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We consider the recently introduced notion of I-statistical convergence (Das, Savas and Ghosal, Appl. Math. Lett., 24(9) (2011),
1509–1514, Savas and Das, Appl. Math. Lett. 24(6) (2011), 826–830) in probabilistic normed spaces and in the following (Şençimen
and Pehlivan (2008 vol. 26, 2008 vol. 87, 2009)) we introduce the notions like strongI-statistical cluster points and extremal limit
points, and strongI-statistical continuity and strongI-statisticalD-boundedness in probabilistic normed spaces and study some
of their important properties.

1. Introduction

The idea of convergence of real sequences had been extended
to statistical convergence by Fast [1] and basic ideas were
further developed in [2–5]. Recall that “asymptotic density”
of a set 𝐴 ⊆ N is defined as

𝑑 (𝐴) = lim
𝑛→∞

1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐴}| , (1)

provided that the limit exists, where N denotes the set of
natural numbers and the vertical bar stands for cardinality
of the enclosed set. The sequence {𝑝

𝑛
}
𝑛∈N of reals is said to be

statistically convergent to a real number 𝑝 if, for each 𝜖 > 0,

lim
𝑛→∞

1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑥

󵄨󵄨󵄨󵄨 ≥ 𝜖}
󵄨󵄨󵄨󵄨 = 0. (2)

The concepts of I and I∗-convergence, two important
generalizations of statistical convergence, were introduced
and investigated by Kostyrko et al. [6]. The ideas were
based on the notion of ideal I of N. Subsequently, a lot of
investigations have been done on ideal convergence (see [7–
17] where many more references both on ideal as well as
statistical convergence can be found). Very recently, ideals

were used in a different way to generalize the notion of
statistical convergence [18, 19] and certain new and summa-
bility methods were introduced and their basic properties
were investigated. More recently these ideas were extended
to double sequences in [20].

On the other hand, the idea of probabilistic metric space
was first introduced byMenger [21] in the name of “statistical
metric space.” Probabilistic normed space (briefly PN space)
is a generalisation of an ordinary normed linear space. In a
PN space, the norms of the vectors are represented by the
distribution functions instead of nonnegative real numbers.
Detailed theory of these spaces can be found in the famous
book written by Schweizer and Sklar [22] and the monogram
[23]. One can also see the papers [22, 24–35] where the basic
ideas were established. Several topologies can be defined on
this space. But the topology that was found to be most useful
is the “strong topology.” Şençimen and Pehlivan have very
recently extended the notion of strong convergence to strong
statistical convergence in probabilistic metric spaces [36] and
carried out further investigations on statistical continuity and
statistical 𝐷-boundedness in PN spaces [37, 38]. These were
followed by the studies of strong ideal convergence in PM
and PN spaces in [10, 13, 39], studies of lacunary statistical

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 909364, 10 pages
http://dx.doi.org/10.1155/2014/909364

http://dx.doi.org/10.1155/2014/909364


2 Abstract and Applied Analysis

convergence in PN spaces in [40]. As a natural extension,
we had recently introduced the idea of strong I-statistical
convergence in PM spaces [41] and as a followup in this
paper we investigate the notion of strong I-statistical limit
and cluster points in PN spaces. Further, we have introduced
the concepts like strong I-statistical continuity and strong
I-statistical𝐷-boundedness in such spaces and investigated
some of their important properties.

2. Preliminaries

First, we recall someof the basic concepts related to the theory
of probabilistic metric and normed spaces (see [22, 23, 31–
39, 42] for more details).

Definition 1. A nondecreasing function 𝐹 : R → [0, 1]

defined on R with 𝐹(−∞) = 0 and 𝐹(∞) = 1, where R =

[−∞,∞], is called a distribution function.
The set of all left continuous distribution functions over

(−∞,∞) is denoted by Δ. One considers the relation “≤” on
Δ defined by 𝐹 ≤ 𝐺 if and only if 𝐹(𝑥) ≤ 𝐺(𝑥) for all 𝑥 ∈ R. It
can be easily verified that the relation “≤” is a partially order
on Δ.

Definition 2. For any 𝑎 ∈ R, the unit step function at 𝑎 is
denoted by 𝜀

𝑎
and is defined to be a function in Δ given by

𝜀
𝑎
(𝑥) = {

0, if −∞ ≤ 𝑥 ≤ 𝑎,

1, if 𝑎 < 𝑥 ≤ ∞.
(3)

Definition 3. A sequence {𝐹
𝑛
}
𝑛∈N of distribution functions

converges weakly to a distribution function 𝐹 and one writes
𝐹
𝑛

𝑤

󳨀→ 𝐹 if and only if the sequence {𝐹
𝑛
(𝑥)}
𝑛∈N converges to

𝐹(𝑥) at each continuity point 𝑥 of 𝐹.

Definition 4. The distance between 𝐹 and 𝐺 in Δ is denoted
by 𝑑
𝐿
(𝐹, 𝐺) and is defined as the infimum of all numbers ℎ ∈

(0, 1] such that the inequalities

𝐹 (𝑥 − ℎ) − ℎ ≤ 𝐺 (𝑥) ≤ 𝐹 (𝑥 + ℎ) + ℎ,

𝐺 (𝑥 − ℎ) − ℎ ≤ 𝐹 (𝑥) ≤ 𝐺 (𝑥 + ℎ) + ℎ

(4)

hold for every 𝑥 ∈ (−1/ℎ, 1/ℎ).

Here, we are interested in the subset of Δ consisting of
those elements 𝐹 that satisfy 𝐹(0) = 0.

Definition 5. A distance distribution function is a nonde-
creasing function 𝐹 defined on R+ = [0,∞] that satisfies
𝐹(0) = 0 and 𝐹(∞) = 1 and is left continuous on (0,∞).

The set of all distance distribution functions is denoted
by Δ+. The function 𝑑

𝐿
is clearly a metric on Δ

+. The metric
space (Δ+, 𝑑

𝐿
) is compact and hence complete.

Theorem 6. Let 𝐹 ∈ Δ
+ be given. Then, for any 𝑡 > 0, 𝐹(𝑡) >

1 − 𝑡 if and only if 𝑑
𝐿
(𝐹, 𝜀
0
) < 𝑡.

Note. Geometrically, 𝑑
𝐿
(𝐹, 𝜀
0
) is the abscissa of the point

of intersection of the line 𝑦 = 1 − 𝑥 and the graph of 𝐹

(if necessary we add vertical line segment at the point of
discontinuity).

Definition 7. A triangular norm (briefly, a 𝑡-norm) 𝑇 is a
binary operation on the unit interval 𝑇 : [0, 1] × [0, 1] →

[0, 1] that is associative, commutative, nondecreasing in
each place, and has 1 as identity. The operations defined by
𝑀(𝑥, 𝑦) = min{𝑥, 𝑦} and 𝜋(𝑥, 𝑦) = 𝑥𝑦 are particular 𝑡-
norms. Given a 𝑡-norm 𝑇, its 𝑇-conorm 𝑇

∗ is defined as a
mapping on [0, 1] × [0, 1] by 𝑇∗(𝑥, 𝑦) = 1 − 𝑇(1 − 𝑥, 1 − 𝑦).

Definition 8. A triangle function is a binary operation 𝜏

on Δ
+, 𝜏 : Δ

+

× Δ
+

→ Δ
+, which is commutative,

associative, and nondecreasing in each place, and has 𝜀
0
as

identity. Triangle functions can be constructed through left-
continuous 𝑡-norms. If 𝑇 is such a 𝑇-norm, then

𝜏
𝑇
(𝐹, 𝐺) (𝑥) = sup {𝑇 (𝐹 (𝑠) , 𝐺 (𝑡)) : 𝑠 + 𝑡 = 𝑥} (5)

is a triangle function, where 𝑥 ∈ R+. If, moreover, 𝑇 is
continuous, then 𝜏

𝑇
is uniformly continuous on (Δ

+

, 𝑑
𝐿
). If

𝑇
∗ is a continuous 𝑡-conorm, then

𝜏
𝑇
∗
(𝐹, 𝐺) (𝑥) = inf {𝑇∗ (𝐹 (𝑠) , 𝐺 (𝑡)) : 𝑠 + 𝑡 = 𝑥} (6)

is a triangle function which is uniformly continuous on
(Δ
+

, 𝑑
𝐿
).

Definition 9. A probabilistic metric space (briefly a PM
space) is a triplet (𝑋,F, 𝜏) where 𝑋 is a nonempty set, F is
a function from 𝑋 × 𝑋 into Δ

+, and 𝜏 is a triangle function.
The following conditions are satisfied for all 𝑥, 𝑦, 𝑧 ∈ 𝑋:

(PM1) F(𝑥, 𝑥) = 𝜀
0
;

(PM2) F(𝑥, 𝑦) ̸= 𝜀
0
if 𝑥 ̸= 𝑦;

(PM3) F(𝑥, 𝑦) = F(𝑦, 𝑥);
(PM4) F(𝑥, 𝑧) ≥ 𝜏(F(𝑥, 𝑦),F(𝑦, 𝑧)).

In the sequel, we will denote F(𝑥, 𝑦) by 𝐹
𝑥𝑦

and its value
at 𝑡 by 𝐹

𝑥𝑦
(𝑡).

