Assume 1 ≤ 𝑝 < ∞, 𝑥 ∈ 𝑆(𝐿
Φ,𝑝
). Then the

following assertions are equivalent:

(1) 𝑥 is a complex strongly extreme point of the unit ball
𝐵(𝐿
Φ,𝑝
);

(2) 𝑥 is a complex extreme point of the unit ball 𝐵(𝐿
Φ,𝑝
);

(3) for any 𝑘 ∈ 𝐾
𝑝
(𝑥), 𝜇{𝑡 ∈ 𝑇 : 𝑘|𝑥(𝑡)| < 𝑒(𝑡)} = 0.

Proof. The implication (1) ⇒ (2) is trivial. Let 𝑥 be a complex
extreme point of the unit ball 𝐵(𝐿

Φ,𝑝
) and there exists 𝑘

0
∈

𝐾
𝑝
(𝑥) such that 𝜇{𝑡 ∈ 𝑇 : 𝑘

0
|𝑥(𝑡)| < 𝑒(𝑡)} > 0. Then we can
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find 𝑑 > 0 such that 𝜇{𝑡 ∈ 𝑇 : 𝑘
0
|𝑥(𝑡)| + 𝑑 < 𝑒(𝑡)} > 0.

Indeed, if 𝜇{𝑡 ∈ 𝑇 : 𝑘
0
|𝑥(𝑡)| + 𝑑 < 𝑒(𝑡)} = 0 for any 𝑑 > 0,

then we set 𝑑
𝑛
= 1/𝑛 and define the subsets

𝑇
𝑛
= {𝑡 ∈ 𝑇 : 𝑘

0 |𝑥 (𝑡)| + 𝑑𝑛 < 𝑒 (𝑡)} (16)

for each 𝑛 ∈ N. Notice that 𝑇
1
⊆ 𝑇
2
⊆ ⋅ ⋅ ⋅ ⊆ 𝑇

𝑛
⊆ ⋅ ⋅ ⋅ and

{𝑡 ∈ 𝑇 : 𝑘
0
|𝑥(𝑡)| ≤ 𝑒(𝑡)} = ⋃

∞

𝑛=1
𝑇
𝑛
; we can find that

𝜇 {𝑡 ∈ 𝑇 : 𝑘
0 |𝑥 (𝑡)| ≤ 𝑒 (𝑡)} = 0 (17)

which is a contradiction.
Let 𝑇
0
= {𝑡 ∈ 𝑇 : 𝑘

0
|𝑥(𝑡)| + 𝑑 < 𝑒(𝑡)} and define 𝑦 =

(𝑑/𝑘
0
)𝜒
𝑇0
; we have 𝑦 ̸= 0 and for any 𝜆 ∈ C with |𝜆| ≤ 1,

𝑥 + 𝜆𝑦
Φ,𝑝 ≤

1

𝑘
0

{1 + 𝐼
𝑝

Φ
(𝑘
0
(𝑥 + 𝜆𝑦))}

1/𝑝

=
1

𝑘
0

{1 + [𝐼
Φ
(𝑘
0
𝑥𝜒
𝑇\𝑇0

)

+𝐼
Φ
(𝑘
0
𝑥𝜒
𝑇0
+ 𝜆𝑑𝜒

𝑇0
)]
𝑝

}
1/𝑝

≤
1

𝑘
0

{1 + [𝐼
Φ
(𝑘
0
𝑥𝜒
𝑇\𝑇0

)

+𝐼
Φ
((𝑘
0 |𝑥| + 𝑑) 𝜒𝑇0

)]
𝑝

}
1/𝑝

=
1

𝑘
0

{1 + [𝐼
Φ
(𝑘
0
𝑥𝜒
𝑇\𝑇0

)]
𝑝

}
1/𝑝

=
1

𝑘
0

(1 + 𝐼
𝑝

Φ
(𝑘
0
𝑥))
1/𝑝

= 1,

(18)

which shows that 𝑥 is not a complex extreme point of the unit
ball 𝐵(𝐿

Φ,𝑝
).

