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This paper is devoted to a newnumericalmethod for fractional Riccati differential equations.Themethod combines the reproducing
kernel method and the quasilinearization technique. Its main advantage is that it can produce good approximations in a larger
interval, rather than a local vicinity of the initial position. Numerical results are compared with some existing methods to show the
accuracy and effectiveness of the present method.

1. Introduction

This paper deals with the numerical solution of the following
fractional Riccati differential equation:

𝑢
𝛼

(𝑥) = 𝑝 (𝑥) + 𝑞 (𝑥) 𝑢 (𝑥) + 𝑟 (𝑥) 𝑢
2

(𝑥) ,

0 ≤ 𝑥 ≤ 𝑇, 0 < 𝛼 ≤ 1,

𝑢 (0) = 0,

(1)

where 𝑢𝛼(𝑥) denotes the Caputo fractional derivative of order
𝛼 and

𝑢
𝛼

(𝑥) =

1

Γ (1 − 𝛼)

∫

𝑥

0

(𝑥 − 𝜏)
−𝛼

𝑢


(𝜏) 𝑑𝜏. (2)

Riccati differential equations arise in many fields [1]. The
problem has attracted much attention and has been studied
by many authors. However, deriving its analytical solution in
an explicit form seems to be unlikely except for certain special
situations. Recently, many numerical methods [2–9] have
been proposed to solve integer order Riccati differential equa-
tions. However, the discussion on the numerical methods for
fractional order Riccati differential equations is rare. Odibat
and Momani [10] developed a modified homotopy pertur-
bation method for fractional Riccati differential equations.

Li [11] presented a numerical method for fractional differ-
ential equations based on Chebyshev wavelets. Hosseinnia et
al. [12] applied an enhanced homotopy perturbation method
for fractional Riccati differential equations. Yüzbaşı [13]
introduced a numerical method for fractional Riccati dif-
ferential equations using the Bernstein polynomial. Khader
[14] developed the fractional Chebyshev finite difference
method for fractional Riccati differential equations. Yang
and Baleanu [15], Yang et al. [16], and Baleanu et al. [17] pro-
posed local fractional variation iteration for fractional heat
conduction and wave equations.

Recently, based on the reproducing kernel theory, Cui,
Geng, and Lin presented the reproducing kernel method
(RKM) for linear and nonlinear operator equations [18–
21]. The method has been developed and applied to many
problems [22–26].

The aim of this paper is to present a new method for
fractional Riccati differential equations, based on the RKM
and the quasilinearization technique.

The rest of the paper is organized as follows. In the
next section, the quasilinearization technique is applied to
fractional Riccati differential equation.The RKM for reduced
linear fractional differential equations is introduced in
Section 3.Thenumerical examples are presented in Section 4.
Section 5 ends this paper with a brief conclusion.
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2. Quasilinearization of Riccati
Differential Equation (1)

In this section, the quasilinearization technique is applied to
reduce (1) to a series of linear fractional problems. Define
𝑓(𝑥, 𝑢) = 𝑝(𝑥) + 𝑟(𝑥)𝑢

2. By choosing an appropriate initial
approximation 𝑢

0
(𝑥) for the function 𝑢(𝑥) in 𝑓(𝑥, 𝑢) and

expanding 𝑓(𝑥, 𝑢) around 𝑢
0
(𝑥), it follows that

𝑓 (𝑥, 𝑢
1
) = 𝑓 (𝑥, 𝑢

0
) + (𝑢

1
− 𝑢
0
)

𝜕𝑓

𝜕𝑢








𝑢=𝑢0

+ ⋅ ⋅ ⋅ . (3)

Generally, one can write for 𝑘 = 1, 2, . . . (𝑘 = iteration index)

𝑓(𝑥, 𝑢
𝑘
) = 𝑓(𝑥, 𝑢

𝑘−1
) + (𝑢

𝑘
− 𝑢
𝑘−1
)

𝜕𝑓

𝜕𝑢








𝑢=𝑢𝑘−1

+ ⋅ ⋅ ⋅ . (4)

