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This paper is concerned with a nonautonomous fishing model with a time-varying delay. Under proper conditions, we employ a
novel argument to establish a criterion on the global exponential stability of positive almost periodic solutions of the model with
almost periodic coefficients and delays. Moreover, an example and its numerical simulation are given to illustrate the main results.

1. Introduction

In the classic study of population dynamics, the differential
equation

𝑥

= [𝐿 (𝑡, 𝑥) − 𝑀 (𝑡, 𝑥)] 𝑥 − 𝐹 (𝑡) 𝑥 (1)

is widely used in fisheries [1–4], where 𝑥 = 𝑥(𝑡) denotes the
population biomass, 𝐿(𝑡, 𝑥) denotes the per-capita fecundity
rate,𝑀(𝑡, 𝑥) denotes the per-capita mortality rate, and 𝐹(𝑡) is
the harvesting rate per-capita.

Let 𝐿(𝑡, 𝑥) be a Hills type function [1, 3]

𝐿 (𝑡, 𝑥) =

𝑎

1 + (𝑥/𝐾)
𝛾
. (2)

Denote 𝑏(𝑡) = 𝑀(𝑡, 𝑥)+𝐹(𝑡). Taking account of the delay and
the varying environments, Berezansky and Idels [5] proposed
the following time-lag model based on (1):

𝑥


(𝑡) = 𝑥 (𝑡) [

𝑟 (𝑡)

1 + (𝑥 (𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾
− 𝑏 (𝑡)] , (3)

where 𝑟, 𝑏,𝐾, 𝜏 : 𝑅 → (0, +∞) are almost periodic functions
and parameter 𝛾 > 0. Consequently, some theorems on
the stability and existence of periodic solutions for (3) were
established in Berezansky and Idels [5] and Wang [6]. For
more details, we refer to the article of Wang [6].

In the real-world phenomena, the two foundations for
the theory of nature selection are periodically and almost
periodically varying environment. And the almost periodic
effects are more frequent than the periodic effects (see [7, 8]).
Therefore, the effects of the almost periodic environment on
the evolutionary theory have been extensively studied by a
large number of researchers and some of these results can be
found in [9–12]. For the reason of seasonal variation, it is not
necessary to let (3) be exactly periodic but almost periodic
instead. The problem of finding the global stability condi-
tions for the positive almost periodic solution of (3) with
almost periodic coefficients and delays becomes important.
As pointed out in [7, 8], significant differences often appear
in almost periodic problem by comparison with the periodic
case. For example, contrary to periodic functions, there exists
an almost periodic function 𝑥(𝑡) such that 𝑥(𝑡) > 0 for all
𝑡 ∈ 𝑅 and inf

𝑡∈𝑅
𝑥(𝑡) = 0. Hence, it is difficult to establish

the existence, uniqueness, and global exponential stability
of positive almost periodic solutions of (3). Moreover, to
the best of our knowledge, there is no literature considering
the global exponential stability of positive almost periodic
solutions problem for (3) and its generalized equations.

Motivated by the above discussions, in this paper, a new
approach will be developed to obtain a condition for the
global exponential stability of the positive almost periodic
solutions of (3), and the exponential convergent rate can be
unveiled.
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2 Abstract and Applied Analysis

For convenience, we introduce some notations. Given a
bounded continuous function 𝑔 defined on 𝑅, let 𝑔+ and 𝑔−
be defined as

𝑔
+
= sup
𝑡∈𝑅

𝑔 (𝑡) , 𝑔
−
= inf
𝑡∈𝑅

𝑔 (𝑡) . (4)

It will be assumed that
𝐾
−
> 0, 𝑏

−
> 0, 𝜏

+
> 0,

𝑟 (𝑡) > 𝑏 (𝑡) ∀𝑡 ∈ 𝑅,

(∫

𝑡

𝑡−𝜏(𝑡)

(𝑟 (𝑠) − 𝑏 (𝑠)) 𝑑𝑠)

+

< +∞,

(∫

𝑡

𝑡−𝜏(𝑡)

𝑏 (𝑠) 𝑑𝑠)

+

< +∞,

(5)

𝜅 = (𝐾 (𝑡) (

𝑟 (𝑡)

𝑏 (𝑡)

− 1)

1/𝛾

× exp{inf
𝑡∈𝑅

∫

𝑡

𝑡−𝜏(𝑡)

(

𝑟 (𝑠)

1 + (𝑀/𝐾 (𝑠))
𝛾
− 𝑏 (𝑠)) 𝑑𝑠})

−

> 0,

𝑀 = (𝐾 (𝑡) (

𝑟 (𝑡)

𝑏 (𝑡)

− 1)

1/𝛾

× exp{sup
𝑡∈𝑅

∫

𝑡

𝑡−𝜏(𝑡)

(𝑟 (𝑠) − 𝑏 (𝑠)) 𝑑𝑠})

+

> 𝜅.

(6)

Then,

𝑀 ≥ 𝐾(𝑡) (

𝑟 (𝑡)

𝑏 (𝑡)

− 1)

1/𝛾

exp{sup
𝑡∈𝑅

∫

𝑡

𝑡−𝜏(𝑡)

(𝑟 (𝑠) − 𝑏 (𝑠)) 𝑑𝑠} ,

(

𝑀

𝐾 (𝑡)

)

𝛾

≥ (

𝑟 (𝑡)

𝑏 (𝑡)

− 1) exp{𝛾sup
𝑡∈𝑅

∫

𝑡

𝑡−𝜏(𝑡)

(𝑟 (𝑠) − 𝑏 (𝑠)) 𝑑𝑠}

>

𝑟 (𝑡)

𝑏 (𝑡)

− 1,

(7)

(

𝑟 (𝑡)

1 + (𝑀/𝐾 (𝑡))
𝛾
− 𝑏 (𝑡))

−

≤

𝑟 (𝑡)

1 + (𝑀/𝐾 (𝑡))
𝛾
− 𝑏 (𝑡) < 0,

∀𝑡 ∈ 𝑅.

(8)

Let 𝑅
+
denote nonnegative real number space, let 𝐶 =

𝐶([−𝜏
+
, 0], 𝑅) be the continuous functions space equipped

with the usual supremum norm ‖ ⋅ ‖, and let 𝐶
+

=

𝐶([−𝜏
+
, 0], 𝑅
+
). If 𝑥(𝑡) is defined on [−𝜏+ + 𝑡

0
, 𝜎) with 𝑡

0
, 𝜎 ∈

𝑅, then we define 𝑥
𝑡
∈ 𝐶 where 𝑥

𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for all

𝜃 ∈ [−𝜏
+
, 0].

Due to the biological interpretation of model (3), only
positive solutions are meaningful and therefore admissible.
Thus, we just consider admissible initial conditions

𝑥
𝑡0
= 𝜑, 𝜑 ∈ 𝐶

+
, 𝜑 (0) > 0. (9)

We denote 𝑥
𝑡
(𝑡
0
, 𝜑)(𝑥(𝑡; 𝑡

0
, 𝜑)) for an admissible solution

of the admissible initial value problems (3) and (9). Also,
let [𝑡
0
, 𝜂(𝜑)) be the maximal right-interval of existence of

𝑥
𝑡
(𝑡
0
, 𝜑).

2. Preliminary Results

In this section, some lemmas and definitions will be pre-
sented, which are of importance in proving our main results
in Section 3.

Definition 1 (see [7, 8]). Let 𝑢(𝑡) : 𝑅 → 𝑅 be continuous in 𝑡.
𝑢(𝑡) is said to be almost periodic on 𝑅 if, for any 𝜀 > 0, the set
𝑇(𝑢, 𝜀) = {𝛿 : |𝑢(𝑡 + 𝛿) − 𝑢(𝑡)| < 𝜀 for all 𝑡 ∈ 𝑅} is relatively
dense; that is, for any 𝜀 > 0, it is possible to find a real number
𝑙 = 𝑙(𝜀) > 0with the property that, for any interval with length
𝑙(𝜀), there exists a number 𝛿 = 𝛿(𝜀) in this interval such that
‖𝑢(𝑡 + 𝛿) − 𝑢(𝑡)‖ < 𝜀 for all 𝑡 ∈ 𝑅.

