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The soft set theory, originally proposed by Molodtsov, can be used as a general mathematical tool for dealing with uncertainty.
In this paper, we present concepts of soft rough intuitionistic fuzzy sets and intuitionistic fuzzy soft rough sets, and investigate
some properties of soft rough intuitionistic fuzzy sets and intuitionistic fuzzy soft rough sets in detail. Furthermore, classical
representations of intuitionistic fuzzy soft rough approximation operators are presented. Finally, we develop an approach to
intuitionistic fuzzy soft rough sets based on decision making and a numerical example is provided to illustrate the developed
approach.

1. Introduction

Many complicated problems in economics, engineering,
social sciences, medical sciences, and many other fields
involve uncertain data. These problems, which one comes
face to face with in life, cannot be solved using classical
mathematic methods. There are several well-known theories
to describe uncertainty, for instance, fuzzy set theory [1],
rough set theory [2, 3], and other mathematical tools. But
all of these theories have their inherit difficulties as pointed
out by Molodtsov [4]. To overcome these difficulties, in
1999 Molodtsov introduced the concept of soft sets, which
can be seen as a new mathematical tool for dealing with
uncertainties. This so-called soft set theory seems to be free
from the difficulties affecting the existing methods. It has
been found that fuzzy sets, rough sets, and soft sets are closely
related concepts [5]. Soft set theory has potential applications
in many different fields including the smoothness of func-
tions, game theory, operational research, Perron integration,
probability theory, and measurement theory [4, 6]. Research
works on soft sets are very active and progressing rapidly
in these years. Maji et al. [7] defined several operations on
soft sets and made a theoretical study on the theory of soft
sets. Jun [8] introduced the notion of soft BCK/BCI-algebras.

Jun and Park [9] discussed the applications of soft sets in
ideal theory of BCK/BCI-algebras. Feng et al. [10] applied soft
set theory to the study of semirings and initiated the notion
of soft semirings. Furthermore, based on [7], Ali et al. [11]
introduced some new operations on soft sets and improved
the notion of complement of soft set.They proved that certain
De Morgan’s laws hold in soft set theory. Qin and Hong
[12] introduced the notion of soft equality and established
lattice structures and soft quotient algebras of soft sets. Park
et al. [13] discussed some properties of equivalence soft set
relations.

The study of hybrid models combining soft sets with
other mathematical structures is emerging as an active
research topic of soft set theory. Maji et al. [14] initi-
ated the study on hybrid structures involving fuzzy sets
and soft sets. They introduced the notion of fuzzy soft
sets, which can be seen as a fuzzy generalization of soft
sets. Furthermore, based on [14], Majumdar and Samanta
[15] modified the definition of fuzzy soft sets and pre-
sented the notion of generalized fuzzy soft sets theory.
Yang et al. [16] presented the concept of the interval-
valued fuzzy soft sets by combining interval-valued fuzzy set
[17, 18] and soft set models. By combining the multifuzzy
set and soft set models, Yang et al. [19] presented the concept
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of the multifuzzy soft set and provided its application in
decision making under an imprecise environment.

The concept of rough sets, proposed by Pawlak [2, 3] as
a framework for the construction of approximations of con-
cepts, is a formal tool formodeling andprocessing insufficient
and incomplete information. Rough set theory is based on an
assumption that every object in the universe of discourse is
associated with some information. Objects characterized by
the same information are indiscernible. The indiscernibility
relation generated in this way forms the mathematical basis
of the rough set theory. In general, the indiscernibility
relation is also called equivalence relation. Then any subset
of a universe can be characterized by two definable or
observable subsets called lower and upper approximations.
However, the equivalence relations in Pawlak rough set are
too restrictive formany practical applications. In recent years,
from both theoretical and practical needs, many authors
have generalized the notion of Pawlak rough set by using
nonequivalence binary relations. This has led to various
other generalized rough set models [20–37]. More recently,
rough set approximations have also been developed into the
intuitionistic fuzzy environment, and the results are called
intuitionistic fuzzy rough sets [37, 38], rough intuitionistic
fuzzy sets [38], and generalized intuitionistic fuzzy rough sets
[39, 40]. By employing a special type of intuitionistic fuzzy
triangular norm min, Zhou et al. [40] investigated a general
framework for studying various relation-based intuitionistic
fuzzy rough approximation operators in the constructive
and axiomatic approaches. Zhou and Wu [41], based on
intuitionistic fuzzy implicator, studied intuitionistic fuzzy
rough approximations on one universe. Moreover, many new
rough set models have also been established by combining
the Pawlak rough set with other uncertainty theories such
as soft set theory. Feng et al. [42] provided a framework to
combine fuzzy sets, rough sets, and soft sets all together,
which gives rise to several interesting new concepts such as
rough soft sets, soft rough sets, and soft rough fuzzy sets.
The combination of soft set and rough set models was also
discussed by some researchers [43–45].

In this paper, we offer the notions of soft rough intu-
itionistic fuzzy sets and intuitionistic fuzzy soft rough sets,
which can be seen as two new generalized soft rough
set models. In order to give a new approach to decision
making problems, we combine a fuzzy soft relation with
intuitionistic fuzzy rough sets and propose the concept of
intuitionistic fuzzy soft rough sets which is an extension of
soft rough intuitionistic fuzzy sets. Then we can define the
upper and lower approximations of any intuitionistic fuzzy
set on parameter set𝐸. Like the traditional intuitionistic fuzzy
rough set models, intuitionistic fuzzy soft rough sets can also
be exploited to extend many practical applications in reality.
Therefore, we propose a novel approach to decision making
based on intuitionistic fuzzy soft rough set theory.

The rest of this paper is organized as follows. In Section 2,
we review some basic notions related to soft sets, fuzzy soft
sets, and intuitionistic fuzzy sets. In Section 3, we construct
the crisp soft rough approximation operators and discuss
some of their interesting properties. By combining crisp soft
relation with intuitionistic fuzzy sets, then the concept of

soft rough intuitionistic fuzzy approximation operators is
presented in Section 4, and the properties of the lower and
upper soft rough intuitionistic fuzzy approximation operators
are examined. In Section 5, we present the definition of intu-
itionistic fuzzy soft rough approximation operators which is
an extension of soft rough intuitionistic fuzzy approximation
operators in Section 4 and investigate some of their inter-
esting properties. Furthermore, classical representations of
intuitionistic fuzzy soft rough approximation operators are
presented. Section 6 is devoted to studying the application
of intuitionistic fuzzy soft rough sets. Some conclusions and
outlooks for further research are given in Section 7.

2. Preliminaries

The following definitions and preliminaries are required in
the sequel of our work and hence presented in brief.

Definition 1 (see [46]). Let 𝐿∗ = {(𝜇, ]) ∈ [0, 1] × [0, 1] |
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Obviously, a complete lattice on 𝐿
∗ has the smallest

element 0
𝐿
∗ = (0, 1) and the greatest element 1

𝐿
∗ = (1, 0).The

definitions of fuzzy logical operators can be straightforwardly
extended to the intuitionistic fuzzy case. The strict partial
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Definition 2 (see [47, 48]). Let a set 𝑈 be fixed. An intuition-
istic fuzzy (IF, for short) set 𝐴 in 𝑈 is an object having the
form

𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥) , 𝛾

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑈} , (3)

where 𝜇
𝐴
: 𝑈 → [0, 1] and 𝛾

𝐴
: 𝑈 → [0, 1] satisfy 0 ≤

𝜇
𝐴
(𝑥) + 𝛾

𝐴
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑈 and 𝜇

𝐴
(𝑥) and 𝛾

𝐴
(𝑥) are,

respectively, called the degree of membership and the degree
of nonmembership of the element 𝑥 ∈ 𝑈 to 𝐴.

The family of all intuitionistic fuzzy subsets in 𝑈 is
denoted by IF(𝑈). The complement of an IF set 𝐴 is denoted
by ∼ 𝐴 = {⟨𝑥, 𝛾

𝐴
(𝑥), 𝜇
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑈}.

Obviously, every fuzzy set 𝐴 = {⟨𝑥, 𝐴(𝑥)⟩ | 𝑥 ∈ 𝑈} =

{⟨𝑥, 𝜇
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑈} can be identified with the IF set of the

form {⟨𝑥, 𝜇
𝐴
(𝑥), 1 − 𝜇

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑈} and is thus an IF set.

The basic operations on IF(𝑈) are defined as follows [47–
51], for all 𝐴, 𝐵 ∈ IF(𝑈):

(1) 𝐴 ⊆ 𝐵 if and only if 𝜇
𝐴
(𝑥) ≤ 𝜇

𝐵
(𝑥) and 𝛾

𝐴
(𝑥) ≥ 𝛾

𝐵
(𝑥)

for all 𝑥 ∈ 𝑈,
(2) 𝐴 = 𝐵 if and only if 𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴,
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𝑈
= (̂1, 0) = {⟨𝑥, 1, 0⟩ | 𝑥 ∈ 𝑈}

and the IF empty set is 0 = 0
𝑈
= (̂0, 1) = {⟨𝑥, 0, 1⟩ | 𝑥 ∈ 𝑈}.
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and 1
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Definition 3 (see [38, 41]). Let 𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥), 𝛾
𝐴
(𝑥)⟩ | 𝑥 ∈

𝑈} ∈ IF(𝑈) and (𝛼, 𝛽) ∈ 𝐿
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𝛼
, is defined as follows:
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𝐴
𝛽

= {𝑥 ∈ 𝑈 | 𝛾
𝐴
(𝑥) ≤ 𝛽} and 𝐴𝛽+ = {𝑥 ∈ 𝑈 | 𝛾

𝐴
(𝑥) < 𝛽}

are, respectively, referred to as the 𝛽-level cut set and the
strong 𝛽-level cut set of nonmembership generated by 𝐴.