Therefore, the following iteration formula for (1) can be
derived:

𝑢
𝛼

𝑘
(𝑥) + 𝑎

𝑘
(𝑥) 𝑢
𝑘
(𝑥) = 𝑓

𝑘
(𝑥) , 𝑘 = 1, 2, . . . ,

𝑢
𝑘
(0) = 0,

(5)

where 𝑎
𝑘
(𝑥) = −[𝑞(𝑥) + (𝜕𝑓/𝜕𝑢)|

𝑢=𝑢𝑘−1
] = −[𝑞(𝑥) +

2𝑟(𝑥)𝑢
𝑘−1
(𝑥)]and 𝑓

𝑘
(𝑥) = 𝑓(𝑥, 𝑢

𝑘−1
) − (𝜕𝑓/𝜕𝑢)|

𝑢=𝑢𝑘−1
=

𝑝(𝑥) − 𝑟(𝑥)𝑢
2

𝑘−1
(𝑥) and 𝑢

0
(𝑥) is the initial approximation.

Clearly, to solve (1), it suffices for us to solve the series of
linear problem (5).

3. Method for Solving Linear
Fractional Problem (5)

To illustrate how to solve (5) we consider the problem of
solving

𝐿V (𝑥) = V𝛼 (𝑥) + 𝑎 (𝑥) V (𝑥) = 𝑓 (𝑥) , 0 < 𝑥 < 𝑇,

V (0) = 0,
(6)

where 𝑎(𝑥) and 𝑓(𝑥) are continuous.
By the definition of Caputo fractional derivative, (6) is

equivalent to the following equation:

1

Γ (1 − 𝛼)

∫

𝑡

0

(𝑡 − 𝜏)
−𝛼V (𝜏) 𝑑𝜏 + 𝑎 (𝑡) V (𝑡) = 𝑓 (𝑡) ,

0 ≤ 𝑡 ≤ 𝑇,

V (0) = 0.

(7)

If 𝑢(𝑡) ∈ 𝐶
1

[0, 𝑇], then the improper integral ∫𝑡
0

(𝑡 −

𝜏)
−𝛼V(𝜏)𝑑𝜏 exists and

∫

𝑡

0

(𝑡 − 𝜏)
−𝛼V (𝜏) 𝑑𝜏

= ∫

𝑡

0

V (𝜏) − V (𝑡)
(𝑡 − 𝜏)

𝛼
𝑑𝜏 + V (𝑡) ∫

𝑡

0

(𝑡 − 𝜏)
−𝛼

𝑑𝜏

=

𝑡
1−𝛼V (𝑡)
1 − 𝛼

− ∫

𝑡

0

V (𝑡) − V (𝜏)
(𝑡 − 𝜏)

𝛼
𝑑𝜏

=

𝑡
1−𝛼V (𝑡)
1 − 𝛼

− ∫

𝑡

0

𝑔 (𝜏, V) 𝑑𝜏.

(8)

Table 1: Comparison of the numerical solutions with the other
methods for 𝛼 = 0.75.

𝑥 Ours [10] [11]
0.20 0.469516 0.428892 0.584307
0.40 0.933596 0.891404 1.024974
0.50 1.14488 1.132763 1.198621
0.60 1.33098 1.370240 1.349150
0.80 1.62153 1.794879 1.599235
1.00 1.81865 2.087384 1.801763

Define

𝑔 (𝜏, V) =
{

{

{

V (𝑡) − V (𝜏)
(𝑡 − 𝜏)

𝛼
, 𝜏 ̸= 𝑡,

0, 𝜏 = 𝑡.

