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Transforming the nonlinear Black-Scholes equation into the diffusion PDE by introducing the log transform of 𝑆 and (𝑇 − 𝑡) →

𝜏 can provide the most stable platform within which option prices can be evaluated. The space jump that appeared in the
transformation model is suitable to be solved by the sparse grid approach. An adaptive sparse approximation solution of the
nonlinear second-order PDEs was constructed using Faber-Schauder wavelet function and the corresponding multiscale analysis
theory. First, we construct the multiscale wavelet interpolation operator based on the definition of interpolation wavelet theory.
The operator can be used to discretize the weak solution function of the nonlinear second-order PDEs. Second, using the couple
technique of the variational iterationmethod (VIM) and the precision integrationmethod, the sparse approximation solution of the
nonlinear partial differential equations can be obtained. The method is tested on three classical nonlinear option pricing models
such as Leland model, Barles-Soner model, and risk adjusted pricing methodology. The solutions are compared with the finite
difference method. The present results indicate that the method is competitive.

1. Introduction

Black and Scholes [1] described a mathematical framework
for calculating the fair price of a European option in which
they used a no-arbitrage argument to derive a partial dif-
ferential equation which governs the evolution of the option
price with respect to the time to expiry, 𝑡, and the price of the
underlying asset, 𝑆; that is,
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where 𝑆(𝑡) denotes the underlying asset, 𝑡 ∈ (0, 𝑇), 𝑇 denotes
the expiry date, 𝜎 is the volatility (measures the standard
deviation of the returns), and 𝑟 is the riskless interest rate.The
solution of the famous Black-Scholes equation provides both
the price for a European option and a hedging portfolio that
replicates the option assuming that the market is frictionless;
thus there are no transaction costs, the interest rates for
borrowing and lending money are equal, all parties have
immediate access to any information, and all securities and
credits are available at any time and any size. That is, all
variables are perfectly divisible andmay take any real number.

Moreover, individual trading will not influence the price.
Another unpractical assumption is that there are no arbitrage
opportunities, meaning that there are no opportunities of
instantly making a risk-free profit. In practice, the volatility 𝜎
relates to the time t, the stock price 𝑆, or the derivatives of the
option price 𝑉 itself. Taking all these factors into the option
pricing model, the nonlinear Black-Scholes can be obtained
as follows [2]:
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where 𝜎̃ denotes a nonconstant volatility. In this paper, we
will be concerned with several transaction cost models from
the most relevant class of nonlinear Black-Scholes equations
for European options with a constant drift and a variable
volatility 𝜎̃2 := 𝜎̃2(𝑡, 𝑆, 𝜕𝑉/𝜕𝑆, 𝜕2𝑉/𝜕𝑆2).

In contrast with the traditional linear Black-Scholes
equation, it is very difficult to find the analytical solution of
the nonlinear Black-Scholes model. Elbeleze et al. proposed
an asymptotic analytical method for fractional Black-Scholes
model using Sumudu transform [3]. Song and Wang solved
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the fractional Black-Scholes with the finite differencemethod
[4]. Yan proposed the wavelet precise integration method
(WPIM) for the nonlinear model [5]. In order to eliminate
the boundary effect in WPIM, an interval wavelet was
constructed by Liu [6] based on the restricted variational
principle.

Since 𝑆 is lognormal distributed, the direct discretization
mesh of the Black-Scholes PDE will not have equally spaced
𝑆-steps, so, Schaeffer et al. [7] transform the backward Black-
Scholes PDE (2) into the diffusion PDE by introducing the
log transform of 𝑆 and (𝑇 − 𝑡) → 𝜏. This provides the most
stable platform within which option prices can be evaluated.
Implementing the finite difference algorithms to the diffusion
equation is much simpler than the Black-Scholes (2). The
disadvantage of the new model is the equally spaced jumps
in log 𝑆which need more refined 𝑆-step to meet the precision
requirement. Obviously, the sparse grid approach for the
PDEs is the powerful tool to solve the diffusion equation.

The sparse representation of functions via a linear com-
bination of a small number of basic functions has recently
received a lot of attention in several mathematical fields
such as approximation theory as well as signal and image
processing [7]. Many physical equations contain multiscale
phenomena, such as the homogenization problems from
material science and chemistry and multiscale systems in
biology, computational electrodynamics, fluid dynamics, and
atmospheric and oceanic sciences.