At the same time, other types of cut sets of the IF set𝐴 are
denoted as follows:

𝐴
𝛽

𝛼+
= {𝑥 ∈ 𝑈 | 𝜇

𝐴
(𝑥) > 𝛼, 𝛾

𝐴
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called the (𝛼+, 𝛽)-level cut set of 𝐴;
𝐴
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called the (𝛼+, 𝛽+)-level cut set of 𝐴.

Theorem 4 (see [38, 41]). The cut sets of IF sets satisfy the
following properties, ∀𝐴 ∈ 𝐼𝐹(𝑈), 𝛼, 𝛽 ∈ [0, 1] with 𝛼+𝛽 ≤ 1:

(1) 𝐴𝛽
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Definition 5 (see [4]). Let𝑈 be an initial universe set and let𝐸
be a universe set of parameters. A pair (𝐹, 𝐸) is called a soft set
over 𝑈 if 𝐹 : 𝐸 → 𝑃(𝑈), where 𝑃(𝑈) is the set of all subsets
of 𝑈.

Definition 6 (see [52]). Let (𝐹, 𝐸) be a soft set over 𝑈. Then
a subset of 𝑈 × 𝐸 called a crisp soft relation from 𝑈 to 𝐸 is
uniquely defined by

𝑅 = {⟨(𝑢, 𝑥) , 𝜇
𝑅
(𝑢, 𝑥)⟩ | (𝑢, 𝑥) ∈ 𝑈 × 𝐸} , (6)

where 𝜇
𝑅
: 𝑈 × 𝐸 → {0, 1}, 𝜇

𝑅
(𝑢, 𝑥) = {

1, (𝑢,𝑥)∈𝑅

0, (𝑢,𝑥)∉𝑅
.

Definition 7 (see [14]). Let 𝑈 be an initial universe set and
let 𝐸 be a universe set of parameters. A pair (𝐹, 𝐸) is called a
fuzzy soft set over 𝑈 if 𝐹 : 𝐸 → 𝐹(𝑈), where 𝐹(𝑈) is the set
of all fuzzy subsets of 𝑈.

Definition 8 (see [53]). Let (𝐹, 𝐸) be a fuzzy soft set over 𝑈.
Then a fuzzy subset of 𝑈 × 𝐸 called a fuzzy soft relation from
𝑈 to 𝐸 is uniquely defined by

𝑅 = {⟨(𝑢, 𝑥) , 𝜇
𝑅
(𝑢, 𝑥)⟩ | (𝑢, 𝑥) ∈ 𝑈 × 𝐸} , (7)

where 𝜇
𝑅
: 𝑈 × 𝐸 → [0, 1], 𝜇

𝑅
(𝑢, 𝑥) = 𝜇

𝐹(𝑥)
(𝑢).
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2
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𝑚
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1
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2
, . . . , 𝑥

𝑛
} then the fuzzy

soft relation 𝑅 from 𝑈 to 𝐸 can be presented by a table as in
the following form:

𝑅 𝑥
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⋅ ⋅ ⋅ 𝑥
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𝜇
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𝜇
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1
) 𝜇
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, 𝑥
𝑛
)

...
...

... d
...

𝑢
𝑚

𝜇
𝑅
(𝑢
𝑚
, 𝑥
1
) 𝜇
𝑅
(𝑢
𝑚
, 𝑥
2
) ⋅ ⋅ ⋅ 𝜇

𝑅
(𝑢
𝑚
, 𝑥
𝑛
) .

(8)

Definition 9 (see [30, 32]). Let 𝑈 be a nonempty and finite
universe of discourse and𝑅 ⊆ 𝑈×𝑈 an arbitrary crisp relation
on 𝑈. We define a set-valued function 𝑅

𝑠
: 𝑈 → 𝑃(𝑈) by

𝑅
𝑠
(𝑥) = {𝑦 ∈ 𝑈 | (𝑥, 𝑦) ∈ 𝑅}, 𝑥 ∈ 𝑈.
The pair (𝑈, 𝑅) is called a crisp approximation space. For

any 𝐴 ⊆ 𝑈, the upper and lower approximations of 𝐴 with
respect to (𝑈, 𝑅), denoted by 𝑅(𝐴) and 𝑅(𝐴), are defined,
respectively, as follows:

𝑅 (𝐴) = {𝑥 ∈ 𝑈 | 𝑅
𝑠
(𝑥) ∩ 𝐴 ̸= 0} ,

𝑅 (𝐴) = {𝑥 ∈ 𝑈 | 𝑅
𝑠
(𝑥) ⊆ 𝐴} .

(9)

The pair (𝑅(𝐴), 𝑅(𝐴)) is referred to as a crisp rough set,
and 𝑅, 𝑅 : 𝑃(𝑈) → 𝑃(𝑈) are, respectively, referred to as
upper and lower crisp approximation operators induced from
(𝑈, 𝑅).

3. Construction of Soft Rough Sets

In this section, by combining the crisp soft relation from𝑈 to
𝐸 with crisp rough sets, we will introduce the concept of soft
rough sets.

Definition 10. Let 𝑈 be an initial universe set and let 𝐸 be a
universe set of parameters. For an arbitrary crisp soft relation
𝑅 over 𝑈 × 𝐸, we can define a set-valued function 𝑅

𝑠
: 𝑈 →

𝑃(𝐸) by 𝑅
𝑠
(𝑢) = {𝑥 ∈ 𝐸 | (𝑢, 𝑥) ∈ 𝑅}, 𝑢 ∈ 𝑈.

𝑅 is referred to as serial if for all 𝑢 ∈ 𝑈,𝑅
𝑠
(𝑢) ̸= 0.The pair

(𝑈, 𝐸, 𝑅) is called a crisp soft approximation space. For any
𝐴 ⊆ 𝐸, the upper and lower soft approximations of 𝐴 with
respect to (𝑈, 𝐸, 𝑅), denoted by 𝑅(𝐴) and 𝑅(𝐴), are defined,
respectively, as follows:

𝑅 (𝐴) = {𝑢 ∈ 𝑈 | 𝑅
𝑠
(𝑢) ∩ 𝐴 ̸= 0} , (10)

𝑅 (𝐴) = {𝑢 ∈ 𝑈 | 𝑅
𝑠
(𝑢) ⊆ 𝐴} . (11)
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The pair (𝑅(𝐴), 𝑅(𝐴)) is referred to as a crisp soft rough
set, and 𝑅, 𝑅 : 𝑃(𝐸) → 𝑃(𝑈) are referred to as upper and
lower crisp soft rough approximation operators, respectively.

Example 11. Let 𝑈 be a universal set, which is denoted by
𝑈 = {𝑢

1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
}. Let 𝐸 be a set of parameters, where

𝐸 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
}. Suppose that a soft set over 𝑈 is defined as

follows:

𝐹 (𝑒
1
) = {𝑢

1
, 𝑢
3
, 𝑢
4
} , 𝐹 (𝑒

2
) = {𝑢

2
, 𝑢
4
} ,

𝐹 (𝑒
3
) = 0, 𝐹 (𝑒

4
) = 𝑈.

(12)

Then the crisp soft relation on 𝑈 × 𝐸 is written by

𝑅 = {(𝑢
1
, 𝑒
1
) , (𝑢
3
, 𝑒
1
) , (𝑢
4
, 𝑒
1
) , (𝑢
2
, 𝑒
2
) , (𝑢
4
, 𝑒
2
) ,

(𝑢
1
, 𝑒
4
) , (𝑢
2
, 𝑒
4
) , (𝑢
3
, 𝑒
4
) , (𝑢
4
, 𝑒
4
) , (𝑢
5
, 𝑒
4
)} .

(13)

From Definition 10, we can obtain 𝑅
𝑠
(𝑢
1
) = {𝑒

1
, 𝑒
4
},

𝑅
𝑠
(𝑢
2
) = {𝑒

2
, 𝑒
4
}, 𝑅
𝑠
(𝑢
3
) = {𝑒

1
, 𝑒
4
}, 𝑅
𝑠
(𝑢
4
) = {𝑒

1
, 𝑒
2
, 𝑒
4
}, and

𝑅
𝑠
(𝑢
5
) = {𝑒

4
}.

If the set of parameter𝐴 = {𝑒
2
, 𝑒
3
, 𝑒
4
}, by (10) and (11), we

have 𝑅(𝐴) = {𝑢
2
, 𝑢
5
} and 𝑅(𝐴) = 𝑈.

