Research Article

Comparison Analysis Based on the Cubic Spline Wavelet and Daubechies Wavelet of Harmonic Balance Method

Jing Gao
School of Mathematics and Statistics, Xian Jiaotong University, Xian 710049, China
Correspondence should be addressed to Jing Gao; jgao@mail.xjtu.edu.cn

Received 25 January 2014; Revised 25 March 2014; Accepted 5 April 2014; Published 22 April 2014
Academic Editor: Eugene B. Postnikov
Copyright © 2014 Jing Gao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper develops a theoretical analysis of harmonic balance method, based on the cubic spline wavelet and Daubechies wavelet, for steady state analysis of nonlinear circuits under periodic excitation. The properties of the resulting Jacobian matrix for harmonic balance are analyzed. Numerical experiments illustrate the theoretical analysis.

1. Introduction

The rapid growth in integrated circuits has placed new demands on the simulation tools. Many quantities properties of circuits are of interest to circuits designer. Especially, the steady-state analysis of nonlinear circuits represents one of the most computationally challenging problems in microwave design.

Harmonic balance (HB) [1-3] is very favorable for periodic or quasiperiodic steady-state analysis of mildly nonlinear circuits using Fourier series expansion. However, the density of the resulting Jacobian matrix seriously affects the efficiency of HB based on Fourier series expansion. More effective simulators are required to study steady-state analysis. Soveiko and Nakhla in [4] have provided the elaborate formulation for HB approach applying Daubechies wavelet series instead of Fourier series and obtain the sparser Jacobian matrix to reduce the whole computational cost. And Steer and Christoffersen in [5] have given the possibility of wavelet expansion for steady-state analysis. One advantage of wavelet bases is a sparse representation matrix of operators or functions which is favorable for solving the nonlinear system by Newton iterative method. But the main disadvantage is the waste of much time in storing Jacobian matrix due to the complex computation of Daubechies wavelet functions. And few studies have been reported on the efficient wavelet matrix transform which is very important in the wavelet HB approach. The cubic spline wavelet in $[6,7]$ has the explicit form and sparse transform matrix and derivative matrix. In
this paper, we provide the theoretical analysis for HB method by using the cubic spline wavelet and Daubechies wavelets.

The remainder of this paper is organized as follows. In Section 2, we develop the HB method based on the cubic spline wavelet and Daubechies wavelets in [4] for nonlinear circuits simulations, respectively. Section 3 provides the theoretical comparison analysis in the sparsity and computation of Jacobian matrix obtained by the transform. And it is shown that the cubic spline wavelet HB method has sparser Jacobian matrix. Numerical experiments are provided in Section 4. It is concluded in Section 5.

2. HB Formulation Based on the Cubic Spline Wavelets and Daubechies Wavelets

2.1. Generalized $H B$ Formulation. The harmonic balance (HB) method is a powerful technique for the analysis of high-frequency nonlinear circuits such as mixers, power amplifiers, and oscillators. The basic idea of HB is to expand the unknown state variable $x(t)$ in electrical circuit equations by some series $x(t)=\sum X_{k} v_{k}(t)$. Then the problem is transformed into the frequency domain focusing on the coefficients X_{k}.

Let us consider the general approach of HB which assumes obtaining the solution $x(t)$ of the nonlinear modified nodal analysis (MNA) equation in [8]

$$
\begin{equation*}
C \dot{x}+G x+f(x)+u=0 \tag{1}
\end{equation*}
$$

which satisfies the following periodical boundary condition:

$$
\begin{equation*}
x(t+L)=x(t), \tag{2}
\end{equation*}
$$

where C and G are $N_{x} \times N_{x}$ matrices, x is a N_{x} dimensional column vector of unknown circuit variables, and u is a N_{x} dimensional column vector of independent sources. Let $\left\{v_{k}\right\}$ be the basis; then the unknown function $x(t)$ can be expanded $x(t)=\sum X_{k} v_{k}(t)$. To solve (1) with periodic boundary condition (2), assume that the expansion basis is periodic with period τ and $\left[x_{l}\right]$ is a discrete vector containing values of $x(t)$ sampled in the time domain at time points $\left[t_{l}\right], l=$ $1, \ldots, N_{t}$. Then (1) can be written in the transform domain as a nonlinear algebraic equation system:

$$
\begin{equation*}
\Phi(X)=(\widehat{C} D+\widehat{G}) X+F(X)+U=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
X=T x, \quad x=T^{-1} X, \quad U=T u, \tag{4}
\end{equation*}
$$

\widehat{C}, D, and \widehat{G} are $N_{t} N_{x} \times N_{t} N_{x}$ matrices, especially, the matrix D is a representation matrix of the derivative operator $d / d t$ in expansion basis $\left\{v_{i}\right\}$

$$
\begin{equation*}
\left[D_{i, j}\right]=\left\langle\frac{d}{d t} v_{i}, v_{j}\right\rangle, \tag{5}
\end{equation*}
$$

and, finally, T and T^{-1} are the matrices associated with the forward and inverse transform arising from the chosen expansion basis. The nonlinear matrix system (3) can be solved by Newton iterative method

$$
\begin{equation*}
J\left(X^{(i)}\right)\left(X^{(i+1)}-X^{(i)}\right)=-\Phi\left(X^{(i)}\right) \tag{6}
\end{equation*}
$$

where $X^{(i)}$ is the solution of the i th iteration and $J(X)$ is the Jacobian matrix of $\Phi(X)$

$$
\begin{gather*}
J(X)=\left[J_{k l}(X)\right]=\left[\frac{\partial \Phi_{k}}{\partial X_{l}}\right]=\frac{\partial \Phi}{\partial X} \\
=\widehat{C} D+\widehat{G}+T\left[\frac{\partial f_{k}}{\partial x_{l}}\right] T^{-1} \tag{7}\\
k, l=1, \ldots,\left(N_{t} N_{x}\right) .
\end{gather*}
$$

Hence, the sparsity of this Jacobian matrix $J(X)$ affects the computational cost of iterative method. Because these matrices \widehat{C} and \widehat{G} have a rather sparse structure due to the MNA formulation and $\left[\left(\partial f_{k}\right) /\left(\partial x_{l}\right)\right]$ for time-invariant systems is just a block matrix consisting of diagonal blocks, the sparsity of the Jacobian matrix $J(X)$ is determined by three matrices T, T^{-1}, and the representation matrix D of the differential operator $d / d t$.