The main source of difficulty in multiscale computation
is that accurate simulation of the system requires all phe-
nomena to be fully resolved [8]. From the perspective of
mathematics, multiscale methods began with representation
of a function using a global basis, such as Taylor series or
Fourier series. More sophisticated bases such as wavelet have
appeared in computational physics in recent decades. Com-
paring with the common wavelet function, the interpolation
wavelet function possesses the interpolation characteristic
which is helpful to improve the efficiency of the algorithm.
The familiar interpolation wavelet functions include Haar
wavelet [9], Shannon wavelet [10], Shannon-Gabor wavelet
[11], and Faber-Schauder wavelet [12]. Besides, the auto-
correlation function of the Daubechies scaling function is
also taken as an interpolation function to construct wavelet
numerical method for PDEs. The wavelet functions which
have all of the excellent numerical properties such as the
compact support, smoothness, orthogonality, interpolation,
and exact analytical expression are the perfect weight func-
tion in the numerical method for PDEs. Unfortunately, there
is not any such wavelet function that has been constructed
up to now. Shannon wavelet does not have compact support
property. Hoffman et al. have suggested using the Shannon-
Gabor wavelet instead of Shannon wavelet in numerical
method. In some ways this improves the approximation to a
Dirac delta function. However, the presence of the Gaussian
window destroys the orthogonal properties possessed by the
Shannon wavelet, effectively worsening the approximation to
a Dirac delta function. The autocorrelation function of the
Daubechies wavelet has no exact analytical expression, which
destroys the approximation precision to some extent. Haar
wavelet is discontinuous although it has compact support

and orthogonality, which cannot be employed to solve the
derivative of the approximated function.

Our study in this work will prove that the Faber-
Schauder’s compact support and linear expression can be
employed to construct the efficiency algorithm using the
variational principle, although it has no smoothness property.
In our method, we construct the weak solution function of
the nonlinear second-order PDEs with variational principle
firstly, which can be discretized into nonlinear system of
ODEs with the multiscale wavelet interpolation operator
which has only first-order derivative. Then, the variational
iteration method [5, 13, 14] was employed to solve the
nonlinear system of algebraic equations which is obtained
by the discretized to the nonlinear PDEs by the wavelet
collocation method. The multiscale wavelet interpolation
operator [15] and the soft thresholdmethodwere constructed
to get the sparse input data. A key difference between the
proposed method and other methods is that the proposed
method directly resolves all the significant scales in the
solution. By construct, the other methods directly resolve
only the coarse scales of the solution, and they separately
reconstruct the fine-scale solution (as well as its effect on the
coarse scales). Another difference is the choice scheme of the
sparse basis [16]. As the solution of the PDEs are enforced at
every time step by simply applying soft threshold [7] to the
coefficients of the basis approximation in our method, that
is, the approximate solution resides on a sparse subspace of
a basis, the input data were reduced with the optimization
method, and the traditional sparse grid multilevel methods
reduce informationwith the error tolerance [17], which is also
be called hard threshold.

2. Faber-Schauder Wavelet Function

2.1. Definition of Faber-Schauder Wavelet. The Faber-
Schauder wavelet function can be defined as

𝑤 (𝑥) = max (0, 1 − |𝑥|) =
{{

{{

{

0, |𝑥| ≥ 1,

1 + 𝑥, −1 < 𝑥 < 0

1 − 𝑥, 0 ≤ 𝑥 < 1.

, (3)

The basis of compactly supported wavelets of 𝐿2(𝑅) is
formed by the dilation and translation of the single function
𝑤(𝑥):
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2
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(4) 𝑉
𝑗−1

= 𝑉
𝑗
⊕𝑊
𝑗
.

The space 𝐿2(𝑅) is represented as a direct sum:
(5) 𝐿2(𝑅) = ⊕

𝑗∈Z𝑊𝑗.
On each fixed scale 𝑗, the function 𝑤

𝑗,𝑘
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2
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𝑤(2
𝑗
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𝑗
, and

𝑉
𝑗
= span {𝑤

𝑗,𝑘
(𝑥)}
𝑘∈Z

.

Based on the multiscale analysis theory, the Faber-
Schauder can be used as the basis in 𝐿2(𝑅), to represent any
function𝑓(𝑥) defined in space 𝐿2(𝑅), where 𝑥 ∈ [𝑥min, 𝑥max].
On each fixed scale 𝑗, the discrete points about the variable 𝑥
can be defined as 𝑥

𝑘
= 𝑥min+𝑘Δ𝑗, 𝑘 = 0, 1, 2, 3, . . . , , 2

𝑗
Δ𝑗 >

(𝑥max − 𝑥min)/2
𝑗.

Then, the discrete form of the Faber-Schauder basis
function is obtained as follows

𝑤
𝑗,𝑘
(𝑥) =
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󵄨󵄨󵄨󵄨 < Δ𝑗.