Theorem 12. Let (𝑈, 𝐸, 𝑅) be a crisp soft approximation space.
Then upper and lower crisp soft approximation operators 𝑅(𝐴)
and 𝑅(𝐴) in Definition 10 satisfy the following properties, for
all 𝐴, 𝐵 ∈ 𝑃(𝐸):

(CSL1) 𝑅(𝐴) =∼ 𝑅(∼ 𝐴),
(CSU1) 𝑅(𝐴) =∼ 𝑅(∼ 𝐴),
(CSL2) 𝑅(𝐴 ∩ 𝐵) = 𝑅(𝐴) ∩ 𝑅(𝐵),
(CSU2) 𝑅(𝐴 ∪ 𝐵) = 𝑅(𝐴) ∪ 𝑅(𝐵),
(CSL3) 𝐴 ⊆ 𝐵 ⇒ 𝑅(𝐴) ⊆ 𝑅(𝐵),
(CSU3) 𝐴 ⊆ 𝐵 ⇒ 𝑅(𝐴) ⊆ 𝑅(𝐵),
(CSL4) 𝑅(𝐴 ∪ 𝐵) ⊇ 𝑅(𝐴) ∪ 𝑅(𝐵),
(CSU4) 𝑅(𝐴 ∩ 𝐵) ⊆ 𝑅(𝐴) ∩ 𝑅(𝐵),

where ∼ 𝐴 is the complement of 𝐴.

Proof. The proof can be directly obtained from Definition 10.

Properties (CSL1) and (CSU1) show that 𝑅 and 𝑅 are dual
approximation operators. To illustrate the point, we introduce
the following example.

Example 13. Reconsider Example 11; we have ∼ 𝐴 = {𝑒
1
}. By

virtue of (10) and (11), we can obtain 𝑅(∼ 𝐴) = {𝑢
1
, 𝑢
3
, 𝑢
4
}. It

follows that ∼ 𝑅(∼ 𝐴) = {𝑢
2
, 𝑢
5
}, which implies that (CSL1)

holds; that is, 𝑅(𝐴) =∼ 𝑅(∼ 𝐴).
Similarly, we can verify that (CSU1) also holds.
Let another parameter set 𝐵 = {𝑒

1
, 𝑒
2
}; then we have 𝐴 ∪

𝐵 = {𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
} = 𝐸 and 𝐴 ∩ 𝐵 = 𝑒

2
. From (10) and (11), we

conclude that 𝑅(𝐵) = 0, 𝑅(𝐵) = {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
}, 𝑅(𝐴 ∩ 𝐵) = 0,

and 𝑅(𝐴 ∪ 𝐵) = 𝑈; that is, 𝑅(𝐸) = 𝑈.
Hence, (CSL2) and (CSU2) hold.

From Definition 10, the following theorem can be easily
derived.

Theorem 14. Let (𝑈, 𝐸, 𝑅) be a crisp soft approximation
space, and let 𝑅(𝐴) and 𝑅(𝐴) be the upper and lower soft
approximations operators in Definition 10. Then,

𝑅 is serial ⇐⇒ 𝑅(𝐴) ⊆ 𝑅 (𝐴) , ∀𝐴 ⊆ 𝐸

⇐⇒ 𝑅 (0) = 0 ⇐⇒ 𝑅 (𝐸) = 𝑈.

(14)

Example 15. Reconsider Examples 11 and 13. It is noted that
𝑅 is serial. Then we have 𝑅(𝐴) ⊆ 𝑅(𝐴). From Example 13,
obviously 𝑅(0) = 0 and 𝑅(𝐸) = 𝑈 hold.

4. Construction of Soft Rough
Intuitionistic Fuzzy Sets

Inspire by the concept of rough intuitionistic fuzzy sets in
[38], we will present the concept of soft rough intuitionistic
fuzzy sets by combining the crisp soft relation from 𝑈 to 𝐸
with the rough intuitionistic fuzzy sets and investigate the
properties of soft rough intuitionistic fuzzy approximation
operators.

Definition 16. Let (𝑈, 𝐸, 𝑅) be a crisp soft approximation
space. For any 𝐴 = {⟨𝑥, 𝜇

𝐴
(𝑥), 𝛾
𝐴
(𝑥)⟩ | 𝑥 ∈ 𝐸} ∈ IF(𝐸),

the upper and lower soft approximations of𝐴 with respect to
(𝑈, 𝐸, 𝑅), denoted by𝑅(𝐴) and𝑅(𝐴), are, respectively, defined
as follows:

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢) , 𝛾
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} , (15)

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢) , 𝛾
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} , (16)

where

𝜇
𝑅(𝐴)

(𝑢) = ⋁

𝑥∈𝑅
𝑠
(𝑢)

𝜇
𝐴
(𝑥) , 𝛾

𝑅(𝐴)
(𝑢) = ⋀

𝑥∈𝑅
𝑠
(𝑢)

𝛾
𝐴
(𝑥) ;

𝜇
𝑅(𝐴)

(𝑢) = ⋀

𝑥∈𝑅
𝑠
(𝑢)

𝜇
𝐴
(𝑥) , 𝛾

𝑅(𝐴)
(𝑢) = ⋁

𝑥∈𝑅
𝑠
(𝑢)

𝛾
𝐴
(𝑥) .

(17)

We can note that 𝑅(𝐴) and 𝑅(𝐴) are two IF sets on 𝑈.
Thus the pair (𝑅(𝐴), 𝑅(𝐴)) is referred to as a soft rough IF set
of 𝐴 with respect to (𝑈, 𝐸, 𝑅), and 𝑅, 𝑅 : IF(𝐸) → IF(𝑈) are
referred to as upper and lower soft rough IF approximation
operators, respectively.

Remark 17. Let (𝑈, 𝐸, 𝑅) be a crisp soft approximation space.
If𝐴 = {⟨𝑥, 𝜇

𝐴
(𝑥)⟩ | 𝑥 ∈ 𝑈} ∈ 𝐹(𝐸), then the above soft rough

IF approximation operators 𝑅(𝐴) and 𝑅(𝐴) degenerate to the
following forms:

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} ,

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} ,

(18)
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where 𝜇
𝑅(𝐴)

(𝑢) = ⋁
𝑥∈𝑅
𝑠
(𝑢)
𝜇
𝐴
(𝑥) and 𝜇

𝑅(𝐴)
(𝑢) =

⋀
𝑥∈𝑅
𝑠
(𝑢)
𝜇
𝐴
(𝑥).

In this case, we call the pair (𝑅(𝐴), 𝑅(𝐴)) soft rough fuzzy
set. This conclusion is similar to the traditional rough fuzzy
set.

Remark 18. Let (𝑈, 𝐸, 𝑅) be a crisp soft approximation space.
If 𝐴 ∈ 𝑃(𝐸) is a crisp set of 𝐸, then the above soft
rough IF approximation operators𝑅(𝐴) and𝑅(𝐴) degenerate
to crisp soft rough approximation operators defined by
Definition 10. Hence, soft rough IF approximation operators
in Definition 16 are an extension of crisp soft rough approxi-
mation operators defined by Definition 10.

Example 19. Consider Example 11. Suppose the crisp soft
relation on 𝑈 × 𝐸

𝑅 = {(𝑢
1
, 𝑒
1
) , (𝑢
3
, 𝑒
1
) , (𝑢
4
, 𝑒
1
) , (𝑢
2
, 𝑒
2
) , (𝑢
4
, 𝑒
2
) ,

(𝑢
1
, 𝑒
4
) , (𝑢
2
, 𝑒
4
) , (𝑢
3
, 𝑒
4
) , (𝑢
4
, 𝑒
4
) , (𝑢
5
, 𝑒
4
)} .

(19)

We can define an IF set 𝐴 ∈ IF(𝐸) as follows:

𝐴 = {⟨𝑒
1
, 0.75, 0.15⟩ , ⟨𝑒

2
, 0.85, 0.12⟩ ,

⟨𝑒
3
, 0.2, 0.6⟩ , ⟨𝑒

4
, 0.8, 0.2⟩} .

(20)

Then by (15) and (16), we have

𝜇
𝑅(𝐴)

(𝑢
1
) = 0.80, 𝛾

𝑅(𝐴)
(𝑢
1
) = 0.15,

𝜇
𝑅(𝐴)

(𝑢
2
) = 0.85, 𝛾

𝑅(𝐴)
(𝑢
2
) = 0.12,

𝜇
𝑅(𝐴)

(𝑢
3
) = 0.80, 𝛾

𝑅(𝐴)
(𝑢
3
) = 0.15,

𝜇
𝑅(𝐴)

(𝑢
4
) = 0.85, 𝛾

𝑅(𝐴)
(𝑢
4
) = 0.12,

𝜇
𝑅(𝐴)

(𝑢
5
) = 0.80, 𝛾

𝑅(𝐴)
(𝑢
5
) = 0.20;

𝜇
𝑅(𝐴)

(𝑢
1
) = 0.75, 𝛾

𝑅(𝐴)
(𝑢
1
) = 0.20,

𝜇
𝑅(𝐴)

(𝑢
2
) = 0.80, 𝛾

𝑅(𝐴)
(𝑢
2
) = 0.20,

𝜇
𝑅(𝐴)

(𝑢
3
) = 0.75, 𝛾

𝑅(𝐴)
(𝑢
3
) = 0.20,

𝜇
𝑅(𝐴)

(𝑢
4
) = 0.75, 𝛾

𝑅(𝐴)
(𝑢
4
) = 0.20,

𝜇
𝑅(𝐴)

(𝑢
5
) = 0.80, 𝛾

𝑅(𝐴)
(𝑢
5
) = 0.20.

