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The paper investigates the almost periodic oscillatory properties of neutral-type BAM neural networks with time-varying delays.
By employing the contracting mapping principle and constructing suitable Lyapunov functional, several sufficient conditions are
established for the existence, uniqueness, and global exponential stability of almost periodic solution of the system. The results of
this paper are new and a simple example is given to illustrate the effectiveness of the new results.

1. Introduction

Recent years have witnessed rapid development of bidirec-
tional associative memory (BAM) neural networks due to the
vast applications in pattern recognition, artificial intelligence,
automatic control engineering, and optimization because of
its better abilities of information memory and information
association [1–6]. It is well known that studies on neural
dynamical systems not only involve a discussion of stability
properties, but also involve many dynamic behaviors such
as periodic oscillatory behavior, almost periodic oscillatory
properties, chaos, and bifurcation. In applications, almost
periodic oscillatory is more accordant with fact [7–9]. A great
number of results for BAM neural networks concerning the
existence and global stability of (almost) periodic solution
have been derived (see, e.g., [10–16]).

In addition, owing to the complicated dynamic properties
of the neural cells in the real world, the existing neural
network models in many cases cannot characterize the
properties of a neural reaction process precisely. It is natural
and important that systems will contain some information
about the derivative of the past state to further describe
and model the dynamics for such complex neural reactions.
This new type of neural networks is called neutral neural
networks or neural networks of neutral type. The motivation
for us to study neural networks of neutral type comes from
three aspects. First, based on biochemistry experiments,

neural information may transfer across chemical reactivity,
which results in a neutral-type process. Second, in view of
electronics, it has been shown that neutral phenomena exist
in large-scale integrated (LSI) circuits. Last, the key point is
that cerebra can be considered as a super LSI circuit with
chemical reactivity, which reasonably implies that the neutral
dynamic behaviors should be included in neural dynamic
systems [17, 18]. However, up to date, there are hardly any
articles concerning the almost periodic oscillation analysis
for neural networks of neutral type.

Motivated by the above reason, in this paper, we consider
the following neutral-type BAM neural networks with time-
varying delays:
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where 𝑎
𝑖
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are all almost periodic functions,

𝑖, 𝑗 = 1, 2, . . . , 𝑛, 𝑗, 𝑖 = 1, 2, . . . , 𝑚.
Recently, there are many papers concerning the existence

and exponential stability of (almost) periodic solution for
BAM neural networks [10–16]. However, the research on
the neutral-type BAM neural networks is few. Therefore, the
main purpose of this paper is to establish some new sufficient
conditions on the existence, uniqueness, and exponential sta-
bility of almost periodic solution of neutral-type BAMneural
networks (1). First, by using the exponential dichotomy and
the contracting mapping principle, the existence and unique-
ness of almost periodic solution of system (1) is considered.
Besides, by constructing a new Lyapunov functional, the
stability criterion with system (1) is introduced.The methods
used in this paper provide a possible method to study
the existence and exponential stability of almost periodic
solutions of neutral-type neural networks.

Let 𝐶(X,Y ) and 𝐶

1
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X into Y , respectively. In particular, 𝐶(X) := 𝐶(X,X) and
𝐶

1
(X) := 𝐶

1
(X,X). For any bounded function 𝑓 ∈ 𝐶(R),

𝑓

𝑢
= sup

𝑠∈R|𝑓(𝑠)| and 𝑓
𝑙
= inf

𝑠∈R|𝑓(𝑠)|.
Let 𝜎 := max

1≤𝑖≤𝑛,1≤𝑗≤𝑚
{𝛼

𝑢

𝑗
, 𝛽

𝑢

𝑖
, 𝜇

𝑢

𝑖
, ]𝑢

𝑗
}. The initial condi-

tions associated with system (1) are of the form

𝑥

𝑖 (
𝑠) = 𝜑

∗

𝑖
(𝑠) , �̇�

𝑖 (
𝑠) = �̇�

∗

𝑖
(𝑠) ,

∀𝑠 ∈ [−𝜎, 0] , 𝜑

∗

𝑖
∈ 𝐶

1
([−𝜎, 0] ,R) , 𝑖 = 1, 2, . . . , 𝑛,

𝑦

𝑗 (
𝑠) = 𝜙

∗

𝑗
(𝑠) , ̇𝑦

𝑗 (
𝑠) =

̇

𝜙

∗

𝑗
(𝑠) ,

∀𝑠 ∈ [−𝜎, 0] , 𝜙

∗

𝑗
∈ 𝐶

1
([−𝜎, 0] ,R) , 𝑗 = 1, 2, . . . , 𝑚.

(2)

Now we list some assumptions which will be used in this
paper.
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where 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚.
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By the basic theory of neutral functional differential
equations in [17], the initial value problems (1) and (2) have a
unique solution on interval [𝜎, +∞).

