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We study the Einstein multiply warped products with a semisymmetric metric connection and the multiply warped products with
a semisymmetric metric connection with constant scalar curvature, and we apply our results to generalized Robertson-Walker
space-timeswith a semisymmetricmetric connection and generalizedKasner space-timeswith a semisymmetricmetric connection
and find some new examples of Einstein manifolds with a semisymmetric metric connection and manifolds with constant scalar
curvature with a semisymmetric metric connection.

1. Introduction

The (singly) warped product 𝐵×𝑏𝐹 of two pseudo-
Riemannian manifolds (𝐵, 𝑔𝐵) and (𝐹, 𝑔𝐹) with a smooth
function 𝑏 : 𝐵 → (0,∞) is the product manifold 𝐵 × 𝐹 with
the metric tensor 𝑔 = 𝑔𝐵 ⊕ 𝑏

2
𝑔𝐹. Here, (𝐵, 𝑔𝐵) is called the

base manifold and (𝐹, 𝑔𝐹) is called the fiber manifold and
𝑏 is called the warping function. Generalized Robertson-
Walker space-times and standard static space-times are
two well-known warped product spaces. The concept of
warped products was first introduced by Bishop and O’Neill
(see [1]) to construct examples of Riemannian manifolds
with negative curvature. In Riemannian geometry, warped
product manifolds and their generic forms have been used to
construct new examples with interesting curvature properties
since then. In [2], Dobarro and Dozo had studied from the
viewpoint of partial differential equations and variational
methods the problem of showing when a Riemannian metric
of constant scalar curvature can be produced on product
manifolds by a warped product construction. In [3], Ehrlich
et al. got explicit solutions to warping function to have a
constant scalar curvature for generalized Robertson-Walker
space-times. In [4], explicit solutions were also obtained for
the warping function to make the space-time as Einstein
when the fiber is also Einstein.

One can generalize singly warped products to multiply
warped products. Briefly, a multiply warped product (𝑀, 𝑔)

is a product manifold of form 𝑀 = 𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚

with the metric 𝑔 = 𝑔𝐵 ⊕ 𝑏
2

1
𝑔𝐹
1

⊕ 𝑏
2

2
𝑔𝐹
2

⋅ ⋅ ⋅ ⊕ 𝑏
2

𝑚
𝑔𝐹
𝑚

, where
for each 𝑖 ∈ {1, . . . , 𝑚}, 𝑏𝑖 : 𝐵 → (0,∞) is smooth
and (𝐹𝑖, 𝑔𝐹

𝑖

) is a pseudo-Riemannian manifold. In particular,
when 𝐵 = (𝑐, 𝑑) with the negative definite metric 𝑔𝐵 = −𝑑𝑡

2

and (𝐹𝑖, 𝑔𝐹
𝑖

) is a Riemannianmanifold, we call𝑀 themultiply
generalized Robertson-Walker space-time. In [5], Dobarro
and Ünal studied Ricci-flat and Einstein-Lorentzian multiply
warped products and considered the case of having constant
scalar curvature for multiply warped products and applied
their results to generalized Kasner space-times.

Singly warped products have a natural generalization.
A twisted product (𝑀, 𝑔) is a product manifold of form
𝑀 = 𝐵×𝑏𝐹, with a smooth function 𝑏 : 𝐵 × 𝐹 →

(0,∞), and the metric tensor 𝑔 = 𝑔𝐵 ⊕ 𝑏
2
𝑔𝐹. In [6],

they showed that mixed Ricci-flat twisted products could
be expressed as warped products. As a consequence, any
Einstein twisted products are warped products. In this paper,
we define the multiply twisted products as generalizations of
multiply warped products and twisted products. A multiply
twisted product (𝑀, 𝑔) is a product manifold of form 𝑀 =

𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 with the metric 𝑔 = 𝑔𝐵 ⊕ 𝑏
2

1
𝑔𝐹
1

⊕

𝑏
2

2
𝑔𝐹
2

⋅ ⋅ ⋅ ⊕ 𝑏
2

𝑚
𝑔𝐹
𝑚

, where for each 𝑖 ∈ {1, . . . , 𝑚}, 𝑏𝑖 : 𝐵 × 𝐹𝑖 →

(0,∞) is smooth.
The definition of a semisymmetric metric connection

was given by Hayden in [7]. In 1970, Yano [8] considered
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a semisymmetric metric connection and studied some of its
properties. He proved that a Riemannian manifold admitting
the semisymmetric metric connection has vanishing curva-
ture tensor if and only if it is conformally flat. Motivated
by the Yano result, in [9], Sular and Özgür studied warped
product manifolds with a semisymmetric metric connection;
they computed curvature of semisymmetric metric connec-
tion and considered Einstein warped product manifolds with
a semisymmetricmetric connection. In this paper, we consid-
ered multiply twisted products with a semisymmetric metric
connection and computed the curvature of a semisymmetric
metric connection.We showed that mixed Ricci-flat multiply
twisted products with a semisymmetric metric connection
can be expressed as multiply warped products which gener-
alizes the result in [6]. We also studied the Einstein multiply
warped products with a semisymmetric metric connection
and multiply warped products with a semisymmetric metric
connection with constant scalar curvature; we applied our
results to generalized Robertson-Walker space-times with a
semisymmetric metric connection and generalized Kasner
space-times with a semisymmetric metric connection and
we found some new examples of Einstein affine manifolds
and affine manifolds with constant scalar curvature. We also
classified generalized EinsteinRobertson-Walker space-times
with a semisymmetric metric connection and generalized
Einstein Kasner space-times with a semisymmetric metric
connection.

Semisymmetric metric connections have some physical
applications. In [10, 11], they considered orthogonal con-
nections with arbitrary torsion on compact Riemannian
manifolds. For the induced Dirac operators, twisted Dirac
operators, and Dirac operators of Chamseddine-Connes
type, they computed the spectral action. In addition to the
Einstein-Hilbert action and the bosonic part of the standard
model Lagrangian, they found the Holst term from loop
quantum gravity, a coupling of the Holst term to the scalar
curvature, and a prediction for the value of the Barbero-
Immirzi parameter. For connections whose torsion is not
zero, they showed that theHolst action can be recovered from
the heat asymptotics for the natural Dirac operator acting
on spinor fields. For the physical consequences of the use of
torsion connections in Lorentzian geometry, we refer to the
classical review [12] and the more recent overview [13] and
references therein.

This paper is arranged as follows. In Section 2, we
compute curvature of multiply twisted products with a
semisymmetric metric connection. In Section 3, we study
the special multiply warped products with a semisymmetric
metric connection. In Section 4, we study the generalized
Robertson-Walker space-times with a semisymmetric metric
connection. In Section 5, we consider the generalized Kasner
space-times with a semisymmetric metric connection.

2. Preliminaries

Let 𝑀 be a Riemannian manifold with Riemannian metric
𝑔. A linear connection ∇ on a Riemannian manifold 𝑀 is

called a semisymmetric connection if the torsion tensor 𝑇 of
the connection ∇

𝑇 (𝑋, 𝑌) = ∇𝑋𝑌 − ∇𝑌𝑋 − [𝑋, 𝑌] (1)

satisfies

𝑇 (𝑋, 𝑌) = 𝜋 (𝑌)𝑋 − 𝜋 (𝑋)𝑌, (2)

where 𝜋 is a one form associated with the vector field 𝑃 on
𝑀 defined by 𝜋(𝑋) = 𝑔(𝑋 ⋅ 𝑃). ∇ is called a semisymmetric
metric connection if it satisfies ∇𝑔 = 0. If ∇ is the Levi-Civita
connection of𝑀, the semisymmetric metric connection ∇ is
given by

∇𝑋𝑌 = ∇𝑋𝑌 + 𝜋 (𝑌)𝑋 − 𝑔 (𝑋, 𝑌) 𝑃, (3)

(see [8]). Let 𝑅 and 𝑅 be the curvature tensors of ∇ and ∇,
respectively. Then 𝑅 and 𝑅 are related by

𝑅 (𝑋, 𝑌)𝑍 = 𝑅 (𝑋, 𝑌)𝑍 + 𝑔 (𝑍, ∇𝑋𝑃)𝑌 − 𝑔 (𝑍, ∇𝑌𝑃)𝑋

+ 𝑔 (𝑋, 𝑍) ∇𝑌𝑃 − 𝑔 (𝑌, 𝑍) ∇𝑋𝑃

+ 𝜋 (𝑃) [𝑔 (𝑋, 𝑍) 𝑌 − 𝑔 (𝑌, 𝑍)𝑋]

+ [𝑔 (𝑌, 𝑍) 𝜋 (𝑋) − 𝑔 (𝑋, 𝑍) 𝜋 (𝑌)] 𝑃

+ 𝜋 (𝑍) [𝜋 (𝑌)𝑋 − 𝜋 (𝑋)𝑌] ,

(4)

for any vector fields 𝑋, 𝑌, 𝑍 on 𝑀 [8]. By (3)
and Proposition 2, we have a multiply twisted
product (𝑀, 𝑔) which is a product manifold of
form 𝑀 = 𝐵×𝑏

1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 with the metric
𝑔 = 𝑔𝐵 ⊕ 𝑏

2

1
𝑔𝐹
1

⊕ 𝑏
2

2
𝑔𝐹
2

⋅ ⋅ ⋅ ⊕ 𝑏
2

𝑚
𝑔𝐹
𝑚

, where for each
𝑖 ∈ {1, . . . , 𝑚}, 𝑏𝑖 : 𝐵 × 𝐹𝑖 → (0,∞) is smooth.

Here, (𝐵, 𝑔𝐵) is called the base manifold and (𝐹𝑖, 𝑔𝐹
𝑖

) is
called the fiber manifold and 𝑏𝑖 is called the twisted function.
Obviously, twisted products and multiply warped products
are the special cases of multiply twisted products.

Proposition 1 (compare with [5, Proposition 2.2]). Let 𝑀 =

𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply twisted product and let
𝑋,𝑌 ∈ Γ(𝑇𝐵) and 𝑈 ∈ Γ(𝑇𝐹𝑖), 𝑊 ∈ Γ(𝑇𝐹𝑗) and 𝑃 ∈ Γ(𝑇𝐵).
Then

(1) ∇𝑋𝑌 = ∇
𝐵

𝑋
𝑌;

(2) ∇𝑋𝑈 = (𝑋(𝑏𝑖)/𝑏𝑖)𝑈;
(3) ∇𝑈𝑋 = [𝑋(𝑏𝑖)/𝑏𝑖 + 𝜋(𝑋)]𝑈;
(4) ∇𝑈𝑊 = 0 if 𝑖 ̸= 𝑗;
(5) ∇𝑈𝑊 = 𝑈(ln 𝑏𝑖)𝑊 + 𝑊(ln 𝑏𝑖)𝑈 − (𝑔𝐹

𝑖

(𝑈,𝑊)/

𝑏𝑖)grad𝐹
𝑖

𝑏𝑖 − 𝑏𝑖𝑔𝐹
𝑖

(𝑈,𝑊)grad
𝐵
𝑏𝑖 + ∇

𝐹
𝑖

𝑈
𝑊 − 𝑔(𝑈,𝑊)𝑃

if 𝑖 = 𝑗,

where ∇𝐵 denotes the semisymmetric metric connection on 𝐵

and grad
𝐵
𝑏𝑖, grad𝐹

𝑖

𝑏𝑖 denote the gradient vector fields on 𝐵 and
𝐹𝑖, respectively.

Proof. Similar to Proposition 2.2 in [5] and Proposition 1 in
[6], we have
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(1) ∇𝑋𝑌 = ∇
𝐵

𝑋
𝑌;

(2) ∇𝑋𝑈 = ∇𝑈𝑋 = (𝑋(𝑏𝑖)/𝑏𝑖)𝑈;
(3) ∇𝑈𝑊 = 0 if 𝑖 ̸= 𝑗;
(4) ∇𝑈𝑊 = 𝑈(ln 𝑏𝑖)𝑊 + 𝑊(ln 𝑏𝑖)𝑈 − (𝑔𝐹

𝑖

(𝑈,𝑊)/

𝑏𝑖)grad𝐹
𝑖

𝑏𝑖 − 𝑏𝑖𝑔𝐹
𝑖

(𝑈,𝑊)grad
𝐵
𝑏𝑖 + ∇

𝐹
𝑖

𝑈
𝑊 if 𝑖 = 𝑗.

So by (3), we get Proposition 1.