(9)

This gives us a continuous function on [0, 𝑡] and then integral
∫

𝑡

0

𝑔(𝜏, V)𝑑𝜏 also exists and ∫𝑡
0

((V(𝑡) − V(𝜏))/(𝑡 − 𝜏)𝛼)𝑑𝜏 =
∫

𝑡

0

𝑔(𝜏, V)𝑑𝜏.
Therefore, (6) can be converted into

1

Γ (1 − 𝛼)

(

𝑡
1−𝛼V (𝑡)
1 − 𝛼

− ∫

𝑡

0

𝑔 (𝜏, V) 𝑑𝜏) + 𝑎 (𝑡) V (𝑡) = 𝑓 (𝑡) ,

0 ≤ 𝑡 ≤ 𝑇,

V (0) = 0.
(10)

Applying Hermite’s quadrature formula to ∫

𝑡

0

((V(𝑡) −
V(𝜏))/(𝑡 − 𝜏)𝛼)𝑑𝜏, one obtains

∫

𝑡

0

𝑔 (𝜏, V) 𝑑𝜏 =
𝜋𝑡

2𝑀

𝑀

∑

𝑘=1

𝑔 (𝑥
𝑘
, 𝑢 (𝑥
𝑘
))√1 − 𝑥

2

𝑘
, (11)

where 𝑔(𝑥, 𝑢(𝑥)) = 𝑔((𝑡/2)(1 + 𝑥), 𝑢((𝑡/2)(1 + 𝑥))),𝑀 is the
number of nodes, and 𝑥

𝑘
= cos((2𝑘 − 1)/2𝑀), 𝑘 = 1, . . . ,𝑀.

Then (6) can be further equivalently approximated to

1

Γ (1 − 𝛼)

× (

𝑡
1−𝛼V (𝑡)
1 − 𝛼

−

𝜋𝑡

2𝑀

𝑀

∑

𝑘=1

𝑔 (𝑥
𝑘
, V (𝑥
𝑘
))√1 − 𝑥

2

𝑘
)

+ 𝑎 (𝑡) V (𝑡) = 𝑓 (𝑡) , 0 ≤ 𝑡 ≤ 𝑇,

V (0) = 0.

(12)

To apply the RKM to (12), it is necessary to construct the
following reproducing kernel Hilbert space𝑊3[0, 𝑇].

Definition 1. 𝑊3[0, 𝑇] = {𝑢(𝑥) | 𝑢


(𝑥) is an abso-
lutely continuous real value function, 𝑢(3)(𝑥) ∈ 𝐿

2

[0, 𝑇],
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Figure 1: The behavior of approximate solution with different values of 𝛼 ((a) 𝛼 = 0.99; (b) 𝛼 = 0.75, 0.99; (c) 𝛼 = 0.5, 0.75, 0.99).
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Figure 2: Comparison of approximate solutions with the exact solutions for 𝛼 = 1 ((a) exact solution; (b) absolute errors).

𝑢(0) = 0}.The inner product and norm in𝑊3[0, 𝑇] are given,
respectively, by

(𝑢 (𝑦) , V (𝑦))
3

=𝑢 (0) V (0) +𝑢 (0) V (0) +𝑢 (0) V (0) + ∫
𝑇

0

𝑢
(3)V(3)𝑑𝑦,

‖𝑢‖
3
= √(𝑢, 𝑢)

3
, 𝑢, V ∈ 𝑊3 [0, 𝑇] .

(13)

Theorem 2. 𝑊3[0, 𝑇] is a reproducing kernel space and its
reproducing kernel is

𝑘 (𝑥, 𝑦) = {

𝑘
1
(𝑥, 𝑦) , 𝑦 ≤ 𝑥,

𝑘
1
(𝑦, 𝑥) , 𝑦 > 𝑥,

(14)

where 𝑘
1
(𝑥, 𝑦) = 𝑦

2

(7 𝑥 𝑦
4

− 𝑦
5

+ 35 𝑥
3

𝑦 (4 + 𝑦) −

21 𝑥
2

(−60 + 𝑦
3

))/5040.
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Table 2: Comparison of the numerical solutions with the other
methods for 𝛼 = 0.90.

𝑥 Ours [13] IABMM [12] MHPM [10]
0.20 0.312985 0.314869 — —
0.40 0.695357 0.697544 — —
0.50 0.901484 0.903695 0.8621 0.9010
0.60 1.10576 1.107866 — —
0.80 1.47606 1.477707 — —
1.00 1.76417 1.764520 1.7356 1.8720

Table 3: Numerical results for 𝛼 = 0.99, 1 on [0, 4].