The organization of this paper is as follows. In Section 2,
we give some basic definitions and necessary lemmas which
will be used in later sections. In Sections 3 and 4, by using
a fixed point theorem and constructing suitable Lyapunov
functional, we obtain some sufficient conditions ensuring
existence, uniqueness, and global exponential stability of
almost periodic solution of system (1). Finally, an example is
given to illustrate that our results are feasible.

2. Preliminaries

Now, let us state the following definitions and lemmas, which
will be useful in proving our main result.

Definition 1 (see, [7]). 𝑥 ∈ 𝐶(R) is called almost periodic, if,
for any 𝜖 > 0, it is possible to find a real number 𝑙 = 𝑙(𝜖) > 0

and, for any interval with length 𝑙(𝜖), there exists a number
𝜏 = 𝜏(𝜖) in this interval such that |𝑥(𝑡 + 𝜏) − 𝑥(𝑡)| < 𝜖, for all
𝑡 ∈ R.The collection of those functions is denoted by𝐴𝑃(R).

Definition 2 (see, [7]). Let 𝑦 ∈ 𝐶(R,R𝑛
) and 𝑃(𝑡) be a 𝑛 × 𝑛

continuous matrix defined on R. The linear system

̇𝑦 (𝑡) = 𝑃 (𝑡) 𝑦 (𝑡) (5)

is said to be an exponential dichotomy on R if there exist
constants 𝑘, 𝜆 > 0, projection 𝑆, and the fundamental matrix
𝑌(𝑡) satisfying
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(6)

Lemma 3 (see, [7]). If the linear system ̇𝑦(𝑡) = 𝑃(𝑡)𝑦(𝑡) has
an exponential dichotomy, then almost periodic system

̇𝑦 (𝑡) = 𝑃 (𝑡) 𝑦 (𝑡) + 𝑔 (𝑡) (7)
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has a unique almost periodic solution 𝑦(𝑡) which can be
expressed as follows:

𝑦 (𝑡) = ∫

𝑡
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Lemma 6 (see, [19]). Assume that X is a Banach space with
norm ‖ ⋅ ‖; 𝑇 : X → X is a contraction mapping; that is, there
exists 𝑘 ∈ (0, 1), such that
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|
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all 𝑓 ∈ 𝐴𝑃(R). ThenX is a Banach space with the norm ‖ ⋅ ‖.

By Lemmas 3 and 4, system (1) has a unique almost
periodic solution
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𝑡) 𝑘𝑖
(
̇

𝜓

𝑖
(𝑡 − ]

𝑖 (
𝑡))) + 𝐽𝑖 (

𝑡) ,

(17)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, and 𝑡 ∈ R.
Let 𝑇 : X → X be defined by
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, . . . , 𝑦

𝜓
𝑛

𝑚
)

𝑇

,

∀𝜙 = (𝜑

1
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3. Existence and Uniqueness

In this section, we study the existence and uniqueness of
almost periodic solution of system (1).

Theorem 7. Assume that (H
1
)–(H

3
) hold, then system (1) has

a unique almost periodic solution.

Proof. Consider the following nonlinear operator:

𝑇 (𝜙) = (Φ

1
(𝜙) , . . . , Φ

𝑛
(𝜙) , Ψ

1
(𝜙) , . . . , Ψ

𝑚
(𝜙))

𝑇
,

∀𝜙 = (𝜑

1
, . . . , 𝜑

𝑛
, 𝜓

1
, . . . , 𝜓

𝑚
)

𝑇
∈ X.

(19)
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For all𝜙𝑝 = (𝜑𝑝
1
, . . . , 𝜑

𝑝

𝑛
, 𝜓

𝑝

1
, . . . , 𝜓

𝑝

𝑚
)

𝑇
∈ X,𝑝 = 1, 2, it follows

from the definitions of 𝐹
𝑖
and 𝐺

𝑗
that











𝐹

𝑖
(𝑡, 𝜙

1
) − 𝐹

𝑖
(𝑡, 𝜙

2
)









0

= sup
𝑠∈R











𝐹

𝑖
(𝑠, 𝜙

1
) − 𝐹

𝑖
(𝑠, 𝜙

2
)











≤

𝑚

∑

𝑗=1

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗











𝜓

1

𝑗
− 𝜓

2

𝑗









0
+

𝑛

∑

𝑗=1

𝑤

𝑢

2𝑖𝑗
𝐿

ℎ

𝑗











�̇�

1

𝑗
− �̇�

2

𝑗









0
,











𝐺

𝑗
(𝑡, 𝜙

1
) − 𝐺

𝑗
(𝑡, 𝜙

2
)









0

= sup
𝑠∈R











𝐺

𝑗
(𝑠, 𝜙

1
) − 𝐺

𝑗
(𝑠, 𝜙

2
)











≤

𝑛

∑

𝑖=1

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖











𝜑

1

𝑖
− 𝜑

2

𝑖









0
+

𝑚

∑

𝑖=1

V𝑢
2𝑗𝑖
𝐿

𝑘

𝑖











̇
𝜓

1

𝑖
−

̇
𝜓

2

𝑖









0
.

