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We introduce the wave front setWF𝑃
∗
(𝑢)with respect to the iterates of a hypoelliptic linear partial differential operator with constant

coefficients of a classical distribution 𝑢 ∈ D
(Ω) in an open set Ω in the setting of ultradifferentiable classes of Braun, Meise, and

Taylor. We state a version of the microlocal regularity theorem of Hörmander for this new type of wave front set and give some
examples and applications of the former result.

1. Introduction

In the 1960s Komatsu characterized in [1] analytic functions
𝑓 in terms of the behaviour not of the derivatives 𝐷𝛼𝑓, but
of successive iterates 𝑃(𝐷)

𝑗
𝑓 of a partial differential elliptic

operator 𝑃(𝐷) with constant coefficients, proving that a 𝐶∞

function𝑓 is real analytic inΩ if and only if for every compact
set 𝐾 ⊂⊂ Ω there is a constant 𝐶 > 0 such that


𝑃 (𝐷)

𝑗
𝑓
2,𝐾

≤ 𝐶
𝑗+1

(𝑗!)
𝑚
, (1)

where𝑚 is the order of the operator and ‖ ⋅ ‖
2,𝐾

is the𝐿2 norm
on𝐾.

This result was generalized for elliptic operators with vari-
able analytic coefficients byKotake andNarasimhan [2,Theo-
rem 1]. Later, this result was extended to the setting of Gevrey
functions by Newberger and Zielezny [3] and completely
characterized by Métivier [4] (see also [5]). Spaces of Gevrey
type given by the iterates of a differential operator are called
generalized Gevrey classes and were used by Langenbruch [6–
9] for different purposes. We mention modern contributions
like [10–13] also. More recently, Juan-Huguet [14] extended
the results of Komatsu [1], Newberger and Zielezny [3], and
Métivier [4] to the setting of nonquasianalytic classes in the
sense of Braun et al. [15]. In [14], Juan-Huguet introduced the

generalized spaces of ultradifferentiable functions E𝑃

∗
(Ω) on

an open subset Ω of R𝑛 for a fixed linear partial differential
operator 𝑃 with constant coefficients and proved that these
spaces are complete if and only if 𝑃 is hypoelliptic. Moreover,
Juan-Huguet showed that, in this case, the spaces are nuclear.
Later, the same author in [16] established a Paley-Wiener
theorem for the classes E𝑃

∗
(Ω) again under the hypothesis of

the hypoellipticity of 𝑃.
The microlocal version of the problem of iterates was

considered by Bolley et al. [17] to extend the microlocal
regularity theorem of Hörmander [18, Theorem 5.4]. Bolley
and Camus [19] generalized the microlocal version of the
problem of iterates in [17] for some classes of hypoelliptic
operators with analytic coefficients. We mention [20, 21]
for investigations of the same problem for anisotropic and
multianisotropic Gevrey classes. On the other hand, a version
of the microlocal regularity theorem of Hörmander in the
setting of [15] can be found in [22, 23] by one of the authors,
which continues the study begun in [24].

Here, we continue in a natural way the previous work
in [14] and study the microlocal version of the problem of
iterates for generalized ultradifferentiable classes in the sense
of Braun et al. [15]. We begin in Section 2 with some notation
and preliminaries. In Section 3, we fix a hypoelliptic linear
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partial differential operator with constant coefficients 𝑃 and
introduce the wave front set WF𝑃

∗
(𝑢) with respect to the

iterates of 𝑃 of a distribution 𝑢 ∈ D(Ω) (Definition 7).
To do this, we describe carefully the singular support in
this setting (Proposition 6). We also prove that the new
wave font set gives a more precise information for the study
of the propagation of singularities than previous ones in
Proposition 9, Theorem 13, and Example 15 (improving the
previous works [22, 23] by one of the authors for operators
with constant coefficients). More precisely, we clarify in
Theorem 13 the necessity of the hypoellipticity of𝑃with a new
version of the microlocal regularity theorem of Hörmander
for an operator with constant coefficients. In Section 4, we
prove that the product of a function in a suitable Gevrey class
and a function in E𝑃

∗
(Ω) is still in E𝑃

∗
(Ω) (Proposition 17).

This fact is used to give a more involved example, inspired
in [25, Theorem 8.1.4], in which we construct a classical
distribution with prescribed wave front set (Theorem 18).
Finally, we mention that, as far as we know, this is the first
time that a result like Proposition 17 is discussed.

2. Notation and Preliminaries

Let us recall from [15] the definitions of weight functions 𝜔
and of the spaces of ultradifferentiable functions of Beurling
and Roumieu type.

Definition 1. A nonquasianalytic weight function is a contin-
uous increasing function 𝜔 : [0, +∞[→ [0, +∞[ with the
following properties:

(𝛼) ∃𝐿 > 0 s.t. 𝜔(2𝑡) ≤ 𝐿(𝜔(𝑡) + 1) ∀𝑡 ≥ 0,
(𝛽) ∫+∞

1
(𝜔(𝑡)/𝑡2)𝑑𝑡 < +∞,

(𝛾) log(𝑡) = 𝑜(𝜔(𝑡)) as 𝑡 → +∞,
(𝛿) 𝜑

𝜔
: 𝑡 → 𝜔(𝑒𝑡) is convex.

Normally, we will denote 𝜑
𝜔
simply by 𝜑.

For a weight function 𝜔, we define 𝜔 : C𝑛 → [0, +∞[ by
𝜔(𝑧) := 𝜔(|𝑧|) and again we denote this function by 𝜔.

The Young conjugate 𝜑∗ : [0, +∞[→ [0, +∞[ is defined
by

𝜑
∗
(𝑠) := sup

𝑡≥0

{𝑠𝑡 − 𝜑 (𝑡)} . (2)

There is no loss of generality to assume that 𝜔 vanishes on
[0, 1]. Then 𝜑∗ has only nonnegative values, it is convex,
𝜑∗(𝑡)/𝑡 is increasing and tends to∞ as 𝑡 → ∞, and 𝜑∗∗ = 𝜑.

Example 2. The following functions are, after a change in
some interval [0,𝑀], examples of weight functions:

(i) 𝜔(𝑡) = 𝑡𝑑 for 0 < 𝑑 < 1.
(ii) 𝜔(𝑡) = (log(1 + 𝑡))

𝑠, 𝑠 > 1.
(iii) 𝜔(𝑡) = 𝑡(log(𝑒 + 𝑡))

−𝛽, 𝛽 > 1.
(iv) 𝜔(𝑡) = exp(𝛽(log(1 + 𝑡))

𝛼
), 0 < 𝛼 < 1.

Inwhat follows,Ωdenotes an arbitrary subset ofR𝑛 and𝐾 ⊂⊂

Ωmeans that𝐾 is a compact subset inΩ.

Definition 3. Let 𝜔 be a weight function.
(a) For a compact subset 𝐾 in R𝑛 which coincides with

the closure of its interior and 𝜆 > 0, we define the seminorm

𝑝
𝐾,𝜆

(𝑓) := sup
𝑥∈𝐾

sup
𝛼∈N𝑛
0


𝑓
(𝛼)

(𝑥)

exp (−𝜆𝜑∗ (|𝛼|

𝜆
)) , (3)

where N
0
:= N ∪ {0} and set

E
𝜆

𝜔
(𝐾) := {𝑓 ∈ 𝐶

∞
(𝐾) : 𝑝𝐾,𝜆 (𝑓) < ∞} , (4)

which is a Banach space endowed with the 𝑝
𝐾,𝜆

(⋅)-topology.
(b) For an open subset Ω in R𝑛, the class of 𝜔-ultradif-

ferentiable functions of Beurling type is defined by

E
(𝜔) (Ω) := {𝑓 ∈ 𝐶

∞
(Ω) : 𝑝𝐾,𝜆 (𝑓) < ∞,

for every 𝐾 ⊂⊂ Ω and every 𝜆 > 0} .
(5)

The topology of this space is

E
(𝜔) (Ω) = proj

←
𝐾⊂⊂Ω

proj
←
𝜆>0

E
𝜆

𝜔
(𝐾) , (6)

and one can show that E
(𝜔)

(Ω) is a Fréchet space.
(c) For a compact subset 𝐾 in R𝑛 which coincides with

the closure of its interior and 𝜆 > 0, set

E
{𝜔} (𝐾) = {𝑓 ∈ 𝐶

∞
(𝐾) : there exists 𝑚 ∈ N

such that 𝑝
𝐾,1/𝑚

(𝑓) < ∞} .
(7)

This space is the strong dual of a nuclear Fréchet space (i.e., a
(DFN) space) if it is endowed with its natural inductive limit
topology; that is,

E
{𝜔} (𝐾) = ind

→
𝑚∈N

E
1/𝑚

𝜔
(𝐾) . (8)

(d) For an open subset Ω in R𝑛, the class of 𝜔-
ultradifferentiable functions of Roumieu type is defined by

E
{𝜔} (Ω) := {𝑓 ∈ 𝐶

∞
(Ω) : ∀𝐾 ⊂⊂ Ω ∃𝜆 > 0

such that 𝑝
𝐾,𝜆

(𝑓) < ∞} .
(9)

Its topology is the following:

E
{𝜔} (Ω) = proj

←
𝐾⊂⊂Ω

E
{𝜔} (𝐾) ; (10)

that is, it is endowed with the topology of the projective limit
of the spaces E

{𝜔}
(𝐾) when 𝐾 runs the compact subsets of

Ω. This is a complete PLS-space, that is, a complete space
which is a projective limit of LB-spaces (i.e., a countable
inductive limit of Banach spaces) with compact linking maps
in the (LB) steps. Moreover, E

{𝜔}
(Ω) is also a nuclear and

reflexive locally convex space. In particular, E
{𝜔}

(Ω) is an
ultrabornological (hence barrelled and bornological) space.

The elements of E
(𝜔)

(Ω) (resp., E
{𝜔}

(Ω)) are called
ultradifferentiable functions of Beurling type (resp., Roumieu
type) in Ω.
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In the case that 𝜔(𝑡) := 𝑡𝑑 (0 < 𝑑 < 1), the corresponding
Roumieu class is the Gevrey class with exponent 1/𝑑. In
the limit case 𝑑 = 1, not included in our setting, the
corresponding Roumieu class E

{𝜔}
(Ω) is the space of real

analytic functions onΩ, whereas the Beurling classE
(𝜔)

(R𝑛)

gives the entire functions.
If a statement holds in the Beurling and theRoumieu case,

thenwewill use the notationE
∗
(Ω). It means that in all cases,

∗ can be replaced either by (𝜔) or {𝜔}.
For a compact set 𝐾 in R𝑛, define

D
∗ (𝐾) := {𝑓 ∈ E

∗
(R

𝑛
) : supp𝑓 ⊂ 𝐾} , (11)

endowed with the induced topology. For an open setΩ inR𝑛,
define

D
∗ (Ω) := ind

→
𝐾⊂⊂Ω

D
∗ (𝐾) . (12)

Following [14], we consider smooth functions in an open
setΩ such that there exists 𝐶 > 0 verifying for each 𝑗 ∈ N

0
:=

N ∪ {0},


𝑃
𝑗
(𝐷)𝑓

2,𝐾
≤ 𝐶 exp(𝜆𝜑∗ (

𝑗𝑚

𝜆
)) , (13)

where 𝐾 is a compact subset in Ω, ‖ ⋅ ‖
2,𝐾

denotes the 𝐿2-
norm on 𝐾, and 𝑃𝑗(𝐷) is the 𝑗th iterate of the partial
differential operator 𝑃(𝐷) of order𝑚; that is,

𝑃
𝑗
(𝐷) = 𝑃 (𝐷) ∘ ⋅ ⋅ ⋅ ∘⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑗

𝑃 (𝐷) . (14)

If 𝑗 = 0, then 𝑃0(𝐷)𝑓 = 𝑓.
Given a polynomial 𝑃 ∈ C[𝑧

1
, . . . , 𝑧

𝑛
] with degree 𝑚,

𝑃(𝑧) = ∑
|𝛼|≤𝑚

𝑎
𝛼
𝑧𝛼, the partial differential operator 𝑃(𝐷) is

the following: 𝑃(𝐷) = ∑
|𝛼|≤𝑚

𝑎
𝛼
𝐷𝛼, where𝐷 = (1/𝑖)𝜕.

The spaces of ultradifferentiable functions with respect to
the successive iterates of 𝑃 are defined as follows.

Let𝜔 be aweight function.Given a polynomial𝑃, an open
set Ω of R𝑛, a compact subset 𝐾 ⊂⊂ Ω, and 𝜆 > 0, we define
the seminorm

𝑓
𝐾,𝜆 := sup

𝑗∈N
0


𝑃
𝑗
(𝐷)𝑓

2,𝐾
exp(−𝜆𝜑∗ (

𝑗𝑚

𝜆
)) (15)

and set

E
𝜆

𝑃,𝜔
(𝐾) = {𝑓 ∈ 𝐶

∞
(𝐾) :

𝑓
𝐾,𝜆 < +∞} . (16)

It is a Banach space endowed with the ‖ ⋅ ‖
𝐾,𝜆

-norm (it
can be proved by the same arguments used for the standard
class E𝜆

𝜔
(𝐾) in the sense of Braun et al.; see [15]).

The space of ultradifferentiable functions of Beurling type
with respect to the iterates of 𝑃 is

E
𝑃

(𝜔)
(Ω) = {𝑓 ∈ 𝐶

∞
(Ω) :

𝑓
𝐾,𝜆 < +∞

for each 𝐾 ⊂⊂ Ω, 𝜆 > 0} ,

(17)

endowed with the topology given by

E
𝑃

(𝜔)
(Ω) := proj

←
𝐾⊂⊂Ω

proj
←
𝜆>0

E
𝜆

𝑃,𝜔
(𝐾) . (18)

If {𝐾
𝑛
}
𝑛∈N is a compact exhaustion ofΩ, we have

E
𝑃

(𝜔)
(Ω) = proj

←
𝑛∈N

proj
←
𝑘∈N

E
𝑘

𝑃,𝜔
(𝐾

𝑛
) = proj

←
𝑛∈N

E
𝑛

𝑃,𝜔
(𝐾

𝑛
) . (19)

This metrizable locally convex topology is defined by the
fundamental system of seminorms {‖ ⋅ ‖

𝐾
𝑛
,𝑛
}
𝑛∈N

.
The space of ultradifferentiable functions of Roumieu type

with respect to the iterates of 𝑃 is defined by

E
𝑃

{𝜔}
(Ω) = {𝑓 ∈ 𝐶

∞
(Ω) : ∀𝐾 ⊂⊂ Ω ∃𝜆 > 0

such that 𝑓
𝐾,𝜆 < +∞} .

(20)

Its topology is defined by

E
𝑃

{𝜔}
(Ω) := proj

←
𝐾⊂⊂Ω

ind
→
𝜆>0

E
𝜆

𝑃,𝜔
(𝐾) . (21)

As in the Gevrey case, we call these classes generalized
nonquasianalytic classes.We observe that in comparison with
the spaces of generalized nonquasianalytic classes as defined
in [14] we add here 𝑚 as a factor inside 𝜑

∗ in (15), where
𝑚 is the order of the operator 𝑃, which does not change the
properties of the classes and will simplify the notation in the
following.

The inclusion map E
∗
(Ω) → E𝑃

∗
(Ω) is continuous

(see [14, Theorem 4.1]). The space E𝑃

∗
(Ω) is complete if and

only if 𝑃 is hypoelliptic (see [14, Theorem 3.3]). Moreover,
under a mild condition on 𝜔 introduced by Bonet et al. [26],
E𝑃

∗
(Ω) coincides with the class of ultradifferentiable func-

tionsE
∗
(Ω) if and only if𝑃 is elliptic (see [14,Theorem 4.12]).

Denoting by

𝑓 (𝜉) := ∫ 𝑒
−𝑖⟨𝑥,𝜉⟩

𝑓 (𝑥) 𝑑𝑥 (22)

the classical Fourier transform of 𝑓 ∈ E(Ω), we recall from
[22, Proposition 3.3] the following characterization of the
∗-singular support in the sense of Braun et al. [15].