Definition 10. A probabilistic normed space (briefly a PN
space) is a quadruple (𝑋, 𝜂, 𝜏, 𝜏

∗

), where 𝑋 is a real linear
space, 𝜏 and 𝜏∗ are continuous triangle functions with 𝜏 ≤ 𝜏

∗,
and 𝜂 is a mapping (the probabilistic norm) from 𝑋 into the
space of distribution functions Δ+ such that, writing 𝑁

𝑝
for

𝜂(𝑝) for all 𝑝, 𝑞 in𝑋, the following conditions hold:

(N1) 𝑁
𝑝
= 𝜀
0
if and only if 𝑝 = 𝜃, the null vector in𝑋;

(N2) 𝑁
−𝑝

= 𝑁
𝑝
;

(N3) 𝑁
𝑝+𝑞

≥ 𝜏(𝑁
𝑝
, 𝑁
𝑞
);

(N4) 𝑁
𝑝
≤ 𝜏
∗

(𝑁
𝛼𝑝
, 𝑁
(1−𝛼)𝑝

) for all 𝛼 ∈ [0, 1].

A Menger PN space under 𝑇 is a PN space (𝑋, 𝜂, 𝜏, 𝜏∗) in
which 𝜏 = 𝜏

𝑇
and 𝜏

∗

= 𝜏
𝑇
∗
for some continuous 𝑡-norm 𝑇

and its 𝑡-conorm 𝑇
∗. It is denoted by (𝑋, 𝜂, 𝑇).

Throughout the text, 𝑋 will represent the PN space
(𝑋, 𝜂, 𝜏, 𝜏

∗

).
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Theorem 11. Let (𝑋, 𝜂, 𝜏, 𝜏∗) be a probabilistic normed space
and letF be the function from𝑋 × 𝑋 to Δ+ defined by

F (𝑥, 𝑦) = 𝜂 (𝑥 − 𝑦) = 𝑁
𝑥−𝑦

. (7)

Then, (𝑋, 𝜂, 𝜏, 𝜏∗) is a probabilistic metric space (briefly PM
space).

Definition 12. Let 𝑋 be a PN space. For 𝑥 ∈ 𝑋 and 𝑡 > 0, the
strong 𝑡-neighbourhood of 𝑝 is defined as the set

N
𝑝
(𝑡) = {𝑞 ∈ 𝑋 : 𝑑

𝐿
(𝑁
𝑝−𝑞

, 𝜀
0
) < 𝑡} . (8)

Since 𝜏 is continuous, strong neighbourhood systemN =

{N
𝑝
(𝑡) : 𝑡 > 0, 𝑝 ∈ 𝑋} that determines a Hausdorff and first

countable topology for 𝑋. This topology is called the strong
topology for𝑋.

Remark 13. Throughout the rest of this paper, we always
assume that in a PN space 𝑋 the triangle function 𝜏 is
continuous and𝑋 is endowed with strong topology.

Definition 14. A sequence {𝑝
𝑛
}
𝑛∈N in the PN space 𝑋 is said

to be strongly convergent to a point 𝑝 in 𝑋 and one writes
𝑝
𝑛

→ 𝑝 or lim
𝑛→∞

𝑝
𝑛
= 𝑝 if for any 𝑡 > 0 there exists a

natural number𝑁 such that 𝑝
𝑛
∈ N
𝑝
(𝑡) whenever 𝑛 ≥ 𝑁.

Definition 15. Given a nonempty set 𝐴 in the PN space𝑋, its
probabilistic radiusR

𝐴
is defined by

R
𝐴
(𝑥) = {

𝑙
−1

𝜙
𝐴
(𝑥) , if 𝑥 ∈ [0,∞) ,

1, if 𝑥 = ∞,
(9)

where 𝑙−1𝑓(𝑥) denotes the left limit of the function 𝑓 at the
point 𝑥 and 𝜙

𝐴
(𝑥) = inf{𝑁

𝑝
(𝑥) : 𝑝 ∈ 𝐴}.

Definition 16. A nonempty set𝐴 in a PN space𝑋 is said to be

(1) certainly bounded if R
𝐴
(𝑥
0
) = 1 for some 𝑥

0
∈

(0,∞);
(2) perhaps bounded if R

𝐴
(𝑥) < 1 for every 𝑥 ∈ (0,∞)

and 𝑙
−1R
𝐴
(+∞) = 1;

(3) perhaps unbounded if R
𝐴
(𝑥
0
) > 0 for some 𝑥

0
∈

(0,∞) and 𝑙
−1R
𝐴
(+∞) ∈ (0, 1);

(4) certainly unbounded if 𝑙−1R
𝐴
(+∞) = 0 that is, if

R
𝐴
= 𝜀
∞
.

Moreover, 𝐴 is said to be distributionally bounded (𝐷-
bounded) if either (1) or (2) holds; that is, ifR

𝐴
∈ D+ = {𝐹 ∈

Δ
+

: 𝑙
−1

𝐹(+∞) = 1}; otherwise, if R
𝐴
∈ Δ
+

\ D+, then A is
said to be𝐷-unbounded.

In the following, we now recall some of the basic concepts
related to ideals.

Definition 17. Let𝑋 be any nonempty set. A nonempty family
I ⊆ P(𝑋) is called an ideal in𝑋 if

(1) 𝐴, 𝐵 ∈ I implies 𝐴 ∪ 𝐵 ∈ I;
(2) 𝐴 ∈ I and 𝐵 ⊆ 𝐴 imply 𝐵 ∈ I.

Definition 18. Let𝑋 be any nonempty set. A nonempty family
F ⊆ P(𝑋) is called a filter in𝑋 if

(1) 0 ∉ F;
(2) 𝐴, 𝐵 ∈ F implies 𝐴 ∩ 𝐵 ∈ F;
(3) 𝐴 ∈ F and 𝐴 ⊆ 𝐵 imply 𝐵 ∈ F.

IfI is an ideal in 𝑋, thenF(I) = {𝑋 \ 𝐴 : 𝐴 ∈ I} is a
filter in 𝑋, which is called the filter associated with the ideal
I. An idealI in 𝑋 is called proper if and only if 𝑋 ∉ I.I
is called nontrivial ifI ̸= {0}. An ideal is called an admissible
ideal if it is proper and contains {𝑥} for all 𝑥 ∈ 𝑋.

Definition 19. An admissible ideal I is said to satisfy the
condition (AP) if, for every countable family of mutually
disjoint sets {𝐴

1
, 𝐴
2
, . . .} belonging to I, there exists a

countable family of sets {𝐵
1
, 𝐵
2
, . . .} such that𝐴

𝑗
Δ𝐵
𝑗
is a finite

set for every 𝑗 ∈ N and 𝐵 = ∪
∞

𝑗=1
𝐵
𝑗
∈ I.

Throughout the paper,I stands for a nontrivial admissi-
ble ideal of N andF(I) is the filter associated with the ideal
I of N.

Definition 20 (see [18]). A sequence of real numbers {𝑥
𝑛
}
𝑛∈N

is said to beI-statistically convergent to 𝑥 if, for each 𝜖 > 0

and 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨𝑥𝑘 − 𝑥

󵄨󵄨󵄨󵄨 ≥ 𝜖}
󵄨󵄨󵄨󵄨 ≥ 𝛿} ∈ I. (10)

In this case, we write 𝑥
𝑛
→ 𝑥 (𝑆(I)).

Definition 21 (see [41]). A sequence {𝑥
𝑛
}
𝑛∈N in a PM space

(𝑋,F, 𝜏) is said to be strong I-statistically convergent to 𝑥

if, for each 𝜖 > 0 and 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 : 𝑥
𝑘
∉ N
𝑥
(𝜖)}

󵄨󵄨󵄨󵄨 ≥ 𝛿} ∈ I. (11)

In this case, we write 𝑥
𝑛

→ 𝑥 (𝑆PM(I)) and the class
of all strong I-statistically convergent sequences is simply
denoted by 𝑆PM(I).

Definition 22 (see [41]). A sequence {𝑥
𝑛
}
𝑛∈N in a PM space

(𝑋,F, 𝜏) is said to be strong I-statistically Cauchy if, for
every 𝜖 > 0, there exists a positive integer 𝑁 = 𝑁(𝜖) such
that, for any 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑥

𝑘
∉ N
𝑥𝑁

(𝜖)}
󵄨󵄨󵄨󵄨󵄨
≥ 𝛿} ∈ I. (12)

3. Strong I-Statistical Limit Points and Strong
I-Statistical Cluster Points in Probabilistic
Normed Spaces

In this section, we extend the notions of strong statistical limit
points and strong statistical cluster points in PN spaces using
ideals. Let (𝑋, 𝜂, 𝜏, 𝜏∗) be a PN space.

Definition 23 (see [36]). Let {𝑝
𝑛
}
𝑛∈N be a sequence in 𝑋. We

say that a point 𝑝 ∈ 𝑋 is a strong limit point of {𝑝
𝑛
}
𝑛∈N
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provided that there exists a subsequence of {𝑝
𝑛
}
𝑛∈N that

strongly converges to 𝑝. We denote the set of all strong limit
points of {𝑝

𝑛
}
𝑛∈N by 𝐿

𝑠
(𝑝
𝑛
).

