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This paper develops a theoretical analysis of harmonic balance method, based on the cubic spline wavelet and Daubechies wavelet,
for steady state analysis of nonlinear circuits under periodic excitation.The properties of the resulting Jacobianmatrix for harmonic
balance are analyzed. Numerical experiments illustrate the theoretical analysis.

1. Introduction

The rapid growth in integrated circuits has placed new
demands on the simulation tools. Many quantities properties
of circuits are of interest to circuits designer. Especially,
the steady-state analysis of nonlinear circuits represents
one of the most computationally challenging problems in
microwave design.

Harmonic balance (HB) [1–3] is very favorable for period-
ic or quasiperiodic steady-state analysis of mildly nonlinear
circuits using Fourier series expansion. However, the density
of the resulting Jacobianmatrix seriously affects the efficiency
of HB based on Fourier series expansion. More effective
simulators are required to study steady-state analysis. Soveiko
and Nakhla in [4] have provided the elaborate formulation
for HB approach applying Daubechies wavelet series instead
of Fourier series and obtain the sparser Jacobian matrix
to reduce the whole computational cost. And Steer and
Christoffersen in [5] have given the possibility of wavelet
expansion for steady-state analysis. One advantage of wavelet
bases is a sparse representation matrix of operators or
functions which is favorable for solving the nonlinear system
by Newton iterative method. But the main disadvantage is
the waste of much time in storing Jacobian matrix due to
the complex computation of Daubechies wavelet functions.
And few studies have been reported on the efficient wavelet
matrix transform which is very important in the wavelet HB
approach. The cubic spline wavelet in [6, 7] has the explicit
form and sparse transform matrix and derivative matrix. In

this paper, we provide the theoretical analysis for HBmethod
by using the cubic spline wavelet and Daubechies wavelets.

The remainder of this paper is organized as follows. In
Section 2, we develop the HB method based on the cubic
spline wavelet and Daubechies wavelets in [4] for nonlinear
circuits simulations, respectively. Section 3 provides the the-
oretical comparison analysis in the sparsity and computation
of Jacobianmatrix obtained by the transform. And it is shown
that the cubic spline wavelet HBmethod has sparser Jacobian
matrix. Numerical experiments are provided in Section 4. It
is concluded in Section 5.

2. HB Formulation Based on the Cubic Spline
Wavelets and Daubechies Wavelets

2.1. Generalized HB Formulation. The harmonic balance
(HB) method is a powerful technique for the analysis of
high-frequency nonlinear circuits such as mixers, power
amplifiers, and oscillators. The basic idea of HB is to expand
the unknown state variable 𝑥(𝑡) in electrical circuit equations
by some series 𝑥(𝑡) = ∑𝑋𝑘V𝑘(𝑡). Then the problem is
transformed into the frequency domain focusing on the
coefficients𝑋𝑘.

Let us consider the general approach of HB which
assumes obtaining the solution𝑥(𝑡) of the nonlinearmodified
nodal analysis (MNA) equation in [8]

𝐶�̇� + 𝐺𝑥 + 𝑓 (𝑥) + 𝑢 = 0, (1)
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which satisfies the following periodical boundary condition:

𝑥 (𝑡 + 𝐿) = 𝑥 (𝑡) , (2)

where 𝐶 and 𝐺 are𝑁𝑥 × 𝑁𝑥 matrices, 𝑥 is a𝑁𝑥 dimensional
column vector of unknown circuit variables, and 𝑢 is a 𝑁𝑥
dimensional column vector of independent sources. Let {V𝑘}
be the basis; then the unknown function𝑥(𝑡) can be expanded
𝑥(𝑡) = ∑𝑋𝑘V𝑘(𝑡). To solve (1) with periodic boundary
condition (2), assume that the expansion basis is periodic
with period 𝜏 and [𝑥𝑙] is a discrete vector containing values
of 𝑥(𝑡) sampled in the time domain at time points [𝑡𝑙], 𝑙 =
1, . . . , 𝑁𝑡. Then (1) can be written in the transform domain as
a nonlinear algebraic equation system:

