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We find the best possible constants «;, ,, 5, 8, € [0,1/2] and a5, &, 35, B4 € [1/2,1] such that the double inequalities G(;a+ (1 —
apb,a b+ (1-ap)a) < Nyg(a,b) < G(Bra+ (1-B)b, b+ (1 - )a), Gleya+ (1 —a,)b,a,b + (1 —ay)a) < Ngu(a,b) < G(Bya +
(1-B,)b, B,b+(1-,)a), Qlaza+(1-a3)b, asb + (1-0a3)a) < Noa(a, b) < Q(Bsa + (1-5)b, B30+ (1-B5)a), Qeya+(1-ay)b, a,b
+(1 = 0y)a) < Nyola,b) < Q(Ba + (1 - B,)b, B,b + (1 - B,)a) hold for all a,b > 0 with a #b, where G, A, and Q are, respectively,
the geometric, arithmetic, and quadratic means and N 4G, Nga, Nga» and N, are the Neuman means.

1. Introduction

For a,b > 0 with a # b, the Schwab-Borchardt mean SB(a, b)
[1, 2] of a and b is given by

Vb? - a?
——, a<hb,
cos™! (a/b)
SB(a,b) = 0
PRy )
a>b,

cosh™ (a/b) ’

where cos !(x) and cosh™(x) = log(x + Vx?—1) are
the inverse cosine and inverse hyperbolic cosine functions,
respectively. Recently, the Schwab-Borchardt mean has been
the subject of intensive research. In particular, many remark-
able inequalities for Schwab-Borchardt mean and its gener-
ated means can be found in the literature [1-6].

Very recently, Neuman [7] found a new bivariate mean
N(a, b) derived from the Schwab-Borchardt mean as follows:

1 b’
N(a,b)zz<a+m>. (2)

Let Nyg(a,b) = N(A(a,b),G(a,b)), Ngu(a,b) =
N(G(a,b), A(a,b)), Noa(a,b) = N(Q(a,b), A(a,b)), and
Nyqla,b) = N(A(a,b),Q(a,b)) be the Neuman means,

where G(a,b) = Vab, A(a,b) = (a + b)/2, and Q(a,b) =

V(a? +b*)/2 are the classical geometric, arithmetic, and
quadratic means of a and b, respectively. Then the inequalities

G(a,b) < Nyg(a,b) < Ng, (a,b) < A(a,b)
< Nga (@,b) < Ny (a,b) < Q(a,b)

for all a,b > 0 with a # b, were established by Neuman [7].

Leta > b > 0Oandv = (a - b)/(a+b) € (0,1).
Then the following explicit formulas for N 45(a, b), Nga(a, b),
Nqa(a, b), and N yi(a, b) are presented in [7]

-1

N (a,b) = %A(u,b) [1 +(1-4) tan}: V], (4)

-1

N (@, b) = %A(a,b) [\/l—v2+ va V], 5)
1 sinh™!v

NQA(a,b):EA(a,b)[\/l+v2+ ], (6)
-1

NAQ(a,b)z%A(a,b)[l+(1+v2) t"‘nv V], )

where tanh™'(x) = log[(1 + x)/(1 — x)]/2, sin”'(x),
sinh™}(x) = log(x + V1 + x?), and tan"!(x) are the inverse
hyperbolic tangent, inverse sine, inverse hyperbolic sine, and
inverse tangent functions, respectively.
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In [7], Neuman also proved that the double inequalities
;A (a,b) + (1 - ;) G(a,b) < Ngu (a,b)
<B,A(a,b)+(1-B,)G(ab),
,Q (a,b) + (1 - &) A(a,b) < Nyg (a,b)

< BQ(ab) +(1-B,) A(a,b),
a,A(a,b) + (1 - ;) G (a,b) < Ny (a,b)

< BsA(ab) + (1 - B) G (ab),
a,Q (@ b) + (1 - &) A(a,b) < Ny, (a,b)

<PiQab) +(1-By) Aa, 2)

hold for all a,b > 0 with a#b if and only if &, < 2/3, 3, >
/4,y <2/3, By = (m—2)/[4(V2-1)] = 0.689..., a5 < 1/3,
Bs = 1/2,ay < 1/3,and B, > [log(1 + V2) + V2 -2]/[2(V2 -
1)] = 0.356....

Leta,b > 0witha#b,x €[0,1/2], y € [1/2,1],

fA)=Gla+1-N)bAb+(1-A)al,

9(u)=Q[ua+(1-p)b,ub+(1-p)al.