Proposition 4. Let Ω ⊂ R𝑛 be an open set, 𝑢 ∈ D(Ω), and
𝑥
0
∈ Ω.
(a) Then 𝑢 is aE

{𝜔}
-function in some neighborhood of 𝑥

0
if

and only if for some neighborhood𝑈 of 𝑥
0
there exists a

bounded sequence 𝑢
𝑁
∈ E(Ω)which is equal to 𝑢 in𝑈

and satisfies, for some 𝐶 > 0 and 𝑘 ∈ N, the estimates
𝜉

𝑁 �̂�𝑁 (𝜉)

 ≤ 𝐶𝑒
(1/𝑘)𝜑

∗

(𝑁𝑘)
, ∀𝑁 ∈ N, 𝜉 ∈ R

𝑛
. (23)

(b) Then 𝑢 is aE
(𝜔)

-function in some neighborhood of 𝑥
0
if

and only if for some neighborhood 𝑈 of 𝑥
0
there exists

a bounded sequence 𝑢
𝑁
∈ E(Ω) which is equal to 𝑢 in

𝑈 and such that for every 𝑘 ∈ N there exists a constant
𝐶
𝑘
> 0 satisfying

𝜉

𝑁 �̂�𝑁 (𝜉)

 ≤ 𝐶
𝑘
𝑒
𝑘𝜑
∗

(𝑁/𝑘)
, ∀𝑁 ∈ N, 𝜉 ∈ R

𝑛
. (24)
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This led, in [22, Definition 3.4], to the following definition
of wave front set WF

∗
(𝑢) in the sense of Braun et al. [15].

Definition 5. Let Ω be an open subset of R𝑛 and 𝑢 ∈ D(Ω).
The {𝜔}-wave front set WF

{𝜔}
(𝑢), resp., (𝜔)-wave front set

WF
(𝜔)

(𝑢), of 𝑢 is the complement in Ω × (R𝑛 \ 0) of the set
of points (𝑥

0
, 𝜉
0
) such that there exist an open neighborhood

𝑈 of 𝑥
0
in Ω, a conic neighborhood Γ of 𝜉

0
, and a bounded

sequence 𝑢
𝑁

∈ E
(Ω) (the set of classical distributions with

compact support in Ω) equal to 𝑢 in 𝑈 such that there are
𝑘 ∈ N and 𝐶 > 0 with the property

𝜉

𝑁 �̂�𝑁 (𝜉)

 ≤ 𝐶𝑒
(1/𝑘)𝜑

∗

(𝑘𝑁)
, 𝑁 = 1, 2, . . . , 𝜉 ∈ Γ (25)

Resp., which satisfies that for every 𝑘 ∈ N there is𝐶
𝑘
> 0with

the property

𝜉

𝑁 �̂�𝑁 (𝜉)

 ≤ 𝐶
𝑘
𝑒
𝑘𝜑
∗

(𝑁/𝑘)
, 𝑁 = 1, 2, . . . , 𝜉 ∈ Γ. (26)

3. Wave Front Sets with respect to
the Iterates of an Operator

Now, we assume that 𝐴 is a bounded open set in R𝑛 and we
use the following notation:

𝐴
𝑠
:= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝜕𝐴) > 𝑠} , (27)

where 𝑑(𝑥, 𝜕𝐴) is the distance of 𝑥 to the boundary of 𝐴.
Given a linear partial differential operator 𝑃(𝐷), we denote
by 𝑃

(𝛼)(𝐷) the operator corresponding to the polynomial
𝑃(𝛼)(𝜉). If 𝑃(𝐷) is hypoelliptic, by [27, Theorem 4.1] and
the argument used in the proof of [3, Theorem 1], there are
constants 𝐶 > 0 and 𝛾 > 0 such that for every 𝑠 ≥ 0 and 𝑡 > 0

we have

𝑃
(𝛼)

(𝐷)𝑓
2,𝐴
𝑠+𝑡

≤ 𝐶 (𝑡
|𝛼|𝑃(𝐷)𝑓

2,𝐴
𝑠

+ 𝑡
|𝛼|−𝛾𝑓

2,𝐴
𝑠

) ,

𝑓 ∈ 𝐶
∞

(𝐴) .

(28)

We observe also that if 𝑃(𝐷) has constant coefficients, its
formal adjoint is 𝑃(−𝐷) and, if 𝑃(𝐷) is hypoelliptic, 𝑃(−𝐷)

is also hypoelliptic (because of the behavior of the associated
polynomial 𝑃(−𝜉)). Moreover, any power 𝑃(𝐷)

ℓ or 𝑃(−𝐷)
ℓ,

with ℓ ∈ N, of 𝑃(𝐷) or 𝑃(−𝐷), is also hypoelliptic.
We now want to generalize the notion of ∗-singular

support of Proposition 4, using the iterates of a hypoelliptic
linear partial differential operator 𝑃 with constant coeffi-
cients. The idea is to substitute the sequence 𝑢

𝑁
which

satisfies an estimate of the form (23) or (24) by the sequence
𝑓
𝑁
= 𝑃(𝐷)

𝑁
𝑢whose Fourier transform satisfies the following

estimates (29) or (30).

Proposition 6. Let 𝑃(𝐷) be a linear partial differential oper-
ator of order𝑚 with constant coefficients which is hypoelliptic.
LetΩ be an open subset ofR𝑛, 𝑢 ∈ D(Ω),𝑥

0
∈ Ω and consider

the following three conditions:

(i) 𝑓𝑁 = 𝑃(𝐷)
𝑁
𝑢,

(ii) (Roumieu) ∃𝑘 ∈ N, ∀𝑀 ∈ R, ∃𝐶
𝑀

> 0, ∀𝑁 ∈ N, and
𝜉 ∈ R𝑛, we have


𝑓
𝑁 (𝜉)


≤ 𝐶

𝑀
𝑒
(1/𝑘)𝜑

∗

(𝑘𝑁𝑚)
(1 +

𝜉
)
𝑀
, (29)

(iii) (Beurling) ∀𝑘 ∈ N and 𝑀 ∈ R, ∃𝐶
𝑘,𝑀

> 0, ∀𝑁 ∈ N,
and 𝜉 ∈ R𝑛, we have


𝑓
𝑁 (𝜉)


≤ 𝐶

𝑘,𝑀
𝑒
𝑘𝜑
∗

(𝑁𝑚/𝑘)
(1 +

𝜉
)
𝑀
. (30)

Then, the distribution 𝑢 ∈ E𝑃

{𝜔}
(𝑈) (𝑢 ∈ E𝑃

(𝜔)
(𝑈)), where

𝑈 is some neighborhood of 𝑥
0
, if and only if there exist a

neighborhood 𝑉 of 𝑥
0
and a sequence {𝑓

𝑁
} in E(Ω) that

satisfies (i) and (ii) in 𝑉 (that satisfies (i) and (iii) in 𝑉).

Proof.

Sufficiency (Roumieu case). Let 𝑢 ∈ E𝑃

{𝜔}
(𝑈)with𝑈 = 𝐵

3𝑟
(𝑥

0
),

the ball in R𝑛 of center 𝑥
0
and radius 3𝑟, 𝑟 > 0. We choose

𝜒 ∈ D(Ω) such that 𝜒 = 1 in 𝐵
𝑟
(𝑥

0
) and 𝜒 = 0 in (𝐵

2𝑟
(𝑥

0
))
𝑐.

We set 𝑓
𝑁
= 𝜒𝑃(𝐷)

𝑁
𝑢. Then, 𝑓

𝑁
∈ E(Ω) and 𝑓

𝑁
= 𝑃(𝐷)

𝑁
𝑢

in 𝐵
𝑟
(𝑥

0
).

Now, fix ℓ ∈ N. From the hypoellipticity of 𝑃(𝐷), there
are constants𝐷, 𝑑 > 0 such that, for |𝜉| large enough, |𝑃(𝜉)| ≥
𝐷|𝜉|

𝑑. Then, from the definition of 𝑓
𝑁
we obtain, for |𝜉| large

enough,

𝐷
ℓ𝜉


𝑑ℓ 

𝑓
𝑁 (𝜉)



≤
𝑃 (𝜉)


ℓ
⋅

𝑓
𝑁 (𝜉)



=
𝑃 (𝜉)


ℓ

∫
R𝑛

𝜒 (𝑥) 𝑃(𝐷)
𝑁
𝑢 (𝑥) 𝑒

−𝑖⟨𝑥,𝜉⟩
𝑑𝑥



=

∫
R𝑛

𝜒 (𝑥) 𝑃(𝐷)
𝑁
𝑢 (𝑥) 𝑃(−𝐷)

ℓ
(𝑒−𝑖⟨𝑥,𝜉⟩) 𝑑𝑥


.

(31)

We integrate by parts in the integral above, which will be
equal to


∫
R𝑛

𝑃(𝐷)
ℓ
(𝜒 (𝑥) ⋅ 𝑃(𝐷)

𝑁
𝑢 (𝑥)) 𝑒

−𝑖⟨𝑥,𝜉⟩
𝑑𝑥


. (32)

From the generalized Leibniz rule, we can write (here𝑚 is the
order of 𝑃(𝐷))

𝑃(𝐷)
ℓ
(𝜒 (𝑥) ⋅ 𝑃(𝐷)

𝑁
𝑢 (𝑥))

= ∑
|𝛼|≤𝑚ℓ

1

𝛼!
𝐷
𝛼
𝜒 (𝑥) ⋅ (𝑃

ℓ
)
(𝛼)

(𝐷) (𝑃(𝐷)
𝑁
𝑢 (𝑥)) .

(33)

Since 𝑃(𝐷)
ℓ is hypoelliptic and 𝑃(𝐷)

𝑁
𝑢 is a 𝐶∞-function in

the bounded set 𝐵
3𝑟
(𝑥

0
), we can apply formula (28) to the

operator 𝑃(𝐷)
ℓ with 𝑡 = 𝜀, for 0 < 𝜀 < 𝑟, 𝐴

𝑠+𝑡
= 𝐵

2𝑟
(𝑥

0
),
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and 𝑓 = 𝑃(𝐷)
𝑁
𝑢 (and 𝐴

𝑠
= 𝐵

2𝑟+𝜀
(𝑥

0
)) to obtain constants

𝐶
ℓ
, 𝛾 > 0 (which do not depend on𝑁) such that


(𝑃

ℓ
)
(𝛼)

(𝐷) (𝑃(𝐷)
𝑁
𝑢)

2,𝐵
2𝑟
(𝑥
0
)

≤ 𝐶
ℓ
(𝜀

|𝛼|
𝑃(𝐷)

𝑁+ℓ
𝑢
2,𝐵
2𝑟+𝜀

(𝑥
0
)

+ 𝜀
|𝛼|−𝛾

𝑃(𝐷)
𝑁
𝑢
2,𝐵
2𝑟+𝜀

(𝑥
0
)
) .

(34)

Now, as 𝑢 ∈ E𝑃

{𝜔}
(𝑈), there are constants 𝑘 ∈ N and 𝐶 > 0

such that (we use the convexity of 𝜑∗)


𝑃(𝐷)

𝑁+ℓ
𝑢
2,𝐵
2𝑟+𝜀

≤ 𝐶𝑒
(1/𝑘)𝜑

∗

(𝑘𝑚(𝑁+ℓ))

≤ 𝐶𝑒
(1/2𝑘)𝜑

∗

(2𝑘𝑚𝑁)+(1/2𝑘)𝜑
∗

(2𝑘𝑚ℓ)
, ℓ,𝑁 ∈ N.

(35)

Therefore, we can estimate, by Hölder’s inequality, the
Fourier transform 𝑓

𝑁
(𝜉) for |𝜉| big enough in the following

way (at the end, we use the fact that 𝜑∗(𝑥)/𝑥 is an increasing
function):

𝐷
ℓ𝜉


𝑑ℓ 

𝑓
𝑁 (𝜉)



≤ 𝐶
ℓ
∑

|𝛼|≤𝑚ℓ

1

𝛼!

𝐷
𝛼
𝜒
2,𝐵
2𝑟
(𝑥
0
)

⋅ (𝜀
|𝛼|

𝑃(𝐷)
𝑁+ℓ

𝑢
2,𝐵
2𝑟+𝜀

(𝑥
0
)

+ 𝜀
|𝛼|−𝛾

𝑃(𝐷)
𝑁
𝑢
2,𝐵
2𝑟+𝜀

(𝑥
0
)
)

≤ 𝐷
𝑚,ℓ

(𝑒
(1/𝑘)𝜑

∗

(𝑘𝑚(𝑁+ℓ))
+ 𝑒

(1/𝑘)𝜑
∗

(𝑘𝑚𝑁)
)

≤ 𝐸
𝑚,ℓ

𝑒
(1/2𝑘)𝜑

∗

(2𝑘𝑚𝑁)
.

(36)

On the other hand, if |𝜉| is bounded, we put 𝐷
𝑟

=

‖𝜒‖
2,𝐵
2𝑟
(𝑥
0
)
and, by Hölder’s inequality, we have


𝑓
𝑁 (𝜉)


≤

∫
R𝑛

𝜒 (𝑥) 𝑃(𝐷)
𝑁
𝑢 (𝑥) 𝑒

−𝑖⟨𝑥,𝜉⟩
𝑑𝑥



≤ 𝐷
𝑟


𝑃(𝐷)

𝑁
𝑢
2,𝐵
2𝑟

≤ 𝐶𝐷
𝑟
𝑒(1/2𝑘)𝜑

∗

(2𝑘𝑁𝑚).

(37)

From the last estimates, we can conclude that ∃𝑘 ∈ N,
∀𝑀 ∈ R, ∃𝐶

𝑀
> 0, ∀𝑁 ∈ N and 𝜉 ∈ R𝑛,


𝑓
𝑁 (𝜉)


≤ 𝐶

𝑀
𝑒
(1/𝑘)𝜑

∗

(𝑘𝑁𝑚)
(1 +

𝜉
)
𝑀
, (38)

which finishes this implication.
The Beurling case is similar.

Necessity (Roumieu case). Let {𝑓
𝑁
}
𝑁∈N ⊂ E(Ω) satisfying (i)

in some neighborhood 𝑈 of 𝑥
0
and (ii). We fix a compact set

𝐾 ⊂⊂ 𝑈 and take𝑀 > (𝑛 + 1)/2. Now, by (ii), there is 𝑘 ∈ N

and a constant 𝐶 > 0 that depends on 𝑛 and 𝑃(𝐷) such that,
by Parseval’s formula,


𝑃(𝐷)

𝑁
𝑢
𝐿
2
(𝐾)

=
𝑓𝑁

𝐿
2
(𝐾)

≤
𝑓𝑁

𝐿
2
(R𝑛)

=
1

(2𝜋)
𝑛
(∫

R𝑛
(1 +

𝜉
)
−2𝑀

× (1 +
𝜉
)
2𝑀

𝑓
𝑁 (𝜉)



2

𝑑𝜉)
1/2

≤ 𝐶𝑒
(1/𝑘)𝜑

∗

(𝑘𝑁𝑚)
(∫

R𝑛
(1 +

𝜉
)
−2𝑀

𝑑𝜉)
1/2

.

(39)

In a similar way, using the Fourier transform, we can see
that the distributions 𝐷𝛼𝑢 satisfy analogous estimates for
each multi-index 𝛼 on 𝐾. By the hypoellipticity of 𝑃(𝐷) we
conclude that 𝑢 ∈ 𝐶

∞(𝑈), and this finishes the proof in the
Roumieu case.

As above, in the Beurling case we can argue in a similar
way.

In the rest of the paper, it is assumed that the operator
𝑃(𝐷) is hypoelliptic, but not elliptic. Hypoellipticity is not
only useful for Proposition 6, but also because it gives some
good properties of the spaceE𝑃

∗
(Ω), such as completeness (cf.

[14]). On the contrary, the elliptic case is not really interesting
here since E𝑃

∗
(Ω) = E

∗
(Ω) if and only if 𝑃 is elliptic, as we

have already mentioned at the end of Section 2.
Proposition 6 leads us to define the wave front set with

respect to the iterates of an operator.

