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This paper concerns the uniform bounds of the global existence of solutions in time for the S-K-T competition model with self-
diffusion. We prove that the system has a global attractor for 𝑛 < 8.

1. Introduction and Statement of Main Result

Shigesada et al. [1] introduced the following competition
model to describe the spatial segregation of two competing
species under inter- and intraspecies population pressures:

𝑢
𝑡
= Δ [(𝑑

1
+ 𝛼
11
𝑢 + 𝛼
12
V) 𝑢] + 𝑢 (𝑎

1
− 𝑏
1
𝑢 − 𝑐
1
V) ,

𝑥 ∈ Ω ⊂ R
𝑛
, 𝑡 > 0,

V
𝑡
= Δ [(𝑑

2
+ 𝛼
21
𝑢 + 𝛼
22
V) V] + V (𝑎

2
− 𝑏
2
𝑢 − 𝑐
2
V) ,

𝑥 ∈ Ω ⊂ R
𝑛
, 𝑡 > 0,

𝜕𝑢

𝜕𝑛

=

𝜕V
𝜕𝑛

= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

(1)

where Ω is a bounded smooth region in R𝑛 with 𝑛 as its unit
outward normal vector to the smooth boundary 𝜕Ω. 𝑢 and
V are the population densities of the two competing species.
The constants 𝑎

𝑗
, 𝑏
𝑗
, 𝑐
𝑗
, and 𝑑

𝑗
(𝑗 = 1, 2) are all positive, and

constants 𝛼
𝑖𝑗
(𝑖, 𝑗 = 1, 2) are nonnegative. 𝑑

1
and 𝑑

2
are the

randomdiffusion rates, 𝛼
11
and 𝛼
22
are the self-diffusion rates

which represent intraspecific population pressures, and 𝛼
12

and𝛼
21
are the so-called cross-diffusion rateswhich represent

the interspecific population pressures.
If 𝛼
𝑖𝑗
= 0 (𝑖, 𝑗 = 1, 2), system (1) is reduced to the classical

Lotka-Volterra competition model with diffusion; it has been
extensively studied in the past fewdecades.When initial value

is nonnegative and bounded, it is easy to prove that (1) has a
unique uniformly bounded global solution.

For 𝛼
11

= 0, the global existence of solutions has been
widely investigated by many authors. When 𝑛 = 1, 𝑑

1
= 𝑑
2
,

𝛼
12

> 0, 𝛼
21

> 0, and 𝛼
11

= 𝛼
22

= 0 hold, Kim [2]
proved the global existence of classical solutions by energy
method. For 𝑛 ≥ 1, 𝛼

11
= 𝛼
22

= 0, Deuring [3] proved the
global existence of solutions if 𝛼

12
and 𝛼

21
are small enough

depending on the 𝐶2,𝛼 norm of initial values 𝑢
0
, V
0
. Choi

et al. [4] improved Deuring’s result and proved the global
existence of solutions if the cross-diffusion coefficients are
small depending only on the 𝐿∞ norm of initial value V

0
.

By applying more detailed interpolated estimates, especially
Gagliardo-Nirenberg inequality, Shim [5] improved Kim and
Deuring’s results and established the uniform bounds of the
global existence of solutions in time. For 𝑛 = 2, Lou et al.
[6] established the unique global existence of solutions for
𝛼
21
= 0, 𝛼

12
> 0, 𝛼

11
= 0, and 𝛼

22
≥ 0.

For 𝛼
11
> 0, (1) can be written as

𝑢
𝑡
= Δ [(𝑑

1
+ 𝛼
11
𝑢 + 𝛼
12
V) 𝑢] + 𝑢 (𝑎

1
− 𝑏
1
𝑢 − 𝑐
1
V) ,

𝑥 ∈ Ω ⊂ R
𝑛
, 𝑡 > 0,

V
𝑡
= Δ [(𝑑

2
+ 𝛼
22
V) V] + V (𝑎

2
− 𝑏
2
𝑢 − 𝑐
2
V) ,

𝑥 ∈ Ω ⊂ R
𝑛
, 𝑡 > 0,
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𝜕𝑢

𝜕𝑛

=

𝜕V
𝜕𝑛

= 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0.

(2)

Equation (2) has been investigated by many authors; we state
the results as follows.