Definition 24. Let {𝑝
𝑛
}
𝑛∈N be a sequence in𝑋 and let {𝑝

𝑛𝑗
}
𝑗∈N

be a subsequence of {𝑝
𝑛
}
𝑛∈N. Denote𝐾 = {𝑛

1
< 𝑛
2
< ⋅ ⋅ ⋅ } =

{𝑛
𝑗
: 𝑗 ∈ N}. If, for all 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}| ≥ 𝛿} ∈ I, (13)

then we say that {𝑝
𝑛𝑗
}
𝑗∈N is anI-statistical thin subsequence

of {𝑝
𝑛
}
𝑛∈N. If, for some 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}| ≥ 𝛿} ∉ I, (14)

then {𝑝
𝑛𝑗
}
𝑗∈N is called an I-statistical nonthin subsequence

of {𝑝
𝑛
}
𝑛∈N.

In this sequel, wewill abbreviate the subsequence {𝑝
𝑛𝑘
}
𝑘∈N

of {𝑝
𝑛
}
𝑛∈N as {𝑝}

𝐾
, where 𝐾 = {𝑛

1
< 𝑛
2
< ⋅ ⋅ ⋅ }.

Definition 25. Let {𝑝
𝑛
}
𝑛∈N be a sequence in 𝑋. An element

𝑞 ∈ 𝑋 is a strongI-statistical limit point of {𝑝
𝑛
}
𝑛∈N provided

that there exists a set 𝑀 = {𝑚
1
< 𝑚
2
< ⋅ ⋅ ⋅ } ⊂ N such that,

for some 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝑀}| ≥ 𝛿} ∉ I, (15)

and the subsequence {𝑝
𝑚𝑘
}
𝑘∈N strongly converges to 𝑞. We

denote the set of all strongI-statistical limit points of {𝑝
𝑛
}
𝑛∈N

by Λ
𝑆(I)(𝑝𝑛).

Definition 26. Let {𝑝
𝑛
}
𝑛∈N be a sequence in𝑋. An element 𝑟 ∈

𝑋 is a strong I-statistical cluster point of {𝑝
𝑛
}
𝑛∈N provided

that for every 𝜖 > 0 there is a 𝛿 = 𝛿(𝜖) > 0 such that

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
𝑝𝑘−𝑟

, 𝜀
0
) < 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿} ∉ I. (16)

We denote the set of all strongI-statistical cluster points of
{𝑝
𝑛
}
𝑛∈N by Γ

𝑆(I)(𝑝𝑛).

Theorem 27. For any sequence {𝑝
𝑛
}n∈N in 𝑋, one has

Λ
𝑆(I)(𝑝𝑛) ⊆ Γ

𝑆(I)(𝑝𝑛) ⊆ 𝐿
𝑠
(𝑝
𝑛
).

Proof. Assume that 𝑞 ∈ Λ
𝑆(I)(𝑝𝑛). Then, there exists a set

𝑀 = {𝑚
1

< 𝑚
2

< ⋅ ⋅ ⋅ } such that, for some 𝛿 > 0, say
𝛿
0
, {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝑀}| ≥ 𝛿

0
} ∉ I and

the subsequence {𝑝
𝑚𝑘
}
𝑘∈N of {𝑝

𝑛
}
𝑛∈N strongly converges to

𝑞. Now, for every 𝜖 > 0, {𝑛 ∈ N : 𝑑
𝐿
(𝑁
𝑝𝑛−𝑞

, 𝜀
0
) < 𝜖} ⊇

𝑀 \ {𝑚
𝑘
∈ 𝑀 : 𝑑

𝐿
(𝑁
𝑝𝑚
𝑘
−𝑞
, 𝜀
0
) ≥ 𝜖}. Since 𝑝

𝑚𝑘
→ 𝑞 strongly,

the set {𝑚
𝑘

∈ 𝑀 : 𝑑
𝐿
(𝑁
𝑝𝑚
𝑘
−𝑞
, 𝜀
0
) ≥ 𝜖} is finite for every

𝜖 > 0. Let 𝜖 > 0 be given. If possible let, for every 𝛿 > 0,

{𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
𝑝𝑘−𝑞

, 𝜀
0
) < 𝜖}| ≥ 𝛿} ∈ I. Then,

we have

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
𝑝𝑘−𝑞

, 𝜀
0
) < 𝜖}

󵄨󵄨󵄨󵄨󵄨
< 𝛿}

⊆ {𝑛 ∈ N :

1

𝑛

󵄨󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝑀 \ {𝑚

𝑘
∈ N : 𝑑

𝐿
(𝑁
𝑝𝑚
𝑘
−𝑞
, 𝜀
0
) ≥ 𝜖}}

󵄨󵄨󵄨󵄨󵄨󵄨

< 𝛿}

= {𝑛 ∈ N :
1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝑀}| < 𝛿

󸀠

} ,

(17)

where 𝛿󸀠 > 𝛿+𝑘
0
/𝑛 and 𝑘

0
= |{𝑚

𝑘
∈ 𝑀 : 𝑑

𝐿
(𝑁
𝑝𝑚
𝑘
−𝑞
, 𝜀
0
) ≥ 𝜖}|.

Clearly, {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝑀}| ≥ 𝛿
󸀠

} ⊆ {𝑛 ∈ N :

(1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
𝑝𝑘−𝑞

, 𝜀
0
) < 𝜖}| ≥ 𝛿}. Now, choose 𝛿 > 0

small enough and 𝑛
0
∈ N in such a way that 𝛿 + 𝑘

0
/𝑛
0
< 𝛿
󸀠

=

𝛿
0
. Then,

{𝑛 ∈ N :
1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝑀}| ≥ 𝛿

0
}

⊂ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
𝑝𝑘−𝑞

, 𝜀
0
) < 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

∪ {1, 2, . . . , 𝑛
0
} .

(18)

By our assumption, the set on the right-hand side belongs to
I and so {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝑀}| ≥ 𝛿

0
} ∈ I, which

is a contradiction. This implies that there is a 𝛿 > 0 such that
{𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
𝑝𝑘−𝑞

, 𝜀
0
) < 𝜖}| ≥ 𝛿} ∉ I.

Therefore, 𝑞 ∈ Γ
𝑆(I)(𝑝𝑛).

Next, let 𝑞 ∈ Γ
𝑆(I)(𝑝𝑛). Then, for every 𝜖 > 0, there is a

𝛿 = 𝛿(𝜖) > 0 such that {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
𝑝𝑘−𝑞

, 𝜀
0
) <

𝜖}| ≥ 𝛿} ∉ I. This means that there are infinitely many terms
of the sequence {𝑝

𝑛
}
𝑛∈N in every strong 𝜖-neighbourhood of

𝑞; that is, 𝑞 ∈ Ł
𝑠
(𝑝
𝑛
). This completes the proof.

Theorem 28. Let {𝑝
𝑛
}
𝑛∈N be a sequence in 𝑋. If 𝑝

𝑛
→

𝑝 (𝑆PM(I)), then Γ
𝑆(I)(𝑝𝑛) = {𝑝}.

Proof. Let 𝑝
𝑛

→ 𝑝 (𝑆PM(I)). Then, {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤

𝑛 : 𝑑
𝐿
(𝑁
𝑝𝑘−𝑝

, 𝜀
0
) ≥ 𝜖}| ≥ 𝛿} ∈ I for all 𝜖 > 0 and 𝛿 > 0.

Clearly, {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
𝑝𝑘−𝑝

, 𝜀
0
) < 𝜖}| ≥ 𝛿} ∉ I.

Therefore,𝑝 ∈ Γ
𝑆(I)(𝑝𝑛). Now, assume that there exists at least

one 𝑟 ∈ Γ
𝑆(I)(𝑝𝑛) such that 𝑟 ̸= 𝑝. Since the strong topology is

Hausdorff, we can choose 𝑡, 𝑡󸀠 > 0 such that

{𝑛 ∈ N : 𝑑
𝐿
(𝑁
𝑝𝑛−𝑟

, 𝜀
0
) < 𝑡
󸀠

} ⊆ {𝑛 ∈ N : 𝑑
𝐿
(𝑁
𝑝𝑛−𝑝

, 𝜀
0
) ≥ 𝑡} .

(19)

Hence, we get, for any 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑝

𝑘
∈ N
𝑟
(𝑡
󸀠

)}
󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑝

𝑘
∉ N
𝑝
(𝑡)}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿} .

(20)
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Since 𝑝
𝑛

→ 𝑝 (𝑆PM(I)), the set on the right-hand side
belongs to I. This implies that, for the chosen 𝑡

󸀠

> 0, {𝑛 ∈

N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
𝑝𝑘−𝑟

, 𝜀
0
) < 𝑡
󸀠

}| ≥ 𝛿} ∈ I for every
𝛿 > 0. This contradicts the fact that 𝑟 ∈ Γ

𝑆(I)(𝑝𝑛). Therefore,
we have Γ

𝑆(I)(𝑝𝑛) = {𝑝}.

Theorem 29. For any sequence {𝑝
𝑛
}
𝑛∈N in𝑋, the set Γ

𝑆(I)(𝑝𝑛)

of strong I-statistical cluster points of {𝑝
𝑛
}
𝑛∈N is strongly

closed.