From the theory of almost periodic functions in [7, 8], it
follows that, for any 𝜖 > 0, it is possible to find a real number
𝑙 = 𝑙(𝜖) > 0, and,for any interval with length 𝑙(𝜖), there exists
a number 𝛿 = 𝛿(𝜖) in this interval such that

|𝑏 (𝑡 + 𝛿) − 𝑏 (𝑡)| < 𝜖,

|𝑟 (𝑡 + 𝛿) − 𝑟 (𝑡)| < 𝜖,

|𝐾 (𝑡 + 𝛿) − 𝐾 (𝑡)| < 𝜖,

|𝜏 (𝑡 + 𝛿) − 𝜏 (𝑡)| < 𝜖,

(10)

for all 𝑡 ∈ 𝑅.

From (5) and Lemma 1.1 in Berezansky and Idels [5], we
obtain the following lemma.

Lemma 2. Every solution 𝑥(𝑡; 𝑡
0
, 𝜑) of (3) and (9) is persistent

on [𝑡
0
, 𝜂(𝜑)), and 𝜂(𝜑) = +∞; that is, there exist two positive

constants 𝐾
1
and 𝐾

2
such that

𝐾
1
≤ lim inf
𝑡→+∞

𝑥 (𝑡; 𝑡
0
, 𝜑) ≤ lim sup

𝑡→+∞

𝑥 (𝑡; 𝑡
0
, 𝜑) ≤ 𝐾

2
. (11)

Lemma 3. For every solution 𝑥(𝑡; 𝑡
0
, 𝜑) of (3) and (9), there

exists 𝑡
𝜑
> 𝑡
0
such that

𝜅 < 𝑥 (𝑡; 𝑡
0
, 𝜑) < 𝑀 ∀𝑡 ≥ 𝑡

𝜑
. (12)

Proof. Let 𝑥(𝑡) = 𝑥(𝑡; 𝑡
0
, 𝜑). It follows from Lemma 2 that

0 < lim inf
𝑡→+∞

𝑥 (𝑡) ≤ lim sup
𝑡→+∞

𝑥 (𝑡) < +∞. (13)

We now give two cases to prove that there exists 𝑇
1
> 𝑡
0
+ 𝜏
+

such that

𝑥 (𝑡) ≤ 𝑀 ∀𝑡 ≥ 𝑇
1
. (14)

Case i. Suppose that

𝑥


(𝑡) < 0, ∀𝑡 ≥ 𝑡
0
+ 𝜏
+
. (15)
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Then,

𝐿 = lim sup
𝑡→+∞

𝑥 (𝑡) = lim
𝑡→+∞

𝑥 (𝑡) = lim
𝑡→+∞

𝑥 (𝑡 − 𝜏 (𝑡)) . (16)

By the fluctuation lemma [13, Lemma A.1], there exists a
sequence {𝑡

𝑝
}
𝑝≥1

such that

𝑡
𝑝
→ +∞, 𝑥 (𝑡

𝑝
) → lim sup

𝑡→+∞

𝑥 (𝑡) ,

𝑥

(𝑡
𝑝
) → 0 as 𝑝 → +∞.

(17)

Since {𝑥
𝑡𝑝
} is bounded and equicontinuous, by the Ascoli-

Arzelá theorem, there exists a subsequence, still denoted by
itself for simplicity of notation, such that

𝑥
𝑡𝑝
→ 𝜑 for some 𝜑 ∈ 𝐶

+
, as 𝑝 → +∞. (18)

From (16), we get

𝜑 (0) = 𝐿 = 𝜑 (𝜃) ∀𝜃 ∈ [−𝜏
+
, 0) . (19)

By the boundedness of the coefficients and delays, there is
a subsequence of {𝑡

𝑝
}, still denoted by {𝑡

𝑝
}, such that 𝑟(𝑡

𝑝
),

𝑏(𝑡
𝑝
),𝐾(𝑡
𝑝
), and 𝜏(𝑡

𝑝
) are convergent to 𝑟, 𝑏, �̂�, and 𝜏, respec-

tively. In view of the facts 𝐿 = 𝜑(−𝜏) and −𝜏 ∈ [−𝜏
+
, 0], it

follows from

𝑥

(𝑡
𝑝
) = 𝑥 (𝑡

𝑝
)
[

[

𝑟 (𝑡
𝑝
)

1 + (𝑥 (𝑡
𝑝
− 𝜏 (𝑡
𝑝
)) /𝐾 (𝑡

𝑝
))

𝛾
− 𝑏 (𝑡
𝑝
)
]

]

(20)

that (taking limits)

0 = 𝐿
[

[

𝑟

1 + (𝜑 (−𝜏) /�̂�)

𝛾
− 𝑏
]

]

= 𝐿
[

[

𝑟

1 + (𝐿/�̂�)

𝛾
− 𝑏
]

]

,

(21)

which yields

𝐿 = �̂�(

𝑟

𝑏

− 1)

1/𝛾

≤ (𝐾 (𝑡) (

𝑟 (𝑡)

𝑏 (𝑡)

− 1)

1/𝛾

)

+

< 𝑀. (22)

This implies that (14) holds.

Case ii. If there exists 𝜌 ≥ 𝑡
0
+ 𝜏
+ such that 𝑥(𝜌) ≥ 0, then

(3) yields

0 ≤ 𝑥

(𝜌) = 𝑥 (𝜌) [

𝑟 (𝜌)

1 + (𝑥 (𝜌 − 𝜏 (𝜌)) /𝐾 (𝜌))
𝛾
− 𝑏 (𝜌)] ,

or 𝑥 (𝜌 − 𝜏 (𝜌)) ≤ 𝐾 (𝜌)(
𝑟 (𝜌)

𝑏 (𝜌)

− 1)

1/𝛾

,

(23)

and we have

𝑥


(𝑡) ≤ 𝑥 (𝑡) [𝑟 (𝑡) − 𝑏 (𝑡)] , ∀𝑡 ≥ 𝑡
0
. (24)

Integrating (24) from 𝜌− 𝜏(𝜌) to 𝜌, in view of (23), we obtain

𝑥 (𝜌) ≤ 𝑥 (𝜌 − 𝜏 (𝜌)) exp{∫
𝜌

𝜌−𝜏(𝜌)

(𝑟 (𝑠) − 𝑏 (𝑠)) 𝑑𝑠}

≤ 𝐾 (𝜌)(

𝑟 (𝜌)

𝑏 (𝜌)

− 1)

1/𝛾

× exp{sup
𝑡∈𝑅

∫

𝑡

𝑡−𝜏(𝑡)

(𝑟 (𝑠) − 𝑏 (𝑠)) 𝑑𝑠}

≤ 𝑀.

(25)

For any 𝑡 > 𝜌, with the same approach as that in derivation of
(25), we can show

𝑥 (𝑡) ≤ 𝑀 if 𝑥 (𝑡) ≥ 0. (26)

On the other hand, if 𝑥(𝑡) < 0 and 𝑡 > 𝜌, we can choose
𝜌 ≤ 𝑡 < 𝑡 such that

𝑥

(𝑡) = 0, 𝑥



(𝑠) < 0 ∀𝑠 (𝑡, 𝑡] , (27)

which, together with (26), yields

𝑥 (𝑡) < 𝑥 (𝑡) ≤ 𝑀. (28)

Thus, there must exist 𝑇
1
> 𝜌 such that (14) holds.

Again from the fluctuation lemma [13, Lemma A.1], there
exists a sequence {𝑡

𝑞
}
𝑞≥1

such that

𝑡
𝑞
→ +∞, 𝑥 (𝑡

𝑞
) → lim inf

𝑡→+∞

𝑥 (𝑡) ,

𝑥

(𝑡
𝑞
) → 0 as 𝑞 → +∞.