For 𝑛 = 2, either 8𝛼
11

> 𝛼
12

> 0, 8𝛼
22

> 𝛼
21

> 0 or
𝛼
22
= 𝛼
21
= 0, 𝛼

11
> 0; Yagi [7] proved the global existence

of solutions. For 𝛼
11
> 0, 𝛼

22
> 0, and 𝛼

21
= 0, Kuiper and

Dung [8] established the uniform bounds of global solutions
for any 𝑛 when ‖V‖

𝐿
∞
(Ω)

and ‖𝑢‖
𝐿
𝑝
(Ω)

(𝑝 > 𝑛) are uniformly
bounded. Choi et al. [9] applied more detailed interpolated
estimates and energy methods to prove the global existence
of solutions for 𝑛 < 6, 𝛼

11
> 0, and 𝛼

22
> 0.

Le and his collaborators [10] have shown the existence
of a global attractor for (2) in case 𝑛 ≤ 5. Le and Nguyen
[11] constructed a special test function to prove the global
existence of solutions for any dimension 𝑛under some certain
restrictions on coefficients. Tuôc [12] improved the results
of Le and Nguyen by a nontrivial application of maximum
principle. Recently, Tuoc [13] has established the 𝐿4-estimate
of ∇V; then by an iteration method, they show 𝑢 ∈ 𝐿

𝑟 for
any 𝑟 ≥ 1 and 𝑛 < 10, which implies the global existence
of solutions.

In this paper, we consider the uniform bounds of the
global existence of solutions in time of system (2) for 𝛼

21
= 0,

𝛼
11
> 0, and 𝛼

22
> 0. In Section 2, we show some preliminary

knowledge used in this paper. In Section 3, we follow the
arguments of Le et al. and improve their results.Wewill prove
the uniform bounds of the global existence of solutions in
time of system (2) for 𝑛 < 8.

The main result in this paper is as follows.

Theorem 1. Assume 𝑛 < 8 holds; for any 𝑝
0
> 𝑛, system (2)

has a global attractor with finite Hausdorff dimension in the
spaceX defined by

X = {(𝑢, V) ∈ 𝑊1,𝑝0 (Ω) ×𝑊1,𝑝0 (Ω) :

𝑢 (𝑥) ≥ 0, V (𝑥) ≥ 0, ∀𝑥 ∈ Ω} .

(3)

2. Preliminary Results

System (2) can be written in the divergence form as

𝜕𝑢

𝜕𝑡

= ∇ [(𝑑
1
+ 2𝛼
11
𝑢 + 𝛼
12
V) ∇𝑢 + 𝛼

12
𝑢∇V]

+ 𝑢 (𝑎
1
− 𝑏
1
𝑢 − 𝑐
1
V) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕V
𝜕𝑡

= ∇ [(𝑑
2
+ 2𝛼
22
V) ∇V]

+ V (𝑎
2
− 𝑏
2
𝑢 − 𝑐
2
V) , 𝑥 ∈ Ω, 𝑡 > 0,

𝜕𝑢

𝜕𝑛

=

𝜕V
𝜕𝑛

= 0, 𝑥 ∈ 𝜕Ω.

(4)

Definition 2 (see [10, Definition 2.1]). Assume that there
exists a solution (𝑢, V) of system (4) defined on a subinterval

𝐼 of R+. Let O be the set of function 𝜔 on 𝐼 such that there
exists a positive constant 𝐶

0
, which may generally depend on

the parameters of the system and the𝑊1,𝑝0 norm of the initial
value (𝑢

0
, V
0
), such that

𝜔 (𝑡) ≤ 𝐶
0
, ∀𝑡 ∈ 𝐼. (5)

Furthermore, if 𝐼 = (0,∞), one says that 𝜔 is in P if 𝜔 ∈

O and there exists a positive constant 𝐶
∞

that depends only
on the parameters of the system but does not depend on the
initial value of (𝑢

0
, V
0
) such that

lim
𝑡↓∞

sup𝜔 (𝑡) ≤ 𝐶
∞
. (6)

If 𝜔 ∈ P and 𝐼 = (0,∞), one says 𝜔 is ultimately uniformly
bounded.