(21)

Thus,

𝑅 (𝐴) = {⟨𝑢
1
, 0.80, 0.15⟩ ,

⟨𝑢
2
, 0.85, 0.12⟩ , ⟨𝑢

3
, 0.80, 0.15⟩ ,

⟨𝑢
4
, 0.85, 0.12⟩ , ⟨𝑢

5
, 0.80, 0.20⟩} ,

𝑅 (𝐴) = {⟨𝑢
1
, 0.75, 0.20⟩ ,

⟨𝑢
2
, 0.80, 0.20⟩ , ⟨𝑢

3
, 0.75, 0.20⟩ ,

⟨𝑢
4
, 0.75, 0.20⟩ , ⟨𝑢

5
, 0.80, 0.20⟩} .

(22)

Theorem 20. Let (𝑈, 𝐸, 𝑅) be a crisp soft approximation
space. Then the upper and lower soft rough IF approximation
operators 𝑅(𝐴) and 𝑅(𝐴) in Definition 10 satisfy the following
properties, ∀𝐴, 𝐵 ∈ 𝐼𝐹(𝐸), ∀𝛼, 𝛽 ∈ [0, 1] with 𝛼 + 𝛽 ≤ 1:

(SIFL1) 𝑅(𝐴) =∼ 𝑅(∼ 𝐴),

(SIFL2) 𝑅(𝐴 ∩ 𝐵) = 𝑅(𝐴) ∩ 𝑅(𝐵),

(SIFL3) 𝐴 ⊆ 𝐵 ⇒ 𝑅(𝐴) ⊆ 𝑅(𝐵),

(SIFL4) 𝑅(𝐴 ∪ 𝐵) ⊇ 𝑅(𝐴) ∪ 𝑅(𝐵),

(SIFU1) 𝑅(𝐴) =∼ 𝑅(∼ 𝐴)

(SIFU2) 𝑅(𝐴 ∪ 𝐵) = 𝑅(𝐴) ∪ 𝑅(𝐵),

(SIFU3) 𝐴 ⊆ 𝐵 ⇒ 𝑅(𝐴) ⊆ 𝑅(𝐵)

(SIFU4) 𝑅(𝐴 ∩ 𝐵) ⊆ 𝑅(𝐴) ∩ 𝑅(𝐵),

where ∼ 𝐴 is the complement of 𝐴.

Proof. We only prove properties of the lower soft rough
IF approximation operator 𝑅(𝐴). The upper soft rough IF
approximation operator 𝑅(𝐴) can be proved similarly.

(SIFL1) By Definition 16, then we have

∼ 𝑅 (∼ 𝐴)

= {⟨𝑢, 𝛾
𝑅(∼𝐴)

(𝑢) , 𝜇
𝑅(∼𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈}

=

{

{

{

⟨𝑢, ⋁

𝑥∈𝑅
𝑠
(𝑢)

𝛾
(∼𝐴)

(𝑥) , ⋀

𝑥∈𝑅
𝑠
(𝑢)

𝜇
(∼𝐴)

(𝑥)⟩ | 𝑢 ∈ 𝑈

}

}

}

=

{

{

{

⟨𝑢, ⋁

𝑥∈𝑅
𝑠
(𝑢)

𝜇
𝐴
(𝑥) , ⋀

𝑥∈𝑅
𝑠
(𝑢)

𝛾
𝐴
(𝑥)⟩ | 𝑢 ∈ 𝑈

}

}

}

= {⟨𝑢, 𝜇
𝑅(∼𝐴)

(𝑢) , 𝛾
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} = 𝑅 (𝐴) .

(23)

(SIFL2) By virtue of (16), then we have

𝑅 (𝐴 ∩ 𝐵)

= {⟨𝑢, 𝜇
𝑅(𝐴∩𝐵)

(𝑢) , 𝛾
𝑅(𝐴∩𝐵)

(𝑢)⟩ | 𝑢 ∈ 𝑈}

=

{

{

{

⟨𝑢, ⋀

𝑥∈𝑅
𝑠
(𝑢)

𝜇
𝐴∩𝐵

(𝑥) , ⋁

𝑥∈𝑅
𝑠
(𝑢)

𝛾
𝐴∩𝐵

(𝑥)⟩ | 𝑢 ∈ 𝑈

}

}

}

=

{

{

{

⟨𝑢, ⋀

𝑥∈𝑅
𝑠
(𝑢)

(𝜇
𝐴
(𝑥) ∧ 𝜇

𝐵
(𝑥)) ,
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⋁

𝑥∈𝑅
𝑠
(𝑢)

𝛾
𝐴
(𝑥) ∨ 𝛾

𝐵
(𝑥)⟩ | 𝑢 ∈ 𝑈

}

}

}

= {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢) ∧ 𝜇
𝑅(𝐵)

(𝑢) ,

𝛾
𝑅(𝐴)

(𝑢) ∨ 𝛾
𝑅(𝐵)

(𝑢)⟩ | 𝑢 ∈ 𝑈}

= 𝑅 (𝐴) ∩ 𝑅 (𝐵) .

(24)

(SIFL3) It can be easily verified by Definition 16.
(SIFL4) By (SIFL4), it is straightforward.

InTheorem 20, properties (SIFL1) and (SIFU1) show that
the upper and lower soft rough IF approximation operators 𝑅
and 𝑅 are dual to each other. The following example can also
verify the point.

Example 21. Reconsider Example 19; we have

∼ 𝐴 = {⟨𝑒
1
, 0.15, 0.75⟩ , ⟨𝑒

2
, 0.12, 0.85⟩ ,

⟨𝑒
3
, 0.6, 0.2⟩ , ⟨𝑒

4
, 0.2, 0.8⟩} .

(25)

Similar to Example 19, we can obtain

𝑅 (∼ 𝐴) = {⟨𝑢
1
, 0.20, 0.75⟩ ,

⟨𝑢
2
, 0.20, 0.80⟩ , ⟨𝑢

3
, 0.20, 0.75⟩ ,

⟨𝑢
4
, 0.20, 0.75⟩ , ⟨𝑢

5
, 0.20, 0.80⟩} .

(26)

It follows that

∼ 𝑅 (∼ 𝐴) = {⟨𝑢
1
, 0.75, 0.20⟩ ,

⟨𝑢
2
, 0.80, 0.20⟩ , ⟨𝑢

3
, 0.75, 0.20⟩ ,

⟨𝑢
4
, 0.75, 0.20⟩ , ⟨𝑢

5
, 0.80, 0.20⟩} ,

(27)

which implies that (SIFL1) holds; that is, 𝑅(𝐴) = ∼ 𝑅(∼ 𝐴).
Similarly, we can verify that (SIFU1) also holds.
On the other hand, suppose that another IF set

𝐵 = {⟨𝑒
1
, 0.85, 0.05⟩ , ⟨𝑒

2
, 0.50, 0.30⟩ ,

⟨𝑒
3
, 0.10, 0.50⟩ , ⟨𝑒

4
, 0.65, 0.20⟩} ;

(28)

then we have

𝐴 ∩ 𝐵 = {⟨𝑒
1
, 0.75, 0.15⟩ , ⟨𝑒

2
, 0.50, 0.30⟩ ,

⟨𝑒
3
, 0.10, 0.60⟩ , ⟨𝑒

4
, 0.65, 0.20⟩} .

(29)

From (15) and (16), we conclude that

𝑅 (𝐵) = {⟨𝑢
1
, 0.65, 0.20⟩ ,

⟨𝑢
2
, 0.50, 0.30⟩ , ⟨𝑢

3
, 0.65, 0.20⟩ ,

⟨𝑢
4
, 0.50, 0.30⟩ , ⟨𝑢

5
, 0.65, 0.20⟩} ,

𝑅 (𝐴 ∩ 𝐵) = {⟨𝑢
1
, 0.65, 0.20⟩ ,

⟨𝑢
2
, 0.50, 0.30⟩ , ⟨𝑢

3
, 0.65, 0.20⟩ ,

⟨𝑢
4
, 0.50, 0.30⟩ , ⟨𝑢

5
, 0.65, 0.20⟩} .

(30)

Hence, (SIFL2) holds. Similarly, we can verify that
(SIFU2) also holds.

5. Construction of Intuitionistic Fuzzy
Soft Rough Sets

In [38], Zhou and Wu first presented the concept of intu-
itionistic fuzzy rough sets. In this section, by combining the
fuzzy soft relation with the intuitionistic fuzzy rough sets
[38], we introduce the constructive definition of intuitionistic
fuzzy soft rough sets, further extend soft rough intuitionistic
fuzzy sets in Section 4, and investigate some properties of
intuitionistic fuzzy soft rough approximation operators.

Definition 22. Let 𝑈 be an initial universe set and let 𝐸
be a universe set of parameters. For an arbitrary fuzzy soft
relation 𝑅 over 𝑈 × 𝐸, the pair (𝑈, 𝐸, 𝑅) is called a fuzzy soft
approximation space. For any𝐴 ∈ IF(𝐸), we define the upper
and lower soft approximations of 𝐴 with respect to (𝑈, 𝐸, 𝑅),
denoted by 𝑅(𝐴) and 𝑅(𝐴), respectively, as follows:

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢) , 𝛾
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} , (31)

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢) , 𝛾
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} , (32)

where

𝜇
𝑅(𝐴)

(𝑢) = ⋁

𝑥∈𝐸

[𝜇
𝑅
(𝑢, 𝑥) ∧ 𝜇

𝐴
(𝑥)] ,

𝛾
𝑅(𝐴)

(𝑢) = ⋀

𝑥∈𝐸

[(1 − 𝜇
𝑅
(𝑢, 𝑥)) ∨ 𝛾

𝐴
(𝑥)] ;

𝜇
𝑅(𝐴)

(𝑢) = ⋀

𝑥∈𝐸

[(1 − 𝜇
𝑅
(𝑢, 𝑥)) ∨ 𝜇

𝐴
(𝑥)] ,

𝛾
𝑅(𝐴)

(𝑢) = ⋁

𝑥∈𝐸

[𝜇
𝑅
(𝑢, 𝑥) ∧ 𝛾

𝐴
(𝑥)] .