(20)

Then











Φ

𝑖
(𝜙

1
) − Φ

𝑖
(𝜙

2
)









0

= sup
𝑡∈R











Φ

𝑖
(𝜙

1
(𝑡)) − Φ𝑖

(𝜙

1
(𝑡))











≤ sup
𝑡∈R

















∫

𝑡

−∞

𝑒

−∫
𝑡

𝑠
𝑎
𝑖
(𝑢)d𝑢

× [𝐹

𝑖
(𝑠, 𝜙

1
(𝑠)) − 𝐹𝑖

(𝑠, 𝜙

2
(𝑠))] d𝑠

















≤

𝑚

∑

𝑗=1

(𝑎

𝑙

𝑖
)

−1

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗











𝜓

1

𝑗
− 𝜓

2

𝑗









0

+

𝑛

∑

𝑗=1

(𝑎

𝑙

𝑖
)

−1

𝑤

𝑢

2𝑖𝑗
𝐿

ℎ

𝑗











�̇�

1

𝑗
− �̇�

2

𝑗









0
,











Ψ

𝑗
(𝜙

1
) − Ψ

𝑗
(𝜙

2
)









0

= sup
𝑡∈R











Ψ

𝑗
(𝜙

1
(𝑡)) − Ψ𝑗

(𝜙

2
(𝑡))











≤ sup
𝑡∈R

















∫

𝑡

−∞

𝑒

−∫
𝑡

𝑠
𝑏
𝑗
(𝑢)d𝑢

× [𝐺

𝑗
(𝑠, 𝜙

1
(𝑠)) − 𝐺𝑗

(𝑠, 𝜙

2
(𝑠))] d𝑠

















≤

𝑛

∑

𝑖=1

(𝑏

𝑙

𝑗
)

−1

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖











𝜑

1

𝑖
− 𝜑

2

𝑖









0

+

𝑚

∑

𝑖=1

(𝑏

𝑙

𝑗
)

−1

V𝑢
2𝑗𝑖
𝐿

𝑘

𝑖











̇
𝜓

1

𝑖
−

̇
𝜓

2

𝑖









0
,

(21)

where 𝑖 = 1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑚.

Further, we also obtain that










̇

Φ

𝑖
(𝜙

1
) −

̇

Φ

𝑖
(𝜙

2
)









0

= sup
𝑡∈R











̇

Φ

𝑖
(𝜙

1
(𝑡)) −

̇

Φ

𝑖
(𝜙

2
(𝑡))











= sup
𝑡∈R











−𝑎

𝑖 (
𝑡) [Φ𝑖

(𝜙

1
) − Φ

𝑖
(𝜙

2
)]

+ [𝐹

𝑖
(𝑡, 𝜙

1
) − 𝐹

𝑖
(𝑡, 𝜙

2
)]











≤ [1 +

𝑎

𝑢

𝑖

𝑎

𝑙

𝑖

]

[

[

𝑚

∑

𝑗=1

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗











𝜓

1

𝑗
− 𝜓

2

𝑗









0

+

𝑛

∑

𝑗=1

𝑤

𝑢

2𝑖𝑗
𝐿

ℎ

𝑗











�̇�

1

𝑗
− �̇�

2

𝑗









0

]

]

≤ [1 +

𝑎

𝑢

𝑖

𝑎

𝑙

𝑖

]

[

[

𝑚

∑

𝑗=1

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗
+

𝑛

∑

𝑗=1

𝑤

𝑢

2𝑖𝑗
𝐿

ℎ

𝑗
]

]











𝜙

1
− 𝜙

2








,











̇

Ψ

𝑗
(𝜙

1
) −

̇

Ψ

𝑗
(𝜙

2
)









0

= sup
𝑡∈R











̇

Ψ

𝑗
(𝜙

1
(𝑡)) −

̇

Ψ

𝑗
(𝜙

2
(𝑡))











= sup
𝑡∈R











−𝑏

𝑗 (
𝑡) [Ψ𝑗

(𝜙

1
) − Ψ

𝑗
(𝜙

2
)]

+ [𝐺

𝑗
(𝑡, 𝜙

1
) − 𝐺

𝑗
(𝑡, 𝜙

2
)]











≤ [1 +

𝑏

𝑢

𝑗

𝑏

𝑙

𝑗

][

𝑛

∑

𝑖=1

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖











𝜑

1

𝑖
− 𝜑

2

𝑖









0

+

𝑚

∑

𝑖=1

V𝑢
2𝑗𝑖
𝐿

𝑘

𝑖











̇
𝜓

1

𝑖
−

̇
𝜓

2

𝑖









0
]

≤ [1 +

𝑏

𝑢

𝑗

𝑏

𝑙

𝑗

][

𝑛

∑

𝑖=1

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖
+

𝑚

∑

𝑖=1

V𝑢
2𝑗𝑖
𝐿

𝑘

𝑖
]











𝜙

1
− 𝜙

2








,

(22)
where 𝑖 = 1, . . . , 𝑛 and 𝑗 = 1, . . . , 𝑚.