Lemma 3 (the uniform Gronwall inequality). Assume that
𝑢(𝑡) ≥ 0, 𝑎(𝑡) ≥ 0, and 𝑏(𝑡) ≥ 0 hold and that they are
integrable in [𝑡

0
, +∞] satisfying

∫

𝑡+𝑟

𝑡

𝑎 (𝑠) 𝑑𝑠 ≤ 𝑎, ∫

𝑡+𝑟

𝑡

𝑏 (𝑠) 𝑑𝑠 ≤ 𝑏,

∫

𝑡+𝑟

𝑡

𝑢 (𝑠) 𝑑𝑠 ≤ 𝐶,

(7)

where 𝑎, 𝑏, and 𝐶 are positive constants. If 𝑢󸀠(𝑡) ≤ 𝑎(𝑡)𝑢(𝑡) +

𝑏(𝑡), then one has

𝑢 (𝑡 + 𝑟) ≤ (

𝐶

𝑟

+ 𝑏) 𝑒
𝑎
, ∀𝑡 ≥ 𝑡

0
. (8)

Lemma 4 (see [10, Lemmas 3.2-3.3]). For any dimension 𝑛,
one has the following estimates for the solutions of system (4):

‖V‖
𝐿
∞
(Ω)

∈ P, (9)

‖∇V (⋅, 𝑡)‖
𝐿
2
(Ω)

∈ P, (10)

‖𝑢 (⋅, 𝑡)‖
𝐿
1
(Ω)

∈ P, (11)

∫

𝑡+1

𝑡

∫

Ω

𝑢
2
(𝑥, 𝑠) 𝑑𝑥 𝑑𝑠 ∈ P, (12)

∫

𝑡+1

𝑡

∫

Ω

V2
𝑡
(𝑥, 𝑠) 𝑑𝑥 𝑑𝑠 ∈ P. (13)

Lemma 5 (see [10, Theorem 2.4]). For the system (4), if

‖𝑢‖
𝑞,𝑟,[𝑡,𝑡+1]×Ω

= (∫

𝑡+1

𝑡

‖𝑢 (⋅, 𝑠)‖
𝑟

𝑞,Ω
𝑑𝑠)

1/𝑟

∈ P (14)

holds, with 𝑞, 𝑟 satisfying

1

𝑟

+

𝑛

2𝑞

= 1 − 𝜒, 𝑞 ∈ [

𝑛

2 (1 − 𝜒)

,∞] , 𝑟 ∈ [

1

1 − 𝜒

,∞] ,

(15)

where 𝜒 ∈ (0, 1), then there exists 𝛾 > 1 such that

‖V (⋅, 𝑡)‖
𝐶
𝛾
(Ω)

∈ P, ‖𝑢 (⋅, 𝑡)‖
𝐶
𝛾
(Ω)

∈ P. (16)
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3. Proof of Theorem 1

Lemma 6. For any dimension 𝑛, any solution 𝑢 of (4) has the
following estimate:

∫

𝑡+1

𝑡

∫

Ω

|∇V|4𝑑𝑥 𝑑𝑠 ∈ P. (17)

Proof. Define

𝑤 = (𝑑
2
+ 𝛼
22
V) V; (18)

then 𝑤 satisfies the following equation:

𝑤
𝑡
= (𝑑
2
+ 2𝛼
22
V) Δ𝑤 + (𝑑

2
+ 2𝛼
22
V) V (𝑎

2
− 𝑏
2
𝑢 − 𝑐
2
V) .
(19)

Multiplying (19) by Δ𝑤 and integrating with respect to 𝑥 over
Ω, we have

−

1

2

𝑑

𝑑𝑡

∫

Ω

|∇𝑤|
2
𝑑𝑥

= ∫

Ω

(𝑑
2
+ 2𝛼
22
V) |Δ𝑤|2𝑑𝑥

+ ∫

Ω

(𝑑
2
+ 2𝛼
22
V) V (𝑎

2
− 𝑏
2
𝑢 − 𝑐
2
V) Δ𝑤𝑑𝑥.

(20)

Integrating (20) over [𝑡, 𝑡 + 1], we obtain
1

2

‖∇𝑤 (𝑡)‖
2

𝐿
2
(Ω)

−

1

2

‖∇𝑤 (𝑡 + 1)‖
2

𝐿
2
(Ω)

= ∫

𝑡+1

𝑡

∫

Ω

(𝑑
2
+ 2𝛼
22
V) |Δ𝑤|2𝑑𝑥 𝑑𝑠

+ ∫

𝑡+1

𝑡

∫

Ω

(𝑑
2
+ 2𝛼
22
V) V (𝑎

2
− 𝑏
2
𝑢 − 𝑐
2
V) Δ𝑤𝑑𝑥𝑑𝑠.