(3) ⇒ (1). Suppose that 𝑥 ∈ 𝑆(𝐿
Φ,𝑝
) is not a complex

strongly extreme point of the unit ball 𝐵(𝐿
Φ,𝑝
),; then there

exists 𝜀
0
> 0 such thatΔ

𝑐
(𝑥, 𝜀
0
) = 0.That is, there exist𝜆

𝑛
∈ C

with |𝜆
𝑛
| → 1 and𝑦

𝑛
∈ 𝐿
Φ,𝑝

satisfying ‖𝑦
𝑛
‖
Φ,𝑝

≥ 𝜀
0
such that

𝜆𝑛𝑥0 ± 𝑦𝑛
Φ,𝑝 ≤ 1,

𝜆𝑛𝑥0 ± 𝑖𝑦𝑛
Φ,𝑝 ≤ 1, (19)

which gives

𝑥
0
±
𝑦
𝑛

𝜆
𝑛

Φ,𝑝

≤
1
𝜆𝑛


,


𝑥
0
± 𝑖
𝑦
𝑛

𝜆
𝑛

Φ,𝑝

≤
1
𝜆𝑛


. (20)

Setting 𝑧
𝑛
= 𝑦
𝑛
/𝜆
𝑛
, we have
𝑧𝑛
Φ,𝑝 ≥

𝑦𝑛
Φ,𝑝 ≥ 𝜀0,

𝑥0 ± 𝑧𝑛
Φ,𝑝 ≤

1
𝜆𝑛


,

𝑥0 ± 𝑖𝑧𝑛
Φ,𝑝 ≤

1
𝜆𝑛


.

(21)

For the above 𝜀
0
> 0, by Lemma 1, there exists 𝛿

0
∈

(0, 1/2) such that if 𝑢, V ∈ C and

|V| ≥
𝜀
0

8
max
𝑒
|𝑢 + 𝑒V| , (22)

then

|𝑢| ≤
1 − 2𝛿

0

4
Σ
𝑒 |𝑢 + 𝑒V| . (23)

For each 𝑛 ∈ N, let

𝐴
𝑛
= {𝑡 ∈ 𝑇 :

𝑧𝑛 (𝑡)
 ≥

𝜀
0

8
max
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
} ,

𝑧
(1)

𝑛
: 𝑧
(1)

𝑛
(𝑡) = 𝑧

𝑛
(𝑡) (𝑡 ∉ 𝐴

𝑛
) , 𝑧

(1)

𝑛
(𝑡) = 0 (𝑡 ∈ 𝐴

𝑛
) ,

𝑧
(2)

𝑛
: 𝑧
(2)

𝑛
(𝑡) = 0 (𝑡 ∉ 𝐴

𝑛
) , 𝑧

(2)

𝑛
(𝑡) = 𝑧

𝑛
(𝑡) (𝑡 ∈ 𝐴

𝑛
) .

(24)

It is easy to see that 𝑧
𝑛
= 𝑧
(1)

𝑛
+𝑧
(2)

𝑛
,∀𝑛 ∈ N. Since |𝜆

𝑛
| → 1

when 𝑛 → ∞, the following inequalities


𝑧
(1)

𝑛

Φ,𝑝

= inf
𝑘>0

1

𝑘
{1 + [∫

𝑡∉𝐴𝑛

Φ(𝑡, 𝑘
𝑧𝑛 (𝑡)

) 𝑑𝑡]

𝑝

}

1/𝑝

≤ inf
𝑘>0

1

𝑘
{1+

[∫
𝑡∉𝐴𝑛

Φ(𝑡, 𝑘
𝜀
0

8
max
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
) 𝑑𝑡]

𝑝

}

1/𝑝

≤
𝜀
0

8


max
𝑒

𝑥0 + 𝑒𝑧𝑛


Φ,𝑝

≤
𝜀
0

8

Σ𝑒
𝑥0 + 𝑒𝑧𝑛


Φ,𝑝

≤
𝜀
0

2
𝜆𝑛


<
3𝜀
0

4

(25)

hold for 𝑛 large enough.
Therefore, ‖𝑧(2)

𝑛
‖
Φ,𝑝

> 𝜀
0
/4 which shows that 𝜇(𝐴

𝑛
) > 0

for 𝑛 large enough. Furthermore, for any 𝑡 ∈ 𝐴
𝑛
, we have

𝑥0 (𝑡)
 ≤

1 − 2𝛿
0

4
Σ
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
 .