Proof. Let 𝑝 ∈ 𝜅(Γ
𝑆(I)(𝑝𝑛)), where 𝜅(𝐴) denotes the strong

closure of the set𝐴 (see [22]). Choose 𝑡 > 0.Then, Γ
𝑆(I)(𝑝𝑛)∩

N
𝑝
(𝑡) ̸= 0. Let 𝑟 ∈ Γ

𝑆(I)(𝑝𝑛) ∩ N
𝑝
(𝑡). Choose 𝑡󸀠 > 0 in such

a way thatN
𝑟
(𝑡
󸀠

) ⊆ N
𝑝
(𝑡). Since 𝑟 ∈ Γ

𝑆(I)(𝑝𝑛), there exists a
𝛿
1
> 0 such that {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑝

𝑘
∈ N
𝑟
(𝑡
󸀠

)}| ≥ 𝛿
1
} ∉

I. SinceN
𝑟
(𝑡
󸀠

) ⊆ N
𝑝
(𝑡), it follows that

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑝

𝑘
∈ N
𝑟
(𝑡
󸀠

)}
󵄨󵄨󵄨󵄨󵄨
≥ 𝛿
1
}

⊆ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑝

𝑘
∈ N
𝑝
(𝑡)}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿
1
} .

(21)

As {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑝
𝑘
∈ N
𝑟
(𝑡
󸀠

)}| ≥ 𝛿
1
} ∉ I,

consequently {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑝
𝑘
∈ N
𝑝
(𝑡)}| ≥ 𝛿

1
} ∉

I. Hence, 𝑝 ∈ Γ
𝑆(I)(𝑝𝑛); that is, 𝜅(Γ𝑆(I)(𝑝𝑛)) ⊆ Γ

𝑆(I)(𝑝𝑛).
This proves that Γ

𝑆(I)(𝑝𝑛) is strongly closed.

Theorem 30. If {𝑝
𝑛
}
𝑛∈N and {𝑞

𝑛
}
𝑛∈N are two sequences in 𝑋

and there exists a set𝑀 = {𝑚
1
< 𝑚
2
< ⋅ ⋅ ⋅ } ⊂ N such that {𝑛 ∈

N : (1/𝑛)|{𝑘 ≤ 𝑛 : k ∉ 𝑀}| ≥ 𝛿} ∈ I and 𝑝
𝑚𝑘

= 𝑞
𝑚𝑘
, for all

𝑘 ∈ N, thenΛ
𝑆(I)(𝑝𝑛) = Λ

𝑆(I)(𝑞𝑛) and Γ𝑆(I)(𝑝𝑛) = Γ
𝑆(I)(𝑞𝑛).

Proof. Assume that 𝑢 ∈ Λ
𝑆(I)(𝑝𝑛). Let {𝑝}𝐾 = {𝑝

𝑛𝑗
}
𝑗∈N be

an I-statistical nonthin subsequence of {𝑝
𝑛
} that strongly

converges to 𝑢, where 𝐾 = {𝑛
1
< 𝑛
2
< ⋅ ⋅ ⋅ }. Since {𝑛 ∈ N :

(1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝑀}| ≥ 𝛿} ∈ I, {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∈

𝐾 \ 𝑀}| ≥ 𝛿} ∈ I. But (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}| = (1/𝑛)|{𝑘 ≤

𝑛 : 𝑘 ∈ 𝐾 ∩ 𝑀}| + (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾 \ 𝑀}|. Hence,
{𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}| ≥ 𝛿} ⊂ {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 :

𝑘 ∈ 𝐾 ∩M}| ≥ 𝛿/2} ∪ {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾 \ 𝑀}| ≥

𝛿/2}. Since the set on the left-hand side does not belong toI
whereas the second set on the right-hand side belongs toI,
the first set on the right-hand side cannot belong to I. This
shows that {𝑞}

𝐾∩𝑀
is a I-statistical nonthin subsequence of

{𝑞}
𝑛∈N that strongly converges to 𝑢. Hence, 𝑢 ∈ Λ

𝑆(I)(𝑞𝑛)

and so Λ
𝑆(I)(𝑝𝑛) ⊆ Λ

𝑆(I)(𝑞𝑛). Similarly, we can prove that
Λ
𝑆(I)(𝑞𝑛) ⊆ Λ

𝑆(I)(𝑝𝑛). Hence, Λ 𝑆(I)(𝑝𝑛) = Λ
𝑆(I)(𝑞𝑛).

The second assertion Γ
𝑆(I)(𝑝𝑛) = Γ

𝑆(I)(𝑞𝑛) can be
similarly proved.

4. Strong I-Statistical Continuity in
Probabilistic Normed Spaces

In this section, we introduce the notion of the strong I-
statistical continuity and investigate the same for a proba-
bilistic norm, vector addition operation, and scalar multipli-
cation.

Definition 31. Let (𝑋, 𝜂, 𝜏, 𝜏∗) and (𝑌, ], 𝜏, 𝜏∗) be two proba-
bilistic normed spaces. A function 𝑓 : 𝑋 → 𝑌 is said to
be strongly I-statistically continuous at a point 𝑥

0
∈ 𝑋 if

𝑥
𝑛
→ 𝑥
0
(𝑆PM(I)) implies that 𝑓(𝑥

𝑛
) → 𝑓(𝑥

0
) (𝑆PM(I)).

If 𝑓 is strongly I-statistically continuous at each point
of a set 𝑀 ⊆ 𝑋, then 𝑓 is said to be strongly I-statistically
continuous on𝑀.

Theorem32. Let (𝑋, 𝜂, 𝜏, 𝜏∗) be a PN space. Let𝑋 be endowed
with the strong topology and let Δ+ be endowed with the 𝑑

𝐿
-

metric topology.Then, 𝜂 is a stronglyI-statistically continuous
mapping from𝑋 to Δ+.

Proof. It is known that the probabilistic norm 𝜂 is a uniformly
continuous mapping from 𝑋 to Δ

+; that is, for any 𝑡 > 0,
there exists a 𝜆 > 0 such that 𝑑

𝐿
(𝑁
𝑝
, 𝑁
𝑝
󸀠) < 𝑡 whenever

𝑝
󸀠

∈ N
𝑝
(𝜆). Now, let {𝑝

𝑛
}
𝑛∈N be a sequence in 𝑋 such that

𝑝
𝑛
→ 𝑝 (𝑆PM(I)). Then, we have, for each 𝑡 > 0, {𝑛 ∈ N :

𝑑
𝐿
(𝑁
𝑝𝑛
, 𝑁
𝑝
) ≥ 𝑡} ⊆ {𝑛 ∈ N : 𝑝

𝑛
∉ N
𝑝
(𝜆)}. Clearly, for all

𝑡 > 0 and 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
𝑝𝑘
, 𝑁
𝑝
) ≥ 𝑡}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑝

𝑘
∉ N
𝑝
(𝜆)}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿} .

(22)

Since 𝑝
𝑛

→ 𝑝 (𝑆PM(I)), the set on the right-hand side
belongs to I. Consequently, for any 𝑡, 𝛿 > 0, {𝑛 ∈ N :

(1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
𝑝𝑘
, 𝑁
𝑝
) ≥ 𝑡}| ≥ 𝛿} ∈ I. Hence, by

definition, we have 𝑁
𝑝𝑛

→ 𝑁
𝑝
(𝑆PM(I)). This means that

𝜂 is a stronglyI-statistically continuous mapping.

Theorem33. Let (𝑋, 𝜂, 𝜏, 𝜏
∗

) be a PN space. Let𝑋 be endowed
with the strong topology and let Δ+ be endowed with the 𝑑

𝐿
-

metric topology. Also assume that 𝑋 × 𝑋 is endowed with
the corresponding product topology. Then, vector addition is a
stronglyI-statistically continuous mapping from𝑋 × 𝑋 to𝑋.