(5)

2.2. Properties of Faber-Schauder Wavelet. It is easy to prove
that Faber-Schauder function 𝑤(𝑥) satisfies the following
relations:

(i) 𝑤(𝑘 − 𝑛) = 𝛿
𝑘,𝑛
, 𝑘, 𝑛 ∈ Z
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(v) 𝑤󸀠(𝑥) has orthogonality property; that is,
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Proof. First-order derivative of the Faber-Schauder scaling
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(7)

Obviously,𝑤󸀠(𝑥) is the same as Haar wavelet function, which
possesses orthogonality. So, the proof is completed.

3. Construction of the Multiscale Wavelet
Interpolation Operator

In this section, we try to construct a multi-scale interpolator,
which is independent of the wavelet functions. Let 𝑤(𝑥)
be the interpolation scaling function, which can be any
wavelet function with interpolation property. By dilation and
translation, the scaling function series can be obtained as

𝑤
𝑗

𝑘
( 𝑥) = 𝑤 (2

𝑗
𝑥 − 𝑘) , 𝑘 = 0, 1, 2, . . . , 2
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which constitute the scaling function subspaces in 𝐿2(0, 1) as
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As 𝑤(𝑥) has interpolation property, that is, 𝑤𝑗
𝑘
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𝜓
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= 𝑤
𝑗+1

2𝑘+1
. (12)

According to the multiscale wavelet approximation the-
ory, the approximation of the function 𝑓 ∈ 𝐶

0
(0, 1), 𝑓

𝑗
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𝑉
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can be represented as

𝑓
𝑗
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2
𝑗0
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𝑘=0

𝛽
𝑗0 ,𝑘
𝑤
𝑗0

𝑘
+ ∑

𝑗≥𝑗0

2
𝑗

∑

𝑘=0

𝛼
𝑗,𝑘
𝜓
𝑗,𝑘
, (13)

the coefficients 𝛽
𝑗𝑘
and 𝛼

𝑗𝑘
are defined as

𝛽
𝑗0𝑘

= 𝑓 (𝑥
𝑗0𝑘
) , 𝛼

𝑗𝑘
= 𝑓 (𝑦

𝑗𝑘
) − 𝐼
𝑗
𝑓 (𝑦
𝑗𝑘
) , (14)

respectively. These expressions show that the wavelet coeffi-
cient 𝛼

𝑗𝑘
represents the approximation error at 𝑦

𝑗𝑘
. In other

words, the interpolation wavelet coefficient represents the
local regularity of the approximated function.

In the following, we will discuss the construction of
the multiscale interpolator based on the wavelet multiscale
analysis theory. The interpolation operator can be defined as

𝑢
𝐽
(𝑥) = ∑

𝑖∈𝑍
𝑗

Ω

𝐼
𝑖
(𝑥) 𝑢
𝑖

𝐽
, 𝑍
𝐽

Ω
:= 0, 1, 2, . . . , 2

𝐽
, (15)

where 𝐼
𝑖
(𝑥) is the interpolation function. According to the

wavelet transform theory, function 𝑢(𝑥) can be expressed
approximately as

𝑢
𝐽
(𝑥) =

2
𝑗0

∑

𝑘0=0

𝑢 (𝑥
𝑘0

𝑗0
) 𝜑
𝑘0

𝑗0
(𝑥) +

𝐽−1

∑

𝑗=𝑗0

∑

𝑘∈𝑍
𝑗

𝛼
𝑘

𝑗
𝜓
𝑘

𝑗
(𝑥) , (16)
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where 𝑍𝑗 := 0, 1, 2, . . . , 2
𝑗, and the interpolation wavelet

transform coefficient can be represented as

𝛼
𝑘

𝑗
= 𝑢 (𝑥

2𝑘+1

𝑗+1
) − [

[

2
𝑗0

∑

𝑘0=0

𝑢 (𝑥
𝑘0

𝑗0
) 𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
)

+

𝑗−1

∑

𝑗1=𝑗0

2
𝑗1−1

∑

𝑘1=0

𝛼
𝑘1

𝑗1
𝜓
𝑘1

𝑗1
(𝑥
2𝑘+1

𝑗+1
)]

]

=

2
𝐽

∑

𝑛=0

[

[

𝑅
2𝑘+1,𝑛

𝑗+1,𝐽
−

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑛

𝑗0 ,𝐽
𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
)]

]

𝑢 (𝑥
𝑛

𝐽
)

−

2
𝐽

∑

𝑛=0

𝑗−1

∑

𝑗1=𝑗0

2
𝑗1−1

∑

𝑘1=0

𝛼
𝑘1

𝑗1
𝜓
𝑘1

𝑗1
(𝑥
2𝑘+1

𝑗+1
) ,

(17)

where 0 ≤ 𝑗 ≤ 𝐽−1, 𝑘 ∈ 𝑍𝑗, 𝑛 ∈ 𝑍𝐽, and theR is the restriction
operator which is defined as