Hence,










𝑇(𝜙

1
) − 𝑇(𝜙

2
)









0

= max
1≤𝑖≤𝑛,1≤𝑗≤𝑚

{











Φ

𝑖
(𝜙

1
) − Φ

𝑖
(𝜙

2
)









0
,











Ψ

𝑗
(𝜙

1
) − Ψ

𝑗
(𝜙

2
)









0
}

≤ max
1≤𝑖≤𝑛,1≤𝑗≤𝑚

{

{

{

𝑚

∑

𝑗=1

(𝑎

𝑙

𝑖
)

−1

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗
+

𝑛

∑

𝑗=1

(𝑎

𝑙

𝑖
)

−1

𝑤

𝑢

2𝑖𝑗
𝐿

ℎ

𝑗
,

𝑛

∑

𝑖=1

(𝑏

𝑙

𝑗
)

−1

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖
+

𝑚

∑

𝑖=1

(𝑏

𝑙

𝑗
)

−1

V𝑢
2𝑗𝑖
𝐿

𝑘

𝑖

}

}

}

×











𝜙

1
− 𝜙

2








= 𝜃

1











𝜙

1
− 𝜙

2








,
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̇

𝑇(𝜙

1
) −

̇

𝑇(𝜙

2
)









0

= max
1≤𝑖≤𝑛,1≤𝑗≤𝑚

{











̇

Φ

𝑖
(𝜙

1
) −

̇

Φ

𝑖
(𝜙

2
)









0
,











̇

Ψ

𝑗
(𝜙

1
) −

̇

Ψ

𝑗
(𝜙

2
)









0
}

≤ max
1≤𝑖≤𝑛,1≤𝑗≤𝑚

{

{

{

[1 +

𝑎

𝑢

𝑖

𝑎

𝑙

𝑖

]

𝑚

∑

𝑗=1

[

[

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗
+

𝑛

∑

𝑗=1

𝑤

𝑢

2𝑖𝑗
𝐿

ℎ

𝑗
]

]

,

[1 +

𝑏

𝑢

𝑗

𝑏

𝑙

𝑗

][

𝑛

∑

𝑖=1

V𝑢
1𝑖j𝐿

𝑔

𝑖
+

𝑚

∑

𝑖=1

V𝑢
2𝑗𝑖
𝐿

𝑘

𝑖
]

}

}

}

×











𝜙

1
− 𝜙

2








= 𝜃

2











𝜙

1
− 𝜙

2








.

(23)

Together with the above results, one has










𝑇 (𝜙

1
) − 𝑇 (𝜙

2
)











= max {




𝑇 (𝜙

1
) − 𝑇 (𝜙

2
)









0
,











̇

𝑇 (𝜙

1
) −

̇

𝑇 (𝜙

2
)









0
}

≤ max {𝜃
1
, 𝜃

2
}











𝜙

1
− 𝜙

2








≤ 𝜃











𝜙

1
− 𝜙

2








,

(24)

where 𝜃 ∈ (0, 1). By Lemma 6, there exists a unique fixed
point𝜙

0
∈ X satisfying𝑇(𝜙

0
) = 𝜙

0
, which implies that system

(1) has unique almost periodic solution. This completes the
proof.

Remark 8. Condition (H
3
) in Theorem 7 indicates that the

neutral terms are harmful for the existence and uniqueness
of almost periodic solution of system (1).

4. Global Exponential Stability

Theorem 9. Assume that (H
1
)–(H

3
) hold and suppose further

the following.

(H
4
) 𝛼

𝑗
, 𝛽

𝑖
, 𝜇

𝑖
, and ]

𝑗
are differential functions, with �̇�+

𝑗
:=

sup
𝑠∈R�̇�𝑗(𝑠) < 1, ̇

𝛽

+

𝑖
:= sup

𝑠∈R
̇

𝛽

𝑖
(𝑠) < 1, �̇�+

𝑖
:=

sup
𝑠∈R�̇�𝑖(𝑠) < 1, ]̇+

𝑗
:= sup

𝑠∈R]̇𝑗(𝑠) < 1, where 𝑖 =
1, 2, . . . , 𝑛 and 𝑗 = 1, 2, . . . , 𝑚.