𝑥 Ours (𝛼 = 0.99) Ours (𝛼 = 1) Exact solution (𝛼 = 1)
0.5 0.769552 0.756446 0.756014
1.0 1.69828 1.68978 1.689500
1.5 2.19159 2.19599 2.195630
2.0 2.35063 2.35838 2.357770
2.5 2.39373 2.40046 2.40028
3.0 2.40539 2.41058 2.41081
3.5 2.40899 2.41302 2.41339
4.0 2.41047 2.41374 2.41401

Table 4: Comparison of the numerical solutions with the other
methods for 𝛼 = 0.75.

𝑥 Ours [13] IABMM [12] MHPM [10]
0.20 0.307359 0.3099755 0.3117 0.3138
0.40 0.480346 0.4816318 0.4855 0.4929
0.60 0.597542 0.5977827 0.6045 0.5974
0.80 0.679657 0.6788495 0.6880 0.6604
1.00 0.738213 0.7368368 0.7478 0.7183

Table 5: Comparison of the numerical solutions with the other
methods for 𝛼 = 0.90.

𝑥 Ours [13] IABMM [12] MHPM [10]
0.20 0.237652 0.2387891 0.2393 0.2391
0.40 0.421766 0.4225830 0.4234 0.4229
0.60 0.565673 0.5661715 0.5679 0.5653
0.80 0.674464 0.6746270 0.6774 0.6740
1.00 0.754632 0.7545890 0.7584 0.7569

Definition 3. 𝑊1[0, 𝑇] = {𝑢(𝑥) | 𝑢(𝑥) is an absolutely
continuous real value function, 𝑢(𝑥) ∈ 𝐿2[0, 𝑇]}. The inner
product and norm in𝑊1[0, 𝑇] are given, respectively, by

(𝑢 (𝑦) , V (𝑦))
1
= 𝑢 (0) V (0) + ∫

𝑇

0

𝑢
V𝑑𝑦,

‖𝑢‖
1
= √(𝑢, 𝑢)

1
, 𝑢, V ∈ 𝑊1 [0, 𝑇] .

(15)

Table 6: Comparison of the numerical solutions with the other
methods for 𝛼 = 1.0.

𝑥 Exact Ours [13] MHPM [10]
0.20 0.197375 0.19738 0.197375 0.197375
0.40 0.379949 0.379956 0.379948 0.379944
0.60 0.53705 0.537061 0.537049 0.536857
0.80 0.664037 0.664053 0.664036 0.661706
1.00 0.761594 0.761618 0.761594 0.746032

Theorem 4. 𝑊1[0, 𝑇] is a reproducing kernel space and its
reproducing kernel is

𝑘 (𝑥, 𝑦) = {

1 + 𝑦, 𝑦 ≤ 𝑥,

1 + 𝑥, 𝑦 > 𝑥.

(16)

Put

𝐿V (𝑥)

=

1

Γ (1 − 𝛼)

(

𝑡
1−𝛼V (𝑡)
1 − 𝛼

−

𝜋𝑡

2𝑀

×

𝑀

∑

𝑘=1

𝑔 (𝑥
𝑘
, V (𝑥
𝑘
))√1−𝑥

2

𝑘
) + 𝑎 (𝑡) V (𝑡).

(17)

Clearly, 𝐿 : 𝑊
3

[0, 𝑇] → 𝑊
1

[0, 𝑇] is a bounded linear
operator. Put 𝜑

𝑖
(𝑥) = 𝑘(𝑥, 𝑥

𝑖
) and 𝜓

𝑖
(𝑥) = 𝐿

∗

𝜑
𝑖
(𝑥), where

𝐿
∗ is the adjoint operator of 𝐿. The orthonormal system
{𝜓
𝑖
(𝑥)}
∞

𝑖=1
of 𝑊3[0, 𝑇] can be derived from Gram-Schmidt

orthogonalization process of {𝜓
𝑖
(𝑥)}
∞

𝑖=1
,

𝜓
𝑖
(𝑥) =

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝜓
𝑘
(𝑥) , (𝛽

𝑖𝑖
> 0, 𝑖 = 1, 2, . . .) . (18)

Theorem 5. If {𝑥
𝑖
}
∞

𝑖=1
is dense on [0, 𝑇], then {𝜓

𝑖
(𝑥)}
∞

𝑖=1
is the

complete system of𝑊3[0, 𝑇].