R𝑖,𝑚
𝑙,𝑗

= {
1, 𝑥

𝑖

𝑙
= 𝑥
𝑚

𝑗

0, others.
(18)

Suppose

𝛼
𝑘

𝑗
=

2
𝐽

∑

𝑛=0

𝐶
𝑘,𝑛

𝑗,𝐽
𝑢 (𝑥
𝑛

𝐽
) . (19)

Substitute (19) into (17); we obtain

𝐶
𝑘,𝑛

𝑗,𝐽
= 𝑅
2𝑘+1,𝑛

𝑗+1,𝐽
−

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑛

𝑗0 ,𝐽
𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
)

−

𝑗−1

∑

𝑗1=𝑗0

2
𝑗1−1

∑

𝑘1=0

𝐶
𝑘1 ,𝑛

𝑗1 ,𝐽
𝜓
𝑗1 ,𝑘1

(𝑥
2𝑘+1

𝑗+1
)

(20)

and if 𝑗 = 𝑗
0
, then

𝐶
𝑘,𝑛

𝑗,𝐽
= 𝑅
2𝑘+1,𝑛

𝑗+1,𝐽
−

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑛

𝑗0 ,𝐽
𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
) . (21)

Substitute the restriction operator (18) and the wavelet trans-
form coefficient (19) into (16); the approximate expression of
the solution function 𝑢(𝑥) can be obtained as

𝑢
𝐽
(𝑥) = ∑

𝑖∈𝑍
𝐽

(

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑛

𝑗0 ,𝐽
𝜑
𝑘0

𝑗0
(𝑥
2𝑘+1

𝑗+1
)

+

𝑗−1

∑

𝑗1=𝑗0

2
𝑗1−1

∑

𝑘1=0

𝐶
𝑘1 ,𝑛

𝑗1 ,𝐽
𝜓
𝑗1 ,𝑘1

(𝑥
2𝑘+1

𝑗+1
))𝑢 (𝑥

𝑖

𝐽
) .

(22)

According to the definition of the interpolation operator
(15), it is easy to obtain the expression of the interpolation
operator:

𝐼
𝑖
(𝑥) =

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑖

𝑗0 ,𝐽
𝜑
𝑘0

𝑗0
(𝑥) +

𝐽−1

∑

𝑗=𝑗0

∑

𝑘∈𝑍
𝑗

𝐶
𝑘,𝑖

𝑗,𝐽
𝜓
𝑘

𝑗
(𝑥) . (23)

And the corresponding𝑚-order derivate of the interpolation
operator is

𝐷
(𝑚)

𝑖
(𝑥) =

2
𝑗0

∑

𝑘0=0

𝑅
𝑘0 ,𝑖

𝑗0 ,𝐽
𝜑
(𝑚)

𝑗0 ,𝑘0
(𝑥) +

𝐽−1

∑

𝑗=𝑗0

∑

𝑘∈𝑍
𝑗

𝐶
𝑘,𝑖

𝑗,𝐽
𝜓
(𝑚)

𝑗,𝑘
(𝑥) . (24)

Substituting (23) and (24) into PDEs, the nonlinear PDEs can
be changed into a nonlinear ODEs, and then the correspond-
ing analytical solution can be obtained with VIM [13].

4. Sparse Grids Approach for Parabolic PDEs
Based on Faber-Schauder Wavelet

As mentioned above, Faber-Schauder scaling function has
no smoothness property, which means that the second order
derivative of the Faber-Schauder scaling function does not
exist. Therefore, we cannot take the Faber-Schauder scaling
function as the weight function directly to approximate the
solution of PDEs with second order derivative. In order
to solve this problem, the weak solution form (variational
equation) of the PDEs can be employed. It is well known
that the solution of the variational equation equals one of the
correspondingPDEs.Consider the parabolic PDEs as follows:

𝐿𝑢 = −
𝜕

𝜕𝑥
(𝑝 (𝑥)

𝜕𝑢

𝜕𝑥
) + 𝑟 (𝑥)

𝜕𝑢

𝜕𝑥
+ 𝑞 (𝑥) 𝑢

=
𝜕𝑢

𝜕𝑡
+ 𝑓 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] , (𝑥, 𝑡) ∈ 𝐷,

𝑢 (𝑎, 0) = 𝛼,

𝑝 (𝑏)
𝜕𝑢 (𝑏, 0)

𝜕𝑥
+ 𝑔 (𝑏) 𝑢 (𝑏, 0) = 𝛽,

(25)

where 𝐷 is the definition domain in 𝑥-𝑡 plane and 𝐿 denotes
the differential operator. For convenience to construct the
variational equation, the parameter 𝑡 should be discretized as
𝑡
0
, 𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
, 𝑡
𝑚+1