(33)

The pair (𝑅(𝐴), 𝑅(𝐴)) is referred to as an IF soft rough set of
𝐴 with respect to (𝑈, 𝐸, 𝑅).

It can be easily verified that 𝑅(𝐴) and 𝑅(𝐴) ∈ IF(𝑈). In
fact,

𝜇
𝑅(𝐴)

(𝑢) + 𝛾
𝑅(𝐴)

(𝑢)

= ⋁

𝑥∈𝐸

[𝜇
𝑅
(𝑢, 𝑥) ∧ 𝜇

𝐴
(𝑥)]

+ ⋀

𝑥∈𝐸

[(1 − 𝜇
𝑅
(𝑢, 𝑥)) ∨ 𝛾

𝐴
(𝑥)]
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= ⋁

𝑥∈𝐸

[𝜇
𝑅
(𝑢, 𝑥) ∧ 𝜇

𝐴
(𝑥)] + 1

− ⋁

𝑥∈𝐸

[𝜇
𝑅
(𝑢, 𝑥) ∧ (1 − 𝛾

𝐴
(𝑥))]

≤ ⋁

𝑥∈𝐸

[𝜇
𝑅
(𝑢, 𝑥) ∧ (1 − 𝛾

𝐴
(𝑥))] + 1

− ⋁

𝑥∈𝐸

[𝜇
𝑅
(𝑢, 𝑥) ∧ (1 − 𝛾

𝐴
(𝑥))] = 1.

(34)

Hence, 𝑅(𝐴) ∈ IF(𝑈). Similarly, we can obtain 𝑅(𝐴) ∈ IF(𝑈).
So we call 𝑅, 𝑅 : IF(𝐸) → IF(𝑈) the upper and lower IF soft
rough approximation operators, respectively.

Remark 23. Let 𝐴 ∈ IF(𝐸). If (𝑈, 𝐸, 𝑅) is a crisp soft
approximation space, then IF soft rough approximation
operators 𝑅(𝐴) and 𝑅(𝐴) in Definition 22 degenerate to the
following forms:

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢) , 𝛾
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} ,

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢) , 𝛾
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} ,

(35)

where

𝜇
𝑅(𝐴)

(𝑢) = ⋁

𝑥∈𝑅
𝑠
(𝑢)

𝜇
𝐴
(𝑥) , 𝛾

𝑅(𝐴)
(𝑢) = ⋀

𝑥∈𝑅
𝑠
(𝑢)

𝛾
𝐴
(𝑥) ;

𝜇
𝑅(𝐴)

(𝑢) = ⋀

𝑥∈𝑅
𝑠
(𝑢)

𝜇
𝐴
(𝑥) , 𝛾

𝑅(𝐴)
(𝑢) = ⋁

𝑥∈𝑅
𝑠
(𝑢)

𝛾
𝐴
(𝑥) .

(36)

In this case, we can note that IF soft rough approx-
imation operators 𝑅(𝐴) and 𝑅(𝐴) are identical with soft
rough IF approximation operators in Definition 16. That is,
IF soft rough approximation operators in Definition 22 are
an extension of soft rough IF approximation operators in
Definition 16.

Remark 24. Let (𝑈, 𝐸, 𝑅) be a fuzzy soft approximation space.
If𝐴 ∈ 𝐹(𝐸), then IF soft rough approximation operators𝑅(𝐴)
and 𝑅(𝐴) degenerate to the following forms:

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} ,

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} ,

(37)

where 𝜇
𝑅(𝐴)

(𝑢) = ⋁
𝑥∈𝐸

[𝜇
𝑅
(𝑢, 𝑥) ∧ 𝜇

𝐴
(𝑥)], 𝜇

𝑅(𝐴)
(𝑢) =

⋀
𝑥∈𝐸

[(1 − 𝜇
𝑅
(𝑢, 𝑥)) ∨ 𝜇

𝐴
(𝑥)].

In this case, IF soft rough approximation operators 𝑅(𝐴)
and 𝑅(𝐴) are identical with the soft fuzzy rough approxi-
mation operators defined by Sun and Ma [45]. That is, IF
soft rough approximation operators in Definition 22 are an
extension of the soft fuzzy rough approximation operators
defined by Sun and Ma [45].

Remark 25. Let (𝑈, 𝐸, 𝑅) be a fuzzy soft approximation space.
If𝐴 ∈ 𝑃(𝐸), then IF soft rough approximation operators𝑅(𝐴)
and 𝑅(𝐴) degenerate to the following forms:

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} ,

𝑅 (𝐴) = {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} ,

(38)

where 𝜇
𝑅(𝐴)

(𝑢) = ⋁
𝑥∈𝐴

𝜇
𝑅
(𝑢, 𝑥), 𝜇

𝑅(𝐴)
(𝑢) = ⋀

𝑥∉𝐴
[(1 −

𝜇
𝑅
(𝑢, 𝑥))].

Example 26. Suppose that 𝑈 = {𝑢
1
, 𝑢
2
, 𝑢
3
, 𝑢
4
, 𝑢
5
} is the set

of five houses under consideration of a decision maker to
purchase. Let𝐸 be a parameter set, where𝐸 = {𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
} =

{expensive; beautiful; size; location}. Mr. X wants to buy
the house which qualifies with the parameters of 𝐸 to the
utmost extent from available houses in 𝑈. Assume that Mr.
X describes the “attractiveness of the houses” by constructing
a fuzzy soft set (𝐹, 𝐸) which is a fuzzy soft relation 𝑅 from 𝑈

to 𝐸. And it is presented by a table as in the following form:

𝑅 𝑒
1

𝑒
2

𝑒
3

𝑒
4

𝑢
1
0.7 0.1 0.5 0.3

𝑢
2
0.2 0.5 0.8 0.7

𝑢
3
0.3 0.3 0.1 0.6

𝑢
4
0.5 0.5 0.2 0.4

𝑢
5
0.5 0.4 0.1 0.8.

(39)

Now suppose that Mr. X gives the optimum normal decision
object 𝐴 which is an IF subset defined as follows:

𝐴 = {⟨𝑒
1
, 0.6, 0.3⟩ , ⟨𝑒

2
, 0.4, 0.6⟩ ,

⟨𝑒
3
, 0.1, 0.8⟩ , ⟨𝑒

4
, 0.7, 0.2⟩} .

(40)

By virtue of (31) and (32), we have

𝜇
𝑅(𝐴)

(𝑢
1
) = 0.6, 𝛾

𝑅(𝐴)
(𝑢
1
) = 0.3,

𝜇
𝑅(𝐴)

(𝑢
2
) = 0.7, 𝛾

𝑅(𝐴)
(𝑢
2
) = 0.3,

𝜇
𝑅(𝐴)

(𝑢
3
) = 0.6, 𝛾

𝑅(𝐴)
(𝑢
3
) = 0.4,

𝜇
𝑅(𝐴)

(𝑢
4
) = 0.5, 𝛾

𝑅(𝐴)
(𝑢
4
) = 0.5,

𝜇
𝑅(𝐴)

(𝑢
5
) = 0.7, 𝛾

𝑅(𝐴)
(𝑢
5
) = 0.2;

𝜇
𝑅(𝐴)

(𝑢
1
) = 0.5, 𝛾

𝑅(𝐴)
(𝑢
1
) = 0.5,

𝜇
𝑅(𝐴)

(𝑢
2
) = 0.2, 𝛾

𝑅(𝐴)
(𝑢
2
) = 0.8,

𝜇
𝑅(𝐴)

(𝑢
3
) = 0.7, 𝛾

𝑅(𝐴)
(𝑢
3
) = 0.3,

𝜇
𝑅(𝐴)

(𝑢
4
) = 0.5, 𝛾

𝑅(𝐴)
(𝑢
4
) = 0.5,

𝜇
𝑅(𝐴)

(𝑢
5
) = 0.6, 𝛾

𝑅(𝐴)
(𝑢
5
) = 0.4.

(41)
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Thus,

𝑅 (𝐴) = {⟨𝑢
1
, 0.6, 0.3⟩ ,

⟨𝑢
2
, 0.7, 0.3⟩ , ⟨𝑢

3
, 0.6, 0.4⟩ ,

⟨𝑢
4
, 0.5, 0.5⟩ , ⟨𝑢

5
, 0.7, 0.2⟩} ,

𝑅 (𝐴) = {⟨𝑢
1
, 0.5, 0.5⟩ ,

⟨𝑢
2
, 0.2, 0.8⟩ , ⟨𝑢

3
, 0.7, 0.3⟩ ,

⟨𝑢
4
, 0.5, 0.5⟩ , ⟨𝑢

5
, 0.6, 0.4⟩} .