Definition 7. Let Ω be an open subset of R𝑛, 𝑢 ∈ D(Ω),
and 𝑃(𝐷) a linear partial differential hypoelliptic operator
of order 𝑚 with constant coefficients. We say that a point
(𝑥

0
, 𝜉
0
) ∈ Ω × (R𝑛 \ {0}) is not in the {𝜔}-wave front set

with respect to the iterates of 𝑃, WF𝑃
{𝜔}

(𝑢) ((𝜔)-wave front
set with respect to the iterates of 𝑃, WF𝑃

(𝜔)
(𝑢)), if there are

a neighborhood 𝑈 of 𝑥
0
, an open conic neighborhood Γ of

𝜉
0
, and a sequence {𝑓

𝑁
}
𝑁∈N ⊂ E(Ω) such that (i) and (ii)

of the following conditions hold ((i) and (iii) of the following
conditions hold):

(i) For every𝑁 ∈ N, 𝑓
𝑁
= 𝑃(𝐷)

𝑁
𝑢 in 𝑈.

(ii) Roumieu:

(a) there are constants 𝑘 ∈ N, 𝑀 > 0, and 𝐶 > 0,
such that


𝑓
𝑁 (𝜉)


≤ 𝐶

𝑁
(𝑒
(1/𝑁𝑚𝑘)𝜑

∗

(𝑁𝑚𝑘)
+
𝜉
)
𝑁𝑚

(1 +
𝜉
)
𝑀
,

𝑁 ∈ N, 𝜉 ∈ R
𝑛
;

(40)

(b) there is a constant 𝑘 ∈ N such that for all ℓ ∈ N
0
,

there is 𝐶
ℓ
> 0 with the property


𝑓
𝑁 (𝜉)


≤ 𝐶

ℓ
𝑒
(1/𝑘)𝜑

∗

(𝑘𝑁𝑚)
(1+

𝜉
)
−ℓ
, 𝑁∈N, 𝜉∈Γ. (41)
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(iii) Beurling:

(a) there are𝑀,𝐶 > 0 such that for all 𝑘 ∈ N, there
is 𝐶

𝑘
> 0 such that


𝑓
𝑁 (𝜉)


≤ 𝐶

𝑘
𝐶
𝑁
(𝑒
(𝑘/𝑁𝑚)𝜑

∗

(𝑁𝑚/𝑘)
+
𝜉
)
𝑁𝑚

(1 +
𝜉
)
𝑀
,

𝑁 ∈ N, 𝜉 ∈ R𝑛;

(42)

(b) for all ℓ ∈ N
0
and 𝑘 ∈ N there is 𝐶

𝑘,ℓ
> 0 such

that

𝑓
𝑁 (𝜉)


≤ 𝐶

𝑘,ℓ
𝑒
𝑘𝜑
∗

(𝑁𝑚/𝑘)
(1 +

𝜉
)
−ℓ
,

𝑁 ∈ N, 𝜉 ∈ Γ.

(43)

If we compare the last definition with Definition 5 we can
deduce, as Proposition 9 will show, that the new wave front
set gives more precise information about the propagation of
singularities of a distribution than the ∗-wave front set of a
classical distribution (∗ = {𝜔} or (𝜔)). We first recall the
following result that we state as a lemma (see [19, Proposition
1.8]).

Lemma 8. Let Ω be an open subset of R𝑛, 𝑢 ∈ D(Ω),
and 𝑃(𝐷) a linear partial differential operator with analytic
coefficients in Ω of order𝑚. Let 𝜒

𝑁
∈ D(Ω) such that

𝐷
𝛼
𝜒
𝑁

 ≤ 𝐶(𝐶𝑁)
|𝛼|
, |𝛼| ≤ 𝑁, (44)

where 𝐶 > 0 does not depend on 𝑁 = 0, 1, 2, . . .. Then
the sequence 𝑓

𝑁
= 𝜒

𝑝𝑚𝑁
𝑃(𝐷)

𝑁
𝑢, for 𝑝 ∈ N large enough

independent of𝑁 satisfies

𝑓
𝑁 (𝜉)


≤ 𝐶

𝑁
(𝑚𝑁 +

𝜉
)
𝑚𝑁

(1 +
𝜉
)
𝑀
,

𝜉 ∈ R𝑛, 𝑁 = 0, 1, 2, . . . ,

(45)

for some constants 𝐶 > 0 and𝑀 > 0.

Proposition 9. Let Ω be an open subset of R𝑛, 𝑢 ∈ D(Ω),
𝜔 a weight function, and 𝑃(𝐷) a hypoelliptic linear partial
differential operator of order𝑚with constant coefficients.Then,
the following inclusions hold:

WF𝑃
{𝜔}

𝑢 ⊂ WF
{𝜔}

𝑢, WF𝑃
(𝜔)

𝑢 ⊂ WF
(𝜔)

𝑢. (46)

Proof.

Roumieu Case. Let (𝑥
0
, 𝜉
0
) ∉ WF

{𝜔}
𝑢. From Definition 5,

there exist a neighborhood 𝑈 of 𝑥
0
, an open conic neighbor-

hood𝐹 of 𝜉
0
, and a bounded sequence {𝑢

𝑁
}
𝑁∈N ⊂ E(Ω) such

that 𝑢
𝑁

= 𝑢 in 𝑈 for every 𝑁 ∈ N and for some constants
𝐶 > 0, 𝑘 ∈ N

𝜉

𝑁 �̂�𝑁 (𝜉)

 ≤ 𝐶𝑒
(1/𝑘)𝜑

∗

(𝑘𝑁)
, 𝜉 ∈ 𝐹, 𝑁 ∈ N. (47)

By [18, Lemma 2.2], we can find a sequence 𝜒
𝑁

∈ D(𝑈)

such that 𝜒
𝑁
= 1 in a neighborhood 𝑉 of 𝑥

0
and


𝐷
𝛼+𝛽

𝜒
𝑁


≤ 𝐶

𝛼
(𝐶

𝛼
𝑁)

|𝛽|
, 𝛽 ∈ N

𝑛

0
,
𝛽
 ≤ 𝑁. (48)

We select𝑝 ∈ N as in Lemma 8 (or bigger if necessary) and set
𝑓
𝑁
= 𝜒

𝑁𝑚𝑝
𝑃(𝐷)

𝑁
𝑢. We first observe that, as 𝑢 = 𝑢

𝑁
in 𝑈 for

all 𝑁 ∈ N and 𝜒
𝑁

∈ D(𝑈), we have 𝑓
𝑁

= 𝜒
𝑁𝑚𝑝

𝑃(𝐷)
𝑁
𝑢
𝑠

for all 𝑠 ∈ N. We want to prove (i), (ii)(a), and (ii)(b) in
Definition 7. By the choice of 𝜒

𝑁
, condition (i) is fulfilled

in the neighborhood 𝑉. To see (ii)(a), we observe that from
Lemma 8 there is 𝐶 > 0 such that


𝑓
𝑁 (𝜉)


≤ 𝐶

𝑁
(𝑚𝑁 +

𝜉
)
𝑚𝑁

(1 +
𝜉
)
𝑀
,

𝜉 ∈ R𝑛, 𝑁 = 0, 1, 2, . . . ,

(49)

for some constant𝑀 > 0. Since theweight function𝜔 satisfies
𝜔(𝑡) = 𝑜(𝑡) as 𝑡 tends to infinity, from [22, Remark 2.4(b)], for
every 𝑘 ∈ N there is 𝐶

𝑘
> 0 such that

𝑁𝑚 ≤ (𝐶
𝑘
)
1/𝑁𝑚

𝑒
(𝑘/𝑁𝑚)𝜑

∗

(𝑁𝑚/𝑘)
, 𝑁 ∈ N. (50)

In particular, for 𝑘 = 1, we obtain


𝑓
𝑁 (𝜉)


≤ 𝐶

1
𝐶
𝑁
(𝑒

(1/𝑁𝑚)𝜑
∗

(𝑁𝑚)
+
𝜉
)
𝑚𝑁

(1 +
𝜉
)
𝑀
,

𝜉 ∈ R𝑛, 𝑁 = 0, 1, 2, . . . ,

(51)

which proves (ii)(a).
We prove now (ii)(b). We fix ℓ ∈ N and set, for 𝑓

𝑁
=

𝜒
𝑁𝑚𝑝

𝑃(𝐷)
𝑁
𝑢
𝑁𝑚+ℓ

,

(1 +
𝜉
)
ℓ 
𝑓
𝑁 (𝜉)


≤ (1 +

𝜉
)
ℓ
∫

𝜒
𝑁𝑚𝑝

(𝜂)

𝑃 (𝜉 − 𝜂)


𝑁

×
�̂�𝑁𝑚+ℓ (𝜉 − 𝜂)

 𝑑𝜂

=: 𝐽
1 (𝜉) + 𝐽

2 (𝜉) ,

(52)

where 𝐽
1
(𝜉) is the integral when |𝜂| ≤ 𝑐|𝜉|, for 𝑐 > 0 to

be chosen, and 𝐽
2
(𝜉) is the integral when |𝜂| ≥ 𝑐|𝜉|, both

considered with the factor (1 + |𝜉|)
ℓ. In 𝐽

2
(𝜉), we have

𝜉 − 𝜂
 ≤

𝜉
 +

𝜂
 ≤ (1 + 𝑐

−1
)
𝜂
 . (53)

Since 𝑢
𝑁
is a bounded sequence inE(Ω), there is𝑀 > 0

such that |�̂�
𝑁
(𝜉)| ≤ 𝐶

1
(1 + |𝜉|)

𝑀 for all 𝜉 ∈ R𝑛 and𝑁 ∈ N.
From (48), we can differentiate 𝜒

𝑁𝑚𝑝
up to the order𝑁𝑚

to obtain constants 𝐶
2
> 0, 𝐶

ℓ
that depend on 𝑛, ℓ, and 𝑀

such that (see [22, Lemma 3.5])

𝜒
𝑁𝑚𝑝

(𝜂)

≤ 𝐶

ℓ
𝐶
𝑁𝑚+1

2

×
𝑒
(1/𝑘)𝜑

∗

(𝑁𝑘𝑚)

(
𝜂
 + 𝑒(1/𝑁𝑘𝑚)𝜑

∗
(𝑁𝑘𝑚))

𝑁𝑚
(1 +

𝜂
)
−𝑛−1−𝑀−ℓ

𝜂 ∈ R
𝑛
.

(54)

As𝑃(𝐷) has order𝑚, we also have |𝑃(𝜉)|𝑁 ≤ 𝐶(1 + |𝜉|)
𝑁𝑚

for some constant 𝐶 > 0 and each 𝜉 ∈ R𝑛 and𝑁 ∈ N.
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Moreover, in 𝐽
2
(𝜉), (1 + |𝜉|)

ℓ
≤ (1 + 𝑐−1)

ℓ
(1 + |𝜂|)

ℓ and

(1 +
𝜉 − 𝜂

)
𝑁𝑚+𝑀

≤ (1 + 𝑐
−1
)
𝑁𝑚+𝑀

(1 +
𝜂
)
𝑁𝑚+𝑀

. (55)

Therefore, from (54), we obtain
𝐽2 (𝜉)



≤ 𝐷𝐶
ℓ
(1 + 𝑐

−1
)
𝑀+𝑁𝑚+ℓ

× ∫
|𝜂|≥𝑐|𝜉|

(1 +
𝜂
)
𝑁𝑚+ℓ

(1 +
𝜂
)
𝑀 

𝜒
𝑁𝑚𝑝

(𝜂)

𝑑𝜂

≤ 𝐷

𝐶
ℓ
𝐶
𝑁𝑚+1

2
(1 + 𝑐

−1
)
𝑀+𝑁𝑚+ℓ

𝑒
(1/𝑘)𝜑

∗

(𝑁𝑚𝑘)

(56)

for some𝐷,𝐷 > 0.
On the other hand, if we consider the estimate (1+ |𝜉|)

ℓ
≤

(1 + |𝜉 − 𝜂|)
ℓ
(1 + |𝜂|)

ℓ, we obtain

𝐽1 (𝜉)
 ≤ (∫ (1 +

𝜂
)
ℓ 
𝜒
𝑁𝑚𝑝

(𝜂)

𝑑𝜂)

⋅ sup
|𝜂|≤𝑐|𝜉|

�̂�𝑁𝑚+ℓ (𝜉 − 𝜂)


⋅ (1 +
𝜉 − 𝜂

)
ℓ
⋅
𝑃 (𝜉 − 𝜂)


𝑁
.

(57)

We observe that the integral is less than or equal to 𝐶
ℓ
𝐴𝑁 for

some constant 𝐶
ℓ
> 0 that depends on ℓ and the support of

𝜒
𝑁𝑚𝑝

and some constant 𝐴 > 0. Now, we write 𝜁 = 𝜉 − 𝜂. If Γ
is a conic neighborhood of 𝜉

0
such that Γ ⊂ 𝐹, we can select

0 < 𝑐 < 1 such that for 𝜉 ∈ Γ and |𝜉 − 𝜁| ≤ 𝑐|𝜉|, we have 𝜁 ∈ 𝐹.
Consequently, we obtain, by assumption on �̂�

𝑁𝑚+ℓ
(see (47)),

and by the estimate |𝑃(𝜁)|𝑁 ≤ 𝐶𝑁(1+|𝜁|)
𝑁𝑚 for some positive

constant 𝐶, for 𝜉 ∈ Γ,

𝐽1 (𝜉)
 ≤ 𝐶

ℓ
𝐴
𝑁
⋅ sup
|𝜉−𝜁|≤𝑐|𝜉|

�̂�𝑁𝑚+ℓ (𝜁)
 ⋅ (1 +

𝜁
)
ℓ
⋅
𝑃 (𝜁)


𝑁

≤ 𝐶
ℓ
𝐶
𝑁+1

𝑒
(1/𝑘)𝜑

∗

(𝑁𝑘𝑚+𝑘ℓ)

(58)

for some 𝐶 > 0. We conclude, using the convexity of 𝜑∗, that
there are constants𝐷

ℓ
> 0 and 𝐸 > 0 such that

(1 +
𝜉
)
ℓ 
𝑓
𝑁 (𝜉)


≤
𝐽1 (𝜉)

 +
𝐽2 (𝜉)



≤ 𝐷
ℓ
𝐸
𝑁+1

𝑒
(1/2𝑘)𝜑

∗

(2𝑘𝑁𝑚)
, 𝜉 ∈ Γ.

(59)

Beurling Case. Let us assume now that (𝑥
0
, 𝜉
0
) ∉ WF

(𝜔)
𝑢.

From Definition 5, there exist a neighborhood 𝑈 of 𝑥
0
, an

open conic neighborhood 𝐹 of 𝜉
0
, and a bounded sequence

{𝑢
𝑁
}
𝑁∈N ⊂ E(Ω) such that 𝑢

𝑁
= 𝑢 in𝑈 for every𝑁 ∈ N and

for every 𝑘 ∈ N there is 𝐶
𝑘
> 0, such that

𝜉

𝑁 �̂�𝑁 (𝜉)

 ≤ 𝐶
𝑘
𝑒
𝑘𝜑
∗

(𝑁/𝑘)
, 𝜉 ∈ 𝐹, 𝑁 ∈ N. (60)

We take 𝜒
𝑁
and 𝑓

𝑁
as in the Roumieu case. From (50), for

any 𝑘 ∈ N, there is𝐷
𝑘
> 0 satisfying


𝑓
𝑁 (𝜉)


≤ 𝐷

𝑘
𝐶
𝑁
(𝑒

(𝑘/𝑁𝑚)𝜑
∗

(𝑁𝑚/𝑘)
+
𝜉
)
𝑚𝑁

(1 +
𝜉
)
𝑀
,

𝜉 ∈ R
𝑛
, 𝑁 = 0, 1, 2, . . . ,

(61)

which proves (iii)(a).
To prove (iii)(b), fix ℓ ∈ N and consider now the estimate

(use (48) and (50))


𝜒
𝑁𝑚𝑝

(𝜂)

≤ 𝐶

ℓ
𝐶
𝑁𝑚+1 𝐶

𝑘
𝑒𝑘𝜑
∗

(𝑁𝑚/𝑘)

(
𝜂
 + 𝑒(𝑘/𝑁𝑚)𝜑

∗
(𝑁𝑚/𝑘))

𝑁𝑚

× (1 +
𝜂
)
−𝑛−1−𝑀−ℓ

, 𝜂 ∈ R
𝑛
.