, . . ., where 𝑡
0
= 0 and 𝑡

𝑚
= 𝑚Δ𝑡. Then,

𝜕𝑢/𝜕𝑡 can be approximated as
𝜕𝑢

𝜕𝑡
≈

1

Δ𝑡
[𝑢 (𝑥,𝑚Δ𝑡) − 𝑢 (𝑥, (𝑚 − 1) Δ𝑡)] . (26)

Substituting the above equation into (2), we obtain

𝐿𝑢 = −
𝑑

𝑑𝑥
(𝑝 (𝑥)

𝑑𝑢

𝑑𝑥
) + 𝑟 (𝑥)

𝑑𝑢

𝑑𝑥
+ 𝑞 (𝑥) 𝑢

= 𝐹 (𝑥) , 𝑥 ∈ [𝑎, 𝑏] , (𝑥, 𝑡) ∈ 𝐷,

𝑢 (𝑎, 0) = 𝛼,

𝑝 (𝑏)
𝑑𝑢 (𝑏, 0)

𝑑𝑥
+ 𝑔 (𝑏) 𝑢 (𝑏, 0) = 𝛽,

𝐹 (𝑥) = 𝑓 (𝑥) +
1

Δ𝑡
[𝑢 (𝑥,𝑚Δ𝑡) − 𝑢 (𝑥, (𝑚 − 1) Δ𝑡)] .

(27)

Obviously, it is the initial-boundary elliptic PDEs. Using the
virtual displacement theory, the variation equation can be
obtained as

𝑎 (𝑢, V) = 𝐺 (V) , 𝑢 ∈ 𝐻
1

𝐸
(𝑎, 𝑏) , ∀V ∈ 𝐻1

0𝐸
(𝑎, 𝑏) , (28)
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where

𝐻
1

𝐸
(𝑎, 𝑏) := {𝑢 ∈ 𝐻

1
(𝑎, 𝑏) | 𝑢 (𝑎) = 𝛼}

𝐻
1

0𝐸
(𝑎, 𝑏) := {V ∈ 𝐻1 (𝑎, 𝑏) | V (𝑎) = 0}

𝑎 (𝑢, V) := ∫

𝑏

𝑎

[𝑝 (𝑥)
𝑑𝑢

𝑑𝑥

𝑑V
𝑑𝑥

+ 𝑟 (𝑥)
𝑑𝑢

𝑑𝑥
V + 𝑞 (𝑥) 𝑢V] 𝑑𝑥

+ 𝑔 (𝑏) 𝑢 (𝑏) V (𝑏)

𝐺 (V) := ∫
𝑏

𝑎

𝐹 (𝑥) V (𝑥) 𝑑𝑥 + 𝛽V (𝑏)

(29)

and𝐻1(𝑎, 𝑏) is the Sobolev space.
According to the interpolation wavelet transform theory,

the variables 𝑢 and V can be approximated as

𝑢 (𝑥, 𝑡) =

2
𝑗0

∑

𝑘=0

𝑢 (𝑥
𝑗0 ,𝑘
)𝑤
𝑗0

𝑘
(𝑥) +

𝐽−1

∑

𝑗=𝑗0

2
𝑗
−1

∑

𝑘=0

𝛼
𝑗,𝑘
(𝑡) 𝑤
𝑗+1

2𝑘+1
(𝑥)

V (𝑥, 𝑡) =
2
𝑗0

∑

𝑘=0

V (𝑥
𝑗0 ,𝑘
)𝑤
𝑗0

𝑘
(𝑥) +

𝐽−1

∑

𝑗V=𝑗0

2
𝑗V
−1

∑

𝑘V=0
𝛼
𝑗V,𝑘V (𝑡) 𝑤

𝑗V+1
2𝑘V+1 (𝑥) .

(30)

The first-order derivatives are

𝑑

𝑑𝑥
𝑢 (𝑥, 𝑡) =

2
𝑗0

∑

𝑘=0

𝑢 (𝑥
𝑗0 ,𝑘
) (𝑤
𝑗0

𝑘
(𝑥))
󸀠

+

𝐽−1

∑

𝑗=𝑗0

2
𝑗
−1

∑

𝑘=0

𝛼
𝑗,𝑘
(𝑡) (𝑤

𝑗+1

2𝑘+1
(𝑥))
󸀠

(31)

𝑑

𝑑𝑥
V (𝑥, 𝑡) =

2
𝑗0

∑

𝑘=0

V (𝑥
𝑗0 ,𝑘
) (𝑤
𝑗0

𝑘
(𝑥))
󸀠

+

𝐽−1

∑

𝑗V=𝑗0

2
𝑗V
−1

∑

𝑘V=0
𝛼
𝑗V,𝑘V (𝑡) (𝑤

𝑗V+1
2𝑘V+1 (𝑥))

󸀠

,

(32)

respectively. Substituting (30)–(32) into (16), the sparse
method for the parabolic PDEs based on the Faber-Schauder
wavelet will be obtained.