Φ (𝑋) = (𝐶𝐷 + 𝐺)𝑋 + 𝐹 (𝑋) + 𝑈 = 0, (3)

where

𝑋 = 𝑇𝑥, 𝑥 = 𝑇
−1
𝑋, 𝑈 = 𝑇𝑢, (4)

𝐶,𝐷, and𝐺 are𝑁𝑡𝑁𝑥 ×𝑁𝑡𝑁𝑥 matrices, especially, the matrix
𝐷 is a representation matrix of the derivative operator 𝑑/𝑑𝑡
in expansion basis {V𝑖}

[𝐷𝑖,𝑗] = ⟨

𝑑

𝑑𝑡

V𝑖, V𝑗⟩ , (5)

and, finally, 𝑇 and 𝑇
−1 are the matrices associated with

the forward and inverse transform arising from the chosen
expansion basis. The nonlinear matrix system (3) can be
solved by Newton iterative method

𝐽 (𝑋
(𝑖)
) (𝑋
(𝑖+1)

− 𝑋
(𝑖)
) = −Φ (𝑋

(𝑖)
) , (6)

where 𝑋(𝑖) is the solution of the 𝑖th iteration and 𝐽(𝑋) is the
Jacobian matrix of Φ(𝑋)

𝐽 (𝑋) = [𝐽𝑘𝑙 (𝑋)] = [

𝜕Φ𝑘

𝜕𝑋𝑙

] =

𝜕Φ

𝜕𝑋

= 𝐶𝐷 + 𝐺 + 𝑇[

𝜕𝑓𝑘

𝜕𝑥𝑙

]𝑇
−1
,

𝑘, 𝑙 = 1, . . . , (𝑁𝑡𝑁𝑥) .

(7)

Hence, the sparsity of this Jacobian matrix 𝐽(𝑋) affects
the computational cost of iterative method. Because these
matrices 𝐶 and 𝐺 have a rather sparse structure due to
the MNA formulation and [(𝜕𝑓𝑘)/(𝜕𝑥𝑙)] for time-invariant
systems is just a block matrix consisting of diagonal blocks,
the sparsity of the Jacobian matrix 𝐽(𝑋) is determined by
three matrices 𝑇, 𝑇−1, and the representation matrix𝐷 of the
differential operator 𝑑/𝑑𝑡.

Given the base {V𝑘}
𝑁

𝑘=1
, the matrices 𝐷, 𝑇, and 𝑇

−1 are
constructed before those iterative methods are used. So the
sparsity of the Jacobian matrix based on these different basis
functions indicates how to solve the nonlinear algebraic
system.Next, we give the formulation for two kinds ofwavelet
bases.

2.2. Description of the Periodic Daubechies Wavelets. Two
functions 𝜓 and 𝜙 are the wavelet function and its corre-
sponding scaling function described by Daubechies [9].They
are defined in the frame of the wavelet theory and can be
constructed with finite spatial support under the following
conditions:

𝜓 (𝑡) = √2

𝑀−1

∑

𝑘=0

𝑔𝑘+1𝜙 (2𝑡 − 𝑘) ,

𝜙 (𝑡) = √2

𝑀−1

∑

𝑘=0

ℎ𝑘+1𝜙 (2𝑡 − 𝑘) ,

∫

+∞

−∞

𝜙 (𝑡) 𝑑𝑡 = 1,

(8)

where the coefficients {ℎ𝑘}
𝑀−1

𝑘=0
and {𝑔𝑘}

𝑀−1

𝑘=0
are the quadrature

mirror filters (QMFs) of length 𝐿𝑀. The quadrature mirror
filters {ℎ𝑘} and {𝑔𝑘} are defined

𝑔𝑘 = (−1)
𝑘
ℎ𝑀−𝑘−1, 𝑘 = 0, 1, . . . ,𝑀 − 1. (9)

The function 𝜓 has 𝑝 vanishing moments; that is,

∫

∞

−∞

𝜓 (𝑡) 𝑡
𝑚
𝑑𝑡 = 0, 0 ≤ 𝑚 ≤ 𝑝 − 1. (10)

The number 𝑀 of the filter coefficients is related to the
number of vanishing moments 𝑝, and 𝑀 = 2𝑝 for the
wavelets constructed in [9].