(21)

In virtue of (9), there exist positive constants 𝐶
1
, 𝐶
2
, and 𝐶

3

such that

𝐶
1
∫

𝑡+1

𝑡

∫

Ω

|Δ𝑤|
2
𝑑𝑥 𝑑𝑠

≤

1

2

‖∇𝑤 (𝑡)‖
2

𝐿
2
(Ω)

−

1

2

‖∇𝑤 (𝑡 + 1)‖
2

𝐿
2
(Ω)

+ ∫

𝑡+1

𝑡

∫

Ω

(𝐶
2
+ 𝐶
3
𝑢) |Δ𝑤| 𝑑𝑥 𝑑𝑠.

(22)

Here (18) implies

∇𝑤 = 𝑑
2
∇V + 2𝛼

22
V∇V. (23)

By (9)-(10) and (23), we have

‖∇𝑤‖
𝐿
2
(Ω)

∈ P. (24)

Hence (22) and Hölder’s inequality imply

𝐶
1
∫

𝑡+1

𝑡

∫

Ω

|Δ𝑤|
2
𝑑𝑥 𝑑𝑠 ≤ 𝐶

4
+

𝐶
1

2

∫

𝑡+1

𝑡

∫

Ω

|Δ𝑤|
2
𝑑𝑥 𝑑𝑠

+ 𝐶
5
∫

𝑡+1

𝑡

∫

Ω

(𝐶
2
+ 𝐶
3
𝑢)
2

𝑑𝑥 𝑑𝑠.

(25)

By (12) and (25), we get

∫

𝑡+1

𝑡

∫

Ω

|Δ𝑤|
2
𝑑𝑥 𝑑𝑠 ∈ P. (26)

Multiplying (19) by 𝑤|∇𝑤|2 and integrating with respect
to 𝑥 overΩ, we have

∫

Ω

𝑤
𝑡
𝑤|∇𝑤|

2
𝑑𝑥

= ∫

Ω

Δ𝑤 (𝑑
2
+ 2𝛼
22
V) 𝑤|∇𝑤|2𝑑𝑥 + ∫

Ω

𝑓𝑤|∇𝑤|
2
𝑑𝑥

= −∫

Ω

∇𝑤∇ [(𝑑
2
+ 2𝛼
22
V) 𝑤|∇𝑤|2] 𝑑𝑥 + ∫

Ω

𝑓𝑤|∇𝑤|
2
𝑑𝑥

≤ −∫

Ω

(𝑑
2
+ 2𝛼
22
V) |∇𝑤|4𝑑𝑥

+ ∫

Ω

2 (𝑑
2
+ 2𝛼
22
V) 𝑤|∇𝑤|2

󵄨
󵄨
󵄨
󵄨
󵄨
∇
2
𝑤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥

− ∫

Ω

𝑤|∇𝑤|
2
2𝛼
22
∇V∇𝑤𝑑𝑥 + ∫

Ω

𝑓𝑤|∇𝑤|
2
𝑑𝑥,

(27)

with 𝑓 = (𝑑
2
+ 2𝛼
22
V)V(𝑎
2
− 𝑏
2
𝑢 − 𝑐
2
V).

By (27), we get

∫

Ω

(𝑑
2
+ 2𝛼
22
V) |∇𝑤|4𝑑𝑥

≤ −∫

Ω

𝑤
𝑡
𝑤|∇𝑤|

2
𝑑𝑥 + ∫

Ω

2 (𝑑
2
+ 2𝛼
22
V) 𝑤|∇𝑤|2

󵄨
󵄨
󵄨
󵄨
󵄨
∇
2
𝑤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥

− ∫

Ω

𝑤|∇𝑤|
2
2𝛼
22
(

∇𝑤

𝑑
2
+ 2𝛼
22
V
)∇𝑤𝑑𝑥

+ ∫

Ω

𝑓𝑤|∇𝑤|
2
𝑑𝑥.