(62)

Here,

(1 +
𝜉
)
ℓ 
𝑓
𝑁 (𝜉)


≤ (1 +

𝜉
)
ℓ

× ∫

𝜒
𝑁𝑚𝑝

(𝜂)

𝑃 (𝜉 − 𝜂)


𝑁

×
�̂�𝑁𝑚+ℓ (𝜉 − 𝜂)

 𝑑𝜂

=: 𝐽
1 (𝜉) + 𝐽

2 (𝜉) ,

(63)

where 𝐽
1
(𝜉) is the integral when |𝜂| ≤ 𝑐|𝜉|, for 𝑐 > 0 to be

chosen, and 𝐽
2
(𝜉) is the integral when |𝜂| ≥ 𝑐|𝜉|. In this case,

we use (60) and obtain a constant 𝐶
ℓ
> 0 which depends on

ℓ (and𝑀, 𝑛) and a constant 𝐸 > 0 with the property that for
every 𝑘 ∈ N there is a constant 𝐶

𝑘
> 0 such that for any 𝜉 ∈ Γ

and𝑁 ∈ N,

(1 +
𝜉
)
ℓ 
𝑓
𝑁 (𝜉)


≤ 𝐶

ℓ
𝐸
𝑁+1

𝐶
𝑘
𝑒
𝑘𝜑
∗

(𝑁𝑚/𝑘)
,

𝜉 ∈ Γ, 𝑁 ∈ N.

(64)

This concludes the Beurling case.

Corollary 10. Let 𝑢 ∈ D(Ω), and let 𝐾 be a compact subset
of Ω and 𝐹 a closed cone in R𝑛. Let 𝜔 be a weight function.
Suppose that {𝜒

𝑁
} ⊂ D(𝐾) is like in (48). Then, we have the

following:

(a) If 𝑊𝐹𝑃
{𝜔}

(𝑢) ∩ (𝐾 × 𝐹) = 0, then the sequence 𝑔
𝑁

=

𝜒
𝑁𝑚𝑝

𝑃(𝐷)
𝑁
𝑢, for 𝑝 ∈ N large enough independent of

𝑁, satisfies that there is 𝑘 ∈ N such that for every ℓ ∈ N,
there is 𝐶

ℓ
> 0 with

𝑔𝑁 (𝜉)
 ≤ 𝐶

ℓ
𝑒(1/𝑘)𝜑

∗

(𝑘𝑁𝑚)(1 +
𝜉
)
−ℓ
, 𝜉 ∈ 𝐹, 𝑁 ∈ N.

(65)

(b) If 𝑊𝐹𝑃
(𝜔)

(𝑢) ∩ (𝐾 × 𝐹) = 0, then the sequence 𝑔
𝑁

=

𝜒
𝑁𝑚𝑝

𝑃(𝐷)
𝑁
𝑢, for 𝑝 ∈ N large enough independent of

𝑁, satisfies that for every 𝑘, ℓ ∈ N there is𝐶
𝑘,ℓ

> 0with

𝑔𝑁 (𝜉)
 ≤ 𝐶

𝑘,ℓ
𝑒
𝑘𝜑
∗

(𝑁𝑚/𝑘)
(1 +

𝜉
)
−ℓ
, 𝜉 ∈ 𝐹, 𝑁 ∈ N.

(66)
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Proof. We make a sketch of proof of (a) only. Let 𝑥
0
∈ 𝐾,

𝜉
0
∈ 𝐹\{0} and choose𝑈 and Γ, with Γ a conic subset of𝐹 and

𝑓
𝑁
according to Definition 7. If the support of 𝜒

𝑁
is in 𝑈, we

have 𝜒
𝑁𝑚𝑝

𝑃(𝐷)
𝑁
𝑢 = 𝜒

𝑁𝑚𝑝
𝑓
𝑁
. Now, the proof is like (ii)(b)

of Proposition 9 for the set Γ and 𝑓
𝑁
instead of 𝑃(𝐷)

𝑁
𝑢
𝑁𝑚+ℓ

.
To obtain a uniform estimate in 𝐹, we can proceed as in [22,
Lemma 3.5] at the end of the proof of (a). See also the proof
of [25, Lemma 8.4.4].

The singular support of a classical distribution 𝑢 ∈ D(Ω)

with respect to the class E𝑃

∗
is the complement in Ω of the

biggest open set 𝑈, where 𝑢|
𝑈

∈ E𝑃

∗
(𝑈). As a consequence

of Propositions 6 and 9 and Corollary 10, we obtain the
following result.

Corollary 11. The projection in Ω of 𝑊𝐹𝑃
∗
(𝑢) is the singular

support with respect to the class E𝑃

∗
(Ω) if 𝑢 ∈ D(Ω).

Proof. Follow the lines of the proofs of [22,Theorem 3.6] and
[25, Theorem 8.4.5].

Remark 12. We observe that from the definition it is obvious
that if 𝑃 is hypoelliptic, then for ∗ = (𝜔) or {𝜔}

WF𝑃
∗
(𝑢) = WF𝑃

∗
(𝑃𝑢) . (67)

Then, by Proposition 9, the following inclusions hold:

WF𝑃
∗
(𝑢) = WF𝑃

∗
(𝑃𝑢) ⊂ WF

∗ (𝑃𝑢) ⊂ WF
∗ (𝑢) . (68)

Now, we can state an improvement of [22, Theorem 4.8]
for operators with constant coefficients.

Theorem 13. Let 𝑃(𝐷) = ∑
|𝛼|≤𝑚

𝑎
𝛼
𝐷𝛼, 𝑎

𝛼
∈ C, be a

hypoelliptic linear partial differential operator with constant
coefficients and order 𝑚 and let Ω be an open subset of R𝑛.
Let 𝑃

𝑚
be the principal part of 𝑃 and Σ = {(𝑥, 𝜉) ∈ Ω × R𝑛 \

{0} : 𝑃
𝑚
(𝜉) = 0} the characteristic set of 𝑃(𝐷). Then, for any

distribution 𝑢 ∈ D(Ω)

𝑊𝐹
∗ (𝑢) ⊂ 𝑊𝐹

𝑃

∗
(𝑢) ∪ Σ. (69)

Proof. Let (𝑥
0
, 𝜉
0
) ∉ WF𝑃

∗
(𝑢) such that𝑃

𝑚
(𝜉
0
) ̸= 0.Then, there

are a neighborhood𝑈 of𝑥
0
, a conic neighborhood Γ of 𝜉

0
, and

a sequence {𝑓
𝑁
}
𝑁∈N ⊂ E

(Ω) that verify (i), (ii)(a)-(ii)(b) in
the Roumieu case, and (iii)(a)-(iii)(b) in the Beurling case of
Definition 7. We take 𝐹 ⊂ Γ such that 𝑃

𝑚
(𝜉) ̸= 0 for 𝜉 ∈ 𝐹. We

take a compact neighborhood 𝐾 ⊂ 𝑈 of 𝑥
0
and consider a

sequence {𝜒
𝑁
}
𝑁∈N ⊂ D(𝑈) satisfying (48) such that 𝜒

𝑁
≡ 1

on𝐾.
We set now 𝑢

𝑁
= 𝜒

3𝑚
2
𝑁
𝑢. We want to estimate

�̂�
𝑁 (𝜉) = ⟨𝑢, 𝜒

3𝑚
2
𝑁
𝑒
−𝑖⟨𝑥,𝜉⟩

⟩

= ∫𝑢 (𝑥) 𝜒3𝑚2𝑁 (𝑥) 𝑒
−𝑖⟨𝑥,𝜉⟩

𝑑𝑥.

(70)

To estimate |�̂�
𝑁
(𝜉)| in 𝐹, we will solve in an approximate way

the following equation:

𝑡
𝑃(𝐷)

𝑁

V (𝑥) = 𝜒
3𝑚
2
𝑁 (𝑥) 𝑒

−𝑖⟨𝑥,𝜉⟩
. (71)

As in [17], we put V(𝑥) = 𝑒
−𝑖⟨𝑥,𝜉⟩𝑤(𝑥, 𝜉)/𝑃

𝑚
(𝜉)

𝑁. For (𝑥, 𝜉) ∈
𝐾 × 𝐹, we have

𝑡
𝑃 (𝐷) (𝑒

−𝑖⟨𝑥,𝜉⟩
𝑃
−1

𝑚
(𝜉) 𝑤)

= ∑
|𝛼|≤𝑚

(−1)
|𝛼|
𝑎
𝛼
𝐷
𝛼

𝑥
(𝑒

−𝑖⟨𝑥,𝜉⟩
𝑃
−1

𝑚
(𝜉) 𝑤)

= ∑
|𝛼|≤𝑚

(−1)
|𝛼|
𝑎
𝛼
𝑒
−𝑖⟨𝑥,𝜉⟩

𝑃
−1

𝑚
(𝜉)

×

𝛼

∑
𝛽=0

(
𝛼

𝛽
) (−𝜉)

𝛽
𝐷
𝛼−𝛽

𝑥
𝑤

=: 𝑒
−𝑖⟨𝑥,𝜉⟩

(𝐼 − 𝑅)𝑤,

(72)

where 𝑅 = 𝑅
1
+ ⋅ ⋅ ⋅ + 𝑅

𝑚
, with 𝑅

𝑗
= 𝑅

𝑗
(𝜉, 𝐷) a differential

operator of order ≤𝑗 which depends on the parameter 𝜉 such
that 𝑅

𝑗
|𝜉|

𝑗 is homogeneous of order 0. Recursively, it is easy
to compute then

𝑡
𝑃(𝐷)

𝑁

(𝑒
−𝑖⟨𝑥,𝜉⟩

𝑃
−𝑁

𝑚
(𝜉) 𝑤) = 𝑒

−𝑖⟨𝑥,𝜉⟩
(𝐼 − 𝑅)

𝑁

𝑤. (73)

Therefore, we want to give an approximate solution of

𝑒
−𝑖⟨𝑥,𝜉⟩

(𝐼 − 𝑅)
𝑁

𝑤 = 𝜒
3𝑚
2
𝑁 (𝑥) 𝑒

−𝑖⟨𝑥,𝜉⟩
. (74)

A formal solution of (74) is given by the series:

𝑤 = (𝐼 − 𝑅)
−𝑁

𝜒
3𝑚
2
𝑁
=

+∞

∑
𝑗=0

(
−𝑁

𝑗
) (−1)

𝑗
𝑅
𝑗
𝜒
3𝑚
2
𝑁
. (75)

For

𝑤
𝑁
:=

𝑚𝑁

∑
𝑗=0

(
−𝑁

𝑗
) (−1)

𝑗
𝑅
𝑗
𝜒
3𝑚
2
𝑁
, (76)

we can write

(𝐼 − 𝑅)
𝑁
𝑤
𝑁
=

𝑁

∑
ℎ=0

(
𝑁

ℎ
) (−1)

ℎ
𝑅
ℎ

×

𝑚𝑁

∑
𝑗=0

(
−𝑁

𝑗
) (−1)

𝑗
𝑅
𝑗
𝜒
3𝑚
2
𝑁

=

𝑁

∑
ℎ=0

𝑚𝑁

∑
𝑗=0

(
𝑁

ℎ
)(

−𝑁

𝑗
) (−1)

ℎ+𝑗
𝑅
ℎ+𝑗

𝜒
3𝑚
2
𝑁
.

(77)

We observe that the coefficient of 𝑅ℎ+𝑗𝜒
3𝑚
2
𝑁
= 𝑅𝑘𝜒

3𝑚
2
𝑁
with

ℎ + 𝑗 = 𝑘 ≤ 𝑚𝑁 is given by

(−1)
𝑘

𝑘

∑
ℎ=0

(
𝑁

ℎ
)(

−𝑁

𝑘 − ℎ
) = 0, 𝑘 ≥ 1, (78)

by the Chu-Vandermonde identity. For 𝑘 ≥ 𝑚𝑁+ 1, the term
𝑅
𝑘 does not appear anymore for ℎ = 0. So, we do not have

all the summands needed in the identity above and hence
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the coefficients of 𝑅𝑘 are not zero. Therefore, (we write 𝜒 for
𝜒
3𝑚
2
𝑁
for simplicity)

(𝐼 − 𝑅)
𝑁
𝑤
𝑁

= 𝜒 +

𝑁

∑
ℎ=1

𝑚𝑁

∑
𝑗=𝑚𝑁+1−ℎ

(
𝑁

ℎ
)(

−𝑁

𝑗
) (−1)

ℎ+𝑗
𝑅
ℎ+𝑗

𝜒

= 𝜒 − 𝑒
𝑁

(79)

for

𝑒
𝑁
:=

𝑁

∑
ℎ=1

𝑚𝑁

∑
𝑗=𝑚𝑁+1−ℎ

(
𝑁

ℎ
)(

−𝑁

𝑗
) (−1)

ℎ+𝑗+1
𝑅
ℎ+𝑗

𝜒. (80)

Then,

𝑡
𝑃 (𝐷)

𝑁

(𝑒
−𝑖⟨𝑥,𝜉⟩

𝑃
−𝑁

𝑚
𝑤
𝑁
) = 𝑒

−𝑖⟨𝑥,𝜉⟩
(𝐼 − 𝑅)

𝑁

𝑤
𝑁

= 𝑒
−𝑖⟨𝑥,𝜉⟩

(𝜒 − 𝑒
𝑁
) .

(81)

If we apply these identities to 𝑢, we obtain

�̂�
𝑁 (𝜉) = ∫ 𝑒

−𝑖⟨𝑥,𝜉⟩
𝜒
3𝑚
2
𝑁
𝑢 (𝑥) 𝑑𝑥

= ∫ 𝑒
−𝑖⟨𝑥,𝜉⟩

𝑒
𝑁 (𝑥, 𝜉) 𝑢 (𝑥) 𝑑𝑥

+ ∫
𝑡
𝑃(𝐷)

𝑁

(𝑒
−𝑖⟨𝑥,𝜉⟩

𝑃
−𝑁

𝑚
𝑤
𝑁
) ⋅ 𝑢 (𝑥) 𝑑𝑥

= ∫ 𝑒
−𝑖⟨𝑥,𝜉⟩

𝑒
𝑁 (𝑥, 𝜉) 𝑢 (𝑥) 𝑑𝑥

+ ∫ 𝑒
−𝑖⟨𝑥,𝜉⟩

𝑃
−𝑁

𝑚
(𝜉) 𝑤𝑁 (𝑥, 𝜉) 𝑃(𝐷)

𝑁
𝑢 (𝑥) 𝑑𝑥

=: 𝐻
1 (𝜉) + 𝐻

2 (𝜉) ,

(82)

where the integrals denote action of distributions.
We suppose now that 𝑢 has order𝑀 > 0 in a neigborhood

of𝐾. Since𝐻
1
(𝜉) = ⟨𝑢, 𝑒

𝑁
𝑒−𝑖⟨𝑥,𝜉⟩⟩, we have

𝐻1 (𝜉)
 ≤ 𝐶 ∑

|𝛽|≤𝑀


𝐷
𝛽

𝑥
(𝑒

𝑁 (𝑥, 𝜉) 𝑒
−𝑖⟨𝑥,𝜉⟩

)


≤ 𝐶 ∑

|𝛽|≤𝑀

𝛽

∑
𝛼=0

(
𝛽

𝛼
)
𝐷

𝛼

𝑥
𝑒
𝑁 (𝑥, 𝜉)



⋅

𝐷
𝛽−𝛼

𝑥
𝑒
−𝑖⟨𝑥,𝜉⟩

≤ 𝐶

∑

|𝛼|≤𝑀

(1 +
𝜉
)
𝑀−|𝛼|sup

𝑥

𝐷
𝛼

𝑥
𝑒
𝑁 (𝑥, 𝜉)

 .

(83)

In order to estimate this expression, first we estimate

𝐷
𝛼

𝑥
𝑒
𝑁

 ≤



𝑁

∑
ℎ=1

𝑚𝑁

∑
𝑗=𝑚𝑁+1−ℎ

(
𝑁

ℎ
)(

−𝑁

𝑗
)𝐷

𝛼

𝑥
(𝑅

𝑗+ℎ
𝜒
3𝑚
2
𝑁
)



.