Sparse operation via optimization: soft threshold [7]. At
a given time step, the problem of projecting the updated
solution onto a sparse subset is equivalent to fitting a solution
𝑢
𝑛

𝐽
with corresponding coefficients 𝑢̂. This can be written as a

constrained least squares fit as follows:

min
𝑢

󵄩󵄩󵄩󵄩󵄩
𝑢 − 𝑢
𝑛

𝐽

󵄩󵄩󵄩󵄩󵄩

2

𝐿
2

s.t. 𝑢 = ∑
𝑖

𝐼
𝑖
(𝑥) 𝑢
𝑛

𝐽
(𝑥
𝑖

𝐽
) . (33)

This constrained optimization problem is related to the
unconstrained problem as follows:

𝑢̂ = argmin
𝑢̂

𝜆‖𝑢̂‖1 +
1

2

󵄩󵄩󵄩󵄩𝑢̂ − 𝑢̂
𝑛󵄩󵄩󵄩󵄩

2

𝐿
2 , (34)

where 𝑢̂ is the vector of coefficients. In general, this can be
computed for a nonorthonormal basis, which is equivalent to
a basis pursuit problem with 𝐿1 norm as a sparse regularizer.
The resulting minimizer 𝑢̂ is a proximal solution that lies on
a sparse subset of the original coefficient domain. We can
apply the soft threshold on the coefficients directly in order
to induce sparsity in this way.

5. Numerical Experiments and Discussion

The Black-Scholes model requires a continuous portfolio
adjustment in order to hedge the position without any risk.
In the presence of transaction costs it is likely that this adjust-
ment easily becomes expensive, since an infinite number
of transactions are needed. Thus, the hedger needs to find
the balance between the transaction costs that are required
to rebalance the portfolio and the implied costs of hedging
errors.The assumption of continuous portfolio adjustment is
awkward in the presence of nonzero transactions cost since
continuous revision implies infinite trading. Up to now, there
are 3 classical modified options replication strategy which
have been using widely in recent years.The difference among
them is the volatility 𝜎̃ appeared in (2).

In this section, we are taking these 3 nonlinear Black-
Scholes equations (2) as the examples to test the numerical
algorithm described in the previous section. In order to
solve the problem, it is necessary to perform a variable
transformation as follows:

𝑥 = ln( 𝑆
𝐾
) , 𝜏 =

1

2
𝜎
2
(𝑇 − 𝑡) ,

𝑢 (𝑥, 𝜏) = 𝑒
−𝑥𝑉 (𝑠, 𝑡)

𝐾
.

(35)

Substitute (35) into (2); the following diffusion equation can
be obtained:

𝜕𝑢

𝜕𝑡
=
𝜎̃
2

𝜎2
(
𝜕
2
𝑢

𝜕𝑥2
+
𝜕𝑢

𝜕𝑥
) + 𝐷

𝜕𝑢

𝜕𝑥
, (36)

where

𝐷 =
2𝑟

𝜎2
, 𝑥 ∈ 𝑅, 0 ≤ 𝜏 ≤ 𝑇̃ =

𝜎
2

2
. (37)

Initial condition is

𝑢 (𝑥, 0) = (1 − 𝑒
−𝑥
)
+ for 𝑥 ∈ 𝑅. (38)

And the boundary conditions are

𝑢 (𝑥, 𝜏) = 0 as 𝑥 󳨀→ −∞,

𝑢 (𝑥, 𝜏) ∼ 1 − 𝑒
−𝐷𝜏−𝑥 as 𝑥 󳨀→ ∞.

(39)

According to the transformation relation (35), it is easy to
understand that the point 𝑥 = 0 is corresponding to the strike
price 𝑆 = 𝐾. Obviously, the initial solution curve is smooth
except around the position 𝑥 = 0, where a sharp steep wave
happened (Figure 1). So, an adaptive sparse grid approach is
suitable for this problem.
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Using the difference coefficient to approximate the partial
differential operator 𝜕𝑢/𝜕𝑡, the Burgers equation becomes

𝜎̃
2

𝜎2
(
𝑑
2
𝑢 (𝑥,𝑚.Δ𝑡)

𝑑𝑥2
+
𝑑𝑢 (𝑥,𝑚Δ𝑡)

𝑑𝑥
) + 𝐷

𝑑𝑢 (𝑥,𝑚Δ𝑡)

𝑑𝑥

−
1

Δ𝑡
[𝑢 (𝑥,𝑚Δ𝑡) − 𝑢 (𝑥, (𝑚 − 1) Δ𝑡)] = 0,

𝑢 (−100,𝑚Δ𝑡) = 0,

𝑢 (100,𝑚Δ𝑡) = 1 − 𝑒
−𝐷𝑚Δ𝑡−100

.