(H
5
) There exists a positive constant 𝜆 ≤ 1 such that

− (1 − 𝜆) 𝑎

𝑙

𝑖
+ (1 + 𝜆)

𝑚

∑

𝑗=1

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖

1 −

̇

𝛽

+

𝑖

< 0, 𝑖 = 1, 2, . . . , 𝑛,

− (1 − 𝜆) 𝑏

𝑙

𝑗
+ (1 + 𝜆)

𝑛

∑

𝑖=1

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗

1 − �̇�

+

𝑗

< 0, 𝑗 = 1, 2, . . . , 𝑚,

𝑛

∑

𝑖=1

(1 + 𝜆)𝑤

𝑢

2𝑖𝑗
𝐿

ℎ

𝑗
− 𝜆 (1 − �̇�

+

𝑗
) < 0, 𝑗 = 1, 2, . . . , 𝑚,

𝑚

∑

𝑗=1

(1 + 𝜆) V𝑢
2𝑗𝑖
𝐿

𝑘

𝑖
− 𝜆 (1 − ]̇+

𝑖
) < 0, 𝑖 = 1, 2, . . . , 𝑛.

(25)

Then system (1) has a unique almost periodic solution, which is
globally exponentially stable.

Proof. It follows fromTheorem 7 that system (1) has a unique
almost periodic solution 𝜙 = (𝜑

1
, . . . , 𝜑

𝑛
, 𝜓

1
, . . . , 𝜓

𝑚
)

𝑇 with
initial value 𝜙∗ = (𝜑

∗

1
, . . . , 𝜑

∗

𝑛
, 𝜓

∗

1
, . . . , 𝜓

∗

𝑚
)

𝑇. We next show
that the almost periodic solution 𝜙 is globally exponentially
stable.

Make a transformation for system (1): 𝑥
𝑖
= 𝑢

𝑖
− 𝜑

𝑖
,

𝑦

𝑗
= V

𝑗
− 𝜓

𝑗
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, where

𝑧 = (𝑢

1
, . . . , 𝑢

𝑛
, V

1
, . . . , V

𝑚
)

𝑇 is arbitrary solution of system
(1) with initial value 𝑧∗ = (𝑢∗

1
, . . . , 𝑢

∗

𝑛
, V∗

1
, . . . , V∗

𝑚
)

𝑇.
By (H

4
), there exists a small enough positive constant 𝜔

such that

𝜔 − (1 − 𝜆) 𝑎

𝑙

𝑖
+ (1 + 𝜆)

𝑚

∑

𝑗=1

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖
𝑒

𝜔𝛽
𝑢

𝑖

1 −

̇

𝛽

+

𝑖

< 0, 𝑖 = 1, 2, . . . , 𝑛,

𝜔 − (1 − 𝜆) 𝑏

𝑙

𝑗
+ (1 + 𝜆)

𝑛

∑

𝑖=1

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗
𝑒

𝜔𝛼
𝑢

𝑗

1 − �̇�

+

𝑗

< 0, 𝑗 = 1, 2, . . . , 𝑚,

𝑛

∑

𝑖=1

(1 + 𝜆)𝑤

𝑢

2𝑖𝑗
𝐿

ℎ

𝑗
− 𝜆𝑒

−𝜔𝜇
𝑢

𝑗
(1 − �̇�

+

𝑗
) < 0, 𝑗 = 1, 2, . . . , 𝑚,

𝑚

∑

𝑗=1

(1 + 𝜆) V𝑢
2𝑗𝑖
𝐿

𝑘

𝑖
− 𝜆𝑒

−𝜔]𝑢
𝑖
(1 − ]̇+

𝑖
) < 0, 𝑖 = 1, 2, . . . , 𝑛.

(26)

Define

𝑉

1 (
𝑡) =

𝑛

∑

𝑖=1

𝑒

𝜔𝑡 






𝑥

𝑖 (
𝑡)









+

𝑚

∑

𝑗=1

𝑒

𝜔𝑡 








𝑦

𝑗 (
𝑡)











. (27)

In view of system (1), we have

𝐷

+
𝑉

1 (
𝑡)

≤ 𝜔

𝑛

∑

𝑖=1

𝑒

𝜔𝑡 






𝑥

𝑖 (
𝑡)









+ 𝜔

𝑚

∑

𝑗=1

𝑒

𝜔𝑡 








𝑦

𝑗 (
𝑡)











+

𝑛

∑

𝑖=1

𝑒

𝜔𝑡
[

[

−𝑎

𝑙

𝑖









𝑥

𝑖 (
𝑡)









+

𝑚

∑

𝑗=1

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗











𝑦

𝑗
(𝑡 − 𝛼

𝑗 (
𝑡))











+

𝑛

∑

𝑗=1

𝑤

𝑢

2𝑖𝑗
𝐿

ℎ

𝑗











�̇�

𝑗
(𝑡 − 𝜇

𝑗 (
𝑡))











]

]

+

𝑚

∑

𝑗=1

𝑒

𝜔𝑡
[−𝑏

𝑙

𝑗











𝑦

𝑗 (
𝑡)











+

𝑛

∑

𝑖=1

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖









𝑥

𝑖
(𝑡 − 𝛽

𝑖 (
𝑡))









+

𝑚

∑

𝑖=1

V𝑢
2𝑗𝑖
𝐿

𝑘

𝑖









̇𝑦

𝑖
(𝑡 − ]

𝑖 (
𝑡))









] .