(84)

The number of terms in 𝑒
𝑁
depends on



𝑚𝑁

∑
𝑗=𝑚𝑁+1−ℎ

(
−𝑁

𝑗
)



≤

𝑚𝑁

∑
𝑗=𝑚𝑁+1−ℎ

(
𝑁 + 𝑚𝑁 − 1

𝑗
) ≤ 2

𝑁+𝑚𝑁−1
.

(85)

Now, since ∑𝑁

ℎ=0
(𝑁
ℎ
) = 2𝑁 and in the sum of the expression

of 𝑒
𝑁
, 𝑚𝑁 < 𝑠 = ℎ + 𝑗 ≤ 𝑚𝑁 + 𝑁, we obtain (we recall that

𝑅 = 𝑅
1
+ ⋅ ⋅ ⋅ + 𝑅

𝑚
)

𝐷
𝛼

𝑥
𝑒
𝑁

 ≤ 2
(𝑚+2)𝑁

𝑚𝑁+𝑁

∑
𝑠=𝑚𝑁+1

𝐷
𝛼

𝑥
(𝑅

𝑠
𝜒
3𝑚
2
𝑁
)


≤ 𝐶
𝑁

𝑚𝑁+𝑁

∑
𝑠=𝑚𝑁+1

∑
𝑗
1
+⋅⋅⋅+𝑗

𝑚
=𝑠

𝑠!

𝑗
1
! ⋅ ⋅ ⋅ 𝑗

𝑚
!

×

𝐷
𝛼

𝑥
(𝑅

𝑗
1

1
⋅ ⋅ ⋅ 𝑅

𝑗
𝑚

𝑚
𝜒
3𝑚
2
𝑁
)

.

(86)

In the last expression, we obtain a sum of 𝐴𝑁 terms, for
some constant 𝐴 > 0, of the form 𝑅

𝑗
1

⋅ ⋅ ⋅ 𝑅
𝑗
𝑘

which contain
derivatives of order 𝑚𝑁 + 1 + 𝑗

𝑁
and are homogeneous of

degree −𝑚𝑁− 1 − 𝑗
𝑁
, where 0 ≤ 𝑗

𝑁
≤ 𝑚2𝑁. Then, if we take

|𝜉| > 𝑁, we get a new constant 𝐵 > 0, such that
𝐷

𝛼

𝑥
𝑒
𝑁



≤ 𝐴
𝑁

𝑚
2

𝑁

∑
𝑝=0

(3𝑚
2
𝑁)

𝑁𝑚+1+𝑝+|𝛼|𝜉

−𝑁𝑚−1−𝑝

≤ 𝐵
𝑁+|𝛼|

𝑁
|𝛼|+𝑁𝜉


−𝑁

.

(87)

Therefore, we obtain a new constant 𝐶 > 0 such that

𝐻1 (𝜉)
 ≤ 𝐶

𝑁
(1 +

𝜉
)
𝑀

𝑁
𝑁+𝑀𝜉


−𝑁

, ∀
𝜉
 > 𝑁. (88)

We study now

𝐻
2 (𝜉) = ∫ 𝑒

−𝑖⟨𝑥,𝜉⟩
𝑃
−𝑁

𝑚
(𝜉) 𝑤𝑁 (𝑥, 𝜉) 𝑃(𝐷)

𝑁
𝑢 (𝑥) 𝑑𝑥

= 𝑃
−𝑁

𝑚
(𝜉) ∫ 𝑒

−𝑖⟨𝑥,𝜉⟩
𝑤
𝑁 (𝑥, 𝜉) 𝑓𝑁 (𝑥) 𝑑𝑥

= 𝑃
−𝑁

𝑚
(𝜉) ⋅F (𝑤

𝑁
𝑓
𝑁
) (𝜉)

= 𝑃
−𝑁

𝑚
(𝜉) ⋅

1

(2𝜋)
𝑛

× ∫
R𝑛

𝑤
𝑁
(𝜂) ⋅ 𝑓

𝑁
(𝜉 − 𝜂) 𝑑𝜂 := 𝑆

1 (𝜉) + 𝑆
2 (𝜉) ,

(89)

where we have splitted 𝐻
2
(𝜉) in the sum of 𝑆

1
(𝜉) and 𝑆

2
(𝜉),

the first when |𝜂| ≤ 𝑐|𝜉| and the second when |𝜂| ≥ 𝑐|𝜉|, for a
constant 𝑐 > 0 to be chosen.
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First, we estimate𝑤
𝑁
defined in formula (76). Proceeding

in a similar way as before with the expression of 𝑒
𝑁
, if we take

|𝜉| > 𝑚𝑁 and |𝛽| ≤ 2𝑚2𝑁 and estimate the binomials as in
(85), we find a constant 𝐴 > 0 such that


𝐷
𝛽

𝑥
𝑤
𝑁


≤



𝑚𝑁

∑
𝑗=0

(
−𝑁

𝑗
) (−1)

𝑗
𝐷
𝛽

𝑥
(𝑅

𝑗
𝜒
3𝑚
2
𝑁
)



≤

𝑚𝑁

∑
𝑗=0


(
−𝑁

𝑗
)


∑
𝑗
1
+⋅⋅⋅+𝑗

𝑚
=𝑗

𝑗!

𝑗
1
! ⋅ ⋅ ⋅ 𝑗

𝑚
!

×

𝐷
𝛽

𝑥
(𝑅

𝑗
1

1
⋅ ⋅ ⋅ 𝑅

𝑗
𝑚

𝑚
𝜒
3𝑚
2
𝑁
)


≤ 𝐶
𝑁+1

(3𝑚
2
𝑁)

|𝛽|
𝑚𝑁

∑
𝑗=0


(
−𝑁

𝑗
)


× ∑
𝑗
1
+⋅⋅⋅+𝑗

𝑚
=𝑗

𝑗!

𝑗
1
! ⋅ ⋅ ⋅ 𝑗

𝑚
!

𝜉

−𝑗𝑚

(3𝑚
2
𝑁)

𝑗𝑚

≤ 𝐴
𝑁
(𝑚𝑁)

|𝛽|

.

(90)

At this point, we have to separate Beurling and Roumieu
cases.

Roumieu Case. From Definition 7(ii)(a), we have


𝑓
𝑁 (𝜉)


≤ 𝐶

𝑁
(𝑒
(1/𝑁𝑚𝑘)𝜑

∗

(𝑁𝑚𝑘)
+
𝜉
)
𝑁𝑚

(1 +
𝜉
)
𝑀
,

𝑁 ∈ N, 𝜉 ∈ R
𝑛
,

(91)

for some constants 𝐶 > 0, 𝑀 > 0, and 𝑘 ∈ N. Now, as 𝜔
𝑁

∈

D(𝑈), by (90), we have, as in [22, Lemma 3.5],

𝑤𝑁
(𝜂)

 ≤ 𝐶
𝑁+1 𝑒(1/𝑘)𝜑

∗

(𝑁𝑚𝑘)

(𝑒(1/𝑁𝑚𝑘)𝜑
∗
(𝑁𝑚𝑘) +

𝜂
)
𝑁𝑚

(1 +
𝜂
)
−𝑛−1−𝑀

,

𝜂 ∈ R
𝑛
.

(92)

We proceed now as in the proof of (ii)(b) of Proposition 9
in order to estimate 𝐻

2
(𝜉) = 𝑆

1
(𝜉) + 𝑆

2
(𝜉). In 𝑆

2
(𝜉), we have

|𝜉 − 𝜂| ≤ (1 + 𝑐−1)|𝜂| and, by (92), we deduce

𝑆2 (𝜉)
 ≤ (2𝜋)

−𝑛𝑃𝑚(𝜉)

−𝑁

× ∫
|𝜂|≥𝑐|𝜉|


𝑤
𝑁
(𝜂) 𝑓

𝑁
(𝜉 − 𝜂)


𝑑𝜂

≤ 𝐷
𝑁𝜉


−𝑁𝑚

(1 + 𝑐
−1
)
𝑁𝑚+𝑀

× ∫
|𝜂|≥𝑐|𝜉|

𝑤𝑁
(𝜂)

 (𝑒
(1/𝑁𝑚𝑘)𝜑

∗

(𝑁𝑚𝑘)
+
𝜂
)
𝑁𝑚

× (1 +
𝜂
)
𝑀
𝑑𝜂

≤ 𝐵
𝑁
𝑒
(1/𝑘)𝜑

∗

(𝑁𝑚𝑘)𝜉

−𝑁𝑚

,

(93)

for some constants𝐷, 𝐵 > 0.

For 𝑆
1
(𝜉) we have

𝑆1 (𝜉)
 ≤

𝑃𝑚 (𝜉)

−𝑁𝑤𝑁

𝐿
1

⋅ sup
|𝜂|≤𝑐|𝜉|


𝑓
𝑁
(𝜉 − 𝜂)


. (94)

As in the proof of Proposition 9, we can estimate 𝑆
1
(𝜉), in the

Roumieu case, with the use of (ii)(b) of Definition 7 in the
following way: we select 𝑐 > 0 for which there are 𝐶 > 0 and
𝑘 ∈ N such that for 𝜉 in some neighborhood Γ

 of 𝜉
0
(see the

argument before inequality (58)),

sup
|𝜂|≤𝑐|𝜉|


𝑓
𝑁
(𝜉 − 𝜂)



≤ 𝐶
𝑁+1

𝑒
(1/𝑘)𝜑

∗

(𝑁𝑘𝑚) sup
|𝜂|≤𝑐|𝜉|

(1 +
𝜉 − 𝜂

)
𝑀

≤ 𝐶
𝑁+1

𝑒
(1/𝑘)𝜑

∗

(𝑁𝑘𝑚)
(1 + (1 + 𝑐)

𝜉
)
𝑀
.

(95)

Consequently, since ‖𝑤
𝑁
‖
𝐿
1

≤ 𝐴𝑁 for some constant 𝐴 > 0,

𝑆1 (𝜉)
 ≤ 𝐷

𝑁+1
𝑒
(1/𝑘)𝜑

∗

(𝑁𝑘𝑚)𝜉

𝑀𝑃𝑚 (𝜉)


−𝑁

≤ 𝐸
𝑁+1

𝑒
(1/𝑘)𝜑

∗

(𝑁𝑘𝑚)𝜉

𝑀−𝑁𝑚

.

(96)

Therefore, if we combine (96) and (93), we obtain two
constants 𝐶 > 0 and ℎ ∈ N such that for 𝜉 in some conic
neighborhoodof 𝜉

0
and |𝜉| ≥ 𝑒(1/2𝑁(𝑚−1)ℎ)𝜑

∗

(2𝑁(𝑚−1)ℎ), by (89),
𝐻2 (𝜉)

 ≤ 𝐶
𝑁+1

𝑒
(1/ℎ)𝜑

∗

(𝑁𝑚ℎ)𝜉

𝑀−𝑁𝑚

≤ 𝐶
𝑁+1

𝑒
(1/2ℎ)𝜑

∗

(2𝑁ℎ)+(1/2ℎ)𝜑
∗

(2𝑁(𝑚−1)ℎ)𝜉

𝑀−𝑁𝑚

≤ 𝐶
𝑁+1

𝑒
(1/2ℎ)𝜑

∗

(2ℎ𝑁)𝜉

𝑀−𝑁

.

(97)

As in (50), we have 𝑁𝑁 ≤ 𝐴𝑒𝜑
∗

(𝑁) for some constant 𝐴 > 0

and every 𝑁 ∈ N. Then, from (88), we deduce a similar
estimate to the one of |𝐻

2
(𝜉)| for |𝐻

1
(𝜉)|. Now, from the

bounds for 𝐻
1
(𝜉) and 𝐻

2
(𝜉), there are constants 𝐶, ℎ > 0

such that, for 𝜉 in some conic neighborhood of 𝜉
0
and |𝜉| ≥

𝑒(1/2𝑁(𝑚−1)ℎ)𝜑
∗

(2𝑁(𝑚−1)ℎ),
�̂�𝑁 (𝜉)

 ≤ 𝐶
𝑁
(1 +

𝜉
)
𝑀
𝑒
(1/ℎ)𝜑

∗

(ℎ𝑁)𝜉

−𝑁

. (98)

We have a similar estimate when |𝜉| ≤

𝑒(1/2𝑁(𝑚−1)ℎ)𝜑
∗

(2𝑁(𝑚−1)ℎ). In fact, since the sequence 𝑢
𝑁

is bounded in E(Ω), there are constants 𝐷 > 0 and 𝑀 > 0

which satisfy
�̂�𝑁 (𝜉)

 ≤ 𝐷(1 +
𝜉
)
𝑀


, 𝜉 ∈ R
𝑛
. (99)

Then, we have
�̂�𝑁 (𝜉)



≤ 𝐷 (1 +
𝜉
)
𝑀


≤ 𝐶(𝑒
(1/2𝑁(𝑚−1)ℎ)𝜑

∗

(2𝑁(𝑚−1)ℎ)
)
𝑀


+𝑁𝜉

−𝑁

≤ 𝐶(𝑒
(1/(𝑁+𝑀



)ℎ


)𝜑
∗

((𝑁+𝑀


)ℎ


)
)
𝑀


+𝑁𝜉

−𝑁

≤ 𝐷

𝑒
(1/ℎ


)𝜑
∗

(𝑁ℎ


)𝜉

−𝑁

.

(100)
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Beurling Case. In this setting we will proceed in a similar way.
We can select 0 < 𝑐 < 1 and apply now (iii)(b) of Definition 7
to obtain, for every 𝑘 ∈ N, a constant 𝐶

𝑘
> 0 such that, for all

𝜉 in some neighborhood of 𝜉
0
,

𝑆1 (𝜉)
 ≤

𝑃𝑚 (𝜉)

−𝑁𝑤𝑁

𝐿
1

⋅ sup
|𝜂|≤𝑐|𝜉|


𝑓
𝑁
(𝜉 − 𝜂)



≤ 𝐶
𝑘
𝐸
𝑁
𝑒
𝑘𝜑
∗

(𝑁𝑚/𝑘)𝜉

𝑀−𝑁𝑚

.

(101)

In a similar way to (92), we can obtain here

𝑤𝑁
(𝜂)

 ≤ 𝐶
𝑘
𝐶
𝑁+1 𝑒𝑘𝜑

∗

(𝑁𝑚/𝑘)

(𝑒(𝑘/𝑁𝑚)𝜑
∗
(𝑁𝑚/𝑘) +

𝜂
)
𝑁𝑚

× (1 +
𝜂
)
−𝑛−1−𝑀

, 𝜂 ∈ R
𝑛
,

(102)

where the constant𝑀 > 0 comes from Definition 7(iii)(a).
Now, as in (93), we have a constant 𝐶 > 0 and for every

𝑘 ∈ N a constant 𝐶
𝑘
> 0 such that

𝑆2 (𝜉)
 ≤ 𝐶

𝑘
𝐶
𝑁
𝑒
𝑘𝜑
∗

(𝑁𝑚/𝑘)𝜉

−𝑁𝑚

, 𝑁 ∈ N,
𝜉
 > 𝑁.

(103)

Therefore, from (101) and (103), we have 𝐶 > 0 and for a
fixed 𝑘 ∈ N a constant 𝐶

𝑘
> 0 such that for 𝜉 in some conic

neighborhood of 𝜉
0
and |𝜉| ≥ 𝑒

(𝑘/𝑁(𝑚−1))𝜑
∗

(𝑁(𝑚−1)/𝑘),

𝐻2 (𝜉)
 ≤ 𝐶

𝑘
𝐶
𝑁
𝑒
2𝑘𝜑
∗

(𝑁𝑚/2𝑘)𝜉

𝑀−𝑁𝑚

≤ 𝐶
𝑘
𝐶
𝑁
𝑒
𝑘𝜑
∗

(𝑁/𝑘)𝜉

𝑀−𝑁

.

(104)

As in the Roumieu case, we deduce a similar estimate for
|𝐻

1
(𝜉)|.Then, the bounds for𝐻

1
(𝜉) and𝐻

2
(𝜉) give a constant

𝐶 > 0 and, for every 𝑘 ∈ N, a constant 𝐶
𝑘

> 0 such
that for 𝜉 in some conic neighborhood of 𝑥

0
and |𝜉| ≥

𝑒(𝑘/𝑁(𝑚−1))𝜑
∗

(𝑁(𝑚−1)/𝑘) (> 𝑁) (if𝑁 is large enough),

�̂�𝑁 (𝜉)
 ≤ 𝐶

𝑘
𝐶
𝑁
𝑒
𝑘𝜑
∗

(𝑁/𝑘)𝜉

𝑀−𝑁

. (105)

Finally, we also have a similar estimate when |𝜉| ≤

𝑒
(𝑘/𝑁(𝑚−1))𝜑

∗

(𝑁(𝑚−1)/𝑘), which concludes the proof of the theo-
rem.