Then, it is not difficult to verify that f(A) and g(u) are
continuous and strictly increasing on [0, 1/2] and [1/2,1],
respectively. Note that

£(0)=G(a,b) < NG (a.b)

)

< Ng4 (a,b) < A(a,b) =f<%),
. (10)
g<5>:A(a,b)<NQA(a,b)

< Nyq(a,b) <Q(a,b)=g(1).

Therefore, it is natural to ask what the best possible
constants oy, &,, 51, B, € [0,1/2] and a3, oy, B3, B4 € [1/2,1]
are such that the double inequalities

G(ya+(1-a)bab+(1-a;)a)

<Nyg(ab) <G(Ba+(1-B)bpb+(1-p)a),
G(aa+(1-0y)bab+(1-ay)a)

< Nga(a,b) <G(Bya+(1-B,)b,Bb+(1-,)a),
Qoga+(1-o3)b,azb+(1-0a5)a)

< Noa (@,b) <Q(Bsa+ (1 - B5) b, b+ (1 - Bs)a),
Qaga+(1—ay)bab+(1-0ay)a)

< Nyq(a,b) < Q(Bya+(1-B,)b,Bsb+(1-p,)a)
(11)

hold forall a,b > 0 with a # b. The main purpose of this paper
is to answer this question.
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2. Lemmas

In order to prove our main results, we need several lemmas,
which we present in this section.

Lemma 1 (see [8, Theorem 1.25]). Let —co < a < b <
o, f,g : la,b] — (—00,00) be continuous on [a,b] and
differentiable on (a,b), and g'(x) +0on (a,b). Iff'(x)/g'(x)
is increasing (decreasing) on (a, b), then so are

fx)-f(a) fx) - f(b)
gx)-ga)’ g(x)-g®)

(12)

Iff'(x)/g'(x) is strictly monotone, then the monotonicity in
the conclusion is also strict.

Lemma 2 (see [9, Lemma 1.1]). Suppose that the power series
flx) = Y20 a,x" and g(x) = .2, b,x" have the radius of
convergence r > 0 and b, > 0, for all n > 0. If the sequence
{a,/b,} is (strictly) increasing (decreasing), for all n > 0, then
the function f(x)/g(x) is also (strictly) increasing (decreasing)
on (0,7).

Lemma 3. The function

3 sinh® (x) — 2x sinh (x) — x?
[cosh (x) — 1]?

fi(x) = (13)

is strictly increasing from (0, 0o) onto (8/3, 3).
Proof. Making use of the power series expansion, we have
3sinh? (x) — 2x sinh (x) — x*
= gcosh (2x) — 2x sinh (x) — x* — g

3 0 22n -

== X

2= (2n)!
—2xOZO: 1 mel 2 3
L (n+ 1) 2

_ éoo 22" 2n ZOZO: 1 x2n+2
2 = (2n)! 2n+1)!

n=1

42322 4 (n+2) ,,
(2n+4)!

>

n=0

[cosh (x) — 1] = % cosh (2x) — 2 cosh (x) + %

_ ozo: 22n—1 _ 2x2n _ 4 (o] 22n+3 _ 2x2"
= (2n)! = (2n+4)!
(14)
Let
3. 22n+3 —4 +2 22n+3 )
o - (n+2) - . )
2n+4)! 2n+4)!
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Then
b, >0,
Gy Gy _ (6 1)2%2 42 0 (16)
b B, (o) @)

for all n > 0. Note that

AO)=R =5 limf (0= Jim
0 n

3 =3 1)

Therefore, Lemma 3 follows easily from Lemma 2 and
(14)-(17). O

Lemma 4. The function

1 - (1/4) (cos(x) + x/ sin(x))*

sin? (x) a8)

fz (x) =

is strictly increasing from (0,7/2) onto (1/3,1 — 7°/16).
Proof. It is not difficult to verify that

2
fz(g>=1—"—. 19)

Let g(x) = 1 — [cos(x) + x/ sin(x)]*/4 and h(x) = sin’(x).
Then,

£00=5,

St = £

h(x)’ g(o):h(o)zo,

1 2 L2 2 2 2 (20)
g (x)  x"—sin” (x)cos” (x)  (2x)” —sin” (2x)

W (x) 4sin* (x) 41 - cos (2x)]*

From Lemma 1 and (19)-(20), we know that we just need to
prove that the function

_ y*—sin®(y)
FO) = )P

is strictly increasing on (0, 77).