(28)
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Figure 1: Almost periodicity of state variables 𝑥(𝑡) and 𝑦(𝑡).
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Let

𝑉

2 (
𝑡) = 𝜆

𝑛

∑

𝑖=1

∫

𝑡

𝑡−𝜇
𝑖
(𝑡)

𝑒

𝜔𝑠 






�̇�

𝑖 (
𝑠)









d𝑠,

𝑉

3 (
𝑡) = 𝜆

𝑚

∑

𝑗=1

∫

𝑡

𝑡−]
𝑗
(𝑡)

𝑒

𝜔𝑠 








̇𝑦

𝑗 (
𝑠)











d𝑠,

𝑉

4 (
𝑡) =

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

(1 + 𝜆) ∫

𝑡

𝑡−𝛽
𝑖
(𝑡)

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖

1 −

̇

𝛽

+

𝑖

𝑒

𝜔(𝑠+𝛽
𝑢

𝑖
) 






𝑥

𝑖 (
𝑠)









d𝑠,

𝑉

5 (
𝑡) =

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

(1 + 𝜆) ∫

𝑡

𝑡−𝛼
𝑗
(𝑡)

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗

1 − �̇�

+

𝑗

𝑒

𝜔(𝑠+𝛼
𝑢

𝑗
) 








𝑦

𝑗 (
𝑠)











d𝑠.

(29)

So

𝐷

+
𝑉

2 (
𝑡)

≤ 𝜆

𝑛

∑

𝑖=1

𝑒

𝜔𝑡 






�̇�

𝑖 (
𝑡)









− 𝜆

𝑛

∑

𝑖=1

𝑒

𝜔(𝑡−𝜇
𝑖
(𝑡))

(1 − �̇�

𝑖 (
𝑡))









�̇�

𝑖
(𝑡 − 𝜇

𝑖 (
𝑡))









≤ 𝜆

𝑛

∑

𝑖=1

𝑒

𝜔𝑡
[

[

𝑎

𝑢

𝑖









𝑥

𝑖 (
𝑡)









+

𝑚

∑

𝑗=1

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗











𝑦

𝑗
(𝑡 − 𝛼

𝑗 (
𝑡))











]

]

− 𝜆

𝑛

∑

𝑗=1

𝑒

𝜔𝑡
[𝑒

−𝜔𝜇
𝑢

𝑗
(1 − �̇�

+

𝑗
) −

𝑛

∑

𝑖=1

𝑤

𝑢

2𝑖𝑗
𝐿

ℎ

𝑗
]











�̇�

𝑗
(𝑡 − 𝜇

𝑗 (
𝑡))











,

(30)

𝐷

+
𝑉

4 (
𝑡)

≤

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

(1 + 𝜆)

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖

1 −

̇

𝛽

+

𝑖

𝑒

𝜔(𝑡+𝛽
𝑢

𝑖
) 






𝑥

𝑖 (
𝑡)









−

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

(1 + 𝜆)

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖
(1 −

̇

𝛽

𝑖 (
𝑡))

1 −

̇

𝛽

+

𝑖

𝑒

𝜔(𝑡−𝛽
𝑖
(𝑡)+𝛽
𝑢

𝑖
)

×









𝑥

𝑖
(𝑡 − 𝛽

𝑖 (
𝑡))









≤

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

(1 + 𝜆)

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖

1 −

̇

𝛽

+

𝑖

𝑒

𝜔(𝑡+𝛽
𝑢

𝑖
) 






𝑥

𝑖 (
𝑡)









−

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

(1 + 𝜆) V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖
𝑒

𝜔𝑡 






𝑥

𝑖
(𝑡 − 𝛽

𝑖 (
𝑡))









.