Remark 14. If𝑃(𝐷) is elliptic, then Σ = 0 andTheorem 13 and
Remark 12 imply that

WF
∗ (𝑢) = WF𝑃

∗
(𝑢) . (106)

Example 15. We show that the inclusions

WF𝑃
∗
(𝑢) ⊂ WF

∗ (𝑢) ,

WF𝑃
∗
(𝑢) ⊂ WF

∗ (𝑃𝑢)

(107)

of Remark 12 are strict. As in [14] (see [26]), we consider a
nonquasianalytic weight function 𝜔 satisfying the following
condition: there exists a constant𝐻 ≥ 1 such that for all 𝑡 ≥ 0,

2𝜔 (𝑡) ≤ 𝜔 (𝐻𝑡) + 𝐻. (108)

For example, if 𝜔 is a Gevrey weight, then it satisfies such
a property. We consider now a polynomial 𝑃 with constant
complex coefficients such that it is hypoelliptic but not elliptic
(for instance, the heat operator). Then by [14, Theorem 4.12],
there is 𝑢 ∈ E𝑃

{𝜔}
(Ω)\E

{𝜔}
(Ω) (for some open subsetΩ ofR𝑛).

Then, WF𝑃
{𝜔}

(𝑢) = 0 but WF
{𝜔}

(𝑢) ̸= 0, which implies that the
inclusion

WF𝑃
{𝜔}

(𝑢) ⊊ WF
{𝜔} (𝑢) (109)

is strict.
On the other hand, if we consider now a {𝜔}-hypoelliptic

polynomial 𝑃 which is not elliptic (e.g., the heat operator in
R𝑛 for 𝜔(𝑡) = 𝑡1/3), then as before there will be 𝑢 ∈ E𝑃

{𝜔}
(Ω) \

E
{𝜔}

(Ω). In particular, WF𝑃
{𝜔}

(𝑢) = 0. Now, if WF
{𝜔}

(𝑃𝑢) = 0,
wewill have𝑃𝑢 ∈ E

{𝜔}
(Ω) and since𝑃 is {𝜔}-hypoelliptic, 𝑢 ∈

E
{𝜔}

(Ω), which is a contradiction. Therefore, WF
{𝜔}

(𝑃𝑢) ̸= 0

and we conclude that the inclusion

WF𝑃
{𝜔}

(𝑢) ⊊ WF
{𝜔} (𝑃𝑢) (110)

is strict.
Let us also remark that for the heat operator 𝑄(𝐷) = 𝜕

𝑡
−

Δ
𝑥
, we can explicitly write its characteristic set Σ, so that the

previous considerations give, for 𝑢 ∈ E
𝑄

{𝜔}
(Ω) \ E

{𝜔}
(Ω), the

following information on WF
{𝜔}

(𝑢), because of Theorem 13:

0 ̸=WF
{𝜔} (𝑢) ⊂ WF𝑄

{𝜔}
(𝑢) ∪ Σ

= Σ = {(𝑡, 𝑥, 𝜏, 0) ∈ Ω ×R
𝑛+1

: 𝜏 ̸= 0} .

(111)

In the Beurling setting, we can proceed in a similar way.
Let us finally notice that the inclusion

WF
∗ (𝑃𝑢) ⊊ WF

∗ (𝑢) (112)

of Remark 12 is strict in general.

4. Distributions with Prescribed
Wave Front Set

The proof of the following lemma is straightforward.

Lemma 16. Let 𝜔 be a weight function. Then, for every 𝑎 > 0

and𝑚 ∈ N

(i) 𝑡𝑚𝑒−𝑎𝜔(𝑡) ≤ 𝑒𝑎𝜑
∗

(𝑚/𝑎) ∀𝑡 ≥ 1;

(ii) inf
𝑗∈N
0

𝑡−𝑗𝑚𝑒𝑎𝜑
∗

(𝑗𝑚/𝑎) ≤ 𝑡𝑚𝑒−𝑎𝜔(𝑡) ∀𝑡 ≥ 1.

Now, we show that the product of a Gevrey function with a
function in E𝑃

∗
(Ω) belongs to the last space.

Proposition 17. Let 𝜔 be a nonquasianalytic weight function
such that 𝜔(𝑡𝛾) = 𝑜(𝜎(𝑡)) as 𝑡 → ∞, where 𝛾 > 0 is the
constant in (28) and 𝜎(𝑡) = 𝑡1/𝑠 is a Gevrey weight, with 𝑠 > 1.
If 𝜒 ∈ E

{𝜎}
(Ω) and 𝑢 ∈ E𝑃

∗
(Ω), where ∗ = {𝜔} or (𝜔), then the

multiplication 𝜒𝑢 ∈ E𝑃

∗
(Ω).
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Proof. We will analyse the 𝐿2-norms of 𝑃(𝐷)
𝑗
(𝜒𝑢) on a

compact set𝐾 inΩ. First, we observe that, by the generalized
Leibniz rule over 𝑃(𝐷) applied 𝑗 times,

𝑃(𝐷)
𝑗
(𝜒𝑢) = 𝑃 (𝐷) [𝑃 (𝐷)

(𝑗−1)

⋅ ⋅ ⋅ 𝑃 (𝐷) (𝜒𝑢)]

= ∑

|𝛼1|,...,|𝛼𝑗|≤𝑚

1

𝛼
1
! ⋅ ⋅ ⋅ 𝛼

𝑗
!
𝐷
𝛼
1
+⋅⋅⋅+𝛼

𝑗𝜒

⋅ 𝑃
(𝛼
1
)
(𝐷) (𝑃

(𝛼
2
)
(𝐷) ⋅ ⋅ ⋅ (𝑃

(𝛼
𝑗
)
(𝐷) 𝑢)) .

(113)

We fix now a compact set𝐾 inΩ such that dist(𝐾, 𝜕Ω) ≥ 𝑟 >

0. We apply 𝐿2-norms in the compact set 𝐾


𝑃 (𝐷)

𝑗
(𝜒𝑢)

2,𝐾
≤ ∑

|𝛼1|≤𝑚

⋅ ⋅ ⋅ ∑

|𝛼𝑗|≤𝑚

1

𝛼
1
! ⋅ ⋅ ⋅ 𝛼

𝑗
!

×

𝐷
𝛼
1 ⋅ ⋅ ⋅ 𝐷

𝛼
𝑗𝜒

⋅𝑃
(𝛼
1
)
⋅ ⋅ ⋅ 𝑃

(𝛼
𝑗
)
𝑢
2,𝐾

.

(114)

Since 𝜒 ∈ E
{𝜎}

(Ω), there is a constant 𝐴 > 0 such that, for
each 𝛼 ∈ N𝑛

0
and 𝑥 ∈ 𝐾 we have

𝐷
𝛼
𝜒 (𝑥)

 ≤ 𝐴
|𝛼|
|𝛼|

𝑠|𝛼|
. (115)

Consequently,

sup
𝑥∈𝐾

𝐷
𝛼
1 ⋅ ⋅ ⋅ 𝐷

𝛼
𝑗𝜒 (𝑥)

 ≤ 𝐴
|𝛼
1
+⋅⋅⋅+𝛼

𝑗
|
𝛼
1
+ ⋅ ⋅ ⋅ + 𝛼

𝑗



𝑠|𝛼
1
+⋅⋅⋅+𝛼

𝑗
|

≤ 𝐴
𝑗𝑚

(𝑗𝑚)
𝑠(|𝛼
1
|+⋅⋅⋅+|𝛼

𝑗
|)

.

(116)

Therefore,

𝑃(𝐷)

𝑗
(𝜒𝑢)

2,𝐾

≤ ∑

|𝛼1|≤𝑚,...,|𝛼𝑗|≤𝑚

1

𝛼
1
! ⋅ ⋅ ⋅ 𝛼

𝑗
!
sup
𝐾

𝐷
𝛼
1 ⋅ ⋅ ⋅ 𝐷

𝛼
𝑗𝜒


⋅

𝑃
(𝛼
1
)
⋅ ⋅ ⋅ 𝑃

(𝛼
𝑗
)
𝑢
2,𝐾

≤ ∑

|𝛼1|≤𝑚,...,|𝛼𝑗|≤𝑚

𝐴𝑗𝑚(𝑗𝑚)
𝑠(|𝛼
1
|+⋅⋅⋅+|𝛼

𝑗
|)

𝛼
1
! ⋅ ⋅ ⋅ 𝛼

𝑗
!

⋅

𝑃
(𝛼
1
)
⋅ ⋅ ⋅ 𝑃

(𝛼
𝑗
)
𝑢
2,𝐾

.

(117)

Now, we apply (28) 𝑗 times to the factor ‖𝑃(𝛼1) ⋅ ⋅ ⋅ 𝑃(𝛼𝑗)𝑢‖
2,𝐾

.
We will use the notation 𝐾(𝜀) = 𝐾 + 𝐵(0, 𝜀), for 𝜀 > 0. In the
first step,

𝑃
(𝛼
1
)
⋅ ⋅ ⋅ 𝑃

(𝛼
𝑗
)
𝑢
2,𝐾

≤ 𝐶(𝜀
|𝛼
1
|

1


𝑃 𝑃

(𝛼
2
)
⋅ ⋅ ⋅ 𝑃

(𝛼
𝑗
)
𝑢
2,𝐾(𝜀

1
)

+ 𝜀
|𝛼
1
|−𝛾

1


𝑃
(𝛼
2
)
⋅ ⋅ ⋅ 𝑃

(𝛼
𝑗
)
𝑢
2,𝐾(𝜀

1
)
) .

(118)

In the second step, 𝐾(𝜀
1
) is replaced by 𝐾(𝜀

1
+ 𝜀

2
) and so on

in the next steps. Therefore, to avoid that, after 𝑗 steps, the
set 𝐾(𝜀

1
+ ⋅ ⋅ ⋅ + 𝜀

𝑗
) leaves Ω and to keep it bounded for all 𝑗,

we may take 𝜀
𝑘
depending on 𝑘 for all 1 ≤ 𝑘 ≤ 𝑗. We take

𝜀
𝑘
= 𝐵𝑘−𝑠 with 𝐵 > 0 a constant such that

𝜀
1
+ ⋅ ⋅ ⋅ + 𝜀

𝑗
= 𝐵(1 +

1

2𝑠
+ ⋅ ⋅ ⋅ +

1

𝑗𝑠
) <

𝑟

2
(119)

for all 𝑗. It is obvious that 𝜀−𝛾
𝑘

≤ 𝜀
−𝛾

𝑘+1
for all 1 ≤ 𝑘 ≤ 𝑗 − 1.

Moreover, we can assume that 𝜀
𝑘
< 1 for all 1 ≤ 𝑘 ≤ 𝑗.

After 𝑗 steps we get


𝑃
(𝛼
1
)
⋅ ⋅ ⋅ 𝑃

(𝛼
𝑗
)
𝑢
2,𝐾

≤ 𝐶
𝑗
2
𝑗
𝜀
|𝛼
1
|

1
⋅ ⋅ ⋅ 𝜀

|𝛼
𝑗
|

𝑗
(

𝑃
𝑗
𝑢
2,𝐾(𝜀

1
+⋅⋅⋅+𝜀

𝑗
)

+ 𝜀
−𝛾

𝑗


𝑃
𝑗−1

𝑢
2,𝐾(𝜀

1
+⋅⋅⋅+𝜀

𝑗
)

+ 𝜀
−𝛾

𝑗−1
𝜀
−𝛾

𝑗


𝑃
𝑗−2

𝑢
2,𝐾(𝜀

1
+⋅⋅⋅+𝜀

𝑗
)

+ ⋅ ⋅ ⋅ + 𝜀
−𝛾

1
𝜀
−𝛾

2
⋅ ⋅ ⋅ 𝜀

−𝛾

𝑗
‖𝑢‖2,𝐾(𝜀

1
+⋅⋅⋅+𝜀

𝑗
)
) .

(120)

With our selection of 𝜀
𝑘
for 1 ≤ 𝑘 ≤ 𝑗, we have

𝜀
|𝛼
1
|

1
⋅ ⋅ ⋅ 𝜀

|𝛼
𝑗
|

𝑗
=

𝐵|𝛼1|+⋅⋅⋅+|𝛼𝑗|

2𝑠|𝛼2| ⋅ ⋅ ⋅ 𝑗𝑠|𝛼𝑗|
,

(𝜀
𝑘+1

⋅ ⋅ ⋅ 𝜀
𝑗
)
−𝛾

=
(𝑘 + 1)

𝑠𝛾
⋅ ⋅ ⋅ 𝑗𝑠𝛾

𝐵(𝑗−𝑘)𝛾
,

(121)

for all 𝑘 = 0, 1, . . . , 𝑗 − 1. Moreover, for all 𝑗,𝐾(𝜀
1
+ ⋅ ⋅ ⋅ + 𝜀

𝑗
) ⊂

𝐾(𝑟/2), which is compact and a subset of Ω. Consequently,
since 𝑗𝑗 ≤ 𝑒𝑗𝑗! for all 𝑗 = 1, 2, . . ., we have (we can assume
that the constant 𝐵 < 1 and then 𝐵|𝛼𝑘| < 1 for all 1 ≤ 𝑘 ≤ 𝑗)

𝜀
|𝛼
1
|

1
⋅ ⋅ ⋅ 𝜀

|𝛼
𝑗
|

𝑗
𝑗
𝑠|𝛼
1
+⋅⋅⋅+𝛼

𝑗
|
≤ 𝑗

𝑠|𝛼
1
| 𝑗
𝑠|𝛼
2
|

2𝑠|𝛼2|
⋅ ⋅ ⋅

𝑗𝑠|𝛼𝑗|

𝑗𝑠|𝛼𝑗|
≤

𝑗𝑠𝑚𝑗

(𝑗!)
𝑠𝑚

≤ 𝑒
𝑠𝑚𝑗

.

(122)

Summing up, we obtain


𝑃(𝐷)

𝑗
(𝜒𝑢)

2,𝐾

≤ (

𝑃
𝑗
𝑢

2,𝐾(𝑟/2)

+
𝑗𝑠𝛾

𝐵𝛾

𝑃
𝑗−1

𝑢
2,𝐾(𝑟/2)

+
(𝑗(𝑗 − 1))

𝑠𝛾

𝐵2𝛾

𝑃
𝑗−2

𝑢
2,𝐾(𝑟/2)

+⋅ ⋅ ⋅+
(𝑗!)

𝑠𝛾

𝐵𝑗𝛾
‖𝑢‖2,𝐾(𝑟/2))

× ∑

|𝛼1|≤𝑚,...,|𝛼𝑗|≤𝑚

(2𝐶𝑒𝑠𝑚𝐴𝑚)
𝑗
𝑚𝑠(|𝛼

1
|+⋅⋅⋅+|𝛼

𝑗
|)

𝛼
1
! ⋅ ⋅ ⋅ 𝛼

𝑗
!

.

(123)
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If we use the multinomial theorem,

∑

|𝛼𝑘|≤𝑚

𝑚𝑠|𝛼
𝑘
|

𝛼
𝑘
!

≤

∞

∑
|𝛼|=0

𝑚𝑠|𝛼|

𝛼!
≤ 𝑒

𝑚
𝑠

𝑛
, (124)

where 𝑛 is the dimension of the multi-index |𝛼
𝑘
| or |𝛼|. Then,

it is clear that

∑

|𝛼1|≤𝑚,...,|𝛼𝑗|≤𝑚

(2𝐶/𝐵𝛾𝑒𝑠𝑚𝐴𝑚)
𝑗
𝑚𝑠(|𝛼

1
|+⋅⋅⋅+|𝛼

𝑗
|)

𝛼
1
! ⋅ ⋅ ⋅ 𝛼

𝑗
!