(42)

Theorem 27. Let (𝑈, 𝐸, 𝑅) be a fuzzy soft approximation
space. Then the upper and lower IF soft rough approximation
operators 𝑅(𝐴) and 𝑅(𝐴) in Definition 16 satisfy the following
properties, ∀𝐴, 𝐵 ∈ 𝐼𝐹(𝐸), ∀(𝛼, 𝛽) ∈ 𝐿

∗:

(IFSL1) 𝑅(𝐴) =∼ 𝑅(∼ 𝐴),
(IFSL2) 𝑅(𝐴 ∩ 𝐵) = 𝑅(𝐴) ∩ 𝑅(𝐵),
(IFSL3) 𝐴 ⊆ 𝐵 ⇒ 𝑅(𝐴) ⊆ 𝑅(𝐵),
(IFSL4) 𝑅(𝐴 ∪ 𝐵) ⊇ 𝑅(𝐴) ∪ 𝑅(𝐵),
(IFSU1) 𝑅(𝐴) =∼ 𝑅(∼ 𝐴),
(IFSU2) 𝑅(𝐴 ∪ 𝐵) = 𝑅(𝐴) ∪ 𝑅(𝐵),
(IFSU3) 𝐴 ⊆ 𝐵 ⇒ 𝑅(𝐴) ⊆ 𝑅(𝐵),
(IFSU4) 𝑅(𝐴 ∩ 𝐵) ⊆ 𝑅(𝐴) ∩ 𝑅(𝐵),

where ∼ 𝐴 is the complement of 𝐴.

Proof. It is similar to the proof of Theorem 20.

Example 28. Reconsider Example 26; we have

∼ 𝐴 = {⟨𝑒
1
, 0.3, 0.6⟩ , ⟨𝑒

2
, 0.6, 0.4⟩ ,

⟨𝑒
3
, 0.8, 0.1⟩ , ⟨𝑒

4
, 0.2, 0.7⟩} .

(43)

Similar to Example 26, we have

𝑅 (∼ 𝐴) = {⟨𝑢
1
, 0.5, 0.5⟩ ,

⟨𝑢
2
, 0.8, 0.2⟩ , ⟨𝑢

3
, 0.3, 0.7⟩ ,

⟨𝑢
4
, 0.5, 0.5⟩ , ⟨𝑢

5
, 0.4, 0.6⟩} .

(44)

It follows that

∼ 𝑅 (∼ 𝐴) = {⟨𝑢
1
, 0.5, 0.5⟩ ,

⟨𝑢
2
, 0.2, 0.8⟩ , ⟨𝑢

3
, 0.7, 0.3⟩ ,

⟨𝑢
4
, 0.5, 0.5⟩ , ⟨𝑢

5
, 0.6, 0.4⟩} .

(45)

Thus (IFSL1) holds; that is, 𝑅(𝐴) =∼ 𝑅(∼ 𝐴).
Similarly, we can obtain 𝑅(𝐴) =∼ 𝑅(∼ 𝐴).
On the other hand, let

𝐵 = {⟨𝑒
1
, 0.5, 0.2⟩ , ⟨𝑒

2
, 0.3, 0.5⟩ ,

⟨𝑒
3
, 0.2, 0.8⟩ , ⟨𝑒

4
, 0.6, 0.1⟩} .

(46)

Then, we have

𝐴 ∩ 𝐵 = {⟨𝑒
1
, 0.5, 0.3⟩ , ⟨𝑒

2
, 0.3, 0.6⟩ ,

⟨𝑒
3
, 0.1, 0.8⟩ , ⟨𝑒

4
, 0.6, 0.2⟩} .

(47)

By virtue of (31) and (32), we have

𝑅 (𝐵) = {⟨𝑢
1
, 0.5, 0.5⟩ ,

⟨𝑢
2
, 0.2, 0.8⟩ , ⟨𝑢

3
, 0.6, 0.3⟩ ,

⟨𝑢
4
, 0.5, 0.5⟩ , ⟨𝑢

5
, 0.5, 0.4⟩} ,

𝑅 (𝐴 ∩ 𝐵) = {⟨𝑢
1
, 0.5, 0.5⟩ ,

⟨𝑢
2
, 0.2, 0.8⟩ , ⟨𝑢

3
, 0.6, 0.3⟩ ,

⟨𝑢
4
, 0.5, 0.5⟩ , ⟨𝑢

5
, 0.5, 0.4⟩} .

(48)

It follows that (IFSL2) holds. Similarly, we can verify that
(IFSU2) also holds.

In Example 26, we can note that 𝑅(𝐴) ̸⊆ 𝑅(𝐴). But if 𝑅 is
referred to as a serial fuzzy soft relation from 𝑈 to parameter
set 𝐸, that is, for each 𝑢 ∈ 𝑈, there exists 𝑒 ∈ 𝐸 such that
𝑅(𝑢, 𝑥) = 1, we have 𝑅(𝐴) ⊆ 𝑅(𝐴). The following theorem
will illustrate the result.

Theorem 29. Let (𝑈, 𝐸, 𝑅) be a fuzzy soft approximation
space. If 𝑅 is serial, then the upper and lower IF soft rough
approximation operators 𝑅(𝐴) and 𝑅(𝐴) in Definition 22
satisfy the following properties:

(1) 𝑅(0) = 0, 𝑅(𝐸) = 𝑈;

(2) 𝑅(𝐴) ⊆ 𝑅(𝐴), ∀𝐴 ∈ 𝐼𝐹(𝐸).

Proof. It is straightforward by Definition 22.

Assume that𝑅 is a fuzzy soft relation from𝑈 to parameter
set 𝐸; denote

𝑅
𝛼
= {(𝑢, 𝑥) | 𝜇

𝑅
(𝑢, 𝑥) ≥ 𝛼} ,

𝑅
𝛼
(𝑢) = {𝑥 ∈ 𝐸 | 𝜇

𝑅
(𝑢, 𝑥) ≥ 𝛼} ,

𝑅
𝛼+

= {(𝑢, 𝑥) | 𝜇
𝑅
(𝑢, 𝑥) > 𝛼} ,

𝑅
𝛼+
(𝑢) = {𝑥 ∈ 𝐸 | 𝜇

𝑅
(𝑢, 𝑥) > 𝛼} .

(49)

Then 𝑅
𝛼
and 𝑅

𝛼+
are two crisp soft relations on 𝑈 × 𝐸.

Theorems 30 and 31 show that the IF soft rough approx-
imation operators can be represented by crisp soft rough
approximation operators.

Theorem30. Let (𝑈, 𝐸, 𝑅) be a fuzzy soft approximation space
and 𝐴 ∈ 𝐼𝐹(𝐸). Then the upper IF rough approximation
operator can be represented as follows, ∀𝑢 ∈ 𝑈:
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(1)

𝜇
𝑅(𝐴)

(𝑢) = ⋁

𝛼∈[0,1]

[𝛼 ∧ 𝑅
𝛼
(𝐴
𝛼
) (𝑢)]

= ⋁

𝛼∈[0,1]

[𝛼 ∧ 𝑅
𝛼
(𝐴
𝛼+
) (𝑢)]

= ⋁

𝛼∈[0,1]

[𝛼 ∧ 𝑅
𝛼+
(𝐴
𝛼
) (𝑢)]

= ⋁

𝛼∈[0,1]

[𝛼 ∧ 𝑅
𝛼+
(𝐴
𝛼+
) (𝑢)] ;

(50)

(2)

𝛾
𝑅(𝐴)

(𝑢) = ⋀

𝛼∈[0,1]

[𝛼 ∨ (1 − 𝑅
1−𝛼

(𝐴
𝛼

) (𝑢))]

= ⋀

𝛼∈[0,1]

[𝛼 ∨ (1 − 𝑅
1−𝛼

(𝐴
𝛼+

) (𝑢))]

= ⋀

𝛼∈[0,1]

[𝛼 ∨ (1 − 𝑅
(1−𝛼)+

(𝐴
𝛼

) (𝑢))]

= ⋀

𝛼∈[0,1]

[𝛼 ∨ (1 − 𝑅
(1−𝛼)+

(𝐴
𝛼+

) (𝑢))] ;

(51)

and moreover, for any 𝛼 ∈ [0, 1],
(3) [𝑅(𝐴)]

𝛼+
⊆ 𝑅
𝛼+
(𝐴
𝛼+
) ⊆ 𝑅

𝛼+
(𝐴
𝛼
) ⊆ 𝑅

𝛼
(𝐴
𝛼
) ⊆

[𝑅(𝐴)]
𝛼
;

(4) [𝑅(𝐴)]𝛼+ ⊆ 𝑅
(1−𝛼)+

(𝐴
𝛼+

) ⊆ 𝑅
(1−𝛼)+

(𝐴
𝛼

) ⊆

𝑅
1−𝛼

(𝐴
𝛼

) ⊆ [𝑅(𝐴)]
𝛼.

Proof.
(1) For any 𝑢 ∈ 𝑈, we have

⋁

𝛼∈[0,1]

[𝛼 ∧ 𝑅
𝛼
(𝐴
𝛼
) (𝑢)]

= sup {𝛼 ∈ [0, 1] | 𝑢 ∈ 𝑅
𝛼
(𝐴
𝛼
)}

= sup {𝛼 ∈ [0, 1] | 𝑅
𝛼
(𝑢) ∩ 𝐴

𝛼
̸= 0}

= sup {𝛼 ∈ [0, 1] | ∃𝑥 ∈ 𝐸 [𝑥 ∈ 𝑅
𝛼
(𝑢) , 𝑥 ∈ 𝐴

𝛼
]}

= sup {𝛼 ∈ [0, 1] | ∃𝑥 ∈ 𝐸 [𝜇
𝑅
(𝑢, 𝑥) ≥ 𝛼, 𝜇

𝐴
(𝑥) ≥ 𝛼]}

= ⋁

𝑥∈𝐸

[𝜇
𝑅
(𝑢, 𝑥) ∧ 𝜇

𝐴
(𝑥)] = 𝜇

𝑅(𝐴)
(𝑢) .