Proof. Let {𝑝
𝑛
}
𝑛∈N and {𝑞

𝑛
}
𝑛∈N be two sequences in 𝑋 such

that 𝑝
𝑛

→ 𝑝 (𝑆PM(I)) and 𝑞
𝑛

→ 𝑞 (𝑆PM(I)). As
𝑁
(𝑝𝑛+𝑞𝑛)−(𝑝+𝑞)

≥ 𝜏(𝑁
𝑝𝑛−𝑝

, 𝑁
𝑞𝑛−𝑞

), 𝑑
𝐿
(𝑁
(𝑝𝑛+𝑞𝑛)−(𝑝+𝑞)

, 𝜀
0
) ≤

𝑑
𝐿
(𝜏(𝑁
𝑝𝑛−𝑝

, 𝑁
𝑞𝑛−𝑞

), 𝜀
0
) for every 𝑛 ∈ N. Again since conti-

nuity of 𝜏 implies its uniform continuity, it follows that for
any 𝑡 > 0 there is a 𝜆 > 0 such that 𝑑

𝐿
(𝜏(𝐹, 𝐺), 𝜀

0
) < 𝑡

whenever 𝑑
𝐿
(𝐹, 𝜀
0
) < 𝜆 and 𝑑

𝐿
(𝐺, 𝜀
0
) < 𝜆, where 𝐹, 𝐺 ∈

Δ
+. Now, let 𝑡 > 0. Then, we can find a 𝜆 > 0 such that

𝑑
𝐿
(𝜏(𝑁
𝑝𝑛−𝑝

, 𝑁
𝑞𝑛−𝑞

), 𝜀
0
) < 𝑡 whenever 𝑑

𝐿
(𝑁
𝑝𝑛−𝑝

, 𝜀
0
) < 𝜆 and

𝑑
𝐿
(𝑁
𝑞𝑛−𝑞

, 𝜀
0
) < 𝜆. Hence, 𝑑

𝐿
(𝑁
(𝑝𝑛+𝑞𝑛)−(𝑝+𝑞)

, 𝜀
0
) < 𝑡 whenever

𝑝
𝑛
∈ N
𝑝
(𝜆) and 𝑞

𝑛
∈ N
𝑞
(𝜆). Thus, we have, for all 𝑡 > 0,

{𝑛 ∈ N : 𝑑
𝐿
(𝑁
(𝑝𝑛+𝑞𝑛)−(𝑝+𝑞)

, 𝜀
0
) ≥ 𝑡}

⊂ {𝑛 ∈ N : 𝑝
𝑛
∉ N
𝑝
(𝜆)} ∪ {𝑛 ∈ N : 𝑞

𝑛
∉ N
𝑞
(𝜆)} .

(23)
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Therefore, we have, for all 𝑡 > 0 and 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
(𝑝𝑘+𝑞𝑘)−(𝑝+𝑞)

, 𝜀
0
) ≥ 𝑡}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊂ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑝

𝑘
∉ N
𝑝
(𝜆)}

󵄨󵄨󵄨󵄨󵄨
≥

𝛿

2
}

∪ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑞

𝑘
∉ N
𝑞
(𝜆)}

󵄨󵄨󵄨󵄨󵄨
≥

𝛿

2
} .

(24)

Since 𝑝
𝑛

→ 𝑝 (𝑆PM(I)) and 𝑞
𝑛

→ 𝑞 (𝑆PM(I)), each set
on the right-hand side belongs to I and so their union also
belongs toI.Therefore, we get, for each 𝑡 > 0 and 𝛿 > 0, {𝑛 ∈

N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
(𝑝𝑘+𝑞𝑘)−(𝑝+𝑞)

, 𝜀
0
) ≥ 𝑡}| ≥ 𝛿} ∈ I. This

shows that (𝑝
𝑛
+ 𝑞
𝑛
) → (𝑝 + 𝑞) (𝑆PM(I)) which completes

the proof.

Corollary 34. Let (𝑋, 𝜂, 𝜏, 𝜏∗) be a PN space. The mapping ]
from 𝑋 × 𝑋 to Δ+ defined as ](𝑝, 𝑞) = 𝑁

𝑝+𝑞
for any 𝑝, 𝑞 ∈ 𝑋

is stronglyI-statistically continuous.

Proof. Proof of this result immediately follows from Theo-
rems 32 and 33.

We now investigate the strong I-statistical continuity
properties of scalar multiplication given byM(𝛼, 𝑝) = 𝛼𝑝 for
all 𝛼 ∈ R and 𝑝 ∈ 𝑋.

Lemma 35 (see [37]). For any 𝛼 ∈ R, 𝑟 ∈ 𝑋, and ℎ > 0, there
exists a 𝜆 > 0 such that 𝑑

𝐿
(𝑁
𝛼𝑟
, 𝜀
0
) < ℎwhenever 𝑑

𝐿
(𝑁
𝑟
, 𝜀
0
) <

𝜆.

Theorem 36. The mapping M is strongly I-statistically con-
tinuous in its second place; that is, for a fixed 𝛼 ∈ R, scalar
multiplication is a stronglyI-statistically continuous mapping
from𝑋 to𝑋.

Proof. Let 𝛼 ∈ R be fixed and let {𝑝
𝑛
}
𝑛∈N be a sequence in

𝑋 such that 𝑝
𝑛
→ 𝑝 (𝑆PM(I)). Then, by Lemma 35, for any

ℎ > 0, we can find a 𝜆 > 0 such that {𝑛 ∈ N : 𝑑
𝐿
(𝑁
𝑝𝑛−𝑝

, 𝜀
0
) <

𝜆} ⊆ {𝑛 ∈ N : 𝑑
𝐿
(𝑁
𝛼(𝑝𝑛−𝑝)

, 𝜀
0
) < ℎ}. Therefore, for any 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
𝛼(𝑝𝑘−𝑝)

, 𝜀
0
) ≥ ℎ}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
𝑝𝑘−𝑝

, 𝜀
0
) ≥ 𝜆}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿} .

(25)

Since 𝑝
𝑛

→ 𝑝 (𝑆PM(I)), the set on the right-hand side
belongs to I. Therefore, for any ℎ > 0 and 𝛿 > 0, {𝑛 ∈ N :

(1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
𝛼
(𝑝
𝑘
− 𝑝), 𝜀

0
) ≥ ℎ}| ≥ 𝛿} ∈ I. Hence,

𝛼𝑝
𝑛
→ 𝛼𝑝 (𝑆PM(I)).

However, in general, the mapping M needs not to be
stronglyI-statistically continuous in its first place.

Example 37. Let 𝑋 be the real line R viewed as a one-
dimensional linear space and let 𝜏 = 𝜏

𝑊
and 𝜏
∗

= 𝜏
𝑀
, where

𝜏
𝑊
and 𝜏
𝑀
are the continuous triangle functions defined by

(𝜏
𝑊
(𝐹, 𝐺)) (𝑡) = sup {max {𝐹 (𝑢) + 𝐺 (V) − 1, 0} : 𝑢 + V = 𝑡} ,

(𝜏
𝑀
(𝐹, 𝐺)) (𝑡) = sup {min {𝐹 (𝑢) , 𝐺 (V)} : 𝑢 + V = 𝑡} .

(26)

For 𝑝 ∈ R, define 𝜂 by setting 𝜂(0) = 𝜀
0
and

𝜂 (𝑝) = 𝑁
𝑝
=

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨 + 1

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨 + 2

𝜀
0
+

1

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨 + 2

𝜀
∞
, for 𝑝 ̸= 0. (27)

Clearly, (𝑋, 𝜂, 𝜏, 𝜏∗) is a PN space. Choose an infinite set 𝐴 ∈

I. Now, consider the real sequence {𝛼
𝑛
}
𝑛∈N defined by

𝛼
𝑛
=
{

{

{

1, if 𝑛 ∈ 𝐴,

1

𝑛
, if 𝑛 ∈ N \ 𝐴.

(28)

It can be easily shown that 𝛼
𝑛

→ 0 (𝑆PM(I)) but
𝑑
𝐿
(𝑁
𝛼𝑛𝑝

, 𝜀
0
) 󴀀󴀂󴀠 0 (𝑆PM(I)). This example shows that the

mapping from R into 𝑋 defined by 𝛼 󳨃→ 𝛼𝑝 is not strongly
I-statistically continuous for any fixed 𝑝 ∈ 𝑋; that is, the
mapping M is not strongly I-statistically continuous in its
first place.

A triangle function 𝜏
∗ is called Archimedean if 𝜏∗ admits

no idempotents other than 𝜖
0
and 𝜖

∞
. More details on

Archimedean triangle function can be found in the book [22].
If 𝜏∗ is Archimedean, then we can establish the following
lemmas.

Lemma 38 (see [37]). If 𝜏∗ is Archimedean, then, for any 𝑝 ∈

𝑋 such that 𝑁
𝑝

̸= 𝜀
∞

and any ℎ > 0, there exists a 𝛽 > 0 such
that 𝑑

𝐿
(𝑁
𝛼𝑝
, 𝜀
0
) < ℎ whenever |𝛼| < 𝛽.

Theorem 39. If (𝑋, 𝜂, 𝜏, 𝜏
∗

) is PN space such that 𝜏
∗ is

Archimedean and if 𝑁
𝑝

̸= 𝜀
∞

for every 𝑝 ∈ 𝑋, then for
any fixed 𝑝 ∈ 𝑋 the mapping M is strongly I-statistically
continuous in its first place.

Proof. Let 𝑝 ∈ 𝑋 be fixed and let {𝛼
𝑛
}
𝑛∈N be a real sequence

such that 𝛼
𝑛
→ 𝛼 (𝑆(I)). Let ℎ > 0 be given. By Lemma 38,

we can find a 𝛽 > 0 such that 𝑑
𝐿
(𝑁
(𝑟−𝛼)𝑝

, 𝜀
0
) < ℎ whenever

|𝑟 − 𝛼| < 𝛽. In particular, |𝛼
𝑛
− 𝛼| < 𝛽 implies that

𝑑
𝐿
(𝑁
(𝛼𝑛−𝛼)𝑝

, 𝜀
0
) < ℎ. Therefore, {𝑛 ∈ N : 𝑑

𝐿
(𝑁
(𝛼𝑛−𝛼)𝑝

, 𝜀
0
) ≥

ℎ} ⊆ {𝑛 ∈ N : |𝛼
𝑛
− 𝛼| ≥ 𝛽}. It now readily follows that, for all

𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
(𝛼𝑘−𝛼)𝑝

, 𝜀
0
) ≥ ℎ}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨𝛼𝑘 − 𝛼

󵄨󵄨󵄨󵄨 ≥ 𝛽}
󵄨󵄨󵄨󵄨 ≥ 𝛿} .