(31)

Similar to the arguments as that in (30) and (31), we obtain

𝐷

+
𝑉

3 (
𝑡)

≤ 𝜆

𝑚

∑

𝑗=1

𝑒

𝜔𝑡
[𝑏

𝑢

𝑗











𝑦

𝑗 (
𝑡)











+

𝑛

∑

𝑖=1

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖









𝑥

𝑖
(𝑡 − 𝛽

𝑖 (
𝑡))









]

− 𝜆

𝑚

∑

𝑖=1

𝑒

𝜔𝑡
[

[

𝑒

−𝜔]𝑢
𝑖
(1 − ]̇+

𝑖
) −

𝑚

∑

𝑗=1

V𝑢
2𝑗𝑖
𝐿

𝑘

𝑖
]

]









̇𝑦

𝑖
(𝑡 − ]

𝑖 (
𝑡))









,

(32)

𝐷

+
𝑉

5 (
𝑡)

≤

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

(1 + 𝜆)

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗

1 − �̇�

+

𝑗

𝑒

𝜔(𝑡+𝛼
𝑢

𝑗
) 








𝑦

𝑗 (
𝑡)











−

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

(1 + 𝜆)𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗
𝑒

𝜔𝑡 








𝑦

𝑗
(𝑡 − 𝛼

𝑗 (
𝑡))











.

(33)

Define 𝑉(𝑡) = ∑5

𝑞=1
𝑉

𝑞
. From (28)–(33), it follows that

𝐷

+
𝑉 (𝑡)

≤ 𝑒

𝜔𝑡

𝑛

∑

𝑖=1

[

[

𝜔 − (1 − 𝜆) 𝑎

𝑙

𝑖
+ (1 + 𝜆)

𝑚

∑

𝑗=1

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖
𝑒

𝜔𝛽
𝑢

𝑖

1 − 𝛽

+

𝑖

]

]









𝑥

𝑖 (
𝑡)









+ 𝑒

𝜔𝑡

𝑚

∑

𝑗=1

[

[

𝜔 − (1 − 𝜆) 𝑏

𝑙

𝑗
+ (1 + 𝜆)

𝑛

∑

𝑖=1

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗
𝑒

𝜔𝛼
𝑢

𝑗

1 − �̇�

+

𝑗

]

]
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Figure 3: Stability of state variables 𝑦(𝑡).
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Figure 4: Phase response of state variables 𝑥(𝑡) and 𝑦(𝑡).

×











𝑦

𝑗 (
𝑡)











+ 𝑒

𝜔𝑡

𝑛

∑

𝑗=1

[

𝑛

∑

𝑖=1

(1 + 𝜆)𝑤

𝑢

2𝑖𝑗
𝐿

ℎ

𝑗
− 𝜆𝑒

−𝜔𝜇
𝑢

𝑗
(1 − �̇�

+

𝑗
)]

×











�̇�

𝑗
(𝑡 − 𝜇

𝑗 (
𝑡))











+ 𝑒

𝜔𝑡

𝑚

∑

𝑖=1

[

[

𝑚

∑

𝑗=1

(1 + 𝜆) V𝑢
2𝑗𝑖
𝐿

𝑘

𝑖
− 𝜆𝑒

−𝜔]𝑢
𝑖
(1 − ]̇+

𝑖
)

]

]

×









̇𝑦

𝑖
(𝑡 − ]

𝑖 (
𝑡))









≤ 0,

(34)

which implies that 𝑉(𝑡) ≤ 𝑉(0), for all 𝑡 > 0. Obviously,

𝑛

∑

𝑖=1

𝑒

𝜔𝑡 






𝑥

𝑖 (
𝑡)









+

𝑚

∑

𝑗=1

𝑒

𝜔𝑡 








𝑦

𝑗 (
𝑡)











≤ 𝑉 (𝑡) . (35)

On the other hand, we have

𝑉 (0)

=

𝑛

∑

𝑖=1









𝑥

𝑖 (
0)









+

𝑚

∑

𝑗=1











𝑦

𝑗 (
0)











+ 𝜆

𝑛

∑

𝑖=1

∫

0

−𝜇
𝑖
(0)









�̇�

𝑖 (
𝑠)









d𝑠

+ 𝜆

𝑚

∑

𝑗=1

∫

0

−]
𝑗
(0)











̇𝑦
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𝑠)











d𝑠
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Figure 5: Phase response of state variables 𝑥(𝑡) and 𝑥(𝑡).
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+

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

(1 + 𝜆) ∫

0

−𝛽
𝑖
(0)

V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖

1 −

̇

𝛽

+

𝑖

𝑒

𝜔
2
(𝑠+𝛽
𝑢

𝑖
) 






𝑥

𝑖 (
𝑠)









d𝑠

+

𝑛

∑

𝑖=1

𝑚

∑

𝑗=1

(1 + 𝜆) ∫

0

−𝛼
𝑗
(0)

𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗

1 − �̇�

+

𝑗

𝑒

𝜔(𝑠+𝛼
𝑢

𝑗
) 








𝑦

𝑗 (
𝑠)











d𝑠

≤

{

{

{

𝑚 + 𝑛 +

𝑛

∑

𝑖=1

𝜇

𝑢

𝑖
+

𝑚

∑

𝑗=1

]𝑢
𝑗

+

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

[

[

2𝛽

𝑢

𝑖
V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖
𝑒

𝜔𝛽
𝑢

𝑖

1 −

̇

𝛽

+

𝑖

+

2𝛼

𝑢

𝑗
𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗
𝑒

𝜔𝛼
𝑢

𝑗

1 − �̇�

+

𝑗

]