≤ 𝐸
𝑗

(125)

for some constant 𝐸 > 0 that depends on 𝑃(𝐷), 𝜒, and the
compact set 𝐾(𝑟/2).

Now, we control the sequence (𝑗(𝑗 − 1) ⋅ ⋅ ⋅ (𝑗 − 𝑘 + 1))
𝑠𝛾

for 𝑘 = 1, . . . , 𝑗, which is the factor of ‖𝑃𝑗−𝑘𝑢‖
2,𝐾(𝑟/2)

and less
than or equal to

(
𝑗

𝑘
)

𝑠𝛾

𝑘!
𝑠𝛾

≤ 2
𝑗𝑠𝛾

𝑘!
𝑠𝛾
. (126)

For ∗ = {𝜔}, since 𝜔(𝑡𝛾) = 𝑜(𝑡1/𝑠) as 𝑡 → +∞, there is a
constant 𝐹 > 0 such that

(𝑘!)
𝑠𝛾

≤ 𝐹𝑒
𝜑
∗

(𝑘)
, 𝑘 ∈ N. (127)

Since 𝜑∗(𝑥)/𝑥 → ∞ as 𝑡 → ∞, for any constant ℎ ∈ N,

(𝑘!)
𝑠𝛾

≤ 𝐹𝑒
(1/ℎ)𝜑

∗

(𝑘ℎ)
≤ 𝐹𝑒

(1/ℎ)𝜑
∗

(𝑘𝑚ℎ)
. (128)

On the other hand, since 𝑢 ∈ E𝑃

{𝜔}
(Ω), there are constants

𝐺 > 0 and ℎ ∈ N that depend on𝐾(𝑟/2) such that

𝑃
𝑗−𝑘

𝑢
2,𝐾(𝑟/2)

≤ 𝐺𝑒
(1/ℎ)𝜑

∗

((𝑗−𝑘)𝑚ℎ)
, 𝑘 = 0, 1, . . . , 𝑗, 𝑗 ∈ N.

(129)

Then, from the convexity of 𝜑∗,

𝑃(𝐷)

𝑗
(𝜒𝑢)

2,𝐾

≤ 𝐸
𝑗
2
𝑗𝑠𝛾

(

𝑃
𝑗
𝑢
2,𝐾(𝑟/2)

+ 𝐹𝑒
(1/ℎ)𝜑

∗

(𝑚ℎ)
𝑃
𝑗−1

𝑢
2,𝐾(𝑟/2)

+ 𝐹𝑒
(1/ℎ)𝜑

∗

(2𝑚ℎ)
𝑃
𝑗−2

𝑢
2,𝐾(𝑟/2)

+ ⋅ ⋅ ⋅ + 𝐹𝑒
(1/ℎ)𝜑

∗

(𝑗𝑚ℎ)
‖𝑢‖2,𝐾(𝑟/2))

≤ (𝑗 + 1) 2
𝑗𝑠𝛾

𝐸
𝑗
𝐹𝐺𝑒

(1/ℎ)𝜑
∗

(𝑗𝑚ℎ)
.

(130)

If ∗ = (𝜔), since 𝜔(𝑡𝛾) = 𝑜(𝑡1/𝑠) as 𝑡 → +∞ for every
ℓ ∈ N, there is𝐷

ℓ
> 0 such that

(𝑘!)
𝑠𝛾

≤ 𝐷
ℓ
𝑒
ℓ𝜑
∗

(𝑘/ℓ)
, 𝑘 ∈ N. (131)

Moreover, if 𝑢 ∈ E𝑃

(𝜔)
(Ω) for each ℓ ∈ N, there is 𝐶

ℓ
> 0 such

that

𝑃
𝑗−𝑘

𝑢
2,𝐾(𝑟/2)

≤ 𝐶
ℓ
𝑒
ℓ𝜑
∗

((𝑗−𝑘)/ℓ)
, 𝑘 = 0, 1, . . . , 𝑗, 𝑗 ∈ N.

(132)

Now, we can proceed as in the Roumieu case to obtain

𝑃(𝐷)

𝑗
(𝜒𝑢)

2,𝐾(𝑟/2)
≤ (𝑗 + 1) 2

𝑗𝑠𝛾
𝐸
𝑗
𝐶
ℓ
𝐷
ℓ
𝑒
ℓ𝜑
∗

(𝑗/ℓ)
, 𝑗 ∈ N,

(133)

which concludes the proof.

Let us recall that, by Proposition 9 andTheorem 13 if 𝜔 is
a nonquasianalytic weight and 𝑃(𝐷) is elliptic, then

WF𝑃
∗
𝑢 = WF

∗
𝑢 ∀𝑢 ∈ D


, (134)

for ∗ being equal to {𝜔} or (𝜔). Let us then assume 𝑃(𝐷) is
not elliptic and prove the following result, which generalizes
Theorems 8.1.4 and 8.4.14 of [25].

Theorem18. Let𝜔 be a nonquasianalytic weight function such
that 𝜔(𝑡𝑏) = 𝑜(𝜎(𝑡)) as 𝑡 tends to infinity, where 𝜎(𝑡) = 𝑡1/𝑠 is a
Gevrey weight function, with 𝑠 > 1 and 𝑏 = max(𝛾, 3/2), with
𝛾 the constant in (28). Let 𝑃(𝐷) be a linear partial differential
operator with constant coefficients which is hypoelliptic but not
elliptic. Given an open subsetΩ ofR𝑛 and a closed conic subset
𝑆 ofΩ× (R𝑛 \ {0}), then there is a distribution 𝑢 ∈ D(Ω) with
0 ̸=𝑊𝐹

𝑃

∗
𝑢 ⊂ 𝑆. In particular, if 𝑆 = {(𝑥

0
, 𝑡𝜉

0
), 𝑡 > 0} for some

𝑥
0
∈ Ω and 𝜉

0
∈ R𝑛 with |𝜉

0
| = 1, we have𝑊𝐹𝑃

∗
𝑢 = 𝑆.

Proof. Let us first remark that it is sufficient to prove the
statement whenΩ = R𝑛.

Moreover, since 𝑃 is hypoelliptic but not elliptic, we can
find 𝛿 > 0 and 0 < 𝑑 < 𝑚 such that

𝑃 (𝜉)
 ≥ 𝛿

𝜉

𝑑
, (135)

for 𝜉 big enough. Choose a sequence (𝑥
𝑘
, 𝜃

𝑘
) ∈ 𝑆with |𝜃

𝑘
| = 1

so that every (𝑥, 𝜃) ∈ 𝑆 with |𝜃| = 1 is the limit of a sub-
sequence.

Let us now set 𝜎(𝑡) := 𝜔(𝑡
3/2) and separate Beurling and

Roumieu cases.

Roumieu Case. Take 𝜙 ∈ D
{𝜎}

(R𝑛) with 𝜙(0) = 1.
Then, there exist 𝑐 > 0 and ℎ ∈ N such that


𝜙 (𝜉)


≤ 𝑐𝑒

−(1/ℎ)𝜎(𝜉)
∀𝜉 ∈ R

𝑛
. (136)

Since log 𝑡 = 𝑜(𝜎(𝑡)) as 𝑡 → +∞, by definition of weight
function, by Lemma 1.7 of [15], there exists a weight function
𝛼 such that log 𝑡 = 𝑜(𝛼(𝑡)) and 𝛼(𝑡) = 𝑜(𝜎(𝑡)) for 𝑡 → +∞.

Note that for every ℓ ∈ N, there is 𝑘
ℓ
∈ N such that

exp{−
𝜎 (𝑘𝑑/𝑚)

𝛼 (𝑘𝑑/𝑚)
log 𝑘} < 𝑘

−ℓ
∀𝑘 ≥ 𝑘

ℓ
(137)

and define then

𝑢 (𝑥) =

+∞

∑
𝑘=1

𝑒
−(𝜎(𝑘

𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘
𝜙 (𝑘 (𝑥 − 𝑥

𝑘
)) 𝑒

𝑖𝑘
3

⟨𝑥,𝜃
𝑘
⟩
.

(138)

This is a continuous function in R𝑛 and we will prove that
0 ̸=WF𝑃

{𝜔}
𝑢 ⊂ 𝑆.
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To prove first that WF𝑃
{𝜔}

𝑢 ⊂ 𝑆, we take (𝑥
0
, 𝜉
0
) ∉ 𝑆 and

prove that (𝑥
0
, 𝜉
0
) ∉ WF𝑃

{𝜔}
𝑢. To this aim, we choose an open

neighborhood 𝑈 of 𝑥
0
and an open conic neighborhood Γ of

𝜉
0
such that

(𝑈 × Γ) ∩ 𝑆 = 0. (139)

Write 𝑢 = 𝑢
1
+ 𝑢

2
, where 𝑢

1
is the sum of terms in (138) with

𝑥
𝑘
∉ 𝑈 and 𝑢

2
is the sum of terms with 𝑥

𝑘
∈ 𝑈.

Therefore, there is a neighborhood 𝑈
1
of 𝑥

0
with 𝑈

1
⊂ 𝑈

such that 𝑢
1
is in E

{𝜎}
(𝑈

1
) since all but a finite number of

terms vanish in 𝑈
1
. Moreover, every weight function 𝜔 is

increasing by definition, so that𝜔 ≤ 𝜎,E
{𝜎}

⊂ E
{𝜔}

and hence
𝑢
1
∈ E

{𝜔}
(𝑈

1
).

Consider then

𝑓
𝑁
= 𝑃(𝐷)

𝑁
𝑢
2 (𝑥)

= ∑
𝑥
𝑘
∈𝑈

𝑒
−(𝜎(𝑘

𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘
𝑃 (𝐷)

𝑁

× [𝜙 (𝑘 (𝑥 − 𝑥
𝑘
)) 𝑒

𝑖𝑘
3

⟨𝑥,𝜃
𝑘
⟩
] .

(140)

Note that it is a totally convergent series since

sup
𝑥∈R𝑛


𝑃(𝐷)

𝑁
[𝜙 (𝑘 (𝑥 − 𝑥

𝑘
)) 𝑒

𝑖𝑘
3

⟨𝑥,𝜃
𝑘
⟩
]

≤ 𝐶

𝑁
𝑘
3𝑚𝑁

(141)

for some 𝐶
𝑁
> 0 and because of (137) with ℓ ≥ 3𝑚𝑁 + 2.

Let us then compute the Fourier transform

𝑓
𝑁 (𝜉) = ∑

𝑥
𝑘
∈𝑈

𝑒
−(𝜎(𝑘

𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘
𝑃(𝜉)

𝑁

×F (𝜙 (𝑘 (𝑥 − 𝑥
𝑘
)) 𝑒

𝑖𝑘
3

⟨𝑥,𝜃
𝑘
⟩
)

= ∑
𝑥
𝑘
∈𝑈

𝑒
−(𝜎(𝑘

𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘
𝑘
−𝑛
𝑃(𝜉)

𝑁

× 𝜙(
𝜉 − 𝑘3𝜃

𝑘

𝑘
) 𝑒

𝑖⟨𝑥
𝑘
,𝑘
3

𝜃
𝑘
−𝜉⟩

(142)

with 𝜃
𝑘
∉ Γ because of (139).

If Γ
1
is a conic neighborhood of 𝜉

0
with Γ

1
⊂ Γ ∪ {0}, then

|𝜉 − 𝜂| ≥ 𝑐
0
(|𝜉| + |𝜂|) when 𝜉 ∈ Γ

1
and 𝜂 ∉ Γ, for some 𝑐

0
> 0,

since this is true when |𝜉| + |𝜂| = 1. Thus,


𝜉 − 𝑘

3
𝜃
𝑘


≥ 𝑐

0
(
𝜉
 + 𝑘

3
)

≥ 𝑐
0

1

3
(
𝜉
 +

𝜉
 + 𝑘

3
)

≥ 𝑐
0

3√𝜉
 ⋅
𝜉
 ⋅ 𝑘

3

= 𝑐
0

𝜉

2/3

𝑘, 𝜉 ∈ Γ
1
.

(143)

It follows from (136) that

𝜙 (

𝜉 − 𝑘3𝜃
𝑘

𝑘
)


≤ 𝑐 exp{−1

ℎ
𝜎(

𝜉 − 𝑘
3𝜃

𝑘

𝑘
)}

≤ 𝑐𝑒
−(1/ℎ)𝜎(𝑐

0
𝜉
2/3

)

≤ 𝑐

𝑒
−(1/ℎ)𝜔(𝜉)

, 𝜉 ∈ Γ
1
,

(144)

for some 𝑐
 > 0, since 𝜔(2𝑡) ≤ 𝐿(𝜔(𝑡) + 1) for some 𝐿 >

0 by definition of weight function. Therefore, by (142) and
Lemma 16(i), if we fix ℓ ∈ N, for 𝜉 ∈ Γ

1
, |𝜉| ≥ 1,

(1 +
𝜉
)
ℓ 
𝑓
𝑁 (𝜉)


≤ (1 +

𝜉
)
ℓ
∑
𝑥
𝑘
∈𝑈

𝑒
−(𝜎(𝑘

𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘
𝑘
−𝑛

×
𝑃 (𝜉)


𝑁
𝑐

𝑒
−(1/ℎ)𝜔(𝜉)

≤ 𝑐


ℓ

𝜉

𝑚𝑁+ℓ

𝑒
−(1/ℎ)𝜔(𝜉)

≤ 𝑐


ℓ
𝑒
(1/ℎ)𝜑

∗

(𝑚𝑁ℎ+ℓℎ)
,

(145)

for some 𝑐
ℓ

> 0. Now, from the convexity of 𝜑∗, it follows
easily that condition (ii)(b) of Definition 7 is satisfied. But
also condition (ii)(a) of Definition 7 is satisfied


𝑓
𝑁 (𝜉)



≤ ∑
𝑥
𝑘
∈𝑈

𝑒
−(𝜎(𝑘

𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘

× 𝑘
−𝑛𝑃 (𝜉)


𝑁
𝑐𝑒
−(1/ℎ)𝜎((𝜉−𝑘

3

𝜃
𝑘
)/𝑘)

≤ 𝑐
𝜉


𝑚𝑁

, 𝜉 ∈ R
𝑛
,

(146)

for some 𝑐 > 0. This, together with 𝑢
1
∈ E

{𝜔}
(𝑈

1
), proves

that (𝑥
0
, 𝜉
0
) ∉ WF𝑃

{𝜔}
𝑢.

Let us now prove that WF𝑃
{𝜔}

𝑢 ̸= 0.
Choose 𝜒 ∈ D

{𝜎}
(R𝑛) equal to 1 near 𝑥

0
∈ Ω, where

𝜎 is the Gevrey weight of the hypotheses. To prove that
WF𝑃

{𝜔}
𝑢 ̸= 0, we proceed by contradiction and assume that the

wave front set is empty. Then, 𝑢 ∈ E𝑃

{𝜔}
(Ω).

Set

𝜙
𝑘
(𝑘 (𝑥 − 𝑥

𝑘
)) := 𝜒 (𝑥) 𝜙 (𝑘 (𝑥 − 𝑥

𝑘
)) . (147)

By hypothesis 𝜎 = 𝑜(𝜎) which implies in particular that
D

{𝜎}
(R𝑛) ⊂ D

{𝜎}
(R𝑛). Then, the sequence 𝜙

𝑘
(𝑦) = 𝜒(𝑦/𝑘 +

𝑥
𝑘
)𝜙(𝑦) is a bounded set inD

{𝜎}
(R𝑛) and, in fact, the supports

supp𝜙
𝑘
⊂ supp𝜙 for all 𝑘. We can use [15, Proposition 3.4] to

obtain constants 𝑐, ℎ > 0 such that

𝜙
𝑗 (𝜉)


≤ 𝑐𝑒

−(1/ℎ)𝜎(𝜉) (148)

for all 𝑗 ∈ N and all 𝜉 ∈ R𝑛.
The Fourier transform of 𝑃(𝐷)

𝑁
(𝜒𝑢) is a sum of the form

(142) with 𝜙 replaced by 𝜙
𝑘
. We observe that


𝑘
3
𝜃
𝑘
− 𝑗

3
𝜃
𝑗


≥

𝑘
3
− 𝑗

3
≥ 𝑘

2
+ 𝑘𝑗 + 𝑗

2
≥ 𝑘𝑗, if 𝑘 ̸= 𝑗.