Similar to the proof of Proposition 1, we get the following.

Proposition 2 (compare with [5, Proposition 2.2]). Let𝑀 =

𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply twisted product and let
𝑋,𝑌 ∈ Γ(𝑇𝐵) and 𝑈 ∈ Γ(𝑇𝐹𝑖), 𝑊 ∈ Γ(𝑇𝐹𝑗) and 𝑃 ∈ Γ(𝑇𝐹𝑘)

for a fixed 𝑘. Then

(1) ∇𝑋𝑌 = ∇
𝐵

𝑋
𝑌 − 𝑔(𝑋, 𝑌)𝑃;

(2) ∇𝑋𝑈 = (𝑋(𝑏𝑖)/𝑏𝑖)𝑈 + 𝑔(𝑃,𝑈)𝑋;
(3) ∇𝑈𝑋 = (𝑋(𝑏𝑖)/𝑏𝑖)𝑈;
(4) ∇𝑈𝑊 = 𝑔(𝑊, 𝑃)𝑈 if 𝑖 ̸= 𝑗;
(5) ∇𝑈𝑊 = 𝑈(ln 𝑏𝑖)𝑊 + 𝑊(ln 𝑏𝑖)𝑈 − (𝑔𝐹

𝑖

(𝑈,𝑊)/

𝑏𝑖)grad𝐹
𝑖

𝑏𝑖 − 𝑏𝑖𝑔𝐹
𝑖

(𝑈,𝑊)grad
𝐵
𝑏𝑖 + ∇

𝐹
𝑖

𝑈
𝑊 + 𝜋(𝑊)𝑈 −

𝑔(𝑈,𝑊)𝑃 if 𝑖 = 𝑗.

Remark 3. When for each 𝑖 ∈ {1, . . . , 𝑚}, 𝑏𝑖 : 𝐵 → (0,∞)

is smooth and 𝑃 = 0, we get Proposition 2.2 in [5] by
Propositions 1 and 2.

Define the curvature, Ricci curvature, and scalar curva-
ture as follows:

𝑅 (𝑋, 𝑌)𝑍 = ∇𝑋∇𝑌 − ∇𝑌∇𝑋 − ∇[𝑋,𝑌],

Ric (𝑋, 𝑌) = ∑

𝑘

𝜀𝑘 ⟨𝑅 (𝑋, 𝐸𝑘) 𝑌, 𝐸𝑘⟩ ,

𝑆 = ∑

𝑘

𝜀𝑘Ric (𝐸𝑘, 𝐸𝑘) ,

(5)

where 𝐸𝑘 is an orthonormal base of 𝑀 with ⟨𝐸𝑘, 𝐸𝑘⟩ = 𝜀𝑘.
The Hessian of 𝑓 is defined by𝐻𝑓

(𝑋, 𝑌) = 𝑋𝑌𝑓 − (∇𝑋𝑌)𝑓.

Proposition 4 (compare with [5, Proposition 2.4]). Let𝑀 =

𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply twisted product and let
𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝐵) and 𝑉 ∈ Γ(𝑇𝐹𝑖), 𝑊 ∈ Γ(𝑇𝐹𝑗), 𝑈 ∈ Γ(𝑇𝐹𝑘),
and 𝑃 ∈ Γ(𝑇𝐵). Then

(1) 𝑅(𝑋, 𝑌)𝑍 = 𝑅
𝐵

(𝑋, 𝑌)𝑍;
(2) 𝑅(𝑉,𝑋)𝑌 = −[(𝐻

𝑏
𝑖

𝐵
(𝑋, 𝑌)/𝑏𝑖) + (𝑃(𝑏𝑖)/𝑏𝑖)𝑔(𝑋, 𝑌) +

𝜋(𝑃)𝑔(𝑋, 𝑌) + 𝑔(𝑌, ∇𝑋𝑃) − 𝜋(𝑋)𝜋(𝑌)]𝑉;
(3) 𝑅(𝑋,𝑉)𝑊 = 𝑅(𝑉,𝑊)𝑋 = 𝑅(𝑉,𝑋)𝑊 = 0 if 𝑖 ̸= 𝑗;
(4) 𝑅(𝑋, 𝑌)𝑉 = 0;
(5) 𝑅(𝑉,𝑊)𝑋 = 𝑉𝑋(ln 𝑏𝑖)𝑊 −𝑊𝑋(ln 𝑏𝑖)𝑉 if 𝑖 = 𝑗;
(6) 𝑅(𝑉,𝑊)𝑈 = 0 if 𝑖 = 𝑗 ̸= 𝑘 or 𝑖 ̸= 𝑗 ̸= 𝑘;
(7) 𝑅(𝑈,𝑉)𝑊=−𝑔(𝑉,𝑊)(𝑔𝐵(gradBbi, gradBbk)/bibk)U−

g(V,W)((P(bi)/bi)+(P(bk)/bk))U−𝜋(P)g(V,W)U, if
𝑖 = 𝑗 ̸= 𝑘;

(8) 𝑅(𝑋,𝑉)𝑊 = [𝑊𝑋(ln 𝑏𝑖)]𝑉−𝑔(𝑊,𝑉) ⋅ [(∇
𝐵

𝑋
(grad

𝐵
𝑏𝑖)/

𝑏𝑖)+(grad𝐹
𝑖

(𝑋 ln 𝑏𝑖)/𝑏
2

𝑖
)+(𝑃(𝑏𝑖)/𝑏𝑖)𝑋+∇𝑋𝑃+𝜋(𝑃)𝑋−

𝜋(𝑋)𝑃] if 𝑖 = 𝑗;
(9) 𝑅(𝑈,𝑉)𝑊 = 𝑔(𝑈,𝑊)grad

𝐵
(𝑉(ln 𝑏𝑖)) − 𝑔(𝑉,

𝑊)grad
𝐵
(𝑈(ln 𝑏𝑖)) + 𝑅

𝐹
𝑖(𝑈, 𝑉)𝑊 − ((|grad

𝐵
𝑏𝑖|

2

𝐵
/𝑏

2

𝑖
) +

2(𝑃(𝑏𝑖)/𝑏𝑖)+𝜋(𝑃))(𝑔(𝑉,𝑊)𝑈−𝑔(𝑈,𝑊)𝑉) if 𝑖 = 𝑗 = 𝑘.

Proof. Similar to Proposition 2.4 in [5], we have

(1) 𝑅(𝑋, 𝑌)𝑍 = 𝑅
𝐵
(𝑋, 𝑌)𝑍;

(2) 𝑅(𝑉,𝑋)𝑌 = −(𝐻
𝑏
𝑖

𝐵
(𝑋, 𝑌)/𝑏𝑖)𝑉;

(3) 𝑅(𝑋,𝑉)𝑊 = 𝑅(𝑉,𝑊)𝑋 = 𝑅(𝑉,𝑋)𝑊 = 0 if 𝑖 ̸= 𝑗;
(4) 𝑅(𝑋, 𝑌)𝑉 = 0;
(5) 𝑅(𝑉,𝑊)𝑋 = 𝑉𝑋(ln 𝑏𝑖)𝑊 −𝑊𝑋(ln 𝑏𝑖)𝑉 if 𝑖 = 𝑗;
(6) 𝑅(𝑉,𝑊)𝑈 = 0 if 𝑖 = 𝑗 ̸= 𝑘 or 𝑖 ̸= 𝑗 ̸= 𝑘;
(7) 𝑅(𝑈,𝑉)𝑊 = −𝑔(𝑉,𝑊)(𝑔𝐵(grad𝐵𝑏𝑖, grad𝐵𝑏𝑘)/𝑏𝑖𝑏𝑘)𝑈,

if 𝑖 = 𝑗 ̸= 𝑘;
(8) 𝑅(𝑋,𝑉)𝑊 = −(𝑔(𝑉,𝑊)/𝑏𝑖)∇

𝐵

𝑋
(grad

𝐵
𝑏𝑖) +

[𝑊𝑋(ln 𝑏𝑖)]𝑉 − 𝑔𝐹
𝑖

(𝑊,𝑉)grad
𝐹
𝑖

(𝑋 ln 𝑏𝑖) if 𝑖 = 𝑗;

(9) 𝑅(𝑉,𝑊)𝑈 = 𝑔(𝑉,𝑈)grad
𝐵
(𝑊(ln 𝑏𝑖)) − 𝑔(𝑊,

𝑈)grad
𝐵
(𝑉(ln 𝑏𝑖)) + 𝑅

𝐹
𝑖(𝑉,𝑊)𝑈 − (|grad

𝐵
𝑏𝑖|

2

𝐵
/𝑏

2

𝑖
)

(𝑔(𝑊,𝑈)𝑉 − 𝑔(𝑉,𝑈)𝑊) if 𝑖 = 𝑗 = 𝑘.

Then by (4), we get Proposition 4.

Similarly we may get the following.

Proposition 5 (compare with [5, Proposition 2.4]). Let𝑀 =

𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply twisted product and let
𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝐵) and 𝑉 ∈ Γ(𝑇𝐹𝑖), 𝑊 ∈ Γ(𝑇𝐹𝑗), 𝑈 ∈ Γ(𝑇𝐹𝑘),
and 𝑃 ∈ Γ(𝑇𝐹𝑙) for a fixed 𝑙. Then

(1) 𝑅(𝑋, 𝑌)𝑍 = 𝑅
𝐵
(𝑋, 𝑌)𝑍 + [𝑔(𝑋, 𝑍)(𝑌𝑏𝑙/𝑏𝑙) −

𝑔(𝑌, 𝑍)(𝑋𝑏𝑙/𝑏𝑙)]𝑃 + 𝜋(𝑃)[𝑔(𝑋, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝑋];

(2) 𝑅(𝑉,𝑋)𝑌 = −(𝐻
𝑏
𝑖

𝐵
(𝑋, 𝑌)/𝑏𝑖)𝑉 − 𝜋(𝑃)𝑔(𝑋, 𝑌)𝑉 if 𝑖 ̸= 𝑙;

(3) 𝑅(𝑉,𝑋)𝑌 = −(𝐻
𝑏
𝑖

𝐵
(𝑋, 𝑌)/𝑏𝑖)𝑉 − 𝜋(𝑉)(𝑌(𝑏𝑖)/𝑏𝑖)𝑋 −

𝑔(𝑋, 𝑌)∇𝑉𝑃 − 𝑔(𝑋, 𝑌)[𝜋(𝑃)𝑉 − 𝜋(𝑉)𝑃] if 𝑖 = 𝑙;
(4) 𝑅(𝑋,𝑉)𝑊 = (𝑋(𝑏𝑙)/𝑏𝑙)𝜋(𝑊)𝑉 if 𝑖 ̸= 𝑗;

(5) 𝑅(𝑉,𝑊)𝑋 = −𝛿
𝑙

𝑖
(𝜋(𝑉)/𝑏𝑖)𝑋(𝑏𝑖)𝑊 + 𝛿

𝑙

𝑗
(𝜋(𝑊)/

𝑏𝑗)𝑋(𝑏𝑗)𝑉 if 𝑖 ̸= 𝑗;

(6) 𝑅(𝑋, 𝑌)𝑉 = 𝜋(𝑉)[(𝑋(𝑏𝑙)/𝑏𝑙)𝑌 − (𝑌(𝑏𝑙)/𝑏𝑙)𝑋];
(7) 𝑅(𝑉,𝑊)𝑋 = 𝑉𝑋(ln 𝑏𝑖)𝑊 − 𝑊𝑋(ln 𝑏𝑖)𝑉 − 𝛿

𝑙

𝑖
(𝑋(𝑏𝑖)/

𝑏𝑖)[𝜋(𝑉)𝑊 − 𝜋(𝑊)𝑉] if 𝑖 = 𝑗;
(8) 𝑅(𝑉,𝑊)𝑈 = 0 if 𝑖 = 𝑗 ̸= 𝑘 or 𝑖 ̸= 𝑗 ̸= 𝑘;
(9) 𝑅(𝑈,𝑉)𝑊 = −𝑔(𝑉,𝑊)(𝑔𝐵(grad𝐵𝑏𝑖, grad𝐵𝑏𝑘)/𝑏𝑖𝑏𝑘)𝑈−