(40)

According to the virtual displacement theory, the variational
form of the nonlinear Black-Scholes equation can be repre-
sented as:

∫

100

−100

𝜎̃
2

𝜎2

𝑑𝑢 (𝑥,𝑚 ⋅ Δ𝑡)

𝑑𝑥
⋅
𝑑V (𝑥)
𝑑𝑥

𝑑𝑥

+ ∫

100

−100

[(
𝜎̃
2

𝜎2
+ 𝐷)

𝑑𝑢 (𝑥,𝑚 ⋅ Δ𝑡)

𝑑𝑡
−

1

Δ𝑡
𝑢 (𝑥,𝑚Δ𝑡)]

× V (𝑥) 𝑑 (𝑥)

= ∫

100

−100

1

Δ𝑡
𝑢 (𝑥, (𝑚 − 1) Δ𝑡) V 𝑑𝑥.

(41)

Substituting (30)–(32) into (41), we obtain

𝐽−1

∑

𝑗=0

2
𝑗
−1

∑

𝑘=0

𝑐
𝑗

𝑘
(𝑚Δ𝑡)

× [

[

𝜎̃
2

𝜎2
∫

100

−100

𝑤
󸀠𝑗+1

2𝑘+1
𝑤
󸀠𝑗V+1
2𝑘V+1 (𝑥) 𝑑𝑥

+

𝐽−1

∑

𝑗0=0

2
𝑗0−1

∑

𝑘0=0

𝑐
𝑗0

𝑘0
((𝑚 − 1) ⋅ Δ𝑡)

× ∫

100

−100

(
𝜎̃
2

𝜎2
+ 𝐷)𝑤

𝑗0+1

2𝑘0+1
(𝑥)

× 𝑤
󸀠𝑗+1

2𝑘+1
(𝑥)𝑤
𝑗V+1
2𝑘V+1𝑑𝑥

−
1

Δ𝑡
∫

100

−100

𝑤
𝑗+1

2𝑘+1
(𝑥)𝑤
𝑗V+1
2𝑘V+1 (𝑥) 𝑑𝑥

]

]

=

𝐽−1

∑

𝑗=0

2
𝑗
−1

∑

𝑘=0

𝑐
𝑗

𝑘
[(𝑚 − 1) Δ𝑡]

1

Δ𝑡

× ∫

2

0

𝑤
𝑗+1

2𝑘+1
(𝑥) 𝑤
𝑗V+1
2𝑘V+1 (𝑥) 𝑑𝑥,

(42)

where 𝑗V = 0, 1, . . . , 𝐽 − 1 and 𝑘V = 0, 1, . . . , 2
𝑗V
− 1. This is a

system of algebraic equations, which can be solved easily.
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Figure 1: Initial condition of Black-Scholes model.

5.1. Numerical Results

5.1.1. Leland’s Model. Assume that the trade just can do at
discrete times: Leland deduces that the option price is the
solution of the nonlinear Black-Scholes equation (2) with the
modified volatility [18]:

𝜎̃
2
= 𝜎
2
(1 + Le sign (𝑉

𝑆𝑆
)) , (43)

where 𝜎 represents the original volatility and Le the Leland
number given by

Le = √ 2

𝜋

𝑘

𝜎√𝛿𝑡
, (44)

where 𝛿𝑡 denotes the transaction frequency, the transaction
cost is 𝑘|Δ|𝑆/2, 𝑘 denotes the round trip transaction cost per
unit dollar of the transaction, and Δ the number of assets
bought (Δ > 0) or sold (Δ < 0) at price 𝑆 is proportional
to the monetary value of the assets bought or sold.

In the following experiment, 𝛿𝑡 = 0.01, 𝑘 = 0.05, riskless
rate 𝑟 = 0.1, 𝜎 = 0.2, strike price 𝐾 = 100, and expiry date
𝑇 = 1.

The numerical solution is shown in Figure 2. It illustrates
that the wavelet sparse grid approach proposed in this
paper can capture the steep slope appearing in the solution;
that is, there are more grid points around the boundary
and the position around the strike price. Obviously, the
adaptability not only improves the approximate precision but
also decreases the calculation amount. The grid points of the
finite difference method are collocated evenly, so, 4097 (=
212) grid points are needed to get the same precision with the
wavelet sparse grid approach. In otherwords, comparingwith
the finite difference method, the retained coefficients are less
than 4% in the sparse solution of the nonlinear Black-Scholes
equation. Absolutely, this is helpful to improve the efficiency
of the algorithm.