(28)

Recall that (9) and (18) yield

‖𝑤‖
𝐿
∞
(Ω)

∈ P. (29)

It follows from (28) and (29) that

∫

Ω

(𝑑
2
+ 4𝛼
22
V) |∇𝑤|4𝑑𝑥

≤ 𝐶(∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑤
𝑡

󵄨
󵄨
󵄨
󵄨
|∇𝑤|
2
𝑑𝑥 + ∫

Ω

|∇𝑤|
2 󵄨󵄨
󵄨
󵄨
󵄨
∇
2
𝑤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑥)

+ ∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑓
󵄨
󵄨
󵄨
󵄨
|∇𝑤|
2
𝑑𝑥.

(30)
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By Young’s inequality and (30)

𝑑
2
∫

Ω

|∇𝑤|
4
𝑑𝑥

≤ 𝐶(

𝑑
2

3𝐶

∫

Ω

|∇𝑤|
4
𝑑𝑥 + 𝐶

6
∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑤
𝑡

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 +

𝑑
2

4𝐶

∫

Ω

|∇𝑤|
4
𝑑𝑥

+ 𝐶
7
∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇
2
𝑤

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 +

𝑑
2

3𝐶

∫

Ω

|∇𝑤|
4
𝑑𝑥

+𝐶
8
∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑓
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥) .

(31)

Since

∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇
2
𝑤

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 ≤ 𝐶
0
∫

Ω

|Δ𝑤|
2
𝑑𝑥 + 𝐶

0
∫

Ω

𝑢
2
𝑑𝑥, (32)

together with (31), we see from (31) that

∫

𝑡+1

𝑡

∫

Ω

|∇𝑤|
4
𝑑𝑥 𝑑𝑠

≤ 𝐶(∫

𝑡+1

𝑡

∫

Ω

󵄨
󵄨
󵄨
󵄨
𝑤
𝑡

󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑠 + ∫

𝑡+1

𝑡

∫

Ω

|Δ𝑤|
2
𝑑𝑥 𝑑𝑠

+∫

𝑡+1

𝑡

∫

Ω

|𝑢|
2
𝑑𝑥 𝑑𝑠) ≤ 𝐶,

(33)

where 𝐶 is independent of 𝑡.
Since

𝑤 = (𝑑
2
+ 𝛼
22
V) V, 𝑤

𝑡
= 𝑑
2
V
𝑡
+ 2𝛼
22
VV
𝑡
, (34)

togetherwith (9) and (13), we have∫𝑡+1
𝑡

∫
Ω
𝑤
2

𝑡
(𝑥, 𝑠)𝑑𝑥 𝑑𝑠 ∈ P.

This fact, together with (12) and (26), implies
∫

𝑡+1

𝑡
∫
Ω
|∇𝑤(𝑥, 𝑠)|

4
𝑑𝑥 𝑑𝑠 ∈ P. Hence, in view of

∇V = ∇𝑤/(𝑑
2
+ 2𝛼
22
V) and (9), we get the desired result

∫

𝑡+1

𝑡
∫
Ω
|∇V|4𝑑𝑥 𝑑𝑠 ∈ P.

Lemma 7. For any dimension 𝑛, any solution 𝑢 of (4) satisfies
the following estimates:

‖𝑢‖
𝐿
2
(Ω)

∈ P, ‖𝑢‖
𝐿
3
(Ω)

∈ P. (35)

Proof. Multiplying the first equation of (4) by 𝑢 and integrat-
ing, we get

1

2

𝑑

𝑑𝑡

∫

Ω

𝑢
2
𝑑𝑥

= −∫

Ω

[(𝑑
1
+ 2𝛼
11
𝑢 + 𝛼
12
V) |∇𝑢|2 − 𝛼

12
𝑢∇𝑢 ⋅ ∇V] 𝑑𝑥

+ ∫

Ω

𝑢
2
(𝑎
1
− 𝑏
1
𝑢 − 𝑐
1
V) 𝑑𝑥.

(36)

Young’s inequality and (36) imply

1

2

𝑑

𝑑𝑡

∫

Ω

𝑢
2
𝑑𝑥 + ∫

Ω

𝑑
1
|∇𝑢|
2
𝑑𝑥 + 2𝛼

11
∫

Ω

𝑢|∇𝑢|
2
𝑑𝑥

+ 𝛼
12
∫

Ω

V|∇𝑢|2𝑑𝑥

= −𝛼
12
∫

Ω

𝑢∇𝑢 ⋅ ∇V 𝑑𝑥 + ∫
Ω

𝑢
2
(𝑎
1
− 𝑏
1
𝑢 − 𝑐
1
V) 𝑑𝑥

≤ 𝜀∫

Ω

𝑢|∇𝑢|
2
𝑑𝑥 + 𝐶 (𝜀) ∫

Ω

𝑢|∇V|2𝑑𝑥 + ∫
Ω

𝑎
1
𝑢
2
𝑑𝑥.