(29)

Since {𝑥
𝑡𝑞
} is bounded and equicontinuous, by the Ascoli-

Arzelá theorem, there exists a subsequence, still denoted by
itself for simplicity of notation, such that

𝑥
𝑡𝑞
→ 𝜑

∗ for some 𝜑∗ ∈ 𝐶
+
, as 𝑞 → +∞. (30)

We next divide our proof in two steps to show that there
exists 𝑇

2
> max{𝑇

1
+ 𝜏
+
, 𝑡
0
+ 𝜏
+
} such that

𝑥 (𝑡) ≥ 𝜅 ∀𝑡 ≥ 𝑇
2
. (31)

First, assume that

𝑥


(𝑡) > 0, ∀𝑡 ≥ max {𝑇
1
+ 𝜏
+
, 𝑡
0
+ 𝜏
+
} . (32)

Then,

0 < 𝐴 = lim inf
𝑡→+∞

𝑥 (𝑡) = lim
𝑡→+∞

𝑥 (𝑡) = lim
𝑡→+∞

𝑥 (𝑡 − 𝜏 (𝑡)) .

(33)

According to (30) and (33), we get

𝜑
∗

(0) = 𝐴 = 𝜑
∗

(𝜃) ∀𝜃 ∈ [−𝜏
+
, 0) . (34)
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Without loss of generality, we assume that all 𝑟(𝑡
𝑞
), 𝑏(𝑡
𝑞
),

𝐾(𝑡
𝑞
), and 𝜏(𝑡

𝑞
) are convergent to 𝑟∗, 𝑏∗, 𝐾∗, and 𝜏∗, respec-

tively. This can be achieved because of almost periodicity. In
view of (3) and (30), it follows from

𝑥

(𝑡
𝑞
) = 𝑥 (𝑡

𝑞
)
[

[

𝑟 (𝑡
𝑞
)

1 + (𝑥 (𝑡
𝑞
− 𝜏 (𝑡
𝑞
)) /𝐾 (𝑡

𝑞
))

𝛾
− 𝑏 (𝑡
𝑞
)
]

]

(35)

that (taking limits)

0 = 𝐴[

𝑟
∗

1 + (𝜑
∗
(−𝜏
∗
) /𝐾
∗
)
𝛾
− 𝑏
∗
]

= 𝐴[

𝑟
∗

1 + (𝐴/𝐾
∗
)
𝛾
− 𝑏
∗
] ,

(36)

which, together with (8), yields

𝐴 = 𝐾
∗
(

𝑟
∗

𝑏
∗
− 1)

1/𝛾

≥ (𝐾 (𝑡) (

𝑟 (𝑡)

𝑏 (𝑡)

− 1)

1/𝛾

)

−

> (𝐾 (𝑡) (

𝑟 (𝑡)

𝑏 (𝑡)

− 1)

1/𝛾

× exp{inf
𝑡∈𝑅

∫

𝑡

𝑡−𝜏(𝑡)

(

𝑟 (𝑠)

1 + (𝑀/𝐾 (𝑠) )
𝛾
− 𝑏 (𝑠)) 𝑑𝑠})

−

= 𝜅.

(37)

This implies that (31) holds.
Second, there exists 𝜌∗ ≥ max{𝑇

1
+ 𝜏
+
, 𝑡
0
+ 𝜏
+
} such that

𝑥

(𝜌
∗
) ≤ 0. (38)

This, together with (3), yields

0 ≥ 𝑥 (𝜌
∗
) [

𝑟 (𝜌
∗
)

1 + (𝑥 (𝜌
∗
− 𝜏 (𝜌

∗
)) /𝐾 (𝜌

∗
))
𝛾
− 𝑏 (𝜌

∗
)] ,

or 𝑥 (𝜌∗ − 𝜏 (𝜌∗)) ≥ 𝐾 (𝜌∗) (
𝑟 (𝜌
∗
)

𝑏 (𝜌
∗
)

− 1)

1/𝛾

,

(39)

and we have

𝑥


(𝑡) = 𝑥 (𝑡) [

𝑟 (𝑡)

1 + (𝑥 (𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾
− 𝑏 (𝑡)]

≥ 𝑥 (𝑡) [

𝑟 (𝑡)

1 + (𝑀/𝐾 (𝑡))
𝛾
− 𝑏 (𝑡)] ,

(40)

for all 𝑡 ≥ max{𝑇
1
+ 𝜏
+
, 𝑡
0
+ 𝜏
+
}. Integrating (40) from 𝜌

∗
−

𝜏(𝜌
∗
) to 𝜌∗, in view of (6), we obtain

𝑥 (𝜌
∗
) ≥ 𝑥 (𝜌

∗
− 𝜏 (𝜌

∗
))

× exp{∫
𝜌
∗

𝜌
∗
−𝜏(𝜌
∗
)

(

𝑟 (𝑠)

1 + (𝑀/𝐾 (𝑠))
𝛾
− 𝑏 (𝑠)) 𝑑𝑠}

≥ 𝐾 (𝜌
∗
) (

𝑟 (𝜌
∗
)

𝑏 (𝜌
∗
)

− 1)

1/𝛾

× exp{inf
𝑡∈𝑅

∫

𝑡

𝑡−𝜏(𝑡)

(

𝑟 (𝑠)

1 + (𝑀/𝐾 (𝑠))
𝛾
− 𝑏 (𝑠)) 𝑑𝑠}

≥ 𝜅.

(41)

For any 𝑡 > 𝜌∗, with the same approach as that in derivation
of (41), we can show

𝑥 (𝑡) ≥ 𝜅 if 𝑥 (𝑡) ≤ 0. (42)

On the other hand, if 𝑥(𝑡) > 0 and 𝑡 > 𝜌∗, we can choose
𝜌
∗
≤ �̂� < 𝑡 such that

𝑥

(�̂�) = 0, 𝑥



(𝑠) > 0 ∀𝑠 ∈ (�̂�, 𝑡] , (43)

which, together with (42), yields

𝑥 (𝑡) > 𝑥 (�̂�) ≥ 𝜅. (44)

Thus, there must exist 𝑇
2
> 𝜌
∗
≥ max{𝑇

1
+ 𝜏
+
, 𝑡
0
+ 𝜏
+
} such

that (31) holds.
In summary, (14) and (31) imply that there exists 𝑡

𝜑
>

max{𝑇
1
, 𝑇
2
} such that (12) holds. This ends the proof of

Lemma 3.

Lemma 4. Let

sup
𝑡∈𝑅

{−[𝑏 (𝑡) + 𝑟 (𝑡) 𝜅

1

𝐾 (𝑡)

𝑓
𝑚
]

+ 𝑟 (𝑡)𝑀

1

𝐾 (𝑡)

𝑓
𝑀
𝜏 (𝑡)

× [𝑏
+
+ 𝑟
+
𝑀

1

𝐾
−
𝑓
𝑀
+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾
]

+

𝑟 (𝑡)

1 + (𝜅/𝐾 (𝑡))
𝛾
} < 0,

(45)

where 𝑓
𝑚

= min
𝑥∈[𝜅/𝐾

+
,𝑀/𝐾

−
]
𝑓(𝑥), 𝑓

𝑀
=

max
𝑥∈[𝜅/𝐾

+
,𝑀/𝐾

−
]
𝑓(𝑥), and 𝑓(𝑥) = 𝛾𝑥

𝛾−1
/(1 + 𝑥

𝛾
)
2. More-

over, assume that 𝑥(𝑡) = 𝑥(𝑡; 𝑡
0
, 𝜑) is a solution of (3) with

initial condition (9) and 𝜑 is bounded continuous on [−𝜏+, 0].
Then, for any 𝜖 > 0, there exists 𝑙 = 𝑙(𝜖) > 0, such that every
interval [𝛼, 𝛼 + 𝑙] contains at least one number 𝛿 for which
there exists𝑁 > 0 satisfying

|𝑥 (𝑡 + 𝛿) − 𝑥 (𝑡)| ≤ 𝜖, ∀𝑡 > 𝑁. (46)
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Proof. Define a continuous function Γ(𝜇) by setting

Γ (𝜇) = sup
𝑡∈𝑅

{−[𝑏 (𝑡) + 𝑟 (𝑡) 𝜅

1

𝐾 (𝑡)

𝑓
𝑚
− 𝜇]

+ 𝑟 (𝑡)𝑀

1

𝐾 (𝑡)

𝑓
𝑀
𝜏 (𝑡)

× [𝑏
+
𝑒
𝜇𝜏
+

+ 𝑟
+
𝑀

1

𝐾
−
𝑓
𝑀
𝑒
2𝜇𝜏
+

+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾
𝑒
𝜇𝜏
+

]

+

𝑟 (𝑡)

1 + (𝜅/𝐾 (𝑡))
𝛾
} , 𝜇 ∈ [0, 1] .