𝑔(𝑊, ∇𝑉𝑃)𝑈 − 𝑔(𝑉,𝑊)∇𝑈𝑃 − 𝜋(𝑃)𝑔(𝑉,𝑊)𝑈 +

𝑔(𝑉,𝑊)𝜋(𝑈)𝑃 + 𝜋(𝑊)[𝜋(𝑉)𝑈 − 𝜋(𝑈)𝑉], if 𝑖 = 𝑗 ̸= 𝑘;
(10) 𝑅(𝑋,𝑉)𝑊 = [𝑊𝑋(ln 𝑏𝑖)]𝑉 − 𝑔(𝑊,𝑉)(∇

𝐵

𝑋
(grad

𝐵
𝑏𝑖)/

𝑏𝑖) − grad
𝐹
𝑖

(𝑋 ln 𝑏𝑖)𝑔𝐹
𝑖

(𝑊,𝑉) + (𝑋(𝑏𝑙)/𝑏𝑙)𝜋(𝑊)𝑉 −

𝑔(𝑊, ∇𝑉𝑃)𝑋−𝑔(𝑉,𝑊)(𝑋(𝑏𝑙)/𝑏𝑙)𝑃 − 𝑔(𝑉,𝑊)𝜋(𝑃)𝑋+

𝜋(𝑉)𝜋(𝑊)𝑋 if 𝑖 = 𝑗;
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(11) 𝑅(𝑈,𝑉)𝑊 = 𝑔(𝑈,𝑊)grad
𝐵
(𝑉(ln 𝑏𝑖)) − 𝑔(𝑉,

𝑊)grad
𝐵
(𝑈(ln 𝑏𝑖)) + 𝑅

𝐹
𝑖(𝑈, 𝑉)𝑊 − (|grad

𝐵
𝑏𝑖|

2

𝐵
/

𝑏
2

𝑖
)(𝑔(𝑉,𝑊)𝑈 − 𝑔(𝑈,𝑊)𝑉) + 𝜋(𝑃)[𝑔(𝑈,𝑊)𝑉 − 𝑔(𝑉,

𝑊)𝑈] if 𝑖 = 𝑗 = 𝑘 ̸= 𝑙;

(12) 𝑅(𝑈,𝑉)𝑊 = 𝑔(𝑈,𝑊)grad
𝐵
(𝑉(ln 𝑏𝑖)) − 𝑔(𝑉,

𝑊)grad
𝐵
(𝑈(ln 𝑏𝑖)) + 𝑅

𝐹
𝑖(𝑈, 𝑉)𝑊 − (|grad

𝐵
𝑏𝑖|

2

𝐵
/𝑏

2

𝑖
)

(𝑔(𝑉,𝑊)𝑈−𝑔(𝑈,𝑊)𝑉)+𝑔(𝑊, ∇𝑈𝑃)𝑉−𝑔(𝑊,∇𝑉𝑃)𝑈+

𝑔(𝑈,𝑊)∇𝑉𝑃 − 𝑔(𝑉,𝑊)∇𝑈𝑃 + 𝜋(𝑃)[𝑔(𝑈,𝑊)𝑉 −

𝑔(𝑉,𝑊)𝑈] + [𝑔(𝑉,𝑊)𝜋(𝑈) − 𝑔(𝑈,𝑊)𝜋(𝑉)]𝑃 +

𝜋(𝑊)[𝜋(𝑉)𝑈 − 𝜋(𝑈)𝑉] if 𝑖 = 𝑗 = 𝑘 = 𝑙, where 𝛿𝑙
𝑖

denotes the Kronecker symbol.

Remark 6. When for each 𝑖 ∈ {1, . . . , 𝑚}, 𝑏𝑖 : 𝐵 → (0,∞)

is smooth and 𝑃 = 0, we get Proposition 2.4 in [5] by
Propositions 4 and 5.

By Propositions 4 and 5 and the definition of the Ricci
curvature tensor, we have the following.

Proposition 7 (compare with [5, Proposition 2.5]). Let𝑀 =

𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply twisted product and let
𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝐵) and𝑉 ∈ Γ(𝑇𝐹𝑖),𝑊 ∈ Γ(𝑇𝐹𝑗), and 𝑃 ∈ Γ(𝑇𝐵).
Then

(1) Ric(𝑋, 𝑌) = Ric𝐵(𝑋, 𝑌) + ∑
𝑚

𝑖=1
𝑙𝑖[(𝐻

𝑏
𝑖

𝐵
(𝑋, 𝑌)/𝑏𝑖) +

(𝑃(𝑏𝑖)/𝑏𝑖)𝑔(𝑋, 𝑌) + 𝜋(𝑃)𝑔(𝑋, 𝑌) + 𝑔(𝑌, ∇𝑋𝑃) −

𝜋(𝑋)𝜋(𝑌)];
(2) Ric(𝑋, 𝑉) = Ric(𝑉,𝑋) = (𝑙𝑖 − 1)[𝑉𝑋(ln 𝑏𝑖)];
(3) Ric(𝑉,𝑊) = 0 if 𝑖 ̸= 𝑗;

(4) Ric(𝑉,𝑊) = Ric𝐹𝑖(𝑉,𝑊) + [(Δ𝐵𝑏𝑖/𝑏𝑖) + (𝑙𝑖 −

1)(|grad
𝐵
𝑏𝑖|

2

𝐵
/𝑏

2

𝑖
) + ∑

𝑗 ̸= 𝑖
𝑙𝑗(𝑔𝐵(grad𝐵𝑏𝑖, grad𝐵𝑏𝑗)/

𝑏𝑖𝑏𝑗) + (𝑛 − 2)𝜋(𝑃) + ∑
𝑛

𝑘=1
𝜀𝑘⟨∇𝐸

𝑘

𝑃, 𝐸𝑘⟩ +

∑
𝑗 ̸= 𝑖

𝑙𝑗(𝑃𝑏𝑗/𝑏𝑗) + (𝑛 + 𝑙𝑖 − 2)(𝑃𝑏𝑖/𝑏𝑖)]𝑔(𝑉,𝑊) if
𝑖 = 𝑗,

where 𝐸𝑘, 1 ≤ 𝑘 ≤ 𝑛 is an orthonormal base of 𝐵 with 𝜀𝑘 =

𝑔(𝐸𝑘, 𝐸𝑘) and dim𝐵 = 𝑛, dim𝑀 = 𝑛.

By (2) and (3) in Proposition 7, similar to the proof of
Theorem 1 in [6], we have the following.

Corollary 8. Let 𝑀 = 𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply
twisted product and dim𝐹𝑖 > 1 and 𝑃 ∈ Γ(𝑇𝐵); then (𝑀, ∇) is
mixed Ricci-flat if and only if𝑀 can be expressed as a multiply
warped product. In particular, if (𝑀, ∇) is Einstein, then𝑀 can
be expressed as a multiply warped product.

Similar to Proposition 7, we have the following.

Proposition 9 (compare with [5, Proposition 2.5]). Let𝑀 =

𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply twisted product and let
𝑋,𝑌, 𝑍 ∈ Γ(𝑇𝐵) and𝑉 ∈ Γ(𝑇𝐹𝑖),𝑊 ∈ Γ(𝑇𝐹𝑗), and 𝑃 ∈ Γ(𝑇𝐹𝑟)

for a fixed 𝑟. Then

(1) Ric(𝑋, 𝑌) = Ric𝐵(𝑋, 𝑌) + ∑
𝑚

𝑖=1
𝑙𝑖(𝐻

𝑏
𝑖

𝐵
(𝑋, 𝑌)/𝑏𝑖) +

𝑔(𝑋, 𝑌)𝜋(𝑃)(𝑛 − 2) + 𝑔(𝑋, 𝑌)∑
𝑙
𝑟

𝑞=1
𝜀𝑞𝑔(∇𝐸

𝑞

𝑃, 𝐸𝑞),
where 𝐸𝑞 for 1 ≤ 𝑞 ≤ 𝑙𝑟 is an orthonormal basis of 𝑇𝐹𝑟;

(2) Ric(𝑋, 𝑉) = (𝑙𝑖−1)[𝑉𝑋(ln 𝑏𝑖)]+(𝑛−2)(𝑋(𝑏𝑟)/𝑏𝑟)𝜋(𝑉);

(3) Ric(𝑉,𝑋) = (𝑙𝑖−1)[𝑉𝑋(ln 𝑏𝑖)]+(2−𝑛)(𝑋(𝑏𝑟)/𝑏𝑟)𝜋(𝑉);

(4) Ric(𝑉,𝑊) = 0 if 𝑖 ̸= 𝑗;

(5) Ric(𝑉,𝑊) = RicFi(V,W) + g(V,W)[(ΔBbi/
bi) + (𝑙𝑖 − 1)(|grad

𝐵
𝑏𝑖|

2

𝐵
/𝑏

2

𝑖
) + ∑

𝑘,𝑘 ̸= 𝑖
𝑙𝑘(𝑔𝐵(grad𝐵𝑏𝑖,

grad
𝐵
𝑏𝑘)/𝑏𝑖𝑏𝑘) + (𝑛−2)𝜋(𝑃)] + (𝑛−2)𝑔(𝑊, ∇𝑉𝑃)+

(2 − 𝑛)𝜋(𝑉)𝜋(𝑊) + 𝑔(𝑉,𝑊)div𝐹
𝑟

𝑃 if 𝑖 = 𝑗.

Remark 10. When for each 𝑖 ∈ {1, . . . , 𝑚}, 𝑏𝑖 : 𝐵 → (0,∞)

is smooth and 𝑃 = 0, we get Proposition 2.5 in [5] by
Propositions 7 and 9.

Corollary 11. Let 𝑀 = 𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply
twisted product and dim𝐹𝑖 > 1 and𝑃 ∈ Γ(𝑇𝐹𝑟); then (𝑀, ∇) is
mixed Ricci-flat if and only if𝑀 can be expressed as a multiply
warped product and 𝑏𝑟 is only dependent on 𝐹𝑟. In particular,
if (𝑀, ∇) is Einstein, then 𝑀 can be expressed as a multiply
warped product.

Proof. By (2) and (3) in Proposition 9, we have that
(𝑀, ∇) is mixed Ricci-flat if and only if [𝑉𝑋(ln 𝑏𝑖)] =

0, (𝑋(𝑏𝑟)/𝑏𝑟)𝜋(𝑉) = 0. By [𝑉𝑋(ln 𝑏𝑖)] = 0, similar to the
proof of Corollary 8, we get that 𝑀 can be expressed as a
multiply warped product. When 𝑖 ̸= 𝑟, 𝜋(𝑉) = 0. When
𝑖 = 𝑟, by (𝑋(𝑏𝑟)/𝑏𝑟)𝜋(𝑉) = 0, then 𝑏𝑟 depends only on
𝑀𝑟.

By Proposition 7 and the definition of the scalar curva-
ture, we have the following.

Proposition 12 (compare with [5, Proposition 2.6]). Let𝑀 =

𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply twisted product and 𝑃 ∈

Γ(𝑇𝐵); then the scalar curvature 𝑆 has the following expression:

𝑆 = 𝑆
𝐵

+ 2

𝑚

∑

𝑖=1

𝑙𝑖

𝑏𝑖

Δ𝐵𝑏𝑖 +

𝑚

∑

𝑖=1

𝑆
𝐹
𝑖

𝑏
2

𝑖

+

𝑚

∑

𝑖=1

𝑙𝑖 (𝑙𝑖 − 1)

grad𝐵𝑏𝑖


2

𝐵

𝑏
2

𝑖

+

𝑚

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝑙𝑖𝑙𝑗

𝑔𝐵 (grad𝐵𝑏𝑖, grad𝐵𝑏𝑗)
𝑏𝑖𝑏𝑗

+

𝑚

∑

𝑖=1

𝑙𝑖 (𝑛 + 𝑛 + 𝑙𝑖 − 2)
𝑃 (𝑏𝑖)

𝑏𝑖

+

𝑚

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝑙𝑖𝑙𝑗

𝑃 (𝑏𝑗)

𝑏𝑗

+

𝑚

∑

𝑖=1

𝑙𝑖 (𝑛 + 𝑛 − 3) 𝜋 (𝑃)

+ 2

𝑚

∑

𝑖=1

𝑙𝑖div𝐵𝑃.