(37)

Taking 𝜀 = 𝛼
11
in (37), we have

1

2

𝑑

𝑑𝑡

∫

Ω

𝑢
2
𝑑𝑥 + ∫

Ω

𝑑
1
|∇𝑢|
2
𝑑𝑥 + 𝛼

11
∫

Ω

𝑢|∇𝑢|
2
𝑑𝑥

+ 𝛼
12
∫

Ω

V|∇𝑢|2𝑑𝑥

≤ 𝐶 (𝛼
11
, 𝛼
12
) ∫

Ω

𝑢|∇V|2𝑑𝑥 + ∫
Ω

𝑎
1
𝑢
2
𝑑𝑥

≤ 𝐶
9
∫

Ω

𝑢
2
𝑑𝑥 + 𝐶

10
∫

Ω

|∇V|4𝑑𝑥 + ∫
Ω

𝑎
1
𝑢
2
𝑑𝑥.

(38)

By the uniform Gronwall inequality, together with (12), (17),
and (38), we obtain

‖𝑢‖
𝐿
2
(Ω)

∈ P. (39)

In virtue of (36), we have

1

2

𝑑

𝑑𝑡

∫

Ω

𝑢
2
𝑑𝑥 + ∫

Ω

𝑑
1
|∇𝑢|
2
𝑑𝑥 + 2𝛼

11
∫

Ω

𝑢|∇𝑢|
2
𝑑𝑥

+ 𝛼
12
∫

Ω

V|∇𝑢|2𝑑𝑥 + 𝑏
1
∫

Ω

𝑢
3
𝑑𝑥

= −𝛼
12
∫

Ω

𝑢∇𝑢 ⋅ ∇V 𝑑𝑥 + ∫
Ω

𝑢
2
(𝑎
1
− 𝑐
1
V) 𝑑𝑥.

(40)

Integrating (40) over [𝑡, 𝑡 + 1], we get

1

2

‖𝑢 (𝑡 + 1)‖
2

𝐿
2
(Ω)

−

1

2

‖𝑢 (𝑡)‖
2

𝐿
2
(Ω)

+ ∫

𝑡+1

𝑡

∫

Ω

𝑑
1
|∇𝑢|
2
𝑑𝑥 𝑑𝑠

+ 2𝛼
11
∫

𝑡+1

𝑡

∫

Ω

𝑢|∇𝑢|
2
𝑑𝑥 𝑑𝑠 + 𝛼

12
∫

𝑡+1

𝑡

∫

Ω

V|∇𝑢|2𝑑𝑥 𝑑𝑠

+ 𝑏
1
∫

𝑡+1

𝑡

∫

Ω

𝑢
3
𝑑𝑥 𝑑𝑠

≤ 𝜀𝛼
12
∫

𝑡+1

𝑡

∫

Ω

𝑢|∇𝑢|
2
𝑑𝑥 𝑑𝑠 + 𝐶∫

𝑡+1

𝑡

∫

Ω

𝑢|∇V|2𝑑𝑥 𝑑𝑠

+ ∫

𝑡+1

𝑡

∫

Ω

𝑎
1
𝑢
2
𝑑𝑥 𝑑𝑠.

(41)
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By Young’s inequality, we have

∫

𝑡+1

𝑡

∫

Ω

𝑢|∇V|2𝑑𝑥 𝑑𝑠

≤

1

2

∫

𝑡+1

𝑡

∫

Ω

𝑢
2
𝑑𝑥 𝑑𝑠 +

1

2

∫

𝑡+1

𝑡

∫

Ω

|∇V|4𝑑𝑥 𝑑𝑠.