(47)

Then, we have

Γ (0) = sup
𝑡∈𝑅

{−[𝑏 (𝑡) + 𝑟 (𝑡) 𝜅

1

𝐾 (𝑡)

𝑓
𝑚
]

+ 𝑟 (𝑡)𝑀

1

𝐾 (𝑡)

𝑓
𝑀
𝜏 (𝑡)

× [𝑏
+
+ 𝑟
+
𝑀

1

𝐾
−
𝑓
𝑀
+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾
]

+

𝑟 (𝑡)

1 + (𝜅/𝐾 (𝑡))
𝛾
} < 0,

(48)

which implies that there exist two constants 𝜂 > 0 and 𝜆 ∈
(0, 1] such that

Γ (𝜆) = sup
𝑡∈𝑅

{−[𝑏 (𝑡) + 𝑟 (𝑡) 𝜅

1

𝐾 (𝑡)

𝑓
𝑚
− 𝜆]

+ 𝑟 (𝑡)𝑀

1

𝐾 (𝑡)

𝑓
𝑀
𝜏 (𝑡)

× [𝑏
+
𝑒
𝜆𝜏
+

+ 𝑟
+
𝑀(1/𝐾

−
) 𝑓
𝑀
𝑒
2𝜆𝜏
+

+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾
𝑒
𝜆𝜏
+

]

+

𝑟 (𝑡)

1 + (𝜅/𝐾 (𝑡))
𝛾
} < −𝜂 < 0.

(49)

For 𝑡 ∈ (−∞, 𝑡
0
− 𝜏
+
], we add the definition of 𝑥(𝑡) with

𝑥(𝑡) ≡ 𝑥(𝑡
0
− 𝜏
+
). Set

𝜖 (𝛿, 𝑡) = − [𝑏 (𝑡 + 𝛿) − 𝑏 (𝑡)] 𝑥 (𝑡 + 𝛿)

+ [𝑟 (𝑡 + 𝛿) − 𝑟 (𝑡)]

×

𝑥 (𝑡 + 𝛿)

1 + (𝑥 (𝑡 + 𝛿 − 𝜏 (𝑡 + 𝛿)) /𝐾 (𝑡 + 𝛿))
𝛾

+ 𝑟 (𝑡) [

𝑥 (𝑡 + 𝛿)

1 + (𝑥 (𝑡 + 𝛿 − 𝜏 (𝑡 + 𝛿)) /𝐾 (𝑡 + 𝛿))
𝛾

−

𝑥 (𝑡 + 𝛿)

1 + (𝑥 (𝑡 + 𝛿 − 𝜏 (𝑡 + 𝛿)) /𝐾 (𝑡))
𝛾
]

+ 𝑟 (𝑡) [

𝑥 (𝑡 + 𝛿)

1 + (𝑥 (𝑡 + 𝛿 − 𝜏 (𝑡 + 𝛿)) /𝐾 (𝑡))
𝛾

−

𝑥 (𝑡 + 𝛿)

1 + (𝑥 (𝑡 + 𝛿 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾
] , 𝑡 ∈ 𝑅.

(50)

By Lemma 3, the solution 𝑥(𝑡) is bounded and

𝜅 ≤ 𝑥 (𝑡) ≤ 𝑀, ∀𝑡 ≥ 𝑡
𝜑
, (51)

which implies that the right side of (3) is also bounded, and
𝑥

(𝑡) is a bounded function on [𝑡

0
− 𝜏
+
, +∞). Thus, in view

of the fact that 𝑥(𝑡) ≡ 𝑥(𝑡
0
− 𝜏
+
) for 𝑡 ∈ (−∞, 𝑡

0
− 𝜏
+
], we

obtain that 𝑥(𝑡) is uniformly continuous on 𝑅. From (10), for
any 𝜖 > 0, there exists 𝑙 = 𝑙(𝜖) > 0, such that every interval
[𝛼, 𝛼 + 𝑙], 𝛼 ∈ 𝑅, contains a 𝛿 for which

|𝜖 (𝛿, 𝑡)| ≤

1

2

𝜂𝜖

1 + 𝜏
+
, ∀𝑡 ∈ 𝑅. (52)

Let𝑁
0
≥ max{𝑡

0
, 𝑡
0
−𝛿, 𝑡
𝜑
+𝑟, 𝑡
𝜑
+𝑟−𝛿}. For 𝑡 ∈ 𝑅, denote

𝑢(𝑡) = 𝑥(𝑡 + 𝛿) − 𝑥(𝑡). Then, for all 𝑡 ≥ 𝑁
0
, we get

𝑑𝑢 (𝑡)

𝑑𝑡

= −𝑏 (𝑡) [𝑥 (𝑡 + 𝛿) − 𝑥 (𝑡)]

+ 𝑟 (𝑡) 𝑥 (𝑡 + 𝛿)

× [

1

1 + (𝑥 (𝑡 + 𝛿 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾

−

1

1 + (𝑥 (𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾
]

+ 𝑟 (𝑡)

1

1 + (𝑥 (𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾

× [𝑥 (𝑡 + 𝛿) − 𝑥 (𝑡)] + 𝜖 (𝛿, 𝑡)

= −𝑏 (𝑡) 𝑢 (𝑡) − 𝑟 (𝑡) 𝑥 (𝑡 + 𝛿)

×

1

𝐾 (𝑡)

𝑓 (𝜃 (𝑡)) 𝑢 (𝑡 − 𝜏 (𝑡))

+

𝑟 (𝑡)

1 + (𝑥 (𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾
𝑢 (𝑡) + 𝜖 (𝛿, 𝑡)

= − [𝑏 (𝑡) + 𝑟 (𝑡) 𝑥 (𝑡 + 𝛿)

×

1

𝐾 (𝑡)

𝑓 (𝜃 (𝑡))] 𝑢 (𝑡) + 𝑟 (𝑡) 𝑥 (𝑡 + 𝛿)

×

1

𝐾 (𝑡)

𝑓 (𝜃 (𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

𝑢


(𝑠) 𝑑𝑠

+

𝑟 (𝑡)

1 + (𝑥 (𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾
𝑢 (𝑡) + 𝜖 (𝛿, 𝑡)
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= −[𝑏 (𝑡) + 𝑟 (𝑡) 𝑥 (𝑡 + 𝛿)

1

𝐾 (𝑡)

𝑓 (𝜃 (𝑡))] 𝑢 (𝑡)

+ 𝑟 (𝑡) 𝑥 (𝑡 + 𝛿)

1

𝐾 (𝑡)

𝑓 (𝜃 (𝑡))

× ∫

𝑡

𝑡−𝜏(𝑡)

[−𝑏 (𝑠) 𝑢 (𝑠) − 𝑟 (𝑠) 𝑥 (𝑠 + 𝛿)

×

1

𝐾 (𝑠)

𝑓 (𝜃 (𝑠)) 𝑢 (𝑠 − 𝜏 (𝑠))

+

𝑟 (𝑠)

1 + (𝑥 (𝑠 − 𝜏 (𝑠)) /𝐾 (𝑠))
𝛾
𝑢 (𝑠)

+ 𝜖 (𝛿, 𝑠)] 𝑑𝑠

+

𝑟 (𝑡)

1 + (𝑥 (𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾
𝑢 (𝑡)

+ 𝜖 (𝛿, 𝑡) ,

(53)

where 𝜃(𝑡) lies between 𝑥(𝑡 + 𝛿 − 𝜏(𝑡))/𝐾(𝑡) and 𝑥(𝑡 −

𝜏(𝑡))/𝐾(𝑡).
Calculating the upper right derivative of 𝑒𝜆𝑡|𝑢(𝑡)| yields

𝐷
−
(𝑒
𝜆𝑡

|𝑢 (𝑡)|)