We observe that once the filter {ℎ𝑘} has been chosen,
the functions 𝜙 and 𝜓 can be confirmed. Moreover, due to
the recursive definition of the wavelet bases, via the two-
scale equation, all of the manipulations are performed with
the quadrature mirror filters {ℎ𝑘} and {𝑔𝑘}. Especially, the
wavelet transform matrix 𝑇 and the derivative matrix 𝐷 for
the differential operator 𝑑/𝑑𝑡 can be obtained by the filters.

In HB method the wavelets on the interval [0, 𝐿]

are required. Hence, periodic Daubechies wavelets on the
interval [0, 𝐿] are constructed by periodization. Here, we
describe the discretewavelet transformmatrix by the periodic
Daubechies wavelets.The discrete wavelet transformwith the
period 𝐿 = 2

𝑛 can be considered as a linear transformation
taking the vector f𝐽 ∈ 𝑉𝐽 determined by its sampling data
into the vector

d = (c0, d0, d1, d2, d3, . . . , d𝐽−1)
𝑇
, (11)

where c𝑗 stands for the scaling coefficients of the function𝑥(𝑡)
and d𝑗 for the wavelet coefficients.

This linear transform can be represented by the 𝑁 = 2
𝑛

dimensional matrix 𝑇Daube such that

𝑇Daubef𝐽 = d. (12)

If the level of the DWT is 𝐽 ≤ 𝑛, then the DWT of the
sequence has exactly 2

𝑛 coefficients. The transform matrix
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𝑇Daube is composed of QMFs coefficients {ℎ𝑘} and {𝑔𝑘} as
follows:

𝑇Daube =
(

(

(

(

ℎ0 ℎ1 ⋅ ⋅ ⋅ ℎ𝑀−1 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

𝑔0 𝑔1 ⋅ ⋅ ⋅ 𝑔𝑀−1 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0

0 0 ℎ0 ℎ1 ⋅ ⋅ ⋅ ℎ𝑀−1 0 ⋅ ⋅ ⋅ 0

0 0 𝑔0 𝑔1 ⋅ ⋅ ⋅ 𝑔𝑀−1 0 ⋅ ⋅ ⋅ 0

⋅ ⋅ ⋅

ℎ2 ℎ3 ⋅ ⋅ ⋅ ℎ𝑀−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 ℎ1 ℎ2

𝑔2 𝑔3 ⋅ ⋅ ⋅ 𝑔𝑀−1 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 𝑔1 𝑔2

)

)

)

)

,

(13)

where𝑀 is the length of the filters.
The periodized Daubechies wavelet HB formulation has

been formulated in [4], so we have 𝐷Daube = 𝑇Daube𝑅𝑇
−1

Daube,
where 𝑅 is a band limited circulant matrix with its diagonals
filled by 𝑟𝑚 in [10], where with the following properties:

𝑟𝑚 ̸= 0, for −𝑀 + 2 ≤ 𝑚 ≤ 𝑀 − 2,

𝑟0 = 0, 𝑟−𝑚 = −𝑟𝑚, ∑

𝑚

𝑚𝑟𝑚 = −1,

𝑟𝑚 = 2[𝑟2𝑚 +

1

2

𝑀/2

∑

𝑘=1

𝑎2𝑘−1 (𝑟2𝑚−2𝑘+1 + 𝑟2𝑚+2𝑘−1)] ,

(14)

in which 𝑎𝑖 are autocorrelation coefficients of the QMFs

𝑎𝑖 = 2

𝑀−𝑖−1

∑

𝑚=0

̃
ℎ𝑚ℎ𝑚+1, 𝑖 = 1, . . . ,𝑀 − 1. (15)

And the matrix 𝑇
−1

Daube is the inverse matrix of the forward
transform matrix 𝑇Daube which satisfies 𝑇−1Daube = 𝑇

𝑇

Daube due
to the orthogonality of the matrix 𝑇Daube.

2.3. The Cubic Spline Wavelet Basis. Consider the cubic
spline wavelets as the expansion base in HB technique.
The cubic spline wavelets are constructed in [7], which
are semiorthogonal wavelets. The high approximation rate
and the interpolation property can be inherited from spline
functions. Therefore, the cubic spline wavelet transform
matrix 𝑇cubic and the differential operator representation
matrix𝐷cubic have the following properties which are suitable
for HB method.