(6)

By Proposition 9 and the definition of the scalar curva-
ture, we have the following.
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Proposition 13 (compare with [5, Proposition 2.6]). Let𝑀 =

𝐵×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply twisted product and 𝑃 ∈

Γ(𝑇𝐹𝑟); then the scalar curvature 𝑆 has the following expression:

𝑆 = 𝑆
𝐵
+ 2

𝑚

∑

𝑖=1

𝑙𝑖

𝑏𝑖

Δ𝐵𝑏𝑖 +

𝑚

∑

𝑖=1

𝑆
𝐹
𝑖

𝑏
2

𝑖

+

𝑚

∑

𝑖=1

𝑙𝑖 (𝑙𝑖 − 1)

grad𝐵𝑏𝑖


2

𝐵

𝑏
2

𝑖

+

𝑚

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝑙𝑖𝑙𝑗

𝑔𝐵 (grad𝐵𝑏𝑖, grad𝐵𝑏𝑗)
𝑏𝑖𝑏𝑗

+ 𝜋 (𝑃) (𝑛 − 1) (𝑛 − 2)

+ 2 (𝑛 − 1) div𝐹
𝑟

𝑃.

(7)

Remark 14. When for each 𝑖 ∈ {1, . . . , 𝑚}, 𝑏𝑖 : 𝐵 → (0,∞)

is smooth and 𝑃 = 0, we get Proposition 2.6 in [5] by
Propositions 12 and 13.

3. Special Multiply Warped Product
with a Semisymmetric Connection

Let𝑀 = 𝐼×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply warped product
with the metric tensor −𝑑𝑡2 ⊕ 𝑏

2

1
𝑔𝐹
1

⊕ ⋅ ⋅ ⋅ ⊕ 𝑏
2

𝑚
𝑔𝐹
𝑚

and 𝐼 is an
open interval in R and 𝑏𝑖 ∈ 𝐶

∞
(𝐼).

Theorem 15. Let 𝑀 = 𝐼×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply
warped product with themetric tensor−𝑑𝑡2⊕𝑏2

1
𝑔𝐹
1

⊕⋅ ⋅ ⋅⊕𝑏
2

𝑚
𝑔𝐹
𝑚

and 𝑃 = (𝜕/𝜕𝑡). Then (𝑀, ∇) is Einstein with the Einstein
constant 𝜆 if and only if the following conditions are satisfied
for any 𝑖 ∈ {1, . . . , 𝑚}:

(1) (𝐹𝑖, ∇
𝐹
𝑖) is Einstein with the Einstein constant 𝜆𝑖, 𝑖 ∈

{1, . . . , 𝑚};
(2) ∑𝑚

𝑖=1
𝑙𝑖(𝑏



𝑖
/𝑏𝑖 − 𝑏



𝑖
/𝑏𝑖) = 𝜆;

(3) 𝜆𝑖 − 𝑏𝑖𝑏


𝑖
− (𝑙𝑖 − 1)𝑏

2

𝑖
+ (𝑏

2

𝑖
− 𝑏𝑖𝑏



𝑖
) ∑

𝑗 ̸= 𝑖
𝑙𝑗(𝑏



𝑗
/𝑏𝑗) + (2 −

𝑛)𝑏
2

𝑖
+ (𝑛 + 𝑙𝑖 − 2)𝑏𝑖𝑏



𝑖
= 𝜆𝑏

2

𝑖
.

Proof. By Proposition 7, we have

Ric( 𝜕

𝜕𝑡
,
𝜕

𝜕𝑡
) = −

𝑚

∑

𝑖=1

𝑙𝑖 (
𝑏


𝑖

𝑏𝑖

−
𝑏


𝑖

𝑏𝑖

) ;

Ric( 𝜕

𝜕𝑡
, 𝑉) = Ric(𝑉, 𝜕

𝜕𝑡
) = 0;

Ric (𝑉,𝑊) = Ric𝐹𝑖 (𝑉,𝑊) + 𝑔𝐹
𝑖
(𝑉,𝑊)

× [

[

−𝑏𝑖𝑏


𝑖
− (𝑙𝑖 − 1) 𝑏

2

𝑖
+ (𝑏

2

𝑖
− 𝑏𝑖𝑏



𝑖
) ∑

𝑗 ̸= 𝑖

𝑙𝑗

𝑏


𝑗

𝑏𝑗

+ (2 − 𝑛) 𝑏
2

𝑖
+ (𝑛 + 𝑙𝑖 − 2) 𝑏𝑖𝑏



𝑖
]

]

.

(8)

By (8) and the Einstein condition, we get Theorem 15.

Theorem 16. Let 𝑀 = 𝐼×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply
warped product with themetric tensor−𝑑𝑡2⊕𝑏2

1
𝑔𝐹
1

⊕⋅ ⋅ ⋅⊕𝑏
2

𝑚
𝑔𝐹
𝑚

and 𝑃 ∈ Γ(𝑇𝐹𝑟) with 𝑔𝐹
𝑟

(𝑃, 𝑃) = 1 and 𝑛 > 2. Then (𝑀, ∇) is
Einstein with the Einstein constant 𝜆 if and only if the following
conditions are satisfied for any 𝑖 ∈ {1, . . . , 𝑚}:

(1) (𝐹𝑖, ∇
𝐹
𝑖) (𝑖 ̸= 𝑟) is Einsteinwith the Einstein constant𝜆𝑖,

𝑖 ∈ {1, . . . , 𝑚};

(2) 𝑏𝑟 is a constant and ∑
𝑚

𝑖=1
𝑙𝑖(𝑏



𝑖
/𝑏𝑖) = 𝜇0; div𝐹

𝑟

𝑃 =

𝜇1, 𝜇0 − 𝜇1 + 𝜆 = (2 − 𝑛)𝑏
2

𝑟
, where 𝜇0, 𝜇1 are constants;

(3) Ric𝐹𝑟(𝑉,𝑊) + 𝜆𝑔𝐹
𝑟

(𝑉,𝑊) = (𝑛 − 2)[𝜋(𝑉)𝜋(𝑊) −

𝑔(𝑊, ∇𝑉𝑃)], for 𝑉,𝑊 ∈ Γ(𝑇𝐹𝑟);

(4) 𝜆𝑖−𝑏𝑖𝑏


𝑖
+(𝑛−2)𝑏

2

𝑖
𝑏
2

𝑟
−𝑏𝑖𝑏



𝑖
∑

𝑗 ̸= 𝑖
𝑙𝑗(𝑏



𝑗
/𝑏𝑗)−(𝑙𝑖−1)𝑏

2

𝑖
=

(𝜆 − 𝜇1)𝑏
2

𝑖
.

Proof. By Proposition 9(2) and 𝑔𝐹
𝑟

(𝑃, 𝑃) = 1, we have that 𝑏𝑟
is a constant. By Proposition 9, then

Ric( 𝜕

𝜕𝑡
,
𝜕

𝜕𝑡
) =

𝑚

∑

𝑖=1

𝑙𝑖

𝑏


𝑖

𝑏𝑖

+ (2 − 𝑛) 𝑏
2

𝑟
− div𝐹

𝑟

𝑃 = −𝜆. (9)

By variables separation, we have

𝑚

∑

𝑖=1

𝑙𝑖

𝑏


𝑖

𝑏𝑖

= 𝜇0,

div𝐹
𝑟

𝑃 = 𝜇1, 𝜇0 − 𝜇1 + 𝜆 = (2 − 𝑛) 𝑏
2

𝑟
,

Ric (𝑉,𝑊) = Ric𝐹𝑖 (𝑉,𝑊) + 𝑏
2

𝑖
𝑔𝐹
𝑖
(𝑉,𝑊)

× [

[

−
𝑏


𝑖

𝑏𝑖

+ (𝑙𝑖 − 1)
−𝑏

2

𝑖

𝑏
2

𝑖

+ ∑

𝑗 ̸= 𝑖

𝑙𝑗

−𝑏


𝑖
𝑏


𝑗

𝑏𝑖𝑏𝑗

+ (𝑛 − 2) 𝜋 (𝑃)]

]

+ (𝑛 − 2) 𝑔 (𝑊, ∇𝑉𝑃)

+ (2 − 𝑛) 𝜋 (𝑉) 𝜋 (𝑊) + 𝑔 (𝑉,𝑊) div𝐹
𝑟

𝑃.

(10)

When 𝑖 ̸= 𝑟, then ∇𝑉𝑃 = 𝜋(𝑉) = 0, so

Ric (𝑉,𝑊) = Ric𝐹𝑖 (𝑉,𝑊) + 𝑏
2

𝑖
𝑔𝐹
𝑖
(𝑉,𝑊)

× [

[

−
𝑏


𝑖

𝑏𝑖

+ (𝑙𝑖 − 1)
−𝑏

2

𝑖

𝑏
2

𝑖

+ ∑

𝑗 ̸= 𝑖

𝑙𝑗

−𝑏


𝑖
𝑏


𝑗

𝑏𝑖𝑏𝑗

+ (𝑛 − 2) 𝑏
2

𝑟
]

]

+ 𝜇1𝑏
2

𝑖
𝑔𝐹
𝑖
(𝑉,𝑊)

= 𝜆𝑏
2

𝑖
𝑔𝐹
𝑖
(𝑉,𝑊) .

(11)
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By variables separation, we have that (𝐹𝑖, ∇
𝐹
𝑖) (𝑖 ̸= 𝑟) is Ein-

stein with the Einstein constant 𝜆𝑖 and

𝜆𝑖 − 𝑏𝑖𝑏


𝑖
+ (𝑛 − 2) 𝑏

2

𝑖
𝑏
2

𝑟
− 𝑏𝑖𝑏



𝑖
∑

𝑗 ̸= 𝑖

𝑙𝑗

𝑏


𝑗

𝑏𝑗

− (𝑙𝑖 − 1) 𝑏
2

𝑖

= (𝜆 − 𝜇1) 𝑏
2

𝑖
.

(12)

When 𝑖 = 𝑟 and 𝑏𝑟 is a constant, then

Ric𝐹𝑖 (𝑉,𝑊) + 𝑏
2

𝑟
[(𝑛 − 2) 𝑏

2

𝑟
+ 𝜇1 − 𝜆] 𝑔𝐹

𝑖
(𝑉,𝑊)

= (𝑛 − 2) [𝜋 (𝑉) 𝜋 (𝑊) − 𝑔 (𝑊, ∇𝑉𝑃)] .

(13)

So we prove the above theorem.

Remark 17. Comparing withTheorem 3.3 in [5], inTheorems
15 and 16, the unit vector field 𝑃 emerges. For Theorem 3.3
in [5], 𝑃 equals zero. So Theorem 3.3 in [5] is not the special
case of Theorems 15 and 16. Then equations in our theorems
are different from the equations in theorems in [5].

When 𝑀 = 𝐼×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 is a multiply warped
product and 𝑃 = 𝜕/𝜕𝑡, by Proposition 12, we have

𝑆 = −2

𝑚

∑

𝑖=1

𝑙𝑖

𝑏


𝑖

𝑏𝑖

+

𝑚

∑

𝑖=1

𝑆
𝐹
𝑖

𝑏
2

𝑖

+

𝑚

∑

𝑖=1

𝑙𝑖 (𝑙𝑖 − 1)
−𝑏

2

𝑖

𝑏
2

𝑖

+

𝑚

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝑙𝑖𝑙𝑗

−𝑏𝑖𝑏𝑗

𝑏𝑖𝑏𝑗

+

𝑚

∑

𝑖=1

𝑙𝑖 (𝑛 + 𝑙𝑖 − 1)
𝑏


𝑖

𝑏𝑖

+

𝑚

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝑙𝑖𝑙𝑗

𝑏


𝑗

𝑏𝑗

−

𝑚

∑

𝑖=1

𝑙𝑖 (𝑛 − 2) .

(14)

The following result just follows from the method of separa-
tion of variables and the fact that each 𝑆

𝐹
𝑖 is function defined

on 𝐹𝑖.

Proposition 18. Let𝑀 = 𝐼×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply
warped product and 𝑃 = 𝜕/𝜕𝑡. If (𝑀, ∇) has constant scalar
curvature 𝑆, then each (𝐹𝑖, ∇

𝐹
𝑖) has constant scalar curvature

𝑆
𝐹
𝑖 .

When 𝑃 ∈ Γ(𝑇𝐹𝑟), by Proposition 13, we have

𝑆 = −2

𝑚

∑

𝑖=1

𝑙𝑖

𝑏


𝑖

𝑏𝑖

+

𝑚

∑

𝑖=1

𝑆
𝐹
𝑖

𝑏
2

𝑖

+

𝑚

∑

𝑖=1

𝑙𝑖 (𝑙𝑖 − 1)
−𝑏

2

𝑖

𝑏
2

𝑖

+

𝑚

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝑙𝑖𝑙𝑗

−𝑏


𝑖
𝑏


𝑗

𝑏𝑖𝑏𝑗

+ 𝜋 (𝑃) (𝑛 − 1) (𝑛 − 2)

+ 2 (𝑛 − 1) div𝐹
𝑟

𝑃.