Theorem6. If {𝑥
𝑖
}
∞

𝑖=1
is dense on [0, 𝑇] and the solution of (12)

is unique, then the solution of (12) is

V (𝑡) =
∞

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
) 𝜓
𝑖
(𝑡) . (19)

Now, an approximate solution 𝑉
𝑁
(𝑥) of (6) can be ob-

tained by the N-term intercept of the exact solution V(𝑥) and

V
𝑁
(𝑥) =

𝑁

∑

𝑖=1

𝑖

∑

𝑘=1

𝛽
𝑖𝑘
𝑓 (𝑥
𝑘
) 𝜓
𝑖
(𝑡) . (20)

Similarly, the approximate solutions 𝑢
𝑘
(𝑥) can be

obtained:

𝑢
𝑘,𝑁
(𝑥) =

𝑁

∑

𝑗=1

𝐴
𝑗
𝜓
𝑗
(𝑥) , (21)

where 𝐴
𝑗
= ∑
𝑗

𝑙=1
𝛽
𝑗𝑙
𝑓
𝑘
(𝑥
𝑙
).
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4. Numerical Examples

Example 1. Consider the following fractional Riccati differ-
ential equation [10–13]:

𝑢
𝛼

(𝑥) = 1 + 2𝑢 (𝑥) − 𝑢
2

(𝑥) ,

0 ≤ 𝑥 ≤ 𝑇, 0 < 𝛼 ≤ 1,

𝑢 (0) = 0.

(22)

The exact solution for 𝛼 = 1 can be easily determined to be

𝑢 (𝑥) =1+√2 tanh(√2𝑥+
log ((−1 + √2) / (1 + √2))

2

) .

(23)

Applying the proposed method, taking 𝑇 = 1, 𝑘 = 3, 𝑀 =

30, 𝑁 = 50, the numerical results compared with other
methods are listed in Tables 1 and 2. Taking 𝑇 = 4, 𝑘 =

3, 𝑀 = 30, 𝑁 = 50, the numerical results on [0, 4] are listed
in Table 3. From Table 3, it is easily found that the present
approximations are effective for a larger interval, rather than
a local vicinity of the initial position.

Example 2. Consider the following fractional Riccati differ-
ential equation [10–14]:

𝑢
𝛼

(𝑥) = 1 + 𝑢
2

(𝑥) , 0 ≤ 𝑥 ≤ 𝑇, 0 < 𝛼 ≤ 1

𝑢 (0) = 0.

(24)

The exact solution for 𝛼 = 1 can be easily determined to be

𝑢 (𝑥) =

𝑒
2𝑥

− 1

𝑒
2𝑥
+ 1

. (25)

According to the present method, taking 𝑇 = 1, 𝑘 =

3, 𝑀 = 50, 𝑁 = 50, the numerical results compared
with other methods are given in Tables 4, 5, and 6. Taking
𝑇 = 4, 𝑘 = 5, 𝑀 = 50, 𝑁 = 80, the numerical results
on [0, 4] are shown in Figures 1 and 2. From these figures
we can conclude that the obtained numerical solutions are
in excellent agreement with the exact solution for a larger
interval.

5. Conclusion

In this paper, combining the RKM, the numerical integral,
and quasilinearization techniques, a new numerical method
is proposed for fractional Riccati differential equations. The
main advantage of this method is that it can provide accurate
numerical approximations on a larger interval. Numerical
results compared with the existing methods show that the
present method is a powerful method for solving fractional
Riccati differential equations.
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