Due to the periodic condition 𝑥(𝑡 + 𝐿) = 𝑥(𝑡), we must
use the periodization functions of the cubic spline wavelets
on the interval [0, 𝐿], 𝐿 > 4. For convenience, we still denote
by V𝑖(𝑡) the periodic function. Let us assume that expansion
bases are

{V𝑖}
𝑁
𝑠

𝑖=1
= {𝜙0,−1, 𝜙0,𝑘 (0 ≤ 𝑘 ≤ 𝐿 − 4) , 𝜙0,𝐿−3,

𝜓𝑗,𝑘 (0 ≤ 𝑗 ≤ 𝐽 − 1, −1 ≤ 𝑘 ≤ 𝑛𝑗 − 2)} ,

(16)

where 𝑛𝑗 = 2
𝑗
𝐿, 𝑁𝑠 = 2

𝐽
𝐿 − 1. Correspondingly, the

unknown state variable 𝑥(𝑡) is approximated by the bases of
these spaces

𝑉𝐽 = 𝑉𝐽−1 ⊕𝑊𝐽−1

...

= 𝑉0 ⊕𝑊0 ⊕ ⋅ ⋅ ⋅ ⊕ 𝑊𝐽−1,

(17)

where

𝑉0 = span {𝜙−1,−1 (𝑡) , . . . , 𝜙−1,𝐿−4 (𝑡) , 𝜙−1,𝐿−3 (𝐿 − 𝑡)} ,

𝑊𝑖 = span {𝜓𝑖,−1 (𝑡) , 𝜓𝑖,0 (𝑡) , . . . , 𝜓𝑖,𝑛
𝑖
−2 (𝑡)} ,

0 ≤ 𝑖 ≤ 𝐽 − 1.

(18)

Based on the interpolation property of the cubic spline
wavelets, we have

𝑃𝑉
𝐽

𝑥 (𝑡) = 𝐼𝑉
𝑏

𝑥 (𝑡) +

𝐽−1

∑

𝑗=0

𝐼𝑊
𝑗

𝑥 (𝑡)

= 𝑥−1,−3𝜂1 (𝑡) + 𝑥−1,−2𝜂2 (𝑡) + 𝑥−1,−1𝜙𝑏 (𝑡)

+

𝐿−4

∑

𝑘=0

𝑥−1,𝑘𝜙𝑘 (𝑡) + 𝑥−1,𝐿−3𝜙𝑏 (𝐿 − 𝑡)

+ 𝑥−1,𝐿−2𝜂2 (𝐿 − 𝑡) + 𝑥−1,𝐿−1𝜂1 (𝐿 − 𝑡)

+

𝐽−1

∑

𝑗=0

[

[

𝑛
𝑗
−2

∑

𝑘=−1

𝑥𝑗,𝑘𝜓𝑗,𝑘 (𝑡)
]

]

.

(19)

Denote the expansion coefficients by a 𝑁𝑠 × 1 dimensional
vector 𝑥𝐽,

𝑥𝐽 = (𝑥−1,−3, . . . , 𝑥−1,𝐿−1, 𝑥0,−1, . . . , 𝑥0,𝑛
0
−2, . . . , 𝑥𝐽−1,−1,

. . . , 𝑥𝐽−1,𝑘, . . . , 𝑥𝐽−1,𝑛
𝐽
−2)

𝑇

,

(20)

that will be determined by satisfying the collocation condi-
tions,𝑁𝑠 = 2

𝐽
𝐿 + 3. Interpolate 𝑃𝑉

𝐽

at the collocation points

{𝑡
(−1)

1
= 0, 𝑡

(−1)

2
=

1

2

,

𝑡
(−1)

𝑘
= 𝑘 − 2, 𝑘 = 3, . . . , 𝐿 + 1;

𝑡
(−1)

𝐿+2
= 𝐿 −

1

2

, 𝑡
(−1)

𝐿+3
= 𝐿} ,

{𝑡
(𝑗)

−1
=

1

2
𝑗+2

, 𝑡
(𝑗)