≤ 𝜆𝑒
𝜆𝑡

|𝑢 (𝑡)|

+ 𝑒
𝜆𝑡
{−[𝑏 (𝑡) + 𝑟 (𝑡) 𝑥 (𝑡 + 𝛿)

1

𝐾 (𝑡)

𝑓 (𝜃 (𝑡))] |𝑢 (𝑡)|

+ 𝑟 (𝑡) 𝑥 (𝑡 + 𝛿)

1

𝐾 (𝑡)

𝑓 (𝜃 (𝑡))

× ∫

𝑡

𝑡−𝜏(𝑡)










−𝑏 (𝑠) 𝑢 (𝑠)

− 𝑟 (𝑠) 𝑥 (𝑠 + 𝛿)

1

𝐾 (𝑠)

𝑓 (𝜃 (𝑠))

× 𝑢 (𝑠 − 𝜏 (𝑠))

+

𝑟 (𝑠)

1 + (𝑥 (𝑠 − 𝜏 (𝑠)) /𝐾 (𝑠))
𝛾

× 𝑢 (𝑠) + 𝜖 (𝛿, 𝑠)










𝑑𝑠

+

𝑟 (𝑡)

1 + (𝑥 (𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾
|𝑢 (𝑡)| + |𝜖 (𝛿, 𝑡)|}

≤ − [𝑏 (𝑡) + 𝑟 (𝑡) 𝜅

1

𝐾 (𝑡)

𝑓
𝑚
− 𝜆] 𝑒

𝜆𝑡

|𝑢 (𝑡)|

+ 𝑟 (𝑡)𝑀

1

𝐾 (𝑡)

𝑓
𝑀

× ∫

𝑡

𝑡−𝜏(𝑡)

[𝑏
+
𝑒
𝜆(𝑡−𝑠)

𝑒
𝜆𝑠

|𝑢 (𝑠)|

+ 𝑟
+
𝑀

1

𝐾
−
𝑓
𝑀
𝑒
𝜆(𝑡−𝑠+𝜏(𝑠))

𝑒
𝜆(𝑠−𝜏(𝑠))

× |𝑢 (𝑠 − 𝜏 (𝑠))|

+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾
𝑒
𝜆(𝑡−𝑠)

𝑒
𝜆𝑠

|𝑢 (𝑠)|] 𝑑𝑠

+ 𝑒
𝜆𝑡
𝜏
+ 1

2

𝜂𝜖

1 + 𝜏
+
+

𝑟 (𝑡)

1 + (𝜅/𝐾 (𝑡))
𝛾
|𝑢 (𝑡)| 𝑒

𝜆𝑡

+ 𝑒
𝜆𝑡 1

2

𝜂𝜖

1 + 𝜏
+
, ∀𝑡 ≥ 𝑁

0
.

(54)

Let

𝑈 (𝑡) = sup
−∞<𝑠≤𝑡

{𝑒
𝜆𝑠

|𝑢 (𝑠)|} . (55)

It is obvious that 𝑒𝜆𝑡|𝑢(𝑡)| ≤ 𝑈(𝑡) and 𝑈(𝑡) is nondecreasing.
Now, we distinguish two cases to finish the proof.

Case One. Consider

𝑈 (𝑡) > 𝑒
𝜆𝑡

|𝑢 (𝑡)| ∀𝑡 ≥ 𝑁
0
. (56)

We claim that

𝑈 (𝑡) ≡ 𝑈 (𝑁
0
) is a constant ∀𝑡 ≥ 𝑁

0
. (57)

Assume, by way of contradiction, that (57) does not hold.
Then, there exists 𝑡

1
> 𝑁
0
such that 𝑈(𝑡

1
) > 𝑈(𝑁

0
). Since

𝑒
𝜆𝑡

|𝑢 (𝑡)| ≤ 𝑈 (𝑁
0
) ∀𝑡 ≤ 𝑁

0
. (58)

There must exist 𝛽 ∈ (𝑁
0
, 𝑡
1
) such that

𝑒
𝜆𝛽 



𝑢 (𝛽)





= 𝑈 (𝑡

1
) ≥ 𝑈 (𝛽) , (59)

which contradicts (56). This contradiction implies that (57)
holds. It follows that there exists 𝑡

2
> 𝑁
0
such that

|𝑢 (𝑡)| ≤ 𝑒
−𝜆𝑡
𝑈 (𝑡) = 𝑒

−𝜆𝑡
𝑈(𝑁
0
) < 𝜖 ∀𝑡 ≥ 𝑡

2
. (60)

Case Two. There is a 𝑡∗
0
≥ 𝑁
0
such that 𝑈(𝑡∗

0
) = 𝑒
𝜆𝑡
∗

0
|𝑢(𝑡
∗

0
)|.

Then, in view of (49), (52), and (54), we get

0 ≤ 𝐷
−
(𝑒
𝜆𝑡

|𝑢 (𝑡)|)





𝑡=𝑡
∗

0

≤ −[𝑏 (𝑡
∗

0
) + 𝑟 (𝑡

∗

0
) 𝜅

1

𝐾 (𝑡
∗

0
)

𝑓
𝑚
− 𝜆] 𝑒

𝜆𝑡
∗

0




𝑢 (𝑡
∗

0
)





+ 𝑟 (𝑡
∗

0
)𝑀

1

𝐾 (𝑡
∗

0
)

𝑓
𝑀
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× ∫

𝑡
∗

0

𝑡
∗

0
−𝜏(𝑡
∗

0 )

[𝑏
+
𝑒
𝜆(𝑡
∗

0
−𝑠)
𝑒
𝜆𝑠

|𝑢 (𝑠)|

+ 𝑟
+
𝑀

1

𝐾
−
𝑓
𝑀
𝑒
𝜆(𝑡
∗

0
−𝑠+𝜏(𝑠))

𝑒
𝜆(𝑠−𝜏(𝑠))

× |𝑢 (𝑠 − 𝜏 (𝑠))|

+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾
𝑒
𝜆(𝑡
∗

0
−𝑠)
𝑒
𝜆𝑠

|𝑢 (𝑠)|] 𝑑𝑠

+

𝑟 (𝑡
∗

0
)

1 + (𝜅/𝐾 (𝑡
∗

0
))
𝛾





𝑢 (𝑡
∗

0
)




𝑒
𝜆𝑡
∗

0
+ 𝑒
𝜆𝑡
∗

0
1

2

𝜂𝜖

≤ {−[𝑏 (𝑡
∗

0
) + 𝑟 (𝑡

∗

0
) 𝜅

1

𝐾 (𝑡
∗

0
)

𝑓
𝑚
− 𝜆]

+ 𝑟 (𝑡
∗

0
)𝑀

1

𝐾 (𝑡
∗

0
)

𝑓
𝑀
𝜏 (𝑡
∗

0
)

× [𝑏
+
𝑒
𝜆𝜏
+

+ 𝑟
+
𝑀

1

𝐾
−
𝑓
𝑀
𝑒
2𝜆𝜏
+

+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾
𝑒
𝜆𝜏
+

] +

𝑟 (𝑡
∗

0
)

1 + (𝜅/𝐾 (𝑡
∗

0
))
𝛾
}𝑈 (𝑡

∗

0
)

+ 𝑒
𝜆𝑡
∗

0
1

2

𝜂𝜖

≤ −𝜂𝑈 (𝑡
∗

0
) + 𝑒
𝜆𝑡
∗

0
𝜂𝜖,

(61)

which yields that

𝑒
𝜆𝑡
∗

0




𝑢 (𝑡
∗

0
)




= 𝑈 (𝑡

∗

0
) < 𝜖𝑒

𝜆𝑡
∗

0
,





𝑢 (𝑡
∗

0
)




< 𝜖. (62)

For any 𝑡 > 𝑡
∗

0
, with the same approach as that in

derivation of (62), we can show

𝑒
𝜆𝑡

|𝑢 (𝑡)| < 𝜖𝑒
𝜆𝑡
, |𝑢 (𝑡)| < 𝜖, (63)

if 𝑈(𝑡) = 𝑒𝜆𝑡|𝑢(𝑡)|.
On the other hand, if 𝑈(𝑡) > 𝑒𝜆𝑡|𝑢(𝑡)| and 𝑡 > 𝑡∗

0
, we can

choose 𝑡∗
0
≤ 𝑡
3
< 𝑡 such that

𝑈 (𝑡
3
) = 𝑒
𝜆𝑡3 


𝑢 (𝑡
3
)




, 𝑈 (𝑠) > 𝑒

𝜆𝑠

|𝑢 (𝑠)| ∀𝑠 ∈ (𝑡
3
, 𝑡] ,

(64)

which, together with (63), yields




𝑢 (𝑡
3
)




< 𝜖. (65)

With a similar argument as that in the proof of CaseOne, we
can show that

𝑈 (𝑠) ≡ 𝑈 (𝑡
3
) is a constant ∀𝑠 ∈ (𝑡

3
, 𝑡] , (66)

which implies that

|𝑢 (𝑡)| < 𝑒
−𝜆𝑡
𝑈 (𝑡) = 𝑒

−𝜆𝑡
𝑈 (𝑡
3
) =





𝑢 (𝑡
3
)




𝑒
−𝜆(𝑡−𝑡3)

< 𝜖.