Let F,(y) = yz - sinz(y), E(y)=1[1- cos(y)]z, Fi(y) =
y —sin(y) cos(y), and F,(y) = sin(y)(1 — cos(y)). Then

(21)

F(y)= Fl(y), Fy(0) = F,(0) = F5 (0) = F, (0) = 0,
F, (J’) @)
22

F(y) EQ)
A2 . (23)

F, (;V) F, (J’)

Note that
F(y) 2(1+cos(y) 1

Fl(y) 1+2cos(y) =t 1+2cos(y) (@)

is strictly increasing on (0, 7). Therefore, the monotonicity
of F(y) follows easily from (22) and (23) together with the
monotonicity of F3' W/ Fi( ¥). O

Lemma 5. The function

1 - (1/4) (cosh(x) + x/ sinh(x))?
sinh? (x)

fi(x) = (25)

is strictly increasing from (0,log(1 + V2)) onto
(-1/3,-(2V2log(1 + V2) + log* (1 + V2) — 2)/4).

Proof. Simple computations lead to

S
L0 =1,
f3(log (1+12)) (26)
Zﬁlog(l + \/§)+log2(1 + \/E)—Z
= 1 .

Let g,(x) = 1 — [cosh(x) + x/ sinh(x)]*/4 and g,(x) =
sinhz(x). Then

g (%)

a9 (0)=g,(00=0, (27)

f3 (x) =

g{ (x) 4x? — sinh? (2x)
g (x) 4 [cosh (2x) — 1]°

(28)
Y20 (4774 2n+ ) X"
N Zf‘zo ((42n+5 _ 4n+4) / (2n + 4)!) 521 :
Let
2n+4 2n+5 n+4
a. = 4—, b = i (29)
" (Q2n+4)! " 2n+4)!
Then
b, >0, (30)
Gpy1 Gy 3.4
- = == <0
by B, @ - D@ 1) G
foralln > 0.

It, from Lemma 2 and (28)-(31), that g;(x)/gg(x) is
strictly increasing on (0,00). Therefore, Lemma 5 follows
easily from (26) and (27) together with Lemmal and the
monotonicity of g{(x) / g;(x). O

Lemma 6. The function

3sin? (x) — 2xsin (x) — x°

(1 - cos? (x)) 52

f4 (x) =

is strictly increasing from (0, 7/2) on (—8/3, —(m*+4m-12)/4).
Proof. Differentiating f,(x) gives

2 sin (x)

—_— 2 i —
(1 cos () [x + xsin (x) + 4 cos (x) 4] .

fi(x) =
(33)



4
Let
H (x) = x* + xsin (x) + 4 cos (x) — 4. (34)
Then, simple computations lead to
H(0) =0,
(35)
H' (x) = 2x + x cos (x) — 3sin (x),
H'(0)=0,
(36)
H" (x) = 2 — xsin (x) — 2 cos (x),
H" (0) =0,
(37)
H" (x) = sin (x) — x cos (x),
H'" (0) = 0, (38)
HY (x) = xsin (x) > 0 (39)
for x € (0,77/2).
Therefore, Lemma6 follows easily from (33)-
(39) together with the fact that f,(0") = -8/3 and
fu(m/2) = —(* + 4 — 12) /4. O

3. Main Results

Theorem 7. Let oy, 3, € [0,1/2]. Then the double inequality
G(ya+(1-a)bab+(l-a))a)
<Nag(a:b) <G(Bja+(1-py)b,fib+(1-B)a)
(40)
holds for alla,b > O witha+bifand only ifa; < 1/2—+/3/4 =
0.06698 ... and 3, > 1/2 — \/6/6 = 0.09175.. ...

Proof. Since both the geometric mean G(a, b) and arithmetic
mean A(a, b) are symmetric and homogeneous of degree 1,
without loss of generality, we assume thata > b. Letv = (a -
b)/(a+Db) € (0,1)and A € [0,1/2]. Then, from (4), one has

G(Aa+(1-A)b,Ab+ (1 -A)a) — N (a,b)
=A(a,b)\1-v*(1-2)1)°

1-42

- %A(a, b) [1 + tanh™! (v)]

v

(sonf-2 (o (-

x tanh™" (v) )2 —(1- ZA)Z] v)

(41)
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Lett = tanh ' (v). Then ¢ € (0, ), and

2
% - i(% N <% - 1>tanh_1(v)> _(1-21)?
3sinh? (¢) cosh? (¢) — 2t sinh () cosh (¢) — >
4sinh* ()
—(1-21) (42)

_ 3sinh’ (2t) — 4¢sinh (2) - 4¢> (1- 207
4(cosh (2t) — 1)

= Lfien--203

where f,(t) is defined as in Lemma 3.
Therefore, Theorem 7 follows easily from (41) and (42)
together with Lemma 3. O

Theorem 8. Let oy, 3, € [0, 1/2]. Then the double inequality
G(a+(1-o0y)b,ab+(1-ay)a)

< Nga(a,b) <G(Bra+(1-B,)b, b+ (1-p;)a)
(43)

holds for all a,b > 0 with a#0b if and only if a, < 1/2 —
V16 - 72/8 = 0.1905... and 8, > 1/2 — \/3/6 = 0.2113.. ...