(26)

To complete the proof, we consider the following two
cases.

(I) One has 𝑘
𝑛
→ ∞(𝑛 → ∞), where 𝑘

𝑛
∈ 𝐾
𝑝
((1/4)

Σ
𝑒
|𝑥
0
+ 𝑒𝑧
𝑛
|).
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For each 𝑛 ∈ N, we get

1 =
𝑥0

Φ,𝑝

≤
1

𝑘
𝑛

{1 + 𝐼
𝑝

Φ
(𝑘
𝑛
𝑥
0
)}
1/𝑝

=
1

𝑘
𝑛

{1 + [∫
𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛

𝑥0 (𝑡)
) 𝑑𝑡

+∫
𝑡∉𝐴𝑛

Φ(𝑡, 𝑘
𝑛

𝑥0 (𝑡)
) 𝑑𝑡]

𝑝

}

1/𝑝

≤
1

𝑘
𝑛

{1 + [∫
𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛
(
1 − 2𝛿

0

4

×Σ
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
 )) 𝑑𝑡

+ ∫
𝑡∉𝐴𝑛

Φ(𝑡, 𝑘
𝑛

× (
1

4
Σ
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
)) 𝑑𝑡]

𝑝

}

1/𝑝

≤
1

𝑘
𝑛

{1

+ [ (1 − 2𝛿
0
)

× ∫
𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛
(
1

4
Σ
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
)) 𝑑𝑡

+ ∫
𝑡∉𝐴𝑛

Φ(𝑡, 𝑘
𝑛

×(
1

4
Σ
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
)) 𝑑𝑡]

𝑝

}

1/𝑝

=
1

𝑘
𝑛

{1

+ [𝐼
Φ
(𝑘
𝑛
(
1

4
Σ
𝑒

𝑥0 + 𝑒𝑧𝑛
)) − 2𝛿0

× ∫
𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛

×(
1

4
Σ
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
)) 𝑑𝑡]

𝑝

}

1/𝑝

.

(27)

Furthermore, we notice that

∫
𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛
(
1

4
Σ
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
)) 𝑑𝑡

≥ ∫
𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛

𝑧𝑛 (𝑡)
) 𝑑𝑡

≥ [𝑘
𝑝

𝑛


𝑧
(2)

𝑛



𝑝

Φ,𝑝
− 1]
1/𝑝

≥ [(
𝜀
0

4
𝑘
𝑛
)

𝑝

− 1]

1/𝑝

.

(28)

Since 𝑘
𝑛
→ ∞when 𝑛 → ∞, we can see that the inequality

((𝜀
0
/4)𝑘
𝑛
)
𝑝
− 1 > 0 holds for 𝑛 large enough. Moreover, we

find that

𝐼
Φ
(𝑘
𝑛
(
1

4
Σ
𝑒

𝑥0 + 𝑒𝑧𝑛
))

≥ 𝐼
Φ
(𝑘
𝑛
𝑥
0
)

≥ (𝑘
𝑝

𝑛
− 1)
1/𝑝

≥ 2𝛿
0
((
𝜀
0

4
𝑘
𝑛
)

𝑝

− 1)

1/𝑝

.

(29)

Then we deduce

1 =
𝑥0

Φ,𝑝

≤
1

𝑘
𝑛

{1 + [𝐼
Φ
(𝑘
𝑛
(
1

4
Σ
𝑒

𝑥0 + 𝑒𝑧𝑛
)) − 2𝛿

0

× ∫
𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛

×(
1

4
Σ
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
)) 𝑑𝑡]

𝑝

}

1/𝑝

≤
1

𝑘
𝑛

{1 + [𝐼
Φ
(𝑘
𝑛
(
1

4
Σ
𝑒

𝑥0 + 𝑒𝑧𝑛
))

−2𝛿
0
((
𝜀
0

4
𝑘
𝑛
)

𝑝

− 1)

1/𝑝

]

𝑝

}

1/𝑝

<
1

𝑘
𝑛

{1 + 𝐼
𝑝

Φ
(𝑘
𝑛
(
1

4
Σ
𝑒

𝑥0 + 𝑒𝑧𝑛
))}

1/𝑝

= 1,

(30)

a contradiction.
(II) One has 𝑘

𝑛
→ 𝑘

0
(𝑛 → ∞), where 𝑘

𝑛
∈

𝐾
𝑝
((1/4)Σ

𝑒
|𝑥
0
+ 𝑒𝑧
𝑛
|), 𝑘
0
∈ R.