(15)

Similarly we have the following.

Proposition 19 (compare with [5, Proposition 3.5]). Let𝑀 =

𝐼×𝑏
1

𝐹1×𝑏
2

𝐹2 ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 be a multiply warped product and 𝑃 ∈

Γ(𝑇𝐹𝑟). If (𝑀, ∇) has constant scalar curvature 𝑆, then

(1) each (𝐹𝑖, ∇𝐹
𝑖) (𝑖 ̸= 𝑟) has constant scalar curvature 𝑆𝐹𝑖 ;

(2) moreover, if 𝑔𝐹
𝑟

(𝑃, 𝑃), div𝐹
𝑟

𝑃 are also constants, then
𝑆
𝐹
𝑟 is a constant.

Remark 20. When 𝑃 = 0 in Proposition 19, we get Proposi-
tion 3.5 in [5].

4. Generalized Robertson-Walker Space-Times
with a Semisymmetric Metric Connection

In this section, we study 𝑀 = 𝐼 × 𝐹 with the metric tensor
−𝑑𝑡

2
+ 𝑓(𝑡)

2
𝑔𝐹. As a corollary of Theorem 15, we obtain the

following.

Corollary 21. Let 𝑀 = 𝐼 × 𝐹 with the metric tensor −𝑑𝑡2 +
𝑓(𝑡)

2
𝑔𝐹 and 𝑃 = 𝜕/𝜕𝑡. Then (𝑀, ∇) is Einstein with the

Einstein constant 𝜆 if and only if the following conditions are
satisfied:

(1) (𝐹, ∇𝐹
) is Einstein with the Einstein constant 𝜆𝐹;

(2) 𝑙((𝑓
/𝑓) − (𝑓


/𝑓)) = 𝜆;

(3) 𝜆𝐹 −𝑓𝑓

+ (1 − 𝑙)𝑓

2
+ (1 − 𝑙 − 𝜆)𝑓

2
+ (2𝑙 − 1)𝑓


𝑓 = 0.

Remark 22. In Theorem 5.1 in [9], they got the Einstein
condition of 𝑀 = 𝐼 × 𝐹 with a semisymmetric metric
connection, but they did not consider conditions (2) and (3).

Corollary 23. Let 𝑀 = 𝐼 × 𝐹 with the metric tensor −𝑑𝑡2 +
𝑓(𝑡)

2
𝑔𝐹 and 𝑃 = 𝜕/𝜕𝑡 and dim𝐹 = 1. Then (𝑀, ∇) is Einstein

with the Einstein constant 𝜆 if and only if 𝑓
= 𝑓


− 𝜆𝑓.

By Corollary 21 (2) and (3), we get the following.

Corollary 24. Let 𝑀 = 𝐼 × 𝐹 with the metric tensor −𝑑𝑡2 +
𝑓(𝑡)

2
𝑔𝐹 and 𝑃 = 𝜕/𝜕𝑡 and dim𝐹 > 1. Then (𝑀, ∇) is

Einstein with the Einstein constant 𝜆 if and only if the following
conditions are satisfied:

(1) (𝐹, ∇𝐹
) is Einstein with the Einstein constant 𝜆𝐹;

(2) 𝑓
= 𝑓


− (𝜆/𝑙)𝑓;

(3) (𝜆𝐹/(1 − 𝑙)) + 𝑓
2
+ (1 + (𝜆/𝑙))𝑓

2
− 2𝑓𝑓


= 0.

By Corollary 23 and elementary methods for ordinary
differential equations, we get the following.

Theorem 25. Let 𝑀 = 𝐼 × 𝐹 with the metric tensor −𝑑𝑡2 +
𝑓(𝑡)

2
𝑔𝐹 and 𝑃 = 𝜕/𝜕𝑡 and dim𝐹 = 1. Then (𝑀, ∇) is Einstein

with the Einstein constant 𝜆 if and only if

(1) 𝜆 < 1/4, 𝑓(𝑡) = 𝑐1𝑒
((1+√1−4𝜆)/2)𝑡

+ 𝑐2𝑒
((1−√1−4𝜆)/2)𝑡,

(2) 𝜆 = 1/4, 𝑓(𝑡) = 𝑐1𝑒
(1/2)𝑡

+ 𝑐2𝑡𝑒
(1/2)𝑡,

(3) 𝜆 > 1/4, 𝑓(𝑡) = 𝑐1𝑒
(1/2)𝑡 cos((√4𝜆 − 1/2)𝑡) +

𝑐2𝑒
(1/2)𝑡 sin((√4𝜆 − 1/2)𝑡).
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Let 𝜆/𝑙 = 𝑑0, 𝜆𝐹/(1− 𝑙) = 𝑑0, (1+√1 − 4𝑑0)/2 = 𝑎0, (1−

√1 − 4𝑑0)/2 = 𝑏0; then, 𝑎0+𝑏0 = 1, 𝑑0 = 𝑎0𝑏0.When dim𝐹 >

1, by Corollary 24(2), we have the following three cases.

Case (i) (𝑑0 < 1/4). We have 𝑓 = 𝑐1𝑒
𝑎
0
𝑡
+ 𝑐2𝑒

𝑏
0
𝑡. By

Corollary 24(3), then

𝑑0 + 𝑐
2

1
(𝑎

2

0
+ 1 + 𝑎0𝑏0 − 2𝑎0) 𝑒

2𝑎
0
𝑡

+ 𝑐
2

2
(𝑏

2

0
+ 1 + 𝑎0𝑏0 − 2𝑏0) 𝑒

2𝑏
0
𝑡

+ 2𝑐1𝑐2 (2𝑎0𝑏0 + 1 − 𝑎0 − 𝑏0) 𝑒
(𝑎
0
+𝑏
0
)𝑡
= 0.

(16)

When 𝑏0 = 0, we get 𝑑0 = 0, 𝑎0 = 1, 𝜆 = 0. By (16), 𝑑0 +

𝑐
2

2
= 0, so 𝜆𝐹 = (𝑙 − 1)𝑐

2

2
. In this case 𝑓 = 𝑐1𝑒

𝑡
+ 𝑐2. When

𝑏 ̸= 0, then 𝑒2𝑎0𝑡, 𝑒2𝑏0𝑡, and 𝑒(𝑎0+𝑏0)𝑡 are linearly independent, so
𝑐
2

2
(𝑏

2

0
+1+𝑎0𝑏0 −2𝑏0) = 𝑐

2

2
(1 − 𝑏0) = 0 and 𝑐2 = 0. Then 𝑐1 ̸= 0,

by 𝑐2
1
(𝑎

2

0
+ 1 + 𝑎0𝑏0 − 2𝑎0) = 𝑐

2

1
(1 − 𝑎0) = 0, so 𝑎0 = 1; then

𝑑0 = 𝜆 = 0. Thus 𝑓 = 𝑐1𝑒
𝑡.

Case (ii) (𝑑0 = 1/4). One has 𝑓 = 𝑐1𝑒
(1/2)𝑡

+ 𝑐2𝑡𝑒
(1/2)𝑡. By

Corollary 24(3), then

𝑑0 + 𝑒
𝑡
[(

1

2
𝑐1 + 𝑐2 +

1

2
𝑐2𝑡)

2

+
5

4
(𝑐1 + 𝑐2𝑡)

2

−2 (
1

2
𝑐1 + 𝑐2 +

1

2
𝑐2𝑡) (𝑐1 + 𝑐2𝑡) ] = 0.

(17)

The coefficient of 𝑡2𝑒𝑡 is (1/2)𝑐2
2
, so 𝑐2 = 0. The coefficient of

𝑒
𝑡 is ((1/2)𝑐1 + 𝑐2)

2
+ (5/4)(𝑐1)

2
− 2𝑐1((1/2)𝑐1 + 𝑐2), so 𝑐1 = 0;

in this case we have no solutions.

Case (iii) (𝑑0 > 1/4). One has 𝑓(𝑡) = 𝑐1𝑒
(1/2)𝑡 cos(ℎ0𝑡) +

𝑐2𝑒
(1/2)𝑡 sin(ℎ0𝑡), where ℎ0 = √4𝑑0 − 1/2. By Corollary 24(3),

then

𝑑0 + 𝑒
𝑡
{[(

𝑐1

2
+ 𝑐2ℎ0) cos (ℎ0𝑡) + (

𝑐2

2
− 𝑐1ℎ0) sin (ℎ0𝑡)]

2

+ (1 + 𝑑0) (𝑐1 cos (ℎ0𝑡) + 𝑐2 sin (ℎ0𝑡))
2

− 2 (𝑐1 cos (ℎ0𝑡) + 𝑐2 sin (ℎ0𝑡))

× [(
𝑐1

2
+ 𝑐2ℎ0) cos (ℎ0𝑡) + (

𝑐2

2
− 𝑐1ℎ0) sin (ℎ0𝑡)] }

= 0.

(18)

Considering the coefficients of cos2(ℎ0𝑡)𝑒
𝑡 and sin2

(ℎ0𝑡)𝑒
𝑡, we

get

(
1

4
+ 𝑑0) 𝑐

2

1
+ 𝑐

2

2
ℎ
2

0
− 𝑐1𝑐2ℎ0 = 0;

(
1

4
+ 𝑑0) 𝑐

2

2
+ 𝑐

2

1
ℎ
2

0
+ 𝑐1𝑐2ℎ0 = 0.

(19)

Adding the above two equalities, then 1/4 + 𝑑0 + ℎ
2

0
= 0 and

𝑑0 = 0.There is a contradiction with 𝑑0 > 1/4 and in this case
we have no solutions. So we obtain the following theorem.

Theorem 26. Let 𝑀 = 𝐼 × 𝐹 with the metric tensor −𝑑𝑡2 +
𝑓(𝑡)

2
𝑔𝐹 and 𝑃 = 𝜕/𝜕𝑡 and dim𝐹 > 1. Then (𝑀, ∇) is Einstein

with the Einstein constant𝜆 if and only if𝜆 = 0 and𝑓 = 𝑐1𝑒
𝑡
+𝑐2

and (𝐹, ∇𝐹
) is Einstein with the Einstein constant (𝑙 − 1)𝑐

2

2
.

By (14) and (15), we have the following.

Corollary 27. Let 𝑀 = 𝐼 × 𝐹 with the metric tensor −𝑑𝑡2 +
𝑓(𝑡)

2
𝑔𝐹 and 𝑃 = 𝜕/𝜕𝑡. Then (𝑀, ∇) has constant scalar

curvature 𝑆 if and only if (𝐹, ∇𝐹
) has constant scalar curvature

𝑆
𝐹 and

𝑆 =
𝑆
𝐹

𝑓2
− 2𝑙

𝑓


𝑓
− 𝑙 (𝑙 − 1)

𝑓
2

𝑓2
+ 2𝑙

2𝑓


𝑓
+ (1 − 𝑙) 𝑙. (20)

Corollary 28. Let 𝑀 = 𝐼 × 𝐹 with the metric tensor −𝑑𝑡2 +
𝑓(𝑡)

2
𝑔𝐹 and 𝑃 ∈ Γ(𝑇𝐹) and 𝑔𝐹(𝑃, 𝑃) = 𝑐0, div𝐹

𝑟

𝑃 = 𝑐


0
,

where 𝑐0 and 𝑐0 are constants. Then (𝑀, ∇) has constant scalar
curvature 𝑆 if and only if (𝐹, ∇𝐹

) has constant scalar curvature
𝑆
𝐹 and

𝑆 =
𝑆
𝐹

𝑓2
− 2𝑙

𝑓


𝑓
− 𝑙 (𝑙 − 1)

𝑓
2

𝑓2
+ 𝑐0 (𝑙 − 1) 𝑙𝑓

2
+ 2𝑐



0
𝑙. (21)

In (20), we make the change of variable 𝑓(𝑡) = √V(𝑡) and
have the following equation:

V (𝑡) +
𝑙 − 3

4

V(𝑡)2

V (𝑡)
− 𝑙V (𝑡) + (𝑙 − 1 +

𝑆

𝑙
) V (𝑡) −

𝑆
𝐹

𝑙
= 0.