(52)

Similarly, we can prove

𝜇
𝑅(𝐴)

(𝑢) = ⋁

𝛼∈[0,1]

[𝛼 ∧ 𝑅
𝛼
(𝐴
𝛼+
) (𝑢)]

= ⋁

𝛼∈[0,1]

[𝛼 ∧ 𝑅
𝛼+
(𝐴
𝛼
) (𝑢)]

= ⋁

𝛼∈[0,1]

[𝛼 ∧ 𝑅
𝛼+
(𝐴
𝛼+
) (𝑢)] .

(53)

(2) By the definition of upper crisp soft rough approxima-
tion operator in Definition 10, we have

⋀

𝛼∈[0,1]

[𝛼 ∨ (1 − 𝑅
1−𝛼

(𝐴
𝛼

) (𝑢))]

= inf {𝛼 ∈ [0, 1] | 𝑢 ∈ 𝑅
1−𝛼

(𝐴
𝛼

)}

= inf {𝛼 ∈ [0, 1] | 𝑅
1−𝛼

(𝑢) ∩ 𝐴
𝛼

̸= 0}

= inf {𝛼 ∈ [0, 1] | ∃𝑥 ∈ 𝐸 [𝑥 ∈ 𝑅
1−𝛼

(𝑢) , 𝑥 ∈ 𝐴
𝛼

]}

= inf {𝛼 ∈ [0, 1] | ∃𝑥 ∈ 𝐸 [𝜇
𝑅
(𝑢, 𝑥) ≥ 1 − 𝛼, 𝛾

𝐴
(𝑥) ≤ 𝛼]}

= ⋀

𝑥∈𝐸

[(1 − 𝜇
𝑅
(𝑢, 𝑥)) ∨ 𝛾

𝐴
(𝑥)] = 𝛾

𝑅(𝐴)
(𝑢) .

(54)

Likewise, we can prove that

𝛾
𝑅(𝐴)

(𝑢) = ⋀

𝛼∈[0,1]

[𝛼 ∨ (1 − 𝑅
1−𝛼

(𝐴
𝛼+

) (𝑢))]

= ⋀

𝛼∈[0,1]

[𝛼 ∨ (1 − 𝑅
(1−𝛼)+

(𝐴
𝛼

) (𝑢))]

= ⋀

𝛼∈[0,1]

[𝛼 ∨ (1 − 𝑅
(1−𝛼)+

(𝐴
𝛼+

) (𝑢))] .

(55)

(3) It is easily verified that 𝑅
𝛼+
(𝐴
𝛼+
) ⊆ 𝑅

𝛼+
(𝐴
𝛼
) ⊆

𝑅
𝛼
(𝐴
𝛼
). We only need to prove that [𝑅(𝐴)]

𝛼+
⊆ 𝑅
𝛼+
(𝐴
𝛼+
)

and 𝑅
𝛼
(𝐴
𝛼
) ⊆ [𝑅(𝐴)]

𝛼
.

In fact, ∀𝑢 ∈ [𝑅(𝐴)]
𝛼+
; we have 𝜇

𝑅(𝐴)
(𝑢) > 𝛼. According

to Definition 22, ⋁
𝑥∈𝐸

[𝜇
𝑅
(𝑢, 𝑥) ∧ 𝜇

𝐴
(𝑥)] > 𝛼 holds. Then

∃𝑥
0
∈ 𝐸, such that 𝜇

𝑅
(𝑢, 𝑥
0
) ∧𝜇
𝐴
(𝑥
0
) > 𝛼; that is, 𝜇

𝑅
(𝑢, 𝑥
0
) >

𝛼 and 𝜇
𝐴
(𝑥
0
) > 𝛼. Thus 𝑥

0
∈ 𝑅
𝛼+
(𝑢) and 𝑥

0
∈ 𝐴
𝛼+
.

Consequently, 𝑅
𝛼+
(𝑢) ∩ 𝐴

𝛼+
̸= 0. By Definition 10, we have

𝑢 ∈ 𝑅
𝛼+
(𝐴
𝛼+
). Hence [𝑅(𝐴)]

𝛼+
⊆ 𝑅
𝛼+
(𝐴
𝛼+
).

On the other hand, for any 𝑢 ∈ 𝑅
𝛼
(𝐴
𝛼
), we have

𝑅
𝛼
(𝐴
𝛼
)(𝑢) = 1. Since 𝜇

𝑅(𝐴)
(𝑢) = ⋁

𝛽∈[0,1]
[𝛽 ∧ 𝑅

𝛽
(𝐴
𝛽
)(𝑢)] ≥

𝛼 ∧ 𝑅
𝛼
(𝐴
𝛼
)(𝑢) = 𝛼, we obtain 𝑢 ∈ [𝑅(𝐴)]

𝛼
. Hence, 𝑅

𝛼
(𝐴
𝛼
) ⊆

[𝑅(𝐴)]
𝛼
.

(4) Similar to the proof of the above (3), it can easily be
verified.

Theorem 31. Let (𝑈, 𝐸, 𝑅) be a fuzzy soft approximation space
and 𝐴 ∈ 𝐼𝐹(𝐸). Then the lower IF rough approximation
operator can be represented as follows, ∀𝑢 ∈ 𝑈:

(1)

𝜇
𝑅(𝐴)

(𝑢) = ⋀

𝛼∈[0,1]

[𝛼 ∨ 𝑅
1−𝛼

(𝐴
𝛼+
) (𝑢)]

= ⋀

𝛼∈[0,1]

[𝛼 ∨ 𝑅
(1−𝛼)+

(𝐴
𝛼
) (𝑢)]

= ⋀

𝛼∈[0,1]

[𝛼 ∨ 𝑅
(1−𝛼)+

(𝐴
𝛼+
) (𝑢)]

= ⋀

𝛼∈[0,1]

[𝛼 ∨ 𝑅
1−𝛼

(𝐴
𝛼
) (𝑢)] ;

(56)
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(2)

𝛾
𝑅(𝐴)

(𝑢) = ⋁

𝛼∈[0,1]

[𝛼 ∧ (1 − 𝑅
𝛼
(𝐴
𝛼

) (𝑢))]

= ⋁

𝛼∈[0,1]

[𝛼 ∧ (1 − 𝑅
𝛼+
(𝐴
𝛼

) (𝑢))]

= ⋁

𝛼∈[0,1]

[𝛼 ∧ (1 − 𝑅
𝛼+
(𝐴
𝛼+

) (𝑢))]

= ⋁

𝛼∈[0,1]

[𝛼 ∧ (1 − 𝑅
𝛼
(𝐴
𝛼+

) (𝑢))] ;

(57)

and moreover, for any 𝛼 ∈ [0, 1],
(3) [𝑅(𝐴)]

𝛼+
⊆ 𝑅

1−𝛼
(𝐴
𝛼+
) ⊆ 𝑅

(1−𝛼)+
(𝐴
𝛼+
) ⊆

𝑅
(1−𝛼)+

(𝐴
𝛼
) ⊆ [𝑅(𝐴)]

𝛼
;

(4) [𝑅(𝐴)]𝛼+ ⊆ 𝑅
𝛼
(𝐴
𝛼+

) ⊆ 𝑅
𝛼+
(𝐴
𝛼+

) ⊆ 𝑅
𝛼+
(𝐴
𝛼

) ⊆

[𝑅(𝐴)]
𝛼.

Proof. ((1) and (2)) According to Theorems 29 and 4, for all
𝑢 ∈ 𝑈, we have

𝜇
𝑅(∼𝐴)

(𝑢) = ⋁

𝛼∈[0,1]

[𝛼 ∧ 𝑅
𝛼
(∼ 𝐴)

𝛼
(𝑢)]

= ⋁

𝛼∈[0,1]

[𝛼 ∧ 𝑅
𝛼
(∼ 𝐴
𝛼+

) (𝑢)]

= ⋁

𝛼∈[0,1]

[𝛼 ∧ (∼ 𝑅
𝛼
(𝐴
𝛼+

)) (𝑢)]

= ⋁

𝛼∈[0,1]

[𝛼 ∧ (1 − 𝑅
𝛼
(𝐴
𝛼+

) (𝑢))] ,

𝛾
𝑅(∼𝐴)

(𝑢) = ⋀

𝛼∈[0,1]

[𝛼 ∨ (1 − 𝑅
1−𝛼

(∼ 𝐴)
𝛼

(𝑢))]

= ⋀

𝛼∈[0,1]

[𝛼 ∨ (1 − 𝑅
1−𝛼

(∼ 𝐴
𝛼+
) (𝑢))]

= ⋀

𝛼∈[0,1]

[𝛼 ∨ (1 − (∼ 𝑅
1−𝛼

(𝐴
𝛼+
)) (𝑢))]

= ⋀

𝛼∈[0,1]

[𝛼 ∨ 𝑅
1−𝛼

(𝐴
𝛼+
) (𝑢)] .