𝑘
=

𝑘 + 1.5

2
𝑗

, 0 ≤ 𝑘 ≤ 𝑛𝑗 − 3,

𝑡
(𝑗)

𝑛
𝑗
−2

= 𝐿 −

1

2
𝑗+2

} ,

(21)
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as follows:

𝑃𝑉
𝐽

𝑥 (𝑡
−1

𝑘
) = 𝑥 (𝑡

−1

𝑘
) , 1 ≤ 𝑘 ≤ 𝐿 + 3,

𝑃𝑉
𝐽

𝑥 (𝑡
𝑗

𝑘
) = 𝑥 (𝑡

𝑗

𝑘
) , 𝑗 ≥ 0, −1 ≤ 𝑘 ≤ 𝑛𝑗 − 2, 0 ≤ 𝑗 ≤ 𝐽 − 1.

(22)

Substituting the expressions into (1), we obtain nonlinear
discrete algebraic systems.

Denote by 𝑇cubic the cubic spline wavelet transform
matrix. We introduce an inverse wavelet transform (IWT)
𝑇
−1

cubic whichmaps its wavelet coefficients𝑥𝐽 to discrete sample
values f𝐽 with length 𝑁𝑠; that is 𝑇

−1

cubic𝑥𝐽 = f𝐽. The inverse
transform matrix 𝑇−1cubic is

𝑇
−1

cubic = (

𝐵

𝑀0

𝑀1

...
𝑀𝐽−1

), (23)

where 𝐵 denotes a tridiagonal matrix with dimension 𝐿 + 2

and𝑀𝑗 is a tridiagonal matrix with dimension 2𝑗𝐿.
We obtain the derivative matrix𝐷cubic in [11] as follows:

𝐷cubic = 𝐻
−1

1
𝐻2,

(24)

where

𝐻1 =

[

[

[

[

[

[

[

[

[

[

[

[

𝜆1 1

𝜆1 2 𝜇1

𝜆2 2 𝜇2

⋅ ⋅ ⋅

𝜆𝑖 2 𝜇𝑖

⋅ ⋅ ⋅

𝜆𝑁
𝑠
−1 2 𝜇𝑁

𝑠
−1

1 𝜇𝑁
𝑠
−1

]

]

]

]

]

]

]

]

]

]

]

](𝑁
𝑠
+1)×(𝑁

𝑠
+1)

,

𝐻2 =

[

[

[

[

[

[

[

[

[

[

[

[

𝑎1 𝑎2 𝑎3

𝑐1 𝑑1 𝑒1

⋅ ⋅ ⋅

⋅ ⋅ ⋅

𝑐𝑖 𝑑𝑖 𝑒𝑖

⋅ ⋅ ⋅

𝑐𝑁
𝑠
−1 𝑑𝑁

𝑠
−1 𝑒𝑁

𝑠
−1

𝑏3 𝑏2 𝑏1

]

]

]

]

]

]

]

]

]

]

]

](𝑁
𝑠
+1)×(𝑁

𝑠
+1)

,

(25)

and these constants in these matrices 𝐻1 and 𝐻2 can be
referenced from the formulae (2.20a)–(2.20d) in [11].

For the whole nonlinear equation system

(𝐶𝐻
−1

1
𝐻2 + 𝐺 + 𝑇cubic [

𝜕𝑓𝑘

𝜕𝑥𝑙

]𝑇
−1

cubic) (𝑋
(𝑖+1)

− 𝑋
(𝑖)
)

= −Φ (𝑋
(𝑖)
) ,

(26)

where 𝐻1, 𝐻2, and 𝑇
−1

cubic are tridiagonal matrices, the trian-
gular decomposition of the tridiagonal matrix can be used to
decompose the Jacobian iterative matrix.

3. Comparison Analysis

Using HB method to solve nonlinear ODEs, the Newton
iterative form is obtained. Here we want to analyze the
sparsity of derivative matrix𝐷 and wavelet transform matrix
𝑇 of the Jacobian matrix based on two wavelets.