(149)
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Moreover, for 𝑥
𝑘
close to 𝑥

0
and 𝑘 large enough, the equality

𝜙
𝑘

= 𝜙 is satisfied. Consequently, from (135), we have, for
some 𝑐 > 0,


F [𝑃(𝐷)

𝑁
(𝜒𝑢)] (𝑘

3
𝜃
𝑘
)


=



𝑒
−(𝜎(𝑘

𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘
𝑘
−𝑛
𝑃(𝑘

3
𝜃
𝑘
)
𝑁

+ ∑
𝑗 ̸= 𝑘

𝑒−(𝜎(𝑗
𝑑/𝑚

)/𝛼(𝑗
𝑑/𝑚

)) log 𝑗𝑗−𝑛𝑃 (𝑘3𝜃
𝑘
)
𝑁

×𝜙
𝑗
(
𝑘3𝜃

𝑘
− 𝑗3𝜃

𝑗

𝑗
) 𝑒

𝑖⟨𝑥
𝑗
,𝑗
3

𝜃
𝑗
−𝑘
3

𝜃
𝑘
⟩



≥

𝑃 (𝑘

3
𝜃
𝑘
)


𝑁

(𝑒
−(𝜎(𝑘

𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘
𝑘
−𝑛

− ∑
𝑗 ̸= 𝑘

𝑒
−(𝜎(𝑗

𝑑/𝑚

)/𝛼(𝑗
𝑑/𝑚

)) log 𝑗
𝑗
−𝑛

× 𝑐𝑒
−(1/ℎ)𝜎((𝑘

3

𝜃
𝑘
−𝑗
3

𝜃
𝑗
)/𝑗)

)

≥ 𝛿
𝑁
𝑘
3𝑁𝑑

(𝑒
−(𝜎(𝑘

𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘
𝑘
−𝑛

− 𝑐

𝑒
−(1/ℎ)𝜎(𝑘)

)

≥ 𝛿
𝑁
𝑘
3𝑁𝑑 1

2
𝑘
−𝑛
𝑒
−(𝜎(𝑘

𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘
.

(150)

In fact, for 𝑘 large enough

1

ℎ
𝜎 (𝑘) ≥ − log( 1

2𝑐
) +

𝜎 (𝑘𝑑/𝑚)

𝛼 (𝑘𝑑/𝑚)
log 𝑘 + 𝑛 log 𝑘, (151)

since, for 𝑘 → +∞, 𝜎(𝑘) → +∞, 𝜎(𝑘𝑑/𝑚)/𝜎(𝑘) is bounded
(𝑑 < 𝑚 in (135)), log 𝑘 = 𝑜(𝛼(𝑘)), and log 𝑘 = 𝑜(𝜎(𝑘)).

On the other hand, by Proposition 17, the product 𝜒𝑢 ∈

E𝑃

{𝜔}
(Ω).We obtain𝐶 > 0 and ℎ ∈ N such that, for all 𝜉 ∈ R𝑛,


F (𝑃(𝐷)

𝑁
(𝜒𝑢)) (𝜉)


=

∫
R𝑛

𝑒
−𝑖⟨𝑥,𝜉⟩

𝑃(𝐷)
𝑁
(𝜒𝑢) (𝑥) 𝑑𝑥



≤ 𝐷

𝑃(𝐷)

𝑁
(𝜒𝑢)

2,supp𝜒

≤ 𝐶𝐷𝑒
(1/ℎ


)𝜑
∗

(𝑁𝑚ℎ


)
,

(152)

where 𝐷 > 0 is a constant that depends on the Lebesgue
measure of supp𝜒. Consequently, from (150), we have

𝛿𝑁

2
𝑘
3𝑁𝑑−𝑛

𝑒
−(𝜎(𝑘

𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘

≤

F (𝑃(𝐷)

𝑁
(𝜒𝑢)) (𝑘

3
𝜃
𝑘
)


≤ 𝐶𝑒
(1/ℎ


)𝜑
∗

(𝑁𝑚ℎ


)
,

(153)

for every𝑁 ∈ N and 𝑘.

Now, (153) implies, by Lemma 16(ii),

𝑒
−(𝜔(𝑘

3𝑑/2𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘
= 𝑒

−(𝜎(𝑘
𝑑/𝑚

)/𝛼(𝑘
𝑑/𝑚

)) log 𝑘

≤ 2𝐶𝑘
𝑛 inf
𝑁∈N

{(𝛿
1/𝑚

𝑘
3𝑑/𝑚

)
−𝑁𝑚

𝑒
(1/ℎ


)𝜑
∗

(𝑁𝑚ℎ


)
}

≤ 2𝐶𝛿𝑘
𝑛+3𝑑

𝑒
−(1/ℎ



)𝜔(𝛿
1/𝑚

𝑘
3𝑑/𝑚

)
.

(154)

But for every fixed ℎ, there is 𝑘 large enough so that

𝜔 (𝑘3𝑑/2𝑚)

𝛼 (𝑘𝑑/𝑚)
log 𝑘

<
1

ℎ
𝜔 (𝛿

1/𝑚
𝑘
3𝑑/𝑚

) − (𝑛 + 3𝑑) log 𝑘 − log (2𝐶𝛿) ,

(155)

since we can argue as in (151), which is a contradiction.There-
fore, WF𝑃

{𝜔}
𝑢 ̸= 0.

Beurling Case. Take 𝜙 ∈ D
(𝜔)

(R𝑛) with 𝜙(0) = 1.
For every ℎ ∈ N, there exists then a constant 𝑐

ℎ
> 0 such

that

𝜙 (𝜉)


≤ 𝑐

ℎ
𝑒
−ℎ𝜎(𝜉)

∀𝜉 ∈ R
𝑛
. (156)

Note that for every fixed ℓ ∈ N,

exp {−𝜎 (𝑘
𝑑/𝑚

)} = exp{−
𝜎 (𝑘𝑑/𝑚)

log (𝑘𝑑/𝑚)
⋅
𝑚

ℓ𝑑
⋅ log 𝑘ℓ} < 𝑘

−ℓ
,

(157)

for 𝑘 large enough since log 𝑘 = 𝑜(𝜎(𝑘)) as 𝑘 → ∞. Define
then

𝑢 (𝑥) =

+∞

∑
𝑘=1

𝑒
−𝜎(𝑘
𝑑/𝑚

)
𝜙 (𝑘 (𝑥 − 𝑥

𝑘
)) 𝑒

𝑖𝑘
3

⟨𝑥,𝜃
𝑘
⟩
. (158)

This is a continuous function in R𝑛 and we will prove that
0 ̸=WF𝑃

(𝜔)
𝑢 ⊂ 𝑆.

The proof of the inclusion WF𝑃
(𝜔)

𝑢 ⊂ 𝑆 is similar to that
in the Roumieu case. We take (𝑥

0
, 𝜉
0
) ∉ 𝑆, choose an open

neighborhood 𝑈 of 𝑥
0
and an open conic neighborhood Γ of

𝜉
0
such that (𝑈 × Γ) ∩ 𝑆 ̸= 0, and write 𝑢 = 𝑢

1
+ 𝑢

2
, where 𝑢

1

is the sum of terms in (158) with 𝑥
𝑘
∉ 𝑈 and 𝑢

2
is the sum of

terms with 𝑥
𝑘
∈ 𝑈.

We choose a neighborhood 𝑈
1
of 𝑥

0
with 𝑈

1
⊂ 𝑈 such

that 𝑢
1
is inE

(𝜎)
(𝑈

1
) ⊂ E

(𝜔)
(𝑈

1
) since all but a finite number

of terms vanish in 𝑈
1
.

Then, we consider the totally convergent series (because
of (157) with ℓ large enough)

𝑓
𝑁
= 𝑃(𝐷)

𝑁
𝑢
2 (𝑥)

= ∑
𝑥
𝑘
∈𝑈

𝑒
−𝜎(𝑘
𝑑/𝑚

)
𝑃 (𝐷)

𝑁
[𝜙 (𝑘 (𝑥 − 𝑥

𝑘
)) 𝑒

𝑖𝑘
3

⟨𝑥,𝜃
𝑘
⟩
]

(159)
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and compute its Fourier transform

𝑓
𝑁 (𝜉) = ∑

𝑥
𝑘
∈𝑈

𝑒
−𝜎(𝑘
𝑑/𝑚

)
𝑘
−𝑛
𝑃(𝜉)

𝑁
𝜙(

𝜉 − 𝑘3𝜃
𝑘

𝑘
) 𝑒

𝑖⟨𝑥
𝑘
,𝑘
3

𝜃
𝑘
−𝜉⟩

,

(160)

with 𝜃
𝑘
∉ Γ.

For a conic neighborhood Γ
1
of 𝜉

0
with Γ

1
⊂ Γ ∪ {0}, we

have that (143) is satisfied and hence, from (156),


𝜙 (

𝜉 − 𝑘3𝜃
𝑘

𝑘
)


≤ 𝑐

ℎ
exp{−ℎ𝜎(

𝜉 − 𝑘3𝜃
𝑘

𝑘
)}

≤ 𝑐
ℎ
𝑒
−ℎ𝜎(𝑐

0
𝜉
2/3

)
≤ 𝑐



ℎ
𝑒
−ℎ𝜔(𝜉)

, 𝜉 ∈ Γ
1
,

(161)

for some 𝑐
ℎ
> 0, since 𝜔(2𝑡) ≤ 𝐿(𝜔(𝑡) + 1) for some 𝐿 > 0.

Now, we fix ℓ ∈ N. By Lemma 16(i),

(1 +
𝜉
)
ℓ 
𝑓
𝑁 (𝜉)



≤ (1 +
𝜉
)
ℓ
∑
𝑥
𝑘
∈𝑈

𝑒
−𝜎(𝑘
𝑑/𝑚

)
𝑘
−𝑛𝑃 (𝜉)


𝑁
𝑐


ℎ
𝑒
−ℎ𝜔(𝜉)

≤ 𝑐


ℎ,ℓ

𝜉

𝑚𝑁+ℓ

𝑒
−ℎ𝜔(𝜉)

≤ 𝑐


ℎ,ℓ
𝑒
ℎ𝜑
∗

((𝑚𝑁+ℓ)/ℎ)
, 𝜉 ∈ Γ

1
,

(162)

for some 𝑐
ℎ,ℓ

> 0. From the convexity of 𝜑∗, we conclude
that condition (iii)(b) of Definition 7 is satisfied. But also
condition (iii)(a) of Definition 7 is satisfied


𝑓
𝑁 (𝜉)


≤ ∑

𝑥
𝑘
∈𝑈

𝑒
−𝜎(𝑘
𝑑/𝑚

)
𝑘
−𝑛𝑃 (𝜉)


𝑁
𝑐
ℎ

×𝑒
−ℎ𝜎((𝜉−𝑘

3

𝜃
𝑘
)/𝑘)

≤ 𝑐


ℎ

𝜉

𝑚𝑁

,

𝜉 ∈ R
𝑛
,

(163)

for some 𝑐
ℎ
> 0. This, together with 𝑢

1
∈ E

(𝜔)
(𝑈

1
), proves

that (𝑥
0
, 𝜉
0
) ∉ WF𝑃

(𝜔)
𝑢 and hence WF𝑃

(𝜔)
𝑢 ⊂ 𝑆.

Let us prove now that WF𝑃
(𝜔)

𝑢 ̸= 0.
Choose 𝜒 ∈ D

{𝜎}
(R𝑛) equal to 1 near 𝑥

0
. We proceed

by contradiction and assume that WF𝑃
(𝜔)

𝑢 = 0. Then, 𝑢 ∈

E𝑃

(𝜔)
(Ω).
Set 𝜙

𝑘
(𝑘(𝑥 − 𝑥

𝑘
)) := 𝜒(𝑥)𝜙(𝑘(𝑥 − 𝑥

𝑘
)) as in the Roumieu

case. Since 𝜎 = 𝑜(𝜎), D
{𝜎}

(R𝑛) ⊂ D
(𝜎)

(R𝑛) ([15, Proposition
4.7]). Then the sequence {𝜙

𝑘
} is a bounded set in D

(𝜎)
(R𝑛)

and supp𝜙
𝑘
⊂ supp𝜙 for all 𝑘, as in the Roumieu case. By

[15, Proposition 3.4], for each ℎ ∈ N, there is 𝑐
ℎ
> 0 such that

for all 𝑗 ∈ N and 𝜉 ∈ R𝑛,


𝜙
𝑗 (𝜉)


≤ 𝑐

ℎ
𝑒
−ℎ𝜎(𝜉)

. (164)

If 𝑥
𝑘
is close to 𝑥

0
and 𝑘 is large enough, then 𝜙

𝑘
= 𝜙 and

by (149), we have

F (𝑃(𝐷)

𝑁
(𝜒𝑢)) (𝑘

3
𝜃
𝑘
)


=



𝑒
−𝜎(𝑘
𝑑/𝑚

)
𝑘
−𝑛
𝑃 (𝑘

3
𝜃
𝑘
)
𝑁

+ ∑
𝑗 ̸= 𝑘

𝑒
−𝜎(𝑗
𝑑/𝑚

)
𝑗
−𝑛
𝑃(𝑘

3
𝜃
𝑘
)
𝑁

× 𝜙
𝑗
(
𝑘3𝜃

𝑘
− 𝑗3𝜃

𝑗

𝑗
) 𝑒

𝑖⟨𝑥
𝑗
,𝑗
3

𝜃
𝑗
−𝑘
3

𝜃
𝑘
⟩



≥

𝑃 (𝑘

3
𝜃
𝑘
)


𝑁

(𝑒
−𝜎(𝑘
𝑑/𝑚

)
𝑘
−𝑛

− ∑
𝑗 ̸= 𝑘

𝑒
−𝜎(𝑗
𝑑/𝑚

)
𝑗
−𝑛

× 𝑐
ℎ
𝑒
−ℎ𝜎((𝑘

3

𝜃
𝑘
−𝑗
3

𝜃
𝑗
)/𝑗)

)

≥ 𝛿
𝑁
𝑘
3𝑁𝑑

(𝑒
−𝜎(𝑘
𝑑/𝑚

)
𝑘
−𝑛

− 𝑐


ℎ
𝑒
−ℎ𝜎(𝑘)

)

≥ 𝛿
𝑁
𝑘
3𝑁𝑑 1

2
𝑘
−𝑛
𝑒
−𝜎(𝑘
𝑑/𝑚

)
.

(165)

On the other hand, by Proposition 17, 𝜒𝑢 ∈ E𝑃

(𝜔)
(Ω) and

proceeding as in the Roumieu case, we obtain that for every
ℎ ∈ N, there would exist 𝐶

ℎ
> 0 such that


F (𝑃(𝐷)

𝑁
(𝜒𝑢)) (𝑘

3
𝜃
𝑘
)

≤ 𝐶

ℎ
𝑒
ℎ𝜑
∗

(𝑁𝑚/ℎ)
∀𝑘. (166)

But (166) and (165) give a contradiction since they imply,
by Lemma 16(ii), that

𝑒
−𝜔(𝑘
3𝑑/2𝑚

)
= 𝑒

−𝜎(𝑘
𝑑/𝑚

)

≤ 2𝐶
ℎ
𝑘
𝑛 inf
𝑁∈N

{(𝛿
1/𝑚

𝑘
3𝑑/𝑚

)
−𝑁𝑚

𝑒
ℎ𝜑
∗

(𝑁𝑚/ℎ)
}

≤ 2𝐶
ℎ
𝛿𝑘

𝑛+3𝑑
𝑒
−ℎ𝜔(𝛿

1/𝑚

𝑘
3𝑑/𝑚

)

(167)

must hold for every ℎ > 0 and 𝑘 large enough.
However, since 𝜔(2𝑡) ≤ 𝐿(𝜔(𝑡) + 1) for some 𝐿 > 0, there

exists a constant 𝑐
1
> 0 such that

𝜔 (𝑘
3𝑑/2𝑚

) ≤ 𝑐
1
(𝜔 (𝛿

1/𝑚
𝑘
3𝑑/2𝑚

) + 1) , (168)

contradicting (167) for 𝑘 large enough.ThenWF𝑃
(𝜔)

𝑢 ̸= 0.
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