(67)

In summary, there must exist 𝑁 > max{𝑡∗
0
, 𝑁
0
, 𝑡
2
} such

that |𝑢(𝑡)| ≤ 𝜖 holds for all 𝑡 > 𝑁. The proof of Lemma 4 is
now complete.

3. Main Results

In this section, we establish sufficient conditions on the
existence and global exponential stability of almost periodic
solutions of (3).

Theorem 5. Under the assumptions of Lemma 4, (3) has at
least one positive almost periodic solution 𝑥

∗
(𝑡). Moreover,

𝑥
∗
(𝑡) is globally exponentially stable; that is, there exist

constants 𝐾
𝜑,𝑥
∗ and 𝑡

𝜑,𝑥
∗ such that





𝑥 (𝑡; 𝑡
0
, 𝜑) − 𝑥

∗

(𝑡)




< 𝐾
𝜑,𝑥
∗𝑒
−𝜆𝑡

∀𝑡 > 𝑡
𝜑,𝑥
∗ . (68)

Proof. Let V(𝑡) = V(𝑡; 𝑡
0
, 𝜑

V
) be a solution of (3) with initial

conditions satisfying the assumptions in Lemma 4. We also
add the definition of V(𝑡) with V(𝑡) ≡ V(𝑡

0
− 𝜏
+
) for all 𝑡 ∈

(−∞, 𝑡
0
− 𝜏
+
]. Set

𝜖 (𝑘, 𝑡) = − [𝑏 (𝑡 + 𝑡
𝑘
) − 𝑏 (𝑡)] V (𝑡 + 𝑡

𝑘
)

+ [𝑟 (𝑡 + 𝑡
𝑘
) − 𝑟 (𝑡)]

×

V (𝑡 + 𝑡
𝑘
)

1 + (V (𝑡 + 𝑡
𝑘
− 𝜏 (𝑡 + 𝑡

𝑘
)) /𝐾 (𝑡 + 𝑡

𝑘
))
𝛾

+ 𝑟 (𝑡) [

𝑥 (𝑡 + 𝑡
𝑘
)

1 + (V (𝑡 + 𝑡
𝑘
− 𝜏 (𝑡 + 𝑡

𝑘
)) /𝐾 (𝑡 + 𝑡

𝑘
))
𝛾

−

V (𝑡 + 𝑡
𝑘
)

1 + (𝑥 (𝑡 + 𝑡
𝑘
− 𝜏 (𝑡 + 𝑡

𝑘
)) /𝐾 (𝑡))

𝛾
]

+ 𝑟 (𝑡) [

V (𝑡 + 𝑡
𝑘
)

1 + (V (𝑡 + 𝑡
𝑘
− 𝜏 (𝑡 + 𝑡

𝑘
)) /𝐾 (𝑡))

𝛾

−

V (𝑡 + 𝑡
𝑘
)

1 + (V (𝑡 + 𝑡
𝑘
− 𝜏 (𝑡)) /𝐾 (𝑡))

𝛾
] , 𝑡 ∈ 𝑅,

(69)

where {𝑡
𝑘
} is any sequence of real numbers. By Lemma 3, the

solution V(𝑡) is bounded and

𝜅 < V (𝑡) < 𝑀, ∀𝑡 ≥ 𝑡
𝜑
V , (70)

which implies that the right side of (3) is also bounded, and
V(𝑡) is a bounded function on [𝑡

0
− 𝑟, +∞). Thus, in view of

the fact that V(𝑡) ≡ V(𝑡
0
− 𝑟) for 𝑡 ∈ (−∞, 𝑡

0
− 𝑟], we obtain

that V(𝑡) is uniformly continuous on𝑅.Then, from the almost
periodicity of 𝑟, 𝑏, 𝐾, and 𝜏, we can select a sequence {𝑡

𝑘
} →

+∞ such that





𝑎 (𝑡 + 𝑡

𝑘
) − 𝑎 (𝑡)





≤

1

𝑘

,





𝑏 (𝑡 + 𝑡

𝑘
) − 𝑏 (𝑡)





≤

1

𝑘

,





𝜏 (𝑡 + 𝑡

𝑘
) − 𝜏 (𝑡)





≤

1

𝑘

, |𝜖 (𝑘, 𝑡)| ≤

1

𝑘

, ∀𝑡.

(71)

Since {V(𝑡 + 𝑡
𝑘
)}
+∞

𝑘=1
is uniformly bounded and equiuni-

formly continuous, by Arzala-Ascoli Lemma and diagonal
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selection principle, we can choose a subsequence {𝑡
𝑘𝑗
} of {𝑡
𝑘
},

such that V(𝑡 + 𝑡
𝑘𝑗
) (for convenience, we still denote it by

V(𝑡 + 𝑡
𝑘
)) uniformly converges to a continuous function 𝑥∗(𝑡)

on any compact set of 𝑅, and

𝜅 ≤ 𝑥
∗

(𝑡) ≤ 𝑀, ∀𝑡 ∈ 𝑅. (72)

Now, we prove that 𝑥∗(𝑡) is a solution of (2). In fact, for
any 𝑡 ≥ 𝑡

0
and Δ𝑡 ∈ 𝑅, from (71), we have

𝑥
∗

(𝑡 + Δ𝑡) − 𝑥
∗

(𝑡)

= lim
𝑘→+∞

[V (𝑡 + Δ𝑡 + 𝑡
𝑘
) − V (𝑡 + 𝑡

𝑘
)]

= lim
𝑘→+∞

∫

𝑡+Δ𝑡

𝑡

{−𝑏 (𝜇 + 𝑡
𝑘
) V (𝜇 + 𝑡

𝑘
) + 𝑟 (𝜇 + 𝑡

𝑘
)

× (V (𝜇 + 𝑡
𝑘
)

× (1+(

V (𝜇 + 𝑡
𝑘
−𝜏 (𝜇 + 𝑡

𝑘
))

𝐾 (𝜇+𝑡
𝑘
)

)

𝛾

)

−1

)}𝑑𝜇

= lim
𝑘→+∞

∫

𝑡+Δ𝑡

𝑡

{−𝑏 (𝜇) V (𝜇 + 𝑡
𝑘
) + 𝑟 (𝜇)

×

V (𝜇 + 𝑡
𝑘
)

1 + (V (𝜇 + 𝑡
𝑘
− 𝜏 (𝜇)) /𝐾 (𝜇))

𝛾

+ 𝜖 (𝑘, 𝜇)} 𝑑𝜇

=∫

𝑡+Δ𝑡

𝑡

{𝑥
∗
(𝜇)[

𝑟 (𝜇)

1+(𝑥
∗
(𝜇 − 𝜏 (𝜇)) /𝐾 (𝜇))

𝛾
− 𝑏 (𝜇)]}𝑑𝜇

+ lim
𝑘→+∞

∫

𝑡+Δ𝑡

𝑡

𝜖 (𝑘, 𝜇) 𝑑𝜇

=∫

𝑡+Δ𝑡

𝑡

{𝑥
∗
(𝜇)[

𝑟 (𝜇)

1+(𝑥
∗
(𝜇 − 𝜏 (𝜇)) /𝐾 (𝜇))

𝛾
− 𝑏 (𝜇)]}𝑑𝜇,

(73)

where 𝑡 + Δ𝑡 ≥ 𝑡
0
. Consequently, (73) implies that

𝑑

𝑑𝑡

{𝑥
∗

(𝑡)} = 𝑥
∗

(𝑡) [

𝑟 (𝑡)

1 + (𝑥
∗
(𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))

𝛾
− 𝑏 (𝑡)] .