3.1. The Comparison of theWavelet TransformMatrixes 𝑇Daube
and 𝑇𝑐𝑢𝑏𝑖𝑐. Now we analyze the sparsity of the matrixes
𝑇Daube and 𝑇cubic. The computation cost 𝑇[𝜕𝑓𝑘/𝜕𝑥𝑙]𝑇

−1 of
Jacobian matrix 𝐽(𝑋) results from the number of nonzero
elements of the wavelet transform matrix 𝑇. We analyze the
nonzero elements (NZ) of matrices 𝑇Daube and 𝑇cubic. Let the
maximum level of wavelet decomposition be 𝐽, 𝑁 = 2

𝑛
, 𝐽 ≤

𝑛. From [12], we have the nonzero numbers NZ𝑇Daube of the
matrix 𝑇Daube are

NZ𝑇Daube ≤ 𝐽2
𝐽−1

𝑀+ (2
𝐽
− 1)𝑀

+ 2
𝐽
− 1 ∼ 𝑂 (𝑁 log (𝑁)) .

(27)

For the cubic spline interpolation wavelets, the transform
matrix 𝑇−1cubic has the following property:

NZ𝑇−1cubic = [3 (𝐿 − 1) − 2] +

𝐽−1

∑

𝑗=0

(2
𝑗
× 3 × 𝐿 − 2)

= 3𝐿 × 2
𝐽
− 2𝐽 − 5 ∼ 𝑂 (𝑁𝑠) .

(28)

3.2. Comparison of the Derivative Matrices𝐷𝐷𝑎𝑢𝑏𝑒 and𝐷𝑐𝑢𝑏𝑖𝑐.
The sparsity of the derivative matrix 𝐷 is an important
property of Jacobian matrix 𝐽(𝑋). According to the approach
in [4], matrix 𝐷Daube is composed of 𝑇Daube𝑅𝑇

−1

Daube, where
𝑇
−1

Daube is the transpose of the matrix 𝑇Daube. Since both 𝑇Daube
and 𝑇

−1

Daube in this case are band-limited matrices, as well as
𝑅, the resulting matrix 𝐷Daube is also a band-limited matrix.
Especially, the nonzero element numbers of matrix 𝑅 are
(𝑀 − 5) × 𝑁 + 2∑

𝑀−2

𝑖=1
𝑖 ∼ 𝑂(𝑁), so we have

NZ𝐷Daube ∼ 𝑂 (𝑁 log (𝑁)) . (29)

By the formulation in Section 2.3, the number of nonzero
element of matrix 𝐷cubic = 𝐻

−1

1
𝐻2 is 𝑂(𝑁𝑠). It follows that

cubic spline wavelets yield a sparser derivative matrix than
that of Daubechies wavelets. Thus, the Jacobian matrix of
the cubic spline wavelets is much sparser than the periodic
Daubechies wavelet.

4. Numerical Experiments

In this section, we will give the sparsity figures of the
transform matrix and the derivative matrix based on two
kinds of wavelets. For simplicity, assume the matrices 𝐶, 𝐺,
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Figure 1: (a): Sparsity pattern of the periodized transform matrix 𝑇Daube by the periodized D4 wavelets; (b): sparsity pattern of the inverse
transform matrix 𝑇−1cubic of the cubic spline wavelet.
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Figure 2: (a): Sparsity pattern of the derivative matrix𝐷Daube by the periodized D4 wavelets; (b): sparsity pattern of𝐻1 or𝐻2 of the derivative
matrix of the cubic spline wavelet, where 𝐷cubic = 𝐻

−1

1
𝐻2.

and [𝜕𝑓/𝜕𝑥𝑙] are diagonal. Figure 1 is the sparsity of 𝑇Daube
using the periodized D4 Daubechies wavelets.

In Figure 2 we plot the sparsity of the derivative matrix of
periodic Daubechies wavelets and the matrix𝐻2 or𝐻1 of the
derivative matrix𝐷cubic.

5. Conclusions
In this paper, we formulate the comparison analysis of
harmonic balance method based on the cubic spline wavelets
and periodic Daubechies wavelets. It is shown that the cubic
spline wavelet HB method has the special structure for
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Jacobian matrix compared to the Daubechies wavelet HB
method to solve steady-state analysis of nonlinear circuits.
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