(29)

Since 𝛼
𝑛
→ 𝛼 (𝑆(I)), the set on the right-hand side belongs

to I and, consequently, for any 𝛿 > 0 and ℎ > 0, {𝑛 ∈ N :

(1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
(𝛼𝑘−𝛼)𝑝

, 𝜀
0
) ≥ ℎ}| ≥ 𝛿} ∈ I. Therefore,

𝛼
𝑛
𝑝 → 𝛼𝑝 (𝑆PM(I)) as desired.
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The following lemmas will be needed to prove our next
result.

Lemma 40 (see [37]). If 0 ≤ 𝛼 ≤ 𝛽, then 𝑁
𝛽𝑝

≤ 𝑁
𝛼𝑝

for any
𝑝 ∈ 𝑋.

Lemma 41 (see [37]). Let 𝜏 be a continuous triangle function
and let 𝑆 be the set of all triplets (𝐹, 𝐺,𝐻) in Δ

+

×Δ
+

×Δ
+ such

that 𝐹 ≥ 𝜏(𝐻,𝐺) and 𝐺 ≥ 𝜏(𝐻, 𝐹). Then, for any ℎ > 0, there
exists a 𝜆 > 0 such that if (𝐹, 𝐺,𝐻) is in 𝑆 and 𝑑

𝐿
(𝐻, 𝜀
0
) < 𝜆,

then 𝑑
𝐿
(𝐹, 𝐺) < ℎ.

Theorem 42. Let (𝑋, 𝜂, 𝜏, 𝜏∗) be a PN space such that 𝜏∗ is
Archimedean and 𝑁

𝑝
̸= 𝜀
∞

for all 𝑝 ∈ 𝑋. Then, the scalar
multiplication is a jointly strong I-statistically continuous
mapping from R × 𝑋 endowed with the natural product
topology onto𝑋. Furthermore, the mapping 𝜇󸀠 : R×𝑋 → Δ

+

given by 𝜇󸀠(𝛼, 𝑝) = 𝜂(𝛼𝑝) = 𝑁
𝛼𝑝

for any 𝛼 ∈ R and any 𝑝 ∈ 𝑋

is also jointly strongI-statistically continuous.

Proof. Let {𝑝
𝑛
}
𝑛∈N be a sequence in 𝑋 such that 𝑝

𝑛
→

𝑝 (𝑆PM(I)) and let {𝛼
𝑛
}
𝑛∈N be a real sequence such that

𝛼
𝑛
→ 𝛼 (𝑆(I)). Consider the set𝑀

1
= {𝑛 ∈ N : |𝛼

𝑛
−𝛼| < 1}.

Since 𝛼
𝑛

→ 𝛼 (𝑆(I)), we have, for every 𝛿 > 0,
{𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : |𝛼

𝑘
− 𝛼| ≥ 1}| ≥ 𝛿} ∈ I; that is,

{𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝑀
1
}| ≥ 𝛿} ∈ I. Now, if 𝑛 ∈ 𝑀

1
,

then |𝛼
𝑛
| < |𝛼| + 1. From the properties of probabilistic

norm, we have 𝑁
(𝛼𝑛𝑝𝑛−𝛼𝑝)

≥ 𝜏(𝑁
𝛼𝑛(𝑝𝑛−𝑝)

, 𝑁
(𝛼𝑛−𝛼)𝑝

) =

𝜏(𝑁
|𝛼𝑛|(𝑝𝑛−𝑝)

, 𝑁
(𝛼𝑛−𝛼)𝑝

) ≥ 𝜏(𝑁
(|𝛼|+1)(𝑝𝑛−𝑝)

, 𝑁
(𝛼𝑛−𝛼)𝑝

).
Thus, if 𝑛 ∈ 𝑀

1
, then we have 𝑑

𝐿
(𝑁
(𝛼𝑛𝑝𝑛−𝛼𝑝)

, 𝜀
0
) ≤

𝑑
𝐿
(𝜏(𝑁
(|𝛼|+1)(𝑝𝑛−𝑝)

, 𝑁
(𝛼𝑛−𝛼)𝑝

), 𝜀
0
). Next, let 𝑡 > 0. Since

𝜏 is uniformly continuous, we can find a 𝜆 > 0 such
that 𝑑

𝐿
(𝜏(𝑁
(|𝛼|+1)(𝑝𝑛−𝑝)

, 𝑁
(𝛼𝑛−𝛼)𝑝

), 𝜀
0
) < 𝑡 whenever

𝑑
𝐿
(𝑁
(|𝛼|+1)(𝑝𝑛−𝑝)

, 𝜀
0
) < 𝜆 and 𝑑

𝐿
(𝑁
(𝛼𝑛−𝛼)𝑝

, 𝜀
0
) < 𝜆. For

such a 𝜆 > 0, consider the sets

𝑀
2
= {𝑛 ∈ N : 𝑑

𝐿
(𝑁
(|𝛼|+1)(𝑝𝑛−𝑝)

, 𝜀
0
) < 𝜆} ,

𝑀
3
= {𝑛 ∈ N : 𝑑

𝐿
(𝑁
(𝛼𝑛−𝛼)𝑝

, 𝜀
0
) < 𝜆} .

(30)

If 𝑘 ∈ 𝑀
1
∩ 𝑀
2
∩ 𝑀
3
, then clearly 𝑑

𝐿
(𝑁
(𝛼𝑘𝑝𝑘−𝛼𝑝)

, 𝜀
0
) < 𝑡.

Hence, {𝑛 ∈ N : 𝑑
𝐿
(𝑁
(𝛼𝑛𝑝𝑛−𝛼𝑝)

, 𝜖
0
) ≥ 𝑡} ⊆ {𝑛 ∈ N :

𝑑
𝐿
(𝑁
(|𝛼|+1)(𝑝𝑛−𝑝)

, 𝜀
0
) ≥ 𝜆} ∪ {𝑛 ∈ N : 𝑑

𝐿
(𝑁
(𝛼𝑛−𝛼)𝑝

, 𝜀
0
) ≥

𝜆} ∪ {𝑛 ∈ N : |𝛼
𝑛
− 𝛼| ≥ 1}. Consequently, we can write

(1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
(𝛼𝑘𝑝𝑘−𝛼𝑝)

, 𝜀
0
) ≥ 𝑡}| ≤ (1/𝑛)|{𝑘 ≤ 𝑛 :

𝑑
𝐿
(𝑁
(|𝛼|+1)(𝑝𝑘−𝑝)

, 𝜀
0
) ≥ 𝜆}| + (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
(𝛼𝑘−𝛼)𝑝

, 𝜀
0
) ≥

𝜆}| + (1/𝑛)|{𝑘 ≤ 𝑛 : |𝛼
𝑘
− 𝛼| ≥ 1}|. Then, for any 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
(𝛼𝑘𝑝𝑘−𝛼𝑝)

, 𝜀
0
) ≥ 𝑡}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊂ {𝑛 ∈ N :

1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝜏 (𝑁

(|𝛼|+1)(𝑝𝑘−𝑝)
, 𝑁
(𝛼𝑘−𝛼)𝑝

) , 𝜀
0
) ≥ 𝑡}

󵄨󵄨󵄨󵄨󵄨

≥ 𝛿}

⊆ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
(|𝛼|+1)(𝑝𝑘−𝑝)

, 𝜀
0
) ≥ 𝜆}

󵄨󵄨󵄨󵄨󵄨
≥

𝛿

3
}

∪ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
(𝛼𝑘−𝛼)𝑝

, 𝜀
0
) ≥ 𝜆}

󵄨󵄨󵄨󵄨󵄨
≥

𝛿

3
}

∪ {𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨{𝑘 ≤ 𝑛 :
󵄨󵄨󵄨󵄨𝛼𝑘 − 𝛼

󵄨󵄨󵄨󵄨 ≥ 1}
󵄨󵄨󵄨󵄨 ≥

𝛿

3
} .

(31)

Clearly, all the three sets on the right-hand side of the
expression belong to I. Therefore, for any 𝛿 > 0, {𝑛 ∈ N :

(1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
(𝛼𝑘𝑝𝑘−𝛼𝑝)

, 𝜀
0
) ≥ 𝑡}| ≥ 𝛿} ∈ I which shows

that 𝛼
𝑛
𝑝
𝑛
→ 𝛼𝑝 (𝑆PM(I)). This completes the proof of the

first part of the theorem.
Let us now show that the mapping 𝜇

󸀠 is jointly strong
I-statistically continuous. Assume that 𝑝

𝑛
→ 𝑝 (𝑆PM(I))

and 𝛼
𝑛
→ 𝛼 (𝑆(I)). Then, we have 𝛼

𝑛
𝑝
𝑛
→ 𝛼𝑝 (𝑆PM(I)).