(22)

Theorem 29. Let 𝑀 = 𝐼 × 𝐹 with the metric tensor −𝑑𝑡2 +
𝑓(𝑡)

2
𝑔𝐹 and 𝑃 = 𝜕/𝜕𝑡 and dim𝐹 = 𝑙 = 3. Then (𝑀, ∇) has

constant scalar curvature 𝑆 if and only if (𝐹, ∇𝐹
) has constant

scalar curvature 𝑆𝐹

(1) 𝑆 < 3/4 and 𝑆 ̸= − 6, V(𝑡) = 𝑐1𝑒
((3+√1−(4/3)𝑆)/2)𝑡

+

𝑐2𝑒
((3−√1−(4/3)𝑆)/2)𝑡

+ (𝑆
𝐹
/(6 + 𝑆));

(2) 𝑆 = 3/4, V(𝑡) = 𝑐1𝑒
(3/2)𝑡

+ 𝑐2𝑡𝑒
(3/2)𝑡

+ (𝑆
𝐹
/(6 + 𝑆));

(3) 𝑆 > 3/4, V(𝑡) = 𝑐1𝑒
(3/2)𝑡 cos((√(4/3)𝑆 − 1/2)𝑡) +

𝑐2𝑒
(3/2)𝑡 sin((√(4/3)𝑆 − 1/2)𝑡) + (𝑆

𝐹
/(6 + 𝑆));

(4) 𝑆 = −6, V(𝑡) = 𝑐1 − (𝑆
𝐹
/9)𝑡 + 𝑐2𝑒

3𝑡.

Proof. If 𝑙 = 3, then we have a simple differential equation as
follows:

V (𝑡) − 3V (𝑡) + (2 +
𝑆

3
) V (𝑡) −

𝑆
𝐹

3
= 0. (23)

If 𝑆 ̸= − 6, putting ℎ(𝑡) = (2 + 𝑆/3)V(𝑡) − 𝑆
𝐹
/3, it follows

that ℎ(𝑡) − 3ℎ

(𝑡) + (2 + 𝑆/3)ℎ(𝑡) = 0. The above solutions

(1)–(3) follow directly from elementarymethods for ordinary
differential equations. When 𝑆 = −6, then V(𝑡) − 3V(𝑡) −
𝑆
𝐹
/3 = 0, and we get solution (4).
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Theorem 30. Let 𝑀 = 𝐼 × 𝐹 with the metric tensor −𝑑𝑡2 +
𝑓(𝑡)

2
𝑔𝐹 and 𝑃 = 𝜕/𝜕𝑡 and dim𝐹 = 𝑙 ̸= 3 and 𝑆𝐹 = 0. If (𝑀, ∇)

has constant scalar curvature 𝑆 if and only if

(1) 𝑆 < 𝑙/(𝑙 + 1), V(𝑡) = (𝑐1𝑒
((𝑙+√1−((𝑙+1)/𝑙)𝑆)/2)𝑡

+

𝑐2𝑒
((𝑙−√1−((𝑙+1)/𝑙)𝑆)/2)𝑡

)
4/(𝑙+1);

(2) 𝑆 = 𝑙/(𝑙 + 1), V(𝑡) = (𝑐1𝑒
(𝑙/2)𝑡

+ 𝑐2𝑡𝑒
(𝑙/2)𝑡

)
4/(𝑙+1)

;
(3) 𝑆 > 𝑙/(𝑙 + 1), V(𝑡) =

(𝑐1𝑒
(𝑙/2)𝑡 cos((√((𝑙 + 1)/𝑙)𝑆 − 1/2)𝑡) +

𝑐2𝑒
(𝑙/2)𝑡 sin((√((𝑙 + 1)/𝑙)𝑆 − 1/2)𝑡))

4/(𝑙+1).

Proof. In this case, (22) is changed into the simpler form

V (𝑡)
V (𝑡)

+
𝑙 − 3

4

V(𝑡)2

V(𝑡)2
− 𝑙

V (𝑡)
V (𝑡)

+ (𝑙 − 1 +
𝑆

𝑙
) = 0. (24)

Putting V(𝑡) = 𝑤(𝑡)
4/(𝑙+1), then𝑤(𝑡) satisfies the equation𝑤

−

𝑙𝑤

+((𝑙+1)/4)(𝑙−1+𝑆/𝑙)𝑤 = 0; by the elementarymethods for

ordinary differential equations we prove the above theorem.

When dim𝐹 = 𝑙 ̸= 3 and 𝑆
𝐹

̸= 0, putting V(𝑡) = 𝑤(𝑡)
4/(𝑙+1),

then 𝑤(𝑡) satisfies the following equation:

𝑤

− 𝑙𝑤


+
(𝑙 + 1)

4
(𝑙 − 1 +

𝑆

𝑙
)𝑤 −

(𝑙 + 1)

4

𝑆
𝐹

𝑙
𝑤

1−4/(𝑙+1)
= 0.

(25)

5. Generalized Kasner Space-Times with
a Semisymmetric Metric Connection

In this section, we consider the scalar and Ricci curvature of
generalizedKasner space-times with a semisymmetricmetric
connection. We recall the definition of generalized Kasner
space-times [5].

Definition 31. A generalized Kasner space-time (𝑀, 𝑔) is
a Lorentzian multiply warped product of the form 𝑀 =

𝐼×𝜙𝑝1𝐹1 × ⋅ ⋅ ⋅ ×𝜙𝑝𝑚𝐹𝑚 with the metric 𝑔 = −𝑑𝑡
2
⊕ 𝜙

2𝑝
1𝑔𝐹
1

⊕

⋅ ⋅ ⋅ ⊕ 𝜙
2𝑝
𝑚𝑔𝐹
𝑚

, where 𝜙 : 𝐼 → (0,∞) is smooth and 𝑝𝑖 ∈ R,
for any 𝑖 ∈ {1, . . . , 𝑚} and also 𝐼 = (𝑡1, 𝑡2).

We introduce the following parameters 𝜁 = ∑
𝑚

𝑖=1
𝑙𝑖𝑝𝑖

and 𝜂 = ∑
𝑚

𝑖=1
𝑙𝑖𝑝

2

𝑖
for generalized Kasner space-times. By

Theorem 15 and direct computations, we get the following.

Proposition 32. Let 𝑀 = 𝐼×𝜙𝑝1𝐹1 × ⋅ ⋅ ⋅ ×𝜙𝑝𝑚𝐹𝑚 be a
generalized Kasner space-time and 𝑃 = 𝜕/𝜕𝑡. Then (𝑀, ∇) is
Einstein with the Einstein constant 𝜆 if and only if the following
conditions are satisfied for any 𝑖 ∈ {1, . . . , 𝑚}:

(1) (𝐹𝑖, ∇
𝐹
𝑖) is Einstein with the Einstein constant 𝜆𝑖, 𝑖 ∈

{1, . . . , 𝑚};
(2) 𝜁((𝜙

− 𝜙

)/𝜙) − (𝜂 − 𝜁)(𝜙

2
/𝜙

2
) = 𝜆;

(3) 𝜆𝑖/𝜙
2𝑝
𝑖 − 𝑝𝑖(𝜙


/𝜙) − (𝜁 − 1)𝑝𝑖(𝜙

2
/𝜙

2
) + [𝜁 + (𝑛 −

2)𝑝𝑖](𝜙

/𝜙) = 𝑛 + 𝜆 − 2.

By (14), we obtain the following.

Proposition 33. Let 𝑀 = 𝐼×𝜙𝑝1𝐹1 × ⋅ ⋅ ⋅ ×𝜙𝑝𝑚𝐹𝑚 be a
generalized Kasner space-time and 𝑃 = 𝜕/𝜕𝑡. Then (𝑀, ∇)

has constant scalar curvature 𝑆 if and only if each (𝐹𝑖, ∇𝐹
𝑖) has

constant scalar curvature 𝑆𝐹𝑖 and

𝑆 =

𝑚

∑

𝑖=1

𝑆
𝐹
𝑖

𝜙2𝑝
𝑖

− 2𝜁
𝜙


𝜙
− (𝜂 + 𝜁

2
− 2𝜁)

𝜙
2

𝜙2
+ 2 (𝑛 − 1) 𝜁

𝜙


𝜙

+ (2 − 𝑛) (𝑛 − 1) .

(26)

Next, we first give a classification of four-dimensional
generalizedKasner space-times with a semisymmetricmetric
connection and then consider Ricci tensors and scalar curva-
tures of them.

Definition 34. Let 𝑀 = 𝐼×𝑏
1

𝐹1 × ⋅ ⋅ ⋅ ×𝑏
𝑚

𝐹𝑚 with the metric
𝑔 = −𝑑𝑡

2
⊕ 𝑏

2

1
𝑔𝐹
1

⊕ ⋅ ⋅ ⋅ ⊕ 𝑏
2

𝑚
𝑔𝐹
𝑚

. Consider the following:
(i) (𝑀, 𝑔) is said to be of type (I) if𝑚 = 1 anddim(𝐹) = 3;
(ii) (𝑀, 𝑔) is said to be of type (II) if𝑚 = 2 and dim(𝐹1) =

1 and dim(𝐹2) = 2;
(iii) (𝑀, 𝑔) is said to be of type (III) if𝑚 = 3 anddim(𝐹1) =

1, dim(𝐹2) = 1 and dim(𝐹3) = 1.

By Theorems 26 and 29, we have given a classification of
type (I) Einstein spaces and type (I) spaces with the constant
scalar curvature.

5.1. Classification of Einstein Type (II) Generalized Kasner
Space-Times with a Semisymmetric Metric Connection. Let
𝑀 = 𝐼×𝜙𝑝1𝐹1×𝜙𝑝2𝐹2 be an Einstein type (II) generalized
Kasner space-time and 𝑃 = 𝜕/𝜕𝑡. Then 𝜁 = 𝑝1 + 2𝑝2, 𝜂 =

𝑝
2

1
+ 2𝑝

2

2
. By Theorem 15, we have

𝜁(
𝜙

− 𝜙



𝜙
) − (𝜂 − 𝜁)

𝜙
2

𝜙2
= 𝜆, (27a)

−𝑝1

𝜙


𝜙
− (𝜁 − 1) 𝑝1

𝜙
2

𝜙2
+ [𝜁 + 2𝑝1]

𝜙


𝜙
= 𝜆 + 2, (27b)

𝜆2

𝜙2𝑝
2

− 𝑝2

𝜙


𝜙
− (𝜁 − 1) 𝑝2

𝜙
2

𝜙2
+ [𝜁 + 2𝑝2]

𝜙


𝜙
= 𝜆 + 2,

(27c)

where 𝜆2 is a constant. Consider the following two cases.
Case (i) (𝜁 = 0). In this case, 𝑝2 = −(1/2)𝑝1, 𝜂 = (3/2)𝑝

2

1
.

Then by (27a)–(5.2iii), we have

−𝜂
𝜙
2

𝜙2
= 𝜆, (28a)

𝑝1 (−
𝜙


𝜙
+
𝜙
2

𝜙2
+ 2

𝜙


𝜙
) = 𝜆 + 2, (28b)

𝜆2

𝜙−𝑝
1

−
1

2
𝑝1 (−

𝜙


𝜙
+
𝜙
2

𝜙2
+ 2

𝜙


𝜙
) = 𝜆 + 2. (28c)
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Case (i)(a) (𝜂 = 0). One has 𝑝𝑖 = 0; by (28a), 𝜆 = 0. By (28b),
𝜆 + 2 = 0; this is a contradiction.

Case (i)(b) (𝜂 ̸= 0). One has 𝑝𝑖 ̸= 0.

Case (i)(b)(1) (𝜆2 = 0). By (28b) and (28c), 𝜆 = −2 and

−
𝜙


𝜙
+
𝜙
2

𝜙2
+ 2

𝜙


𝜙
= 0,

𝜙
2

𝜙2
=
2

𝜂
; (29)

then 𝜙 = 𝑐0𝑒
±(√2/𝜂)𝑡 which does not satisfy the first equation

in (29); this a contradiction.

Case (i)(b)(2) (𝜆2 ̸= 0). By (28b) and (28c), we have 𝜆2/𝜙
−𝑝
1 =

(3/2)(𝜆 + 2), so 𝜙 is a constant. By (28b), 𝜆+ 2 = 0, so 𝜆2 = 0;
this is a contradiction. In a word, we have no solutions when
𝜁 = 0.