Then for each 𝑛 ∈ N,

1

𝜆
𝑛

≥


1

4
Σ
𝑒

𝑥0 + 𝑒𝑧𝑛


Φ,𝑝

=
1

𝑘
𝑛

{1 + 𝐼
𝑝

Φ
(
𝑘
𝑛

4
Σ
𝑒

𝑥0 + 𝑒𝑧𝑛
)}

1/𝑝

≥
1

𝑘
𝑛

{1 + 𝐼
𝑝

Φ
(𝑘
𝑛
𝑥
0
)}
1/𝑝

≥
𝑥0

Φ,𝑝 = 1.

(31)

Let 𝑛 → ∞, we deduce that 1 = (1/𝑘
0
){1 + 𝐼

𝑝

Φ
(𝑘
0
𝑥
0
)}
1/𝑝

=

‖𝑥
0
‖
Φ,𝑝

.
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From (I), we obtain that

1 =‖ 𝑥
0
‖
Φ,𝑝

≤
1

𝑘
𝑛

{1+ [𝐼
Φ
(𝑘
𝑛
(
1

4
Σ
𝑒

𝑥0 + 𝑒𝑧𝑛
)) − 2𝛿0

× ∫
𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛

× (
1

4
Σ
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
)) 𝑑𝑡]

𝑝

}

1/𝑝

.

(32)

Now we consider the following two subcases.
(a) Consider ∫

𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛
((1/4)Σ

𝑒
|𝑥
0
(𝑡) + 𝑒𝑧

𝑛
(𝑡)|))𝑑𝑡 > 0

for some 𝑛 ∈ N.
Then we obtain

1 =‖ 𝑥
0
‖
Φ,𝑝

≤
1

𝑘
𝑛

{1 + [𝐼
Φ
(𝑘
𝑛
(
1

4
Σ
𝑒

𝑥0 + 𝑒𝑧𝑛
)) − 2𝛿

0

× ∫
𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛

×(
1

4
Σ
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
)) 𝑑𝑡]

𝑝

}

1/𝑝

<
1

𝑘
𝑛

{1 + 𝐼
𝑝

Φ
(𝑘
𝑛
(
1

4
Σ
𝑒

𝑥0 + 𝑒𝑧𝑛
))}

1/𝑝

= 1,

(33)

a contradiction.
(b) Consider ∫

𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛
((1/4)Σ

𝑒
|𝑥
0
(𝑡) + 𝑒𝑧

𝑛
(𝑡)|))𝑑𝑡 = 0

for any 𝑛 ∈ N.
For 𝑛 large enough, we observe that

𝑘
𝑛
>
1 − 2𝛿

0

1 − 𝛿
0

𝑘
0
. (34)

Hence, we get

0 = ∫
𝑡∈𝐴𝑛

Φ(𝑡, 𝑘
𝑛
(
1

4
Σ
𝑒

𝑥0 (𝑡) + 𝑒𝑧𝑛 (𝑡)
)) 𝑑𝑡

≥ ∫
𝑡∈𝐴𝑛

Φ(𝑡,



𝑘
𝑛

1 − 2𝛿
0

𝑥
0
(𝑡)


) 𝑑𝑡

≥ ∫
𝑡∈𝐴𝑛

Φ(𝑡,



𝑘
0

1 − 𝛿
0

𝑥
0
(𝑡)


) 𝑑𝑡 ≥ 0.

(35)

Thus, we see the equality∫
𝑡∈𝐴𝑛

Φ(𝑡, |(𝑘
0
/(1−𝛿

0
))𝑥
0
(𝑡)|) 𝑑𝑡 = 0

holds for 𝑛 large enough. It follows that


𝑘
0

1 − 𝛿
0

𝑥
0
(𝑡)


≤ 𝑒 (𝑡) , 𝜇-a.e. 𝑡 ∈ 𝐴

𝑛 (36)

since 𝜇(𝐴
𝑛
) > 0 for 𝑛 large enough.