Therefore, 𝑑
𝐿
(𝑁
𝛼𝑛𝑝𝑛−𝛼𝑝

, 𝜀
0
) → 0 (𝑆(I)). Now, we can write,

for every 𝑛 ∈ N, 𝑁
𝛼𝑛𝑝𝑛

≥ 𝜏(𝑁
𝛼𝑛𝑝𝑛−𝛼𝑝

, 𝑁
𝛼𝑝
) and 𝑁

𝛼𝑝
≥

𝜏(𝑁
𝛼𝑝−𝛼𝑛𝑝𝑛

, 𝑁
𝛼𝑛𝑝𝑛

). By Lemma 41, we can say that for any ℎ >

0 there exists a 𝜆 > 0 such that 𝑑
𝐿
(𝑁
𝛼𝑛𝑝𝑛

, 𝑁
𝛼𝑝
) < ℎ whenever

𝑑
𝐿
(𝑁
𝛼𝑛𝑝𝑛−𝛼𝑝

, 𝜀
0
) < 𝜆. Now, using the argument similar to

that of the preceding proof, we obtain 𝑑
𝐿
(𝑁
𝛼𝑛𝑝𝑛

, 𝑁
𝛼𝑝
) →

0 (𝑆(I)). Hence, it follows that 𝜇
󸀠 is jointly strong I-

statistically continuous.

5. Strong I-Statistically 𝐷-Bounded
Sequences in Probabilistic Normed Spaces

Definition 43 (see [38]). Let (𝑋, 𝜂, 𝜏, 𝜏∗) be a PN space. A
sequence {𝑝

𝑛
}
𝑛∈N in 𝑋 is statistically 𝐷-bounded provided

that there exists a set 𝐾 = {𝑛
1

< 𝑛
2

< ⋅ ⋅ ⋅ } ⊂ N with
𝛿(𝐾) = lim

𝑛→∞
(1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}| = 1 such that {𝑝

𝑛𝑘
}
𝑘∈N

is𝐷-bounded.

In this section, we generalize the above definition for
sequences in a PN space and introduce the concept of a
stronglyI-statistically𝐷-bounded sequence.

Definition 44. Let (𝑋, 𝜂, 𝜏, 𝜏∗) be a PN space. A sequence
{𝑝
𝑛
}
𝑛∈N in 𝑋 is stronglyI-statistically 𝐷-bounded provided

that there exists a set 𝐾 = {𝑛
1
< 𝑛
2
< ⋅ ⋅ ⋅ } ⊂ N such that

{𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝐾}| ≥ 𝛿} ∈ I for any 𝛿 > 0 and
{𝑝
𝑛𝑘
}
𝑘∈N is𝐷-bounded.

Clearly, in this case, R
{𝑝𝑛
𝑘
:𝑘∈N} = R

{𝑝}𝐾
∈ D+. Note that

a 𝐷-bounded sequence is always strongly I-statistically 𝐷-
bounded, but the converse is not generally true.

Theorem45. A sequence {𝑝
𝑛
}
𝑛∈N in the PN space𝑋 is strongly

I-statistically 𝐷-bounded if and only if there exists a set 𝐾 =

{𝑛
1
< 𝑛
2
< ⋅ ⋅ ⋅ } with {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝐾}| ≥ 𝛿} ∈ I

for any 𝛿 > 0 and a distribution function 𝐺 ∈ D+ such that
𝑁
𝑝𝑛
𝑘

≥ 𝐺.

Proof. The proof of the theorem immediately follows from
Theorem 2.1 of [29] and Definition 44.

Example 46. Let us consider the simple space (R, | ⋅ |, 𝐺,𝑀),
where | ⋅ | denotes the usual norm on R; 𝐺 ∈ Δ

+, 𝐺 ̸= 𝜀
0
, 𝜀
∞
,
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and the probabilistic norm 𝜂 : R → Δ
+ is given by 𝜂(0) = 𝜀

0

and, for 𝑡 > 0, 𝑝 ̸= 0,

𝜂
𝑝
(𝑡) = 𝑁

𝑝
(𝑡) = 𝐺(

𝑡

󵄨󵄨󵄨󵄨𝑝
󵄨󵄨󵄨󵄨

) . (32)

This space is calledMenger PN space under𝑀where𝑀 is the
𝑡-norm defined by 𝑀(𝑥, 𝑦) = min{𝑥, 𝑦}. Now, assume that
there is a 𝑥

0
∈ (0,∞) such that 𝐺(𝑥

0
) = 1 and 𝑙

+

𝐺(0) = 0.
Next, assume that N = ∪

∞

𝑗=1
𝐷
𝑗
is a decomposition of N

(i.e., 𝐷
𝑘
∩ 𝐷
𝑙
= 0 for 𝑘 ̸= 𝑙) where 𝐷

𝑗
(𝑗 = 1, 2, 3, . . .) are

infinite sets defined as 𝐷
𝑗
= {2
𝑗−1

(2𝑠 − 1) : 𝑠 ∈ N}. Denote
byI the class of all𝐴 ⊂ N such that𝐴 intersects only a finite
number of𝐷󸀠

𝑗
𝑠. It can be easily verified thatI is an admissible

ideal. Note that |𝐷
𝑗
(1, 𝑛)|/𝑛 = (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐷

𝑗
}| ≤

1/2
𝑗−1 for all 𝑗 ∈ N. Now, for every 𝛿 > 0, there exists a 𝑗

0
∈ N

such that |𝐷
𝑗0
(1, 𝑛)|/𝑛 < 1/2

𝑗0−1 < 𝛿. Therefore, {𝑛 ∈ N :

|𝐷
𝑗0
(1, 𝑛)|/𝑛 ≥ 𝛿} ⊆ {𝐷

1
∪𝐷
2
∪⋅ ⋅ ⋅∪𝐷

𝑗0−1
} = 𝐴 (say). Clearly,

𝐴 ∈ I. We define a sequence {𝑝
𝑛
}
𝑛∈N in the PN space (R, | ⋅ |,

𝐺,𝑀) by

𝑝
𝑛
= {

𝑛 if 𝑛 ∈ 𝐷
𝑗0

1 if 𝑛 ∉ 𝐷
𝑗0
.

(33)

The subsequence {𝑝}
𝐷
𝑐

𝑗0

, where 𝑐 stands for the complement,
is certainly bounded and hence𝐷-bounded in (R, | ⋅ |, 𝐺,𝑀).
Moreover, the subsequence {𝑝}

𝐷𝑗0

is certainly unbounded in
(R, | ⋅ |, 𝐺,𝑀). Therefore, the sequence {𝑝

𝑛
}
𝑛∈N is stronglyI-

statistically 𝐷-bounded, but it is not statistically 𝐷-bounded
as 𝛿(𝐷

𝑗0
) ̸= 0.

We nowpresent certain results which aremodifications of
similar results proved for statistically 𝐷-bounded sequences
[38].Theproofs of these results are parallel to the correspond-
ing results of [38] with necessary modifications.

Theorem 47. If {𝑝
𝑛
}
𝑛∈N is a strongly I-statistically 𝐷-

bounded sequence in the PN space (𝑋, 𝜂, 𝜏, 𝜏
∗

), then there exists
a 𝐷-bounded sequence {𝑞

𝑛
}
𝑛∈N and a strongly I-statistically

null sequence {𝑟
𝑛
}
𝑛∈N such that 𝑝

𝑛
= 𝑞
𝑛
+ 𝑟
𝑛
for all 𝑛 ∈ N.

Proof. Let {𝑝
𝑛
}
𝑛∈N be a strongly I-statistically 𝐷-bounded

sequence in the PN space. Then, there exists a set 𝐾 = {𝑛
1
<

𝑛
2
< ⋅ ⋅ ⋅ } ⊂ N with {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝐾}| ≥ 𝛿} ∈ I,

for any 𝛿 > 0, such that {𝑝}
𝐾
is𝐷-bounded. Now, define

𝑞
𝑛
= {

𝑝
𝑛
, if 𝑛 ∈ 𝐾,

𝜃, otherwise,

𝑟
𝑛
= {

𝜃, if 𝑛 ∈ 𝐾,

𝑝
𝑛
, otherwise.

(34)

We have, for each 𝜖 > 0 and 𝛿 > 0,

{𝑛 ∈ N :
1

𝑛

󵄨󵄨󵄨󵄨󵄨
{𝑘 ≤ 𝑛 : 𝑑

𝐿
(𝑁
𝑟𝑘−𝜃

, 𝜀
0
) ≥ 𝜖}

󵄨󵄨󵄨󵄨󵄨
≥ 𝛿}

⊆ {𝑛 ∈ N :
1

𝑛
|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝐾}| ≥ 𝛿} .

(35)

Since the set on the right-hand side belongs to I, {𝑛 ∈ N :

(1/𝑛)|{𝑘 ≤ 𝑛 : 𝑑
𝐿
(𝑁
𝑟𝑘−𝜃

, 𝜀
0
) ≥ 𝜖}| ≥ 𝛿} ∈ I. Thus, 𝑟

𝑘
→

𝜃 (𝑆PM(I)). The sequence {𝑞
𝑛
}
𝑛∈N is clearly𝐷-bounded. It is

easy to see that 𝑝
𝑛
= 𝑞
𝑛
+𝑟
𝑛
, where {𝑞

𝑛
}
𝑛∈N is𝐷-bounded and

𝑟
𝑛
→ 𝜃 (𝑆PM(I)).