(58)

Hence, by the duality of upper and lower IF soft rough
approximation operators (see Theorem 27), we can conclude

𝜇
𝑅(𝐴)

(𝑢) = 𝛾
𝑅(∼𝐴)

(𝑢) = ⋀

𝛼∈[0,1]

[𝛼 ∨ 𝑅
1−𝛼

(𝐴
𝛼+
) (𝑢)] ,

𝛾
𝑅(𝐴)

(𝑢) = 𝜇
𝑅(∼𝐴)

(𝑢) = ⋁

𝛼∈[0,1]

[𝛼 ∧ (1 − 𝑅
𝛼
(𝐴
𝛼+

) (𝑢))] .

(59)

Similar to the above proof, the others can be verified.
((3) and (4)) It is similar to the proof of Theorems 30 (3)

and 30 (4).

6. Application of IF Soft Rough Sets in
Decision Making

In the above-mentioned sections, to demonstrate the validity
of those newmodels’ properties, several examples are carried
out. For example, by data validation all upper and lower
approximation operators 𝑅 and 𝑅 in the above examples
are dual to each other and possess monotonicity. By those
examples, the models are further understood, laying a good
foundation for further study and application.

In this section, in order to illustrate the validity of IF
soft rough sets in Section 5, we present an approach to the
decision making based on IF soft rough sets.

Let (𝑈, 𝐸, 𝑅) be a fuzzy soft approximation space, where𝑈
is the universe of the discourse, 𝐸 is the parameter set, and 𝑅
is a fuzzy soft relation on𝑈×𝐸.Thenwe can give an algorithm
based on IF soft rough sets with five steps.

First, according to their own needs, the decision makers
can construct a fuzzy soft relation𝑅 from𝑈 to𝐸, or fuzzy soft
set (𝐹, 𝐸) over 𝑈.

Second, for a certain decision evaluation problem, each
person has various opinions on the attributes of the same
parameter. For example, in Example 26, Mr. X gives the
optimum normal decision object 𝐴 defined by

𝐴 = {⟨𝑒
1
, 0.6, 0.3⟩ , ⟨𝑒

2
, 0.4, 0.6⟩ ,

⟨𝑒
3
, 0.1, 0.8⟩ , ⟨𝑒

4
, 0.7, 0.2⟩} .

(60)

That is to say, to the parameter element 𝑒
1
, Mr. X thinks that

an expensive house is on the membership degree of 0.6 and is
on the nonmembership degree of 0.3. However, Mrs. X may
not think it. Maybe she thinks that an expensive house is on
the membership degree of 0.4 and is on the nonmembership
degree of 0.5.

So, we can construct an optimum normal decision object
𝐴 on the basis of assumption, according to different needs of
the decision maker.

Third, by (31) and (32), we can compute the IF soft rough
approximation operators 𝑅(𝐴) and 𝑅(𝐴) of the optimum
normal decision object 𝐴. Thus, we obtain two most close
values 𝑅(𝐴) and 𝑅(𝐴) to the decision alternative 𝑢

𝑗
of the

universe set 𝑈.
Fourth, Xu and Yager [54, 55] gave two operations on two

IFs, shown as follows, for all 𝐴, 𝐵 ∈ IF(𝑈).
(i) Union operation:

𝐴 ∪ 𝐵 = {⟨𝑥,max {𝜇
𝐴
(𝑥) , 𝜇

𝐵
(𝑥)} ,

min {𝛾
𝐴
(𝑥) , 𝛾

𝐵
(𝑥)}⟩ | 𝑥 ∈ 𝑈} .

(61)

(ii) Intersection operation:

𝐴 ∩ 𝐵 = {⟨𝑥,min {𝜇
𝐴
(𝑥) , 𝜇

𝐵
(𝑥)} ,

max {𝛾
𝐴
(𝑥) , 𝛾

𝐵
(𝑥)}⟩ | 𝑥 ∈ 𝑈} .

(62)

(iii) Ring sum operation:

𝐴 ⊕ 𝐵 = {⟨𝑥, 𝜇
𝐴
(𝑥) + 𝜇

𝐵
(𝑥) − 𝜇

𝐴
(𝑥) 𝜇
𝐵
(𝑥) ,

𝛾
𝐴
(𝑥) 𝛾
𝐵
(𝑥)⟩ | 𝑥 ∈ 𝑈} .

(63)
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(iv) Ring product operation:

𝐴 ⊗ 𝐵 = {⟨𝑥, 𝜇
𝐴
(𝑥) 𝜇
𝐵
(𝑥) , 𝛾

𝐴
(𝑥) + 𝛾

𝐵
(𝑥)

− 𝛾
𝐴
(𝑥) 𝛾
𝐵
(𝑥)⟩ | 𝑥 ∈ 𝑈} .

(64)

In general, the union operation and intersection oper-
ation can result in loss of information, thus affecting the
accuracy of decision making that could lead to unreasonable
decision. So we adopt the ring sum operation and ring
product operation in decisionmaking. As Xu [54, 55] pointed
out, however, we are used to adopt the ring sum operation.
Of course, adopting ring product operation is not wrong in
decision making, which may result in the different decisions.

So, by the ring sum operation, we can compute the choice
set

𝐻 = 𝑅 (𝐴) ⊕ 𝑅 (𝐴)

= {⟨𝑢, 𝜇
𝑅(𝐴)

(𝑢) + 𝜇
𝑅(𝐴)

(𝑢) − 𝜇
𝑅(𝐴)

(𝑢) ⋅ 𝜇
𝑅(𝐴)

(𝑢) ,

𝛾
𝑅(𝐴)

(𝑢) ⋅ 𝛾
𝑅(𝐴)

(𝑢)⟩ | 𝑢 ∈ 𝑈} .

(65)

Denote𝐻 = {⟨𝑢, 𝜇
𝐻
(𝑢), 𝛾
𝐻
(𝑢)⟩}.

Finally, we should take the object 𝑢
𝑗
∈ 𝑈 in universe 𝑈

with the maximum choice value as the optimum decision for
the given decision making problem.

In order to do that, we construct a top-level threshold
value 𝜆 = (𝜇, 𝛾) ∈ 𝐿

∗, where 𝜇 = max
1≤𝑖≤𝑛

𝜇
𝐻
(𝑢
𝑖
), 𝛾 =

min
1≤𝑖≤𝑛

𝛾
𝐻
(𝑢
𝑖
). Obviously, IF value 𝜆 = (𝜇, 𝛾) is the

maximumchoice value in the choice set𝐻. If𝜇
𝐻
(𝑢
𝑗
)≥
𝐿
∗𝜇 and

𝛾
𝐻
(𝑢
𝑗
)≥
𝐿
∗𝛾, the optimum decision is 𝑢

𝑗
.

In the last step of the above algorithm, one may go back
to the second step and change decision object so that the
final decision is only one, when there exist toomany “optimal
choices” to be chosen.

To illustrate the idea of the algorithm given above, let us
consider the example as follows.

Example 32. Reconsider Example 26. In Example 26, we have
computed IF soft rough approximation operators 𝑅(𝐴) and
𝑅(𝐴) of the optimumnormal decision object𝐴. Nowby using
the fourth step of the algorithm for IF soft rough sets in
decision making presented in this section, we can obtain

𝐻 = 𝑅 (𝐴) ⊕ 𝑅 (𝐴)

= {⟨𝑢
1
, 0.80, 0.15⟩ , ⟨𝑢

2
, 0.76, 0.24⟩ , ⟨𝑢

3
, 0.88, 0.12⟩ ,

⟨𝑢
4
, 0.75, 0.25⟩ , ⟨𝑢

5
, 0.88, 0.05⟩} .

(66)

Obviously, the optimal decision is 𝑢
5
.

On the other hand, by adopting the ring product opera-
tion, we have

𝐻 = 𝑅 (𝐴) ⊗ 𝑅 (𝐴)

= {⟨𝑢
1
, 0.3, 0.65⟩ , ⟨𝑢

2
, 0.14, 0.86⟩ , ⟨𝑢

3
, 0.42, 0.58⟩ ,

⟨𝑢
4
, 0.25, 0.75⟩ , ⟨𝑢

5
, 0.42, 0.52⟩} .

(67)

It is noted that the optimal decision is still 𝑢
5
. Hence, Mr. X

will buy the house 𝑢
5
.

7. Conclusion

In this paper, we have first presented two new concepts: soft
rough intuitionistic fuzzy sets and intuitionistic fuzzy soft
rough sets, and we investigated some properties of soft rough
intuitionistic fuzzy sets and intuitionistic fuzzy soft rough
sets in detail. In addition, a new decision method based on
intuitionistic fuzzy soft rough sets is first proposed.Moreover,
to illustrate the validity of the model, a practical application
based on intuitionistic fuzzy soft rough sets is applied to show
its validity. We also believe that the decision making method
developed here is expected to attract the researchers working
in these areas.

It is noted that the decision method in the last step needs
to choose the thresholds in advance by decision makers.
Then the results will depend on the threshold values to
a certain extent. Since the thresholds are subjective, the
different experts can obtain the different decision results for
the same decision problem. So, in order to avoid the effect of
the subjective information for the decision results, we use the
data information provided by the decision making problem
only and do not need any additional available information
provided by decision makers. Thus the decision results are
more objective.

Actually, there are at least two aspects in the study of
rough set theory: constructive and axiomatic approaches,
so is the same to intuitionistic fuzzy soft rough sets. So
further work should consider the axiomatic approaches to
intuitionistic fuzzy soft rough sets and themodification of the
proposed decision method.
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