]

}

}

}

×









𝑧

∗
− 𝜙

∗






,

(36)

which implies from (35) that

𝑛

∑

𝑖=1









𝑥

𝑖 (
𝑡)









+

𝑚

∑

𝑗=1











𝑦

𝑗 (
𝑡)











≤ 𝑀









𝑧

∗
− 𝜙

∗






𝑒

−𝜔𝑡
, ∀𝑡 > 0, (37)

where

𝑀 := 𝑚 + 𝑛 +

𝑛

∑

𝑖=1

𝜇

𝑢

𝑖
+

𝑚

∑

𝑗=1

]𝑢
𝑗

+

𝑚

∑

𝑗=1

𝑛

∑

𝑖=1

[

[

2𝛽

𝑢

𝑖
V𝑢
1𝑖𝑗
𝐿

𝑔

𝑖
𝑒

𝜔𝛽
u
𝑖

1 −

̇

𝛽

+

𝑖

+

2𝛼

𝑢

𝑗
𝑤

𝑢

1𝑗𝑖
𝐿

𝑓

𝑗
𝑒

𝜔𝛼
𝑢

𝑗

1 − �̇�

+

𝑗

]

]

.

(38)
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Figure 7: Phase response of state variables𝑥(𝑡),𝑦(𝑡),𝑥(𝑡), and𝑦(𝑡).

Thus, the almost periodic solution of system (1) is globally
exponentially stable. This completes the proof.

Remark 10. Condition (H
5
) in Theorem 9 indicates that the

neutral terms and time delays are harmful for the global
exponential stability of almost periodic solution of system (1).

5. An Example

Example 1. Consider the following neutral BAM neural
networks with time-varying delays:

�̇� (𝑡) = − 𝑥 (𝑡) + sin (√2𝑡) 𝑓 (𝑦 (𝑡 − 𝛼 (𝑡)))

+ cos2 (√3𝑡) ℎ (�̇� (𝑡 − 1)) + sin (√2𝑡) ,

̇𝑦 (𝑡) = − 𝑦 (𝑡) +











cos (√3𝑡)




𝑔 (𝑥 (𝑡 − 𝛽 (𝑡)))

+ sin2 (√5𝑡) 𝑘 ( ̇𝑦 (𝑡 − 1)) + cos (√2𝑡) ,

(39)

where 𝑓(𝑠) = 𝑔(𝑠) = 0.1𝑠,

(

ℎ (𝑠)

𝑘 (𝑠)

) = (

0.1 sin (𝑠)
0.1 cos (𝑠)) ,

(

𝛼 (𝑠)

𝛽 (𝑠)

) = (

1 + 0.01sin2 (√2𝑠)
1 + 0.01cos2 (√3𝑠)

) ,

∀𝑠 ∈ R.

(40)

Then system (39) has a unique almost periodic solution,
which is globally exponentially stable.

Proof. Corresponding to system (1), 𝑎𝑙 = 𝑏

𝑙
= 1, 𝐿𝑓 = 𝐿

𝑔
=

𝐿

ℎ
= 𝐿

𝑘
= 0.1, 𝑤𝑢

1
= 𝑤

𝑢

2
= V𝑢

1
= V𝑢

2
= 1, �̇�+ ≤ 0.02, ̇

𝛽

+
≤

0.02, and �̇�+ = ]̇+ = 0. Taking 𝜆 = 0.5, it is easy to verify
that (H

1
)–(H

5
) hold and the results follow fromTheorems 7–

9 (see Figures 1, 2, 3, 4, 5, 6, and 7). This completes the proof.

For numerical simulation, Figures 1–3 depict the time
responses of state variables of 𝑥(𝑡) and 𝑦(𝑡) with step ℎ =

0.01 of system (39), respectively. Figures 4–7 depict the
phase responses of state variables 𝑥(𝑡), 𝑦(𝑡), 𝑥(𝑡), and 𝑦(𝑡),
respectively. It confirms that the proposed conditions in our
results are effective for system (39).

6. Discussion

In this paper, the neutral BAM neural network is considered.
By employing fixed point theory and constructing suitable
Lyapunov functional some new sufficient conditions are
obtained for the existence and global exponential stability
of almost periodic solution of the system. Conditions (H

3
)

and (H
5
) in Theorems 7 and 9 indicate that the neutral

terms and time delays are harm for the existence, uniqueness,
and global exponential stability of almost periodic solution
of the neutral-type system. The method used in this paper
provides a possible method to study the existence and global
exponential stability of almost periodic solution of other
neutral neural networks (with impulses [20–23]).
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