Theorem 48. Let (𝑋, 𝜂, 𝜏, 𝜏∗) be a PN space in which 𝜂(𝑋) ⊆

D+ andD+ is invariant under 𝜏; that is, 𝜏(D+ ×D+) ⊆ D+. If
{𝑝
𝑛
}
𝑛∈N is a sequence in 𝑋 such that 𝑝

𝑛
→ 𝑝 (𝑆PM(I)), then

{𝑝
𝑛
}
𝑛∈N is stronglyI-statistically𝐷-bounded.

Proof. Let 𝑝
𝑛
→ 𝑝 (𝑆PM(I)). Then, for each 𝐺 ∈ D+ \ {𝜀

0
},

there exists a set𝐾 = {𝑛
1
< 𝑛
2
< ⋅ ⋅ ⋅ }with {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤

𝑛 : 𝑘 ∉ 𝐾}| ≥ 𝛿} ∈ I, for any 𝛿 > 0, such that 𝑁
𝑝𝑛
𝑘
−𝑝

≥ 𝐺.
Therefore,𝑁

𝑝𝑛
𝑘

≥ 𝜏(𝑁
𝑝𝑛
𝑘
−𝑝
, 𝑁
𝑝
) ≥ 𝜏(𝐺,𝑁

𝑝
) for all 𝑛

𝑘
∈ 𝐾. By

our assumption, we have 𝜏(𝐺,𝑁
𝑝
) ∈ D+ and now the result

follows fromTheorem 45.

Theorem 49. Let (𝑋, 𝜂, 𝜏, 𝜏
∗

) be a PN space in which 𝜂(𝑋) ⊆

D+ and D+ is invariant under 𝜏. If {𝑝
𝑛
}
𝑛∈N is strongly I-

statistically Cauchy sequence in 𝑋, then it is strongly I-
statistically𝐷-bounded.

Proof. Let {𝑝
𝑛
}
𝑛∈N be strongly I-statistically Cauchy. Then,

for every 𝐺 ∈ D+ \ {𝜀
0
}, there exists a set𝐾 = {𝑛

1
< 𝑛
2
< ⋅ ⋅ ⋅ }

for which {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝐾}| ≥ 𝛿} ∈ I for any
𝛿 > 0 and a𝑁 ∈ N, such that𝑁

𝑝𝑛
𝑘
−𝑝𝑁

≥ 𝐺. Let 𝐺 ∈ D+ \ {𝜀
0
}

be given, and then we can find a 𝑁 ∈ N such that 𝑁
𝑝𝑛
𝑘

≥

𝜏(𝑁
𝑝𝑛
𝑘
−𝑝𝑁

, 𝑁
𝑝𝑁
) ≥ 𝜏(𝐺,𝑁

𝑝𝑁
). By our assumption, we have

𝜏(𝐺,𝑁
𝑝𝑛
) ∈ D+ and the rest follows fromTheorem 45.

Theorem 50. Let {𝑝
𝑛
}
𝑛∈N be a strongly I-statistically 𝐷-

bounded sequence in the PN space (𝑋, 𝜂, 𝜏, 𝜏
∗

). If D+ is
invariant under 𝜏, then the sequence {𝛼𝑝

𝑛
}
𝑛∈N is strongly I-

statistically𝐷-bounded for every fixed 𝛼 ∈ R.

Proof. By axiom (N2), it is sufficient to consider the case 𝛼 ≥

0. If 𝛼 = 0 or 𝛼 = 1, then {𝛼𝑝
𝑛
}
𝑛∈N is stronglyI-statistically

𝐷-bounded. Let 𝛼 ∈ (0, 1). Since {𝑝
𝑛
}
𝑛∈N is strongly I-

statistically 𝐷-bounded, there exists a set 𝐾 = {𝑛
1
< 𝑛
2
<

⋅ ⋅ ⋅ } ⊂ N such that {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝐾}| ≥ 𝛿} ∈ I
for any 𝛿 > 0 and R

{𝑝}𝐾
∈ D+. Thus, we have 𝑁

𝛼𝑝𝑛
𝑘

≥

𝑁
𝑝𝑛
𝑘

≥ R
{𝑝}𝐾

whichmeans thatR
{𝛼𝑝}𝐾

∈ D+, where {𝛼𝑝}
𝐾
=

{𝛼𝑝
𝑛𝑘
}
𝑘∈N. Therefore, {𝛼𝑝

𝑛
}
𝑛∈N is strongly I-statistically 𝐷-

bounded. Now, let 𝛼 > 1 and set𝑚 = ⌊|𝛼|⌋ + 1. Then,𝑁
𝛼𝑝𝑛
𝑘

≥

𝑁
𝑚𝑝𝑛
𝑘

≥ 𝜏(𝑁
(𝑚−1)𝑝𝑛

𝑘

, 𝑁
𝑝𝑛
𝑘

) ≥ 𝜏(𝜏(𝑁
(𝑚−2)𝑝𝑛

𝑘

, 𝑁
𝑝𝑛
𝑘

),𝑁
𝑝𝑛
𝑘

) ≥

𝜏
𝑚−1

(𝑁
𝑝𝑛
𝑘

, . . . , 𝑁
𝑝𝑛
𝑘

) ≥ 𝜏
𝑚−1

(R
{𝑝}𝐾

, . . . ,R
{𝑝}𝐾

), where
𝜏
𝑚−1

(R
{𝑝}𝐾

, . . . ,R
{𝑝}𝐾

) ∈ D+. Hence, R
{𝛼𝑝}𝐾

∈ D+ which
completes the proof.

Theorem 51. Let {𝑝
𝑛
}
𝑛∈N and {𝑞

𝑛
}
𝑛∈N be two strongly I-

statistically𝐷-bounded sequences in the PN space (𝑋, 𝜂, 𝜏, 𝜏∗).
If D+ is invariant under 𝜏, then the sequence {𝑝

𝑛
+ 𝑞
𝑛
}
𝑛∈N is

also stronglyI-statistically𝐷-bounded.

Proof. Let {𝑝
𝑛
}
𝑛∈N and {𝑞

𝑛
}
𝑛∈N be two stronglyI-statistically

𝐷-bounded sequences in the PN space (𝑋, 𝜂, 𝜏, 𝜏
∗

). Then,
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there exist sets 𝐾 = {𝑘
1
< 𝑘
2
< ⋅ ⋅ ⋅ } ⊂ N and 𝐿 = {𝑙

1
<

𝑙
2
< ⋅ ⋅ ⋅ } ⊂ N such that for any 𝛿 > 0, {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤

𝑛 : 𝑘 ∉ 𝐾}| ≥ 𝛿/2} ∈ I and {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉

𝐿}| ≥ 𝛿/2} ∈ I and R
{𝑝}𝐾

,R
{𝑞}𝐿

∈ D+. Now, consider the
set 𝐾 ∩ 𝐿 = {𝑛

1
< 𝑛
2
< ⋅ ⋅ ⋅ } ⊂ N. Obviously, 𝐾 ∩ 𝐿 ̸= 0.

We also have {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝐾 ∩ 𝐿}| ≥

𝛿} ⊆ {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝐾}| ≥ 𝛿/2} ∪ {𝑛 ∈

N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝐿}| ≥ 𝛿/2}. Since both sets on the
right-hand side belong to I, then {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 :

𝑘 ∉ 𝐾 ∩ 𝐿}| ≥ 𝛿} ∈ I. We observe that, for 𝑛
𝑘
∈ 𝐾 ∩ 𝐿,

𝑁
𝑝𝑛
𝑘
+𝑞𝑛
𝑘

≥ 𝜏(𝑁
𝑝𝑛
𝑘

, 𝑁
𝑞𝑛
𝑘

) ≥ 𝜏(𝑁
𝑝𝑛
𝑘

,R
{𝑞}𝐿

) ≥ 𝜏(R
{𝑝}𝐾

,R
{𝑞}𝐿

)

and therefore we can write R
{𝑝𝑛
𝑘
+𝑞𝑛
𝑘
:𝑘∈N} ≥ 𝜏(R

{𝑝}𝐾
,R
{𝑞}𝐿

),
where R

{𝑝}𝐾
∈ D+ and R

{𝑞}𝐿
∈ D+. By our assumption

𝜏(R
{𝑝}𝐾

,R
{𝑞}𝐿

) ∈ D+. Thus, R
{𝑝𝑛
𝑘
+𝑞𝑛
𝑘
:𝑘∈N} ∈ D+ for all

𝑛
𝑘
∈ 𝐾 ∩ 𝐿 and {𝑛 ∈ N : (1/𝑛)|{𝑘 ≤ 𝑛 : 𝑘 ∉ 𝐾 ∩ 𝐿}| ≥ 𝛿} ∈ I

for all 𝛿 > 0. Thus, the sequence {𝑝
𝑛
+ 𝑞
𝑛
}
𝑛∈N yields a 𝐷-

bounded subset of𝑋. This completes the proof.

Corollary 52. Let (𝑋, 𝜂, 𝜏, 𝜏
∗

) be a PN space. If D+ is
invariant under 𝜏, that is, 𝜏(D+ × D+) ⊆ D+, then the set
of all stronglyI-statistically𝐷-bounded sequences in𝑋 forms
a real linear space.
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