(74)

Therefore, 𝑥∗(𝑡) is a solution of (3).
Secondly, we prove that 𝑥∗(𝑡) is an almost periodic

solution of (3).With the help of Lemma 4, for any 𝜀 > 0, there
exists 𝑙 = 𝑙(𝜀) > 0, such that every interval [𝛼, 𝛼 + 𝑙] contains
at least one number 𝛿 for which there exists𝑁 > 0 satisfying

|V (𝑡 + 𝛿) − V (𝑡)| ≤ 𝜀, ∀𝑡 > 𝑁. (75)

Then, for any fixed 𝑠 ∈ 𝑅, we can find a sufficient large positive
integer𝑁

1
> 𝑁 such that, for any 𝑘 > 𝑁

1
,

𝑠 + 𝑡
𝑘
> 𝑁,





V (𝑠 + 𝑡

𝑘
+ 𝛿) − V (𝑠 + 𝑡

𝑘
)




≤ 𝜀. (76)

Let 𝑘 → +∞; we obtain





𝑥
∗

(𝑠 + 𝛿) − 𝑥
∗

(𝑠)




≤ 𝜀, (77)

which implies that 𝑥∗(𝑡) is an almost periodic solution of (3).
Finally, we prove that 𝑥∗(𝑡) is globally exponentially

stable.
Let 𝑥(𝑡) = 𝑥(𝑡; 𝑡

0
, 𝜑) and 𝑦(𝑡) = 𝑥(𝑡) − 𝑥

∗
(𝑡), where 𝑡 ∈

[𝑡
0
− 𝜏
+
, +∞). Then,

𝑦


(𝑡)

= −𝑏 (𝑡) 𝑦 (𝑡) + 𝑟 (𝑡)

× [

𝑥 (𝑡)

1 + (𝑥 (𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾
−

𝑥
∗
(𝑡)

1 + (𝑥
∗
(𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))

𝛾
]

= −𝑏 (𝑡) 𝑦 (𝑡) + 𝑟 (𝑡) 𝑥 (𝑡)

× [

1

1 + (𝑥 (𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))
𝛾
−

1

1 + (𝑥
∗
(𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))

𝛾
]

+ 𝑟 (𝑡)

1

1 + (𝑥
∗
(𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))

𝛾
𝑦 (𝑡)

= −𝑏 (𝑡) 𝑦 (𝑡) − 𝑟 (𝑡) 𝑥 (𝑡)

1

𝐾 (𝑡)

𝑓 (
̂
𝜃 (𝑡)) 𝑦

× (𝑡 − 𝜏 (𝑡)) + 𝑟 (𝑡)

1

1 + (𝑥
∗
(𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))

𝛾
𝑦 (𝑡)

= − [𝑏 (𝑡) + 𝑟 (𝑡) 𝑥 (𝑡)

1

𝐾 (𝑡)

𝑓 (
̂
𝜃 (𝑡))] 𝑦 (𝑡)

+ 𝑟 (𝑡) 𝑥 (𝑡)

1

𝐾 (𝑡)

𝑓 (
̂
𝜃 (𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

𝑦


(𝑠) 𝑑𝑠

+ 𝑟 (𝑡)

1

1 + (𝑥
∗
(𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))

𝛾
𝑦 (𝑡)

= − [𝑏 (𝑡) + 𝑟 (𝑡) 𝑥 (𝑡)

1

𝐾 (𝑡)

𝑓 (
̂
𝜃 (𝑡))] 𝑦 (𝑡)

+ 𝑟 (𝑡) 𝑥 (𝑡)

1

𝐾 (𝑡)

𝑓 (
̂
𝜃 (𝑡))

× ∫

𝑡

𝑡−𝜏(𝑡)

[−𝑏 (𝑠) 𝑦 (𝑠) − 𝑟 (𝑠) 𝑥 (𝑠)

1

𝐾 (𝑠)

× 𝑓 (
̂
𝜃 (𝑠)) 𝑦 (𝑠 − 𝜏 (𝑠))

+𝑟 (𝑠)

1

1 + (𝑥
∗
(𝑠 − 𝜏 (𝑠)) /𝐾 (𝑠))

𝛾
𝑦 (𝑠)] 𝑑𝑠

+ 𝑟 (𝑡)

1

1 + (𝑥
∗
(𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))

𝛾
𝑦 (𝑡) ,

(78)

where 𝑡 ≥ 𝑡
0
+ 𝜏
+ and ̂𝜃(𝑡) lies between 𝑥(𝑡 − 𝜏(𝑡))/𝐾(𝑡) and

𝑥
∗
(𝑡 − 𝜏(𝑡))/𝐾(𝑡).
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It follows from Lemma 3 that there exists 𝑡
𝜑,𝑥
∗ > 𝑡
0
+ 𝜏
+

such that

𝜅 ≤ 𝑥 (𝑡) , 𝑥
∗

(𝑡) ≤ 𝑀,

∀𝑡 ∈ [𝑡
𝜑,𝑥
∗ − 𝜏
+
, +∞) .

(79)

We consider the Lyapunov functional

𝑉 (𝑡) =




𝑦 (𝑡)





𝑒
𝜆𝑡
. (80)

Calculating the upper left derivative of𝑉(𝑡) along the solution
𝑦(𝑡) of (78), we have

𝐷
−

(𝑉 (𝑡))

≤ 𝜆




𝑦 (𝑡)





𝑒
𝜆𝑡

+ 𝑒
𝜆𝑡
{−[𝑏 (𝑡) + 𝑟 (𝑡) 𝑥 (𝑡)

1

𝐾 (𝑡)

𝑓 (
̂
𝜃 (𝑡))]





𝑦 (𝑡)






+ 𝑟 (𝑡) 𝑥 (𝑡)

1

𝐾 (𝑡)

𝑓 (
̂
𝜃 (𝑡))

× ∫

𝑡

𝑡−𝜏(𝑡)










−𝑏 (𝑠) 𝑦 (𝑠) − 𝑟 (𝑠) 𝑥 (𝑠)

1

𝐾 (𝑠)

× 𝑓 (
̂
𝜃 (𝑠)) 𝑦 (𝑠 − 𝜏 (𝑠)) + 𝑟 (𝑠)

×

1

1 + (𝑥
∗
(𝑠 − 𝜏 (𝑠)) /𝐾 (𝑠))

𝛾

× 𝑦 (𝑠)










𝑑𝑠

+ 𝑟 (𝑡)

1

1 + (𝑥
∗
(𝑡 − 𝜏 (𝑡)) /𝐾 (𝑡))

𝛾

×




𝑦 (𝑡)





}

≤ − [𝑏 (𝑡) + 𝑟 (𝑡) 𝜅

1

𝐾 (𝑡)

𝑓
𝑚
− 𝜆] 𝑒

𝜆𝑡 



𝑦 (𝑡)






+ 𝑟 (𝑡)𝑀

1

𝐾 (𝑡)

𝑓
𝑀
∫

𝑡

𝑡−𝜏(𝑡)

[𝑏
+
𝑒
𝜆(𝑡−𝑠)

𝑒
𝜆𝑠 



𝑦 (𝑠)






+ 𝑟
+
𝑀

1

𝐾
−
𝑓
𝑀
𝑒
𝜆(𝑡−𝑠+𝜏(𝑠))

× 𝑒
𝜆(𝑠−𝜏(𝑠)) 




𝑦 (𝑠 − 𝜏 (𝑠))






+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾
𝑒
𝜆(𝑡−𝑠)

×𝑒
𝜆𝑠 



𝑦 (𝑠)





] 𝑑𝑠

+

𝑟 (𝑡)

1 + (𝜅/𝐾 (𝑡))
𝛾





𝑦 (𝑡)





𝑒
𝜆𝑡
, ∀𝑡 > 𝑡

𝜑,𝑥
∗ .