Proof. We follow the same idea in the proof of Theorem 7.
Without loss of generality, we assume that a > b. Let v =
(a-b)/(a+Db) e (0,1)and p € [0,1/2]. Then, from (5), we
get

G(pa+(1-p)b,ub+ (1~ p)a) - Nga (a,b)

= A(a,b) \1 —2(1 - 2u)°
s -1
—%A(a,b) [\/l—v2+sm—v(v)]

_ . 1 2
N
—(1—2[4)2]1/>
1 1 1
(V025 [

Let t = sin '(v). Then, t € (0,7/2) and simple computation
leads to

1 1 1 sin'(v) g
2
s ) s

1 - (1/4) (cos(t) +t/sin(t))*

_ N2
B sin? (t) (1 2#)

=f,-(1- 2.”)2’

where f,(t) is defined as in Lemma 4.

in"' () ]\
+31nvzv]) |

(44)

(45)
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Therefore, Theorem 8 follows easily from (44) and (45)
together with Lemma 4. O
Theorem 9. Let a5, 35 € [1/2,1]. Then the double inequality
Qoza+(1—o03)b,o3b+ (1 —0ay)a)
< Naa (@:b) <Q(Bsa+ (1-B5) b, psb+ (1-B5)a)

(46)
holds for all a,b > 0 with a+b if and only if
B, = 1/2 + V3/6 = 07886... and a5 < 1/2 +

\/2\/§log(l +V2) +log’(1 + V2) - 2/4 = 0.7817 ...

Proof. Since both the quadratic mean Q(a, b) and arithmetic
mean A(a, b) are symmetric and homogeneous of degree 1,
without loss of generality, we assume thata > b. Let v = (a -
b)/(a+1b) € (0,1) and p € [1/2,1]. Then, (6) gives

Q(pa+(1-p)b,pb+(1-p)a)—Nq,(a,b)

= A(a,b)\1+2(2p-1)

. -1
- %A(a, b) [m+ sinh_ (v) (V)]

v

(a4 ({5

.1 -1 2
+—s1nh2 (V)) +(2p- 1)2:| v>

Vv

.1 -1 -1
x<\/%+(2p—1)2+%[\j%+1+W]) .

(47)

Lett = sinh ' (v). Then, t € (0,log(1 + v/2)) and elementary
computations lead to

1 1 1 sinh™!(v) ?
;—Z<\/ﬁ+1+—) +(2p-1)

12

_ 1-(1/4) [cosh(t) + ¢/ sinh(t)]? (48)

2
- sinh? (1) +(2p-1)

=0+ @p-1),
where f;(t) is defined as in Lemma 5.

Therefore, Theorem 9 follows easily from (47) and (48)
together with Lemma 5. O

Theorem 10. Let oy, 3, € [1/2,1]. Then the double inequality
Qaga+ (1 —oy)byab+(1-0ay)a)
<Naq@b) <Q(Ba+(1-B,) b, b+ (1-B,)a)
(49)

holds for all a,b > 0 with a#b if and only if 0, < 1/2 +
Vm? +4m—-12/8 = 0.9038... and B, > 1/2 + V6/6 =
0.9082....

Proof. We follow the same idea in the proof of Theorem 9. Let
a>b,v=(a-b)/(a+b) € (0,1)and g € [1/2, 1]. Then, from
(7), we have

Q(ga+(1-q)b,gb+(1-q)a) - Nyq(ab)
=A(a,b) \1+v*(2q - 1)2

+V2

_ %A (a,b) [1 + ! tan” (v)]

(o[
+(2q- 1)2] v>

x( iz +(2q - 1)2+ % [% +<1+ V—12>tan1(v)]>

(50)

-1

Lett = tan"'(v). Then t € (0, 77/4) and

1 l<1 + <1 + 1/—12>t'<1n_1(1’))2 +(2q- 1)’

v: o 4\y

3sin® () cos? (t) — 2t sin (¢ t) —t*
_ 3sin (t) cos (iSin4(St1)rl()COS() +(2q_1)2

_ 3sin® (2t) - 4t sin (2t) — 4t +(2q-1)
4[1 - cos (20)]2 1

= LA+ (201
6D

where f,(t) is defined as in Lemma 6.
Therefore, Theorem 10 follows easily from (50) and (51)
together with Lemma 6. O
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