(42)

Taking 𝜀 = 𝛼
11
/𝛼
12
in (41) and applying Hölder’s inequality,

we see from (42) that

𝑏
1
∫

𝑡+1

𝑡

∫

Ω

𝑢
3
𝑑𝑥 𝑑𝑠

≤

1

2

‖𝑢 (𝑡)‖
2

𝐿
2
(Ω)

−

1

2

‖𝑢 (𝑡 + 1)‖
2

𝐿
2
(Ω)

+ 𝐶
11
∫

𝑡+1

𝑡

∫

Ω

𝑢
2
𝑑𝑥 𝑑𝑠 + 𝐶

12
∫

𝑡+1

𝑡

∫

Ω

|∇V|4𝑑𝑥 𝑑𝑠.

(43)

By (12), (17), and (39), we get

∫

𝑡+1

𝑡

∫

Ω

𝑢
3
𝑑𝑥 𝑑𝑠 ∈ P. (44)

Next we prove ‖𝑢‖
𝐿
3
(Ω)

∈ P. Multiplying (4) by 𝑢2 and
integrating with respect to 𝑥 overΩ, we get

1

3

𝑑

𝑑𝑡

∫

Ω

𝑢
3
𝑑𝑥 + 2∫

Ω

𝑑
1
𝑢|∇𝑢|

2
𝑑𝑥 + 4𝛼

11
∫

Ω

𝑢
2
|∇𝑢|
2
𝑑𝑥

+ 2𝛼
12
∫

Ω

𝑢V|∇𝑢|2𝑑𝑥

= −2∫

Ω

𝛼
12
𝑢
2
∇V ⋅ ∇𝑢 𝑑𝑥 + ∫

Ω

𝑢
3
(𝑎
1
− 𝑏
1
𝑢 − 𝑐
1
V) 𝑑𝑥.

(45)

Apply the following inequalities:

∫

Ω

V2𝑑𝑥 ≤ 𝜀 (∫

Ω

|∇V|2𝑑𝑥 + ‖V‖2
𝐿
1
(Ω)
) + 𝐶𝜀

−𝑛/2
‖V‖2
𝐿
1
(Ω)
,

∫

Ω

𝑢
2
∇𝑢 ⋅ ∇V 𝑑𝑥 ≤ 𝜀

1
∫

Ω

𝑢
2
|∇𝑢|
2
𝑑𝑥 + 𝐶 (𝜀

1
) ∫

Ω

𝑢
2
|∇V|2𝑑𝑥,

∫

Ω

𝑢
2
|∇V|2𝑑𝑥 ≤

1

2

∫

Ω

𝑢
4
𝑑𝑥 +

1

2

∫

Ω

|∇V|4𝑑𝑥.

(46)

Use (46) with V = 𝑢
2 to get

∫

Ω

𝑢
4
𝑑𝑥 ≤ 𝜀 {∫

Ω

󵄨
󵄨
󵄨
󵄨
󵄨
∇ (𝑢
2
)

󵄨
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 +

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
2󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
1
(Ω)
} + 𝐶𝜀

−𝑛/2󵄩󵄩
󵄩
󵄩
󵄩
𝑢
2󵄩󵄩
󵄩
󵄩
󵄩

2

𝐿
1
(Ω)

= 𝜀 {4∫

Ω

𝑢
2
|∇𝑢|
2
𝑑𝑥 + ‖𝑢‖

4

𝐿
2
(Ω)
} + 𝐶𝜀

−𝑛/2
‖𝑢‖
4

𝐿
2
(Ω)
.

(47)

Choosing small positive numbers 𝜀 and 𝜀
1
in the above

inequalities, we get

1

3

𝑑

𝑑𝑡

∫

Ω

𝑢
3
𝑑𝑥 + 2∫

Ω

𝑑
1
𝑢|∇𝑢|

2
𝑑𝑥 + 𝛼

11
∫

Ω

𝑢
2
|∇𝑢|
2
𝑑𝑥

+ 2𝛼
12
∫

Ω

𝑢V|∇𝑢|2𝑑𝑥

≤ 𝐶(∫

Ω

𝑢
2
𝑑𝑥)

2

+ 𝐶∫

Ω

|∇V|4𝑑𝑥 + ∫
Ω

𝑎
1
𝑢
3
𝑑𝑥.