(81)

We claim that

𝑉 (𝑡) =




𝑦 (𝑡)





𝑒
𝜆𝑡

< 𝑒
𝜆𝑡
𝜑,𝑥
∗

( max
𝑡∈[𝑡0−𝑟,𝑡𝜑,𝑥∗ ]





𝑥 (𝑡) − 𝑥

∗

(𝑡)




+ 1)

:= 𝐾
𝜑,𝑥
∗ ∀𝑡 > 𝑡

𝜑,𝑥
∗ .

(82)

Contrarily, there must exist 𝑡
∗
> 𝑡
𝜑,𝑥
∗ such that

𝑉 (𝑡
∗
) = 𝐾
𝜑,𝑥
∗ , 𝑉 (𝑡) < 𝐾

𝜑,𝑥
∗ ∀𝑡 ∈ [𝑡

0
− 𝜏
+
, 𝑡
∗
) . (83)

Together with (55), (81), and (83), we obtain

0 ≤ 𝐷
−
(𝑉 (𝑡
∗
))

≤ − [𝑏 (𝑡
∗
) + 𝑟 (𝑡

∗
) 𝜅

1

𝐾 (𝑡
∗
)

𝑓
𝑚
− 𝜆] 𝑒

𝜆𝑡∗ 


𝑦 (𝑡
∗
)





+ 𝑟 (𝑡
∗
)𝑀

1

𝐾 (𝑡
∗
)

𝑓
𝑀

× ∫

𝑡∗

𝑡∗−𝜏(𝑡∗)

[𝑏
+
𝑒
𝜆(𝑡∗−𝑠)

𝑒
𝜆𝑠 



𝑦 (𝑠)






+ 𝑟
+
𝑀

1

𝐾
−
𝑓
𝑀
𝑒
𝜆(𝑡∗−𝑠+𝜏(𝑠))

× 𝑒
𝜆(𝑠−𝜏(𝑠)) 




𝑦 (𝑠 − 𝜏 (𝑠))






+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾

×𝑒
𝜆(𝑡∗−𝑠)

𝑒
𝜆𝑠 



𝑦 (𝑠)





] 𝑑𝑠

+

𝑟 (𝑡
∗
)

1 + (𝜅/𝐾 (𝑡
∗
))
𝛾





𝑦 (𝑡
∗
)




𝑒
𝜆𝑡

≤ {−[𝑏 (𝑡
∗
) + 𝑟 (𝑡

∗
) 𝜅

1

𝐾 (𝑡
∗
)

𝑓
𝑚
− 𝜆]

+ 𝑟 (𝑡
∗
)𝑀

1

𝐾 (𝑡
∗
)

𝑓
𝑀
𝜏 (𝑡
∗
)

× [𝑏
+
𝑒
𝜆𝜏
+

+ 𝑟
+
𝑀

1

𝐾
−
𝑓
𝑀
𝑒
2𝜆𝜏
+

+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾
𝑒
𝜆𝜏
+

] +

𝑟 (𝑡
∗
)

1 + (𝜅/𝐾 (𝑡
∗
))
𝛾
}𝐾
𝜑,𝑥
∗ .

(84)

Thus,

0 ≤ − [𝑏 (𝑡
∗
) + 𝑟 (𝑡

∗
) 𝜅

1

𝐾 (𝑡
∗
)

𝑓
𝑚
− 𝜆]

+ 𝑟 (𝑡
∗
)𝑀

1

𝐾 (𝑡
∗
)

𝑓
𝑀
𝜏 (𝑡
∗
)
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× [𝑏
+
𝑒
𝜆𝜏
+

+ 𝑟
+
𝑀

1

𝐾
−
𝑓
𝑀
𝑒
2𝜆𝜏
+

+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾
𝑒
𝜆𝜏
+

]

+

𝑟 (𝑡
∗
)

1 + (𝜅/𝐾 (𝑡
∗
))
𝛾
,

(85)

which contradicts (49). Hence, (82) holds. It follows that




𝑦 (𝑡)





< 𝐾
𝜑,𝑥
∗𝑒
−𝜆𝑡

∀𝑡 > 𝑡
𝜑,𝑥
∗ . (86)

This completes the proof of Theorem 5.

4. An Example

In this section, we present an example to check the validity of
the results we obtained in the previous sections.

Example 1. Consider the following fishing model with time-
varying delay:

𝑥


(𝑡)

= 𝑥 (𝑡) [

3 + (1/20) sin√2𝑡
1 + (𝑥 (𝑡 − cos2𝑡/40) /4)2

− 1 −

1

20

sin√3𝑡] .

(87)

Obviously, 𝛾 = 2, 𝑟(𝑡) = 3 + (1/20) sin√2𝑡, 𝑏(𝑡) =

1 + (1/20) sin√3𝑡, 𝐾(𝑡) = 4, 𝜏(𝑡) = cos2𝑡/40, 𝑓(𝑥) =

𝛾𝑥
𝛾−1
/(1 + 𝑥

𝛾
)
2. By calculating, we obtain

(∫

𝑡

𝑡−𝜏(𝑡)

(𝑟 (𝑠) − 𝑏 (𝑠)) 𝑑𝑠)

+

≈ 0.0525,

(∫

𝑡

𝑡−𝜏(𝑡)

𝑏 (𝑠) 𝑑𝑠)

+

≈ 0.02625,

𝜅 ≈ 5.3587,

𝑀 ≈ 4√
42

19

𝑒
21/400

≈ 6.2677 > 𝜅,

𝑓
𝑚
≈ 0.2625, 𝑓

𝑀
≈ 0.3430,

sup
𝑡∈𝑅

{−[𝑏 (𝑡) + 𝑟 (𝑡) 𝜅

1

𝐾 (𝑡)

𝑓
𝑚
]

+ 𝑟 (𝑡)𝑀

1

𝐾 (𝑡)

𝑓
𝑀
𝜏 (𝑡)

× [𝑏
+
+ 𝑟
+
𝑀

1

𝐾
−
𝑓
𝑀
+

𝑟
+

1 + (𝜅/𝐾
+
)
𝛾
]

+

𝑟 (𝑡)

1 + (𝜅/𝐾 (𝑡))
𝛾
}

≈ −0.8296 < 0,

(88)

0 10 20 30 40 50 60 70 80
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2
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Figure 1: Numerical solution 𝑥(𝑡) of system (87) for initial value
𝜑(𝑡) ≡ 1, 5, 8.

which imply that (87) satisfies the assumptions ofTheorem 5.
Therefore, (87) has a unique positive almost periodic solution
𝑥
∗
(𝑡), which is globally exponentially stable with the expo-

nential convergent rate 𝜆 ≈ 0.001. The numerical simulation
in Figure 1 strongly supports the conclusion.

Remark 6. Most recently, by using Mawhin continuation
theorem, criteria ensuring the local existence of almost
periodic solutions for the fishing model (3) are established
in Li et al. [14], where the global exponential convergence
for almost periodic solution is not touched. Unfortunately, as
pointed out by Wang and Zhang [15] and Ortega [16], for the
essential reason that the compact condition is not suitable for
the almost periodic function family, the coincidence degree
cannot be used to solve almost periodic problem. Hence,
the mapping 𝑁 of Lemma 3.3 in Li et al. [14] is not 𝐿-
compact and the existence of almost periodic solutions for
(3) cannot hold. Moreover, to the best of our knowledge,
there is no research on the global exponential stability of
positive almost periodic solutions to the fishing model (3).
We also mention that all results in [5, 6, 9, 10, 12] cannot be
applied to imply that all solutions of (87) with initial values
(9) converge exponentially to the positive almost periodic
solution. Here, we employ a novel proof to establish some
criteria to guarantee the existence and global exponential
stability of positive almost periodic solutions for fishing
model with time-varying coefficients and delays.This implies
that the results of this paper are contributed to complement
the previous references in this topic.
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