On the other hand, by (3), we deduce that

𝑘0𝑥0 (𝑡)
 ≥ 𝑒 (𝑡) , 𝜇-a.e. 𝑡 ∈ 𝐴

𝑛
. (37)

Hence, we get a contradiction:



𝑘
0

1 − 𝛿
0

𝑥
0
(𝑡)


≥

𝑒 (𝑡)

1 − 𝛿
0

> 𝑒 (𝑡) , 𝜇-a.e. 𝑡 ∈ 𝐴
𝑛
. (38)

Theorem 4. Assume 1 ≤ 𝑝 < ∞; then the following assertions
are equivalent:

(1) 𝐿
Φ,𝑝

is complex midpoint locally uniformly convex;

(2) 𝐿
Φ,𝑝

is complex strictly convex;

(3) 𝑒(𝑡) = 0 for 𝜇-a.e. 𝑡 ∈ 𝑇.

Proof. The implication (1) ⇒ (2) is trivial. Now assume that
𝐿
Φ,𝑝

is complex strictly convex. If 𝜇{𝑡 ∈ 𝑇 : 𝑒(𝑡) > 0} > 0, let
𝑇
0
= {𝑡 ∈ 𝑇 : 𝑒(𝑡) > 0} and it is not difficult to find an element

𝑥 ∈ 𝑆(𝐿
Φ,𝑝
) satisfying supp 𝑥 = 𝑇 \ 𝑇

0
. Take 𝑘 ∈ 𝐾

𝑝
(𝑥), and

define

𝑦 (𝑡) =
{

{

{

𝑒 (𝑡)

2𝑘
for 𝑡 ∈ 𝑇

0
,

𝑥 (𝑡) for 𝑡 ∈ 𝑇 \ 𝑇
0
.

(39)

Obviously, ‖𝑦‖
Φ,𝑝

≥ ‖𝑥‖
Φ,𝑝

= 1. On the other hand,

𝑦
Φ,𝑝 ≤

1

𝑘
{1 + [∫

𝑡∈𝑇0

Φ(𝑡,
𝑒 (𝑡)

2
) 𝑑𝑡

+∫
𝑇\𝑇0

Φ (𝑡, 𝑘𝑥 (𝑡)) 𝑑𝑡]

𝑝

}

1/𝑝

=
1

𝑘
(1 + 𝐼

𝑝

Φ
(𝑘𝑥))
1/𝑝

= 1.

(40)

Thus, ‖𝑦‖
Φ,𝑝

= (1/𝑘)(1 + 𝐼
𝑝

Φ
(𝑘𝑦))
1/𝑝

= 1. However, for 𝑡 ∈
𝑇
0
, we find 𝑘|𝑦(𝑡)| = 𝑒(𝑡)/2 < 𝑒(𝑡), which implies 𝑦 ∈ 𝑆(𝐿

Φ,𝑝
)

is not a complex extreme point of 𝐵(𝐿
Φ,𝑝
) fromTheorem 3.

(3) ⇒ (1). Suppose that 𝑥 ∈ 𝑆(𝐿
Φ,𝑝
) is not a complex

strongly extreme point of 𝐵(𝐿
Φ,𝑝
). It follows fromTheorem 3

that 𝜇{𝑡 ∈ 𝑇 : 𝑘
0
|𝑥(𝑡)| < 𝑒(𝑡)} > 0 for some 𝑘

0
∈ 𝐾
𝑝
(𝑥),

consequently 𝜇{𝑡 ∈ 𝑇 : 𝑒(𝑡) > 0} > 0which is a contradiction.

Remark 5. If 𝑝 = ∞ then 𝑝-Amemiya norm equals Luxem-
burg norm, the problem of complex convexity of Musielak-
Orlicz function spaces equipped with the Luxemburg norm
has been investigated in [8].

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



6 Abstract and Applied Analysis

Acknowledgments

This work is supported by Grants from Heilongjiang
Provincial Natural Science Foundation for Youths (no.
QC2013C001), Natural Science Foundation of Heilongjiang
Educational Committee (no. 12531099), Youth Science Fund
of Harbin University of Science and Technology (no.
2011YF002), and Tianyuan Funds of the National Natural
Science Foundation of China (no. 11226127).

References
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