Case (ii) (𝜁 ̸= 0). One has 𝜂 ̸= 0. Putting 𝜙 = 𝜓
𝜁/𝜂, then 𝜓


−

𝜓

+ (𝜆𝜂/𝜁

2
)𝜓 = 0. Hence,

(1) 𝜆 < 𝜁
2
/4𝜂, 𝜓 = 𝑐1𝑒

((1+√1−4𝜆𝜂/𝜁2)/2)𝑡
+

𝑐2𝑒
((1−√1−4𝜆𝜂/𝜁2)/2)𝑡,

(2) 𝜆 = 𝜁
2
/4𝜂, 𝜓 = 𝑐1𝑒

(1/2)𝑡
+ 𝑐2𝑡𝑒

(1/2)𝑡,

(3) 𝜆 > 𝜁
2
/4𝜂, 𝜓 = 𝑐1𝑒

(1/2)𝑡 cos((√4𝜆𝜂/𝜁2 − 1/2)𝑡) +

𝑐2𝑒
(1/2)𝑡 sin((√4𝜆𝜂/𝜁2 − 1/2)𝑡).

We make (27a), (5.2ii), (5.2iii) into

𝜁
2

𝜂

𝜓

− 𝜓



𝜓
= 𝜆, 𝜓 = 𝜙

𝜂/𝜁
, (30a)

−
𝑝1

𝜁

(𝜙
𝜁
)


𝜙𝜁
+
𝜁 + 2𝑝1

𝜁

(𝜙
𝜁
)


𝜙𝜁
= 𝜆 + 2, (30b)

𝜆2

𝜙2𝑝
2

−
𝑝2

𝜁

(𝜙
𝜁
)


𝜙𝜁
+
𝜁 + 2𝑝2

𝜁

(𝜙
𝜁
)


𝜙𝜁
= 𝜆 + 2. (30c)

When 𝑝1 = 𝑝2, type (II) spaces turn into type (I) spaces, so
we assume 𝑝1 ̸= 𝑝2. By (30b) and (30c), then

𝜓

=

𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
𝜓

1−2𝑝
2
𝜁/𝜂

+
(𝜆 + 2) 𝜂

𝜁2
𝜓. (31)

Case (ii)(1).Consider𝜆 < 𝜁
2
/4𝜂, 𝜓 = 𝑐1𝑒

𝑎𝑡
+ 𝑐2𝑒

𝑏𝑡, where 𝑎 =

(1 + √1 − 4𝜆𝜂/𝜁2)/2, 𝑏 = ((1 − √1 − 4𝜆𝜂/𝜁2)/2)𝑡.
By (31),

𝑎𝑐1𝑒
𝑎𝑡
+ 𝑏𝑐2𝑒

𝑏𝑡

=
𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
(𝑐1𝑒

𝑎𝑡
+ 𝑐2𝑒

𝑏𝑡
)
1−2𝑝
2
𝜁/𝜂

+
(𝜆 + 2) 𝜂

𝜁2
(𝑐1𝑒

𝑎𝑡
+ 𝑐2𝑒

𝑏𝑡
) .

(32)

Case (ii)(1)(a) (𝑐1 = 0). One has

[𝑏 −
(𝜆 + 2) 𝜂

𝜁2
] 𝑐2𝑒

𝑏𝑡
=

𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
(𝑐2𝑒

𝑏𝑡
)
1−2𝑝
2
𝜁/𝜂

. (33)

Case (ii)(1)(a)(1) (𝑏 ̸= 0, 𝑝1𝜆2 ̸= 0). One has 𝑝2 = 0 and 𝜁 =

𝑝1, 𝜂 = 𝑝
2

1
and 𝑏 = (1 − √1 − 4𝜆)/2 and 𝜓 = 𝑐2𝑒

𝑏𝑡. By (30b)
and 𝑏

2
− 𝑏 + 𝜆 = 0, we get −𝑏2 + 3𝑏 = 𝜆 + 2 and 𝑏 = 1. But

𝑏 < 1/2, and this is a contradiction.

Case (ii)(1)(a)(2) (𝑏 ̸= 0, 𝑝1𝜆2 = 0). If 𝑝1 = 0, then 𝜁 = 2𝑝2,
𝜂 = 2𝑝

2

2
and 𝑏 = (𝜆 + 2)𝜂/𝜁

2, so 𝜆 = −4 and 𝑏 = −1. By (30c),
we get 𝜆2 = 0 and −2𝑏2 + 4𝑏 = 𝜆+ 2 which is a contradiction.

If 𝜆2 = 0, by (30b) and 𝑏 = (𝜆 + 2)𝜂/𝜁
2, we get 𝜆 = 0 or

−2. When 𝜆 = 0, then 𝑏 = 2𝜂/𝜁
2
= 0; this is a contradiction.

There is a similar contradiction for 𝜆 = −2.

Case (ii)(1)(a)(3) (𝑏 = 0). One has 𝜓 = 𝑐2; by (30a), 𝜆 = 0. By
(30b), 𝜆 = −2; this is a contradiction.

Case (ii)(1)(b) (𝑐2 = 0). One has

[𝑎 −
(𝜆 + 2) 𝜂

𝜁2
] 𝑐1𝑒

𝑎𝑡
=

𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
(𝑐1𝑒

𝑎𝑡
)
1−2𝑝
2
𝜁/𝜂

. (34)

Case (ii)(1)(b)(1) (𝑝1𝜆2 ̸= 0). One has 𝑝2 = 0 and 𝜁 = 2𝑝2, 𝜂 =

2𝑝
2

2
and 𝑎 = (1+√1 − 4𝜆)/2 and 𝜆2 = 𝜆+2−(1+√1 − 4𝜆)/2.

By (30b), then 𝑎 = 1 and 𝜆 = 0, so 𝜆2 = 1 and 𝜓 = 𝑐1𝑒
𝑡

and 𝜙 satisfies (30c). In this case, we get 𝑝2 = 0, 𝑝1 ̸= 0, 𝜙 =

𝑐0𝑒
𝑡/𝑝
1 , 𝜆 = 0, 𝜆2 = 1.

Case (ii)(1)(b)(2) (𝑝1𝜆2 = 0). If 𝑝1 = 0, then 𝜁 = 2𝑝2, 𝜂 = 2𝑝
2

2

and 𝜓 = 𝑐1𝑒
𝑎𝑡 and 𝑎 = (𝜆 + 2)𝜂/𝜁

2, so 𝜆 = 0 and 𝑎 = 1. By
(30c), we get 𝜆2 = 0 and 𝜙 satisfies (30b) and (30c). In this
case, 𝑝1 = 0, 𝑝2 ̸= 0 𝜆 = 0, 𝜆2 = 0, 𝜙 = 𝑐0𝑒

𝑡/𝑝
2 .

If 𝜆2 = 0, by (30b) and 𝑎 = (𝜆 + 2)𝜂/𝜁
2, then 𝜆 = 0 and

𝑎 = 2𝜂/𝜁
2
= 1. By (30c), then 𝜆2 = 0 and 𝜙 satisfies (30b) and

(30c). In this case, 𝑝1 ̸= 0, 𝑝2 ̸= 0, 𝜆 = 𝜆2 = 0, 𝑝1 = 4𝑝2, 𝜙 =

𝑐0𝑒
𝑡/3𝑝
2 .

Case (ii)(1)(c) (𝑐1 ̸= 0, 𝑐2 ̸= 0, 𝑏 ̸= 0). If 𝑝2 ̸= 0, then
𝑒
𝑎𝑡
, 𝑒

𝑏𝑡
, (𝑐1𝑒

𝑎𝑡
+ 𝑐2𝑒

𝑏𝑡
)
1−2𝑝
2
𝜁/𝜂 are linearly independent;

by (32), then

[𝑎 −
(𝜆 + 2) 𝜂

𝜁2
] 𝑐1 = 0, [𝑏 −

(𝜆 + 2) 𝜂

𝜁2
] 𝑐2 = 0,

𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
(𝑐1𝑒

𝑎𝑡
)
1−2𝑝
2
𝜁/𝜂

.

(35)

So 𝑎 = 𝑏 = (𝜆 + 2)𝜂/𝜁
2, and this is a contradiction.

If 𝑝2 = 0, then by (32),

𝑎 −
(𝜆 + 2) 𝜂

𝜁2
−

𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
= 0,

𝑏 −
(𝜆 + 2) 𝜂

𝜁2
−

𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
= 0,

(36)

so 𝑎 = 𝑏 and we get a contradiction.

Case (ii)(1)(d) (𝑐1 ̸= 0, 𝑐2 ̸= 0, 𝑏 = 0). When 1 − 2𝑝2𝜁/𝜂 ̸= 0, we
have similar discussions. When 1 − 2𝑝2𝜁/𝜂 = 0, we have (𝜆 +
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2)𝜂/𝜁
2
= 1. By 𝑏 = 0, then 𝜆 = 0 and 2𝜂 = 𝜁

2
= 4𝑝2𝜁, so

4𝑝2 = 𝜁 and 𝑝1 = 2𝑝2. But 𝜂 = 2𝑝2𝜁; then 𝑝1 = 𝑝2 = 0. This
is a contradiction.

Case (ii)(2) (𝜆 = 𝜁
2
/4𝜂, 𝜓 = 𝑐1𝑒

(1/2)𝑡
+ 𝑐2𝑡𝑒

(1/2)𝑡). By (31), we
have

[
1

2
𝑐1 + 𝑐2 − 𝑎0𝑐1 + (

𝑐2

2
− 𝑎0𝑐2) 𝑡] 𝑒

(1/2)𝑡

=
𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
(𝑐1 + 𝑐2𝑡)

1−2𝑝
2
𝜁/𝜂

(𝑒
(1/2)𝑡

)
1−2𝑝
2
𝜁/𝜂

,

(37)

where 𝑎0 = 1/4 + 2𝜂/𝜁
2.

Case (ii)(2)(a) (𝑐2 ̸= 0). One has (1/2)𝑐1 + 𝑐2 − 𝑎0𝑐1 + (𝑐2/2 −

𝑎0𝑐2)𝑡 ̸= 0 and 𝑝2 = 0. By (30c), 𝜆2 + (𝜙
𝜁
)


/𝜙
𝜁
= 𝜆 + 2, then

𝜙
𝜁
= 𝑐0𝑒

(−𝜆
2
+𝜆+2)𝑡 and (𝑐1𝑒

(1/2)𝑡
+ 𝑐2𝑡𝑒

(1/2)𝑡
)
𝜁
2
/𝜂

= 𝑐0𝑒
(−𝜆
2
+𝜆+2)𝑡;

this is a contradiction with 𝑐2 ̸= 0.

Case (ii)(2)(b) (𝑐2 = 0). By (37), we have

(
1

2
𝑐1 − 𝑎0𝑐1) 𝑒

(1/2)𝑡

=
𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
(𝑐1)

1−2𝑝
2
𝜁/𝜂

(𝑒
(1/2)𝑡

)
1−2𝑝
2
𝜁/𝜂

.

(38)

If 𝑎0 = 1/2, then 𝑝1𝜆2 = 0 and 𝜆 = 2. If 𝑝1 = 0, then 𝜁 = 2𝑝2

and by (30b), (𝜙𝜁
)


/𝜙
𝜁
= 4 and 𝜙

𝜁
= 𝑐0𝑒

4𝑡. By (30c),

𝜆2

(𝑐


0
𝑒(1/2)𝑡)

2𝑝
2
𝜁/𝜂

−
16𝑝2

𝜁
+ 4

𝜁 + 2𝑝2

𝜁
= 4, (39)

so 𝜆2 = 0 and we have a contradiction by (39).
If 𝑝1 ̸= 0, then 𝜆2 = 0, so𝜓 = 𝑐1𝑒

(1/2)𝑡 and 𝜙𝜁
= 𝑐0𝑒

4𝑡.Then
by (30b), we have 𝑝1 = 0 which contradicts with 𝑝1 ̸= 0.

If 𝑎0 ̸= 1/2, then 𝑝2 = 0 and 𝜁 = 𝑝1, 𝜂 = 𝑝
2

1
and 𝜆 =

1/4 and 𝑎0 = 9/4. By 𝜙
𝜉
= 𝑐1𝑒

(1/2)𝑡 and (30b), we have a
contradiction. In a word, we have no solutions in case (ii)(2).