(48)

By (17), (39), (44), (48), and uniform Gronwall’s inequality,
we get the desired result

‖𝑢‖
𝐿
3
(Ω)

∈ P. (49)

Proof of Theorem 1. It follows from (48) that

𝛼
11
∫

𝑡+1

𝑡

∫

Ω

𝑢
2
|∇𝑢|
2
𝑑𝑥 𝑑𝑠

≤

1

3

‖𝑢 (𝑡)‖
3

𝐿
3
(Ω)

−

1

3

‖𝑢 (𝑡 + 1)‖
3

𝐿
3
(Ω)

+ 𝐶∫

𝑡+1

𝑡

(∫

Ω

𝑢
2
𝑑𝑥)

2

𝑑𝑠 + 𝐶∫

𝑡+1

𝑡

∫

Ω

|∇V|4𝑑𝑥 𝑑𝑠

+ ∫

𝑡+1

𝑡

∫

Ω

𝑎
1
𝑢
3
𝑑𝑥 𝑑𝑠.

(50)

In virtue of (17), (35), (44), and (50), we obtain

∫

𝑡+1

𝑡

∫

Ω

𝑢
2
|∇𝑢|
2
𝑑𝑥 𝑑𝑠 ∈ P. (51)

For 𝑙 = 2, V = 𝑢
𝑙, we see ∫

𝑡+1

𝑡
∫
Ω
|∇V|2𝑑𝑥 𝑑𝑠 =

4 ∫

𝑡+1

𝑡
∫
Ω
𝑢
2
|∇𝑢|
2
𝑑𝑥 𝑑𝑠 ∈ P.

Let𝑤 = V−∫
Ω
V 𝑑𝑥; then Gagliardo-Nirenberg inequality

gives

‖𝑤‖
𝐿
2
∗

(Ω)
≤ 𝐶‖∇𝑤‖

𝐿
2
(Ω)
, (52)

which implies

‖V‖
𝐿
2
∗

(Ω)
≤ 𝐶 (‖∇V‖

𝐿
2
(Ω)

+ ‖V‖
𝐿
1
(Ω)
) , (53)

with 2∗ = 2𝑛/(𝑛 − 2).
For 𝑟 = 2𝑙, 𝑞 = 2

∗
𝑙, in virtue of (53), we have

∫

𝑡+1

𝑡

‖𝑢‖
𝑟

𝐿
𝑞
(Ω)
𝑑𝑠 = ∫

𝑡+1

𝑡

‖V‖2
𝐿
2
∗

(Ω)
𝑑𝑠

≤ 𝐶(∫

𝑡+1

𝑡

‖∇V‖2
𝐿
2
(Ω)
𝑑𝑠 + sup

[𝑡,𝑡+1]
‖V‖2
𝐿
1
(Ω)
) .

(54)

Note

‖V‖2
𝐿
1
(Ω)

= ‖𝑢 (⋅, 𝑡)‖
𝑙

𝐿
𝑙
(Ω)

= ‖𝑢 (⋅, 𝑡)‖
2

𝐿
2
(Ω)

∈ P; (55)
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thus ∫𝑡+1
𝑡

‖𝑢‖
𝛾

𝐿
𝑞
(Ω)
𝑑𝑠 ∈ P, with 𝑞, 𝑟 satisfying

1 − 𝜒 :=

1

𝑟

+

𝑛

2𝑞

=

1

𝑙

(

1

2

+

𝑛

2 ⋅ 2
∗
) =

𝑛

4𝑙

. (56)

Let

𝐴 = 𝑞 −

𝑛

2 (1 − 𝜒)

= 𝑞 − 2𝑙, 𝐵 = 𝑟 −

1

1 − 𝜒

= 2𝑙 −

4𝑙

𝑛

,

(57)

when 𝑙 = 2 holds; in order to satisfy (15) in Lemma 5, we need
to check 𝜒 ∈ (0, 1), 𝐴 ≥ 0, and 𝐵 ≥ 0. By (56), we have the
following results:

𝑛 = 3 𝜒 =

5

8

𝐴 = 8 𝐵 =

4

3

, (58)

𝑛 = 4 𝜒 =

1

2

𝐴 = 4 𝐵 = 2, (59)

𝑛 = 5 𝜒 =

3

8

𝐴 =

8

3

𝐵 =

12

5

, (60)

𝑛 = 6 𝜒 =

1

4

𝐴 = 2 𝐵 =

8

3

, (61)

𝑛 = 7 𝜒 =

1

8

𝐴 =

8

5

𝐵 =

20

7

. (62)

Since𝐶𝜐×𝐶𝜐 (𝜐 > 1) is compact inX, by the attractor theory
in [14], we complete the proof of Theorem 1.
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