The numerical solution of the Leland model (2) obtained
by the wavelet sparse grid approach is different from the
solution of the Black-Scholes equation (1). The difference is
shown in Figure 3. The main difference appears around the
expiry price, which illustrates the impact of transaction cost
on the option price. With the increase of the transaction size
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Figure 2: Option price at time 𝑡 = 0.4.

around the expiry price, the option price volatility brought
by the transaction cost becomes larger and larger. This
shows that the proposed method can solve the Leland model
correctly.

5.1.2. Barles-Soner Model [2]. Using an exponential utility
function, a more complicated model was constructed by
Barles and Soner as follows:

𝜎̃
2
= 𝜎
2
(1 + 𝑒

𝑟(𝑇−𝑡)
𝑎
2
𝑆
2
𝑉
𝑆𝑆
) . (45)

The difference between Black-Scholes model and Barles-
Soner model obtained by the wavelet sparse grid method is
shown in Figure 4. Comparing with the Leland model, the
Barles-Soner model is more close to the linear Black-Scholes
model and the numerical result is consistent with it. For
comparison, the values of the parameters are the same as
those in the Leland model.
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Figure 3: Difference of call option price between Black-Scholes
model and Leland model.

5.1.3. Risk Adjusted Pricing Methodology [2]. The objective
of this model is to find the optimal time-lag 𝛿𝑡 between the
transactions. This can minimize the sum of the rate of the
transaction costs and the rate of the risk from an unprotected
portfolio. In this model, the modified volatility is defined as

𝜎̃
2
= 𝜎
2
(1 + 3(

𝐶
2
𝑀

2𝜋
𝑆𝑉
𝑆𝑆
)

1/3

) , (46)

where𝑀 ≥ 0 is the transaction cost measure and 𝐶 ≥ 0 is the
risk premium measure.

The difference of the solution between the Black-Scholes
model and the risk adjusted pricing methodology is shown
in Figure 5. Similar to the Leland model, the numerical result
illustrates the function of the model, which is consistence
with option price in practice.

5.2. Comparison of the Algorithm Precision and Efficiency. In
this section, we are taking the linear Black-Scholes equation
to illustrate the advantage of the wavelet sparse grid approach
proposed in this paper. Its exact analytical solution is repre-
sented as

𝐶 = 𝑆𝑒
−𝑦𝑡
𝑁(𝑑
1
) − 𝑋𝑒

−𝑟𝑡
𝑁(𝑑
2
) ,

𝑑
1
=

𝐿𝑛 (𝑆/𝐾) + (𝑟 − 𝑦 + 𝜎
2
/2) 𝑡

𝜎√𝑡
, 𝑑

2
= 𝑑
1
− 𝜎√𝑡,

(47)

where 𝐶 is the call price, 𝑆 is the underlying asset price, 𝐾
is the strike price, 𝑟 is the riskless rate, 𝑇 is the maturity, 𝜎
is the volatility, and 𝑁(𝑑

1
) express the normal distribution.

The comparison between the wavelet sparse grid approach
and the finite difference method is shown in Figure 6.

It is obvious that the error arises around the strike price,
which expresses the nonlinear B-S model, and the numerical
approaches are valid. While the call option price is going far
away from the strike price, the error of the finite difference
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Figure 4: Difference between Black-Scholes model and Barles-
Soner model.
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Figure 5: Difference between Black-Scholes model and Risk
Adjusted Pricing Methodology.

method becomes larger instead of close to the boundary
condition, which is due to the discontinuousness of the
boundary condition. And the error of the wavelet sparse grid
approach is becoming smaller and smaller; this due to the
adaptability of the proposed method. There are more of the
sparse grid points collocate around the boundary, which is
helpful to improve the precision near the boundary.

6. Conclusions

The space jump that appeared in the nonlinear Black-
Scholes equation is suitable to be solved by the sparse
grid approach. Although Faber-Schauder wavelet has no
second-order derivative, combining the variational principle,
we have proposed a method to resolve fully the solutions
of multiscale PDEs while only retaining important nodes
based on the multilevel interpolation wavelet theory and
the optimization principle. The reduced dynamics created by
the sparse projection property capture the true phenomena
exhibited by the solution. This sparse projection amounts
to a shrinkage of the coefficients of the updated solution at
every time step.Themultiscale interpolation operator and the
soft threshold employed in this paper not only work for the
Faber-Schauder wavelet, but also work for any interpolation
wavelets. Comparing with the finite difference method, the
retained coefficients are less than 4% in the sparse solution of
the nonlinear Black-Scholes equation.
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Figure 6: Comparison between the wavelet sparse grid approach
and the finite difference method.
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