Case (ii)(3). One has 𝜆 > 𝜁
2
/4𝜂, 𝜓 = 𝑐1𝑒

(1/2)𝑡 cos(𝑎𝑡) +
𝑐2𝑒

(1/2)𝑡 sin(𝑎𝑡), where 𝑎 = √4𝜆𝜂/𝜁2 − 1/2. By (31), we have

(
𝑐1

2
+ 𝑎𝑐2) cos (𝑎𝑡) + (−𝑎𝑐1 +

𝑐2

2
) sin (𝑎𝑡)

=
𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
(𝑐1 cos (𝑎𝑡) + 𝑐2 sin (𝑎𝑡))

1−2𝑝
2
𝜁/𝜂

𝑒
−2𝑝
2
𝜁/𝜂

+
(𝜆 + 2) 𝜂

𝜁2
(𝑐1 cos (𝑎𝑡) + 𝑐2 sin (𝑎𝑡)) .

(40)

If 𝑝2 ̸= 0, then 𝑝1𝜆2 = 0 and

𝑐1

2
+ 𝑎𝑐2 =

(𝜆 + 2) 𝜂

𝜁2
𝑐1, −𝑎𝑐1 +

𝑐2

2
=
(𝜆 + 2) 𝜂

𝜁2
𝑐2, (41)

so 𝑐2
1
+ 𝑐

2

2
= 0. This is a contradiction.

If 𝑝2 = 0, then

𝑐1

2
+ 𝑎𝑐2 =

𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
𝑐1 +

(𝜆 + 2) 𝜂

𝜁2
𝑐1,

−𝑎𝑐1 +
𝑐2

2
=

𝑝1𝜆2𝜂

(𝑝2 − 𝑝1) 𝜁
2
𝑐2 +

(𝜆 + 2) 𝜂

𝜁2
𝑐2.

(42)

Then 𝑐
2

1
+ 𝑐

2

2
= 0. This is a contradiction. By the above

discussions, we get the following theorem.

Theorem 35. Let𝑀 = 𝐼×𝜙𝑝1𝐹1×𝜙𝑝2𝐹2 be a generalized Kasner
space-time and dim𝐹1 = 1, dim𝐹2 = 2 and 𝑃 = 𝜕/𝜕𝑡. Then
(𝑀, ∇) is Einstein with the Einstein constant 𝜆 if and only if
(𝐹2, ∇

𝐹
2) is Einstein with the Einstein constant 𝜆2, and one of

the following conditions is satisfied:

(1) 𝑝2 = 0, 𝑝1 ̸= 0, 𝜙 = 𝑐0𝑒
𝑡/𝑝
1 , 𝜆 = 0, 𝜆2 = 1;

(2) 𝑝1 = 0, 𝑝2 ̸= 0, 𝜆 = 0, 𝜆2 = 0, 𝜙 = 𝑐0𝑒
𝑡/𝑝
2 ;

(3) 𝑝1 ̸= 0, 𝑝2 ̸= 0, 𝜆 = 𝜆2 = 0, 𝑝1 = 4𝑝2, 𝜙 = 𝑐0𝑒
𝑡/3𝑝
2 .

5.2. Type (II) GeneralizedKasner Space-Timeswith a Semisym-
metricMetric Connection with Constant Scalar Curvature. By
Proposition 33, then (𝐹2, ∇

𝐹
2) has constant scalar curvature

𝑆
𝐹
2 and

𝑆 =
𝑆
𝐹
2

𝜙2𝑝
2

− 2𝜁
𝜙


𝜙
− (𝜂 + 𝜁

2
− 2𝜁)

𝜙
2

𝜙2
+ 6𝜁

𝜙


𝜙
− 6. (43)

If 𝜁 = 0, when 𝜂 = 0, then 𝑝1 = 𝑝2 = 0 and 𝑆 = 𝑆
𝐹
2 − 6. If

𝜂 ̸= 0, then

𝜂
𝜙
2

𝜙2
=

𝑆
𝐹
2

𝜙2𝑝
2

− (𝑆 + 6) . (44)

If 𝜁 ̸= 0, putting 𝜙 = 𝜓
2𝜁/(𝜂+𝜁

2
), we get

−
4𝜁

2

𝜂 + 𝜁2
𝜓


+

12𝜁
2

𝜂 + 𝜁2
𝜓


− (𝑆 + 6)𝜓 + 𝑆

𝐹
2𝜓

1−4𝑝
2
𝜁/(𝜂+𝜁

2
)
= 0.

(45)

5.3. Type (III) Generalized Kasner Space-Times with a
Semisymmetric Metric Connection with Constant Scalar Cur-
vature. By Proposition 33, then

𝑆 = −2𝜁
𝜙


𝜙
− (𝜂 + 𝜁

2
− 2𝜁)

𝜙
2

𝜙2
+ 6𝜁

𝜙


𝜙
− 6. (46)

If 𝜁 = 𝜂 = 0, then 𝑝1 = 𝑝2 = 𝑝3 = 0, and we get 𝑆 = −6.
If 𝜁 = 0, 𝜂 ̸= 0, then [(ln𝜙)]2 = −(𝑆+6)/𝜂, so when 𝑆+6 >

0, there are no solutions, when 𝑆 + 6 = 0, 𝜙 is a constant, and

when 𝑆 + 6 < 0, 𝜙 = 𝑐0𝑒
±(√−(𝑆+6)/𝜂)𝑡.
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If 𝜁 ̸= 0, then 𝜂 ̸= 0; putting 𝜙 = 𝜓
2𝜁/(𝜂+𝜁

2
), then

𝜓

− 3𝜓


+

(𝑆 + 6) (𝜂 + 𝜁
2
)

4𝜁2
𝜓 = 0. (47)

So, we get

(1) 𝑆 + 6 < 9𝜁
2
/(𝜂 + 𝜁

2
), 𝜓 = 𝑐1𝑒

((3+√9−(𝑆+6)(𝜂+𝜁2)/𝜁2)/2)𝑡
+

𝑐2𝑒
((3−√9−(𝑆+6)(𝜂+𝜁2)/𝜁2)/2)𝑡,

(2) 𝑆 + 6 = 9𝜁
2
/(𝜂 + 𝜁

2
), 𝜓 = 𝑐1𝑒

(3/2)𝑡
+ 𝑐2𝑡𝑒

(3/2)𝑡,
(3) 𝑆 + 6 > 9𝜁

2
/(𝜂 + 𝜁

2
), 𝜓 =

𝑐1𝑒
(3/2)𝑡 cos((√−9 + (𝑆 + 6)(𝜂 + 𝜁2)/𝜁2/2)𝑡) +

𝑐2𝑒
(3/2)𝑡 sin((√−9 + (𝑆 + 6)(𝜂 + 𝜁2)/𝜁2/2)𝑡). So

we get the following theorem.

Theorem 36. Let𝑀 = 𝐼×𝜙𝑝1𝐹1×𝜙𝑝2𝐹2×𝜙𝑝3𝐹3 be a generalized
Kasner space-time and dim𝐹1 = dim𝐹2 = dim𝐹3 = 1, and
𝑃 = 𝜕/𝜕𝑡.Then 𝑆 is a constant if and only if one of the following
cases holds.

(1) One has 𝜁 = 𝜂 = 0, 𝑆 = −6.
(2) One has 𝜁 = 0, 𝜂 ̸= 0; when 𝑆 + 6 > 0, there are no

solutions, when 𝑆 + 6 = 0, 𝜙 is a constant, and when
𝑆 + 6 < 0, 𝜙 = 𝑐0𝑒

±√−((𝑆+6)/𝜂)𝑡.
(3) If 𝜁 ̸= 0

(a) 𝑆 + 6 < 9𝜁
2
/(𝜂 + 𝜁

2
), 𝜙 =

(𝑐1𝑒
(3+√9−(𝑆+6)(𝜂+𝜁2)/𝜁2/2)𝑡

+

𝑐2𝑒
(3−√9−(𝑆+6)(𝜂+𝜁2)/𝜁2/2)𝑡

)
2𝜁/(𝜂+𝜁

2
),

(b) 𝑆 + 6 = 9𝜁
2
/(𝜂 + 𝜁

2
), 𝜙 =

(𝑐1𝑒
(3/2)𝑡

+ 𝑐2𝑡𝑒
(3/2)𝑡

)
2𝜁/(𝜂+𝜁

2
)

,
(c) 𝑆 + 6 > 9𝜁

2
/(𝜂 + 𝜁

2
), 𝜙 = (𝑐1𝑒

(3/2)𝑡

cos((√−9 + (𝑆 + 6)(𝜂 + 𝜁2)/𝜁2/2)𝑡) +𝑐2𝑒
(3/2)𝑡

sin((√−9+(𝑆+6)(𝜂+𝜁2)/𝜁2/2)𝑡))
2𝜁/(𝜂+𝜁

2
).

5.4. Einstein Type (III) Generalized Kasner Space-Times with
a Semisymmetric Metric Connection. By Proposition 32, we
have

𝜁(
𝜙

− 𝜙



𝜙
) − (𝜂 − 𝜁)

𝜙
2

𝜙2
= 𝜆, (48a)

−𝑝1 [
𝜙


𝜙
+ (𝜁 − 1)

𝜙
2

𝜙2
− 2

𝜙


𝜙
] + 𝜁

𝜙


𝜙
= 𝜆 + 2, (48b)

−𝑝2 [
𝜙


𝜙
+ (𝜁 − 1)

𝜙
2

𝜙2
− 2

𝜙


𝜙
] + 𝜁

𝜙


𝜙
= 𝜆 + 2, (48c)

−𝑝3 [
𝜙


𝜙
+ (𝜁 − 1)

𝜙
2

𝜙2
− 2

𝜙


𝜙
] + 𝜁

𝜙


𝜙
= 𝜆 + 2. (48d)

If 𝜁 = 𝜂 = 0, by (48a), 𝜆 = 0 and by (48b), 𝜆 = −2; this is a
contradiction.

If 𝜁 = 0, 𝜂 ̸= 0, adding (48b), (48c), and (48d), we get
𝜆 = −2. By (48a), 𝜙2

/𝜙
2
= 2/𝜂 and 𝜙 = 𝑐0𝑒

±√2/𝜂𝑡. But by
(48b), then 𝜙


/𝜙 + (𝜁 − 1)(𝜙

2
/𝜙

2
) − 2𝜙


/𝜙 = 0, and this is a

contradiction.
Consider 𝜁 ̸= 0. If 𝑝1 = 𝑝2 = 𝑝3, we get type (I), so we

may let 𝑝1 ̸= 𝑝2. By (48b) and (48c), we have (𝜙
𝜁
)


/𝜙
𝜁
= 𝜆 + 2

and (𝜙
𝜁
)


/𝜙
𝜁
− 2(𝜙

𝜁
)


/𝜙
𝜁
= 0, so 𝜙

𝜁
= 𝑐0𝑒

(𝜆+2)𝑡 and 𝜆 = −2

or 0. When 𝜆 = −2, 𝜓 is a constant; by (48a), 𝜆 = 0, this is a
contradiction. When 𝜆 = 0, 𝜓 = 𝑐0𝑒

2𝜂𝑡/𝜁
2

, and 𝜓

− 𝜓


= 0,

so 2𝜂/𝜁2 = 1. In this case, we get when 𝑝𝑖 ̸= 𝑝𝑗 for some 𝑖, 𝑗 ∈
{1, 2, 3}, 𝜆 = 0, 2𝜂/𝜁

2
= 1, 𝜙 = 𝑐0𝑒

2𝑡/𝜁. We get the following
theorem.

Theorem 37. Let 𝑀 = 𝐼×𝜙𝑝1𝐹1×𝜙𝑝2𝐹2×𝜙𝑝3𝐹3 be a generalized
Kasner space-time for 𝑝𝑖 ̸= 𝑝𝑗 for some 𝑖, 𝑗 ∈ {1, 2, 3} and
dim𝐹1 = dim𝐹2 = dim𝐹3 = 1, and 𝑃 = 𝜕/𝜕𝑡. Then
(𝑀, ∇) is Einstein with the Einstein constant 𝜆 if and only if
𝜆 = 0, 2𝜂/𝜁

2
= 1, 𝜙 = 𝑐0𝑒

2𝑡/𝜁.

Remark 38. Comparing with Proposition 4.3, Proposition
4.11, Section 5 in [5], in Proposition 32, Proposition 33, and
Theorems 35–37, the unit vector field 𝑃 = 𝜕/𝜕𝑡 emerges. For
Proposition 4.3, Proposition 4.11, Section 5 in [5], 𝑃 equals
zero. So equations in our theorems are different from the
equations in theorems in [5].
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