Given the base $\left\{v_{k}\right\}_{k=1}^{N}$, the matrices D, T, and T^{-1} are constructed before those iterative methods are used. So the sparsity of the Jacobian matrix based on these different basis functions indicates how to solve the nonlinear algebraic system. Next, we give the formulation for two kinds of wavelet bases.
2.2. Description of the Periodic Daubechies Wavelets. Two functions ψ and ϕ are the wavelet function and its corresponding scaling function described by Daubechies [9]. They are defined in the frame of the wavelet theory and can be constructed with finite spatial support under the following conditions:

$$
\begin{align*}
\psi(t)= & \sqrt{2} \sum_{k=0}^{M-1} g_{k+1} \phi(2 t-k), \\
\phi(t)= & \sqrt{2} \sum_{k=0}^{M-1} h_{k+1} \phi(2 t-k), \tag{8}\\
& \int_{-\infty}^{+\infty} \phi(t) d t=1,
\end{align*}
$$

where the coefficients $\left\{h_{k}\right\}_{k=0}^{M-1}$ and $\left\{g_{k}\right\}_{k=0}^{M-1}$ are the quadrature mirror filters (QMFs) of length L_{M}. The quadrature mirror filters $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$ are defined

$$
\begin{equation*}
g_{k}=(-1)^{k} h_{M-k-1}, \quad k=0,1, \ldots, M-1 \tag{9}
\end{equation*}
$$

The function ψ has p vanishing moments; that is,

$$
\begin{equation*}
\int_{-\infty}^{\infty} \psi(t) t^{m} d t=0, \quad 0 \leq m \leq p-1 . \tag{10}
\end{equation*}
$$

The number M of the filter coefficients is related to the number of vanishing moments p, and $M=2 p$ for the wavelets constructed in [9].

We observe that once the filter $\left\{h_{k}\right\}$ has been chosen, the functions ϕ and ψ can be confirmed. Moreover, due to the recursive definition of the wavelet bases, via the twoscale equation, all of the manipulations are performed with the quadrature mirror filters $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$. Especially, the wavelet transform matrix T and the derivative matrix D for the differential operator $d / d t$ can be obtained by the filters.

In HB method the wavelets on the interval $[0, L]$ are required. Hence, periodic Daubechies wavelets on the interval $[0, L]$ are constructed by periodization. Here, we describe the discrete wavelet transform matrix by the periodic Daubechies wavelets. The discrete wavelet transform with the period $L=2^{n}$ can be considered as a linear transformation taking the vector $\mathbf{f}_{J} \in V_{J}$ determined by its sampling data into the vector

$$
\begin{equation*}
\mathbf{d}=\left(\mathbf{c}_{0}, \mathbf{d}_{0}, \mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}, \ldots, \mathbf{d}_{J-1}\right)^{T} \tag{11}
\end{equation*}
$$

where \mathbf{c}_{j} stands for the scaling coefficients of the function $x(t)$ and \mathbf{d}_{j} for the wavelet coefficients.

This linear transform can be represented by the $N=2^{n}$ dimensional matrix $T_{\text {Daube }}$ such that

$$
\begin{equation*}
T_{\text {Daube }} \mathbf{f}_{J}=\mathbf{d} . \tag{12}
\end{equation*}
$$

If the level of the DWT is $J \leq n$, then the DWT of the sequence has exactly 2^{n} coefficients. The transform matrix
$T_{\text {Daube }}$ is composed of QMFs coefficients $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$ as follows:

$$
T_{\text {Daube }}=\left(\begin{array}{ccccccccc}
h_{0} & h_{1} & \cdots & h_{M-1} & 0 & \cdots & 0 & \cdots & 0 \tag{13}\\
g_{0} & g_{1} & \cdots & g_{M-1} & 0 & \cdots & 0 & \cdots & 0 \\
0 & 0 & h_{0} & h_{1} & \cdots & h_{M-1} & 0 & \cdots & 0 \\
0 & 0 & g_{0} & g_{1} & \cdots & g_{M-1} & 0 & \cdots & 0 \\
\cdots & & & & & & & & \\
h_{2} & h_{3} & \cdots & h_{M-1} & \cdots & \cdots & 0 & h_{1} & h_{2} \\
g_{2} & g_{3} & \cdots & g_{M-1} & \cdots & \cdots & 0 & g_{1} & g_{2}
\end{array}\right) \text {, }
$$

where M is the length of the filters.
The periodized Daubechies wavelet HB formulation has been formulated in [4], so we have $D_{\text {Daube }}=T_{\text {Daube }} R T_{\text {Daube }}^{-1}$, where R is a band limited circulant matrix with its diagonals filled by r_{m} in [10], where with the following properties:

$$
\begin{gather*}
r_{m} \neq 0, \quad \text { for }-M+2 \leq m \leq M-2, \\
r_{0}=0, \quad r_{-m}=-r_{m}, \quad \sum_{m} m r_{m}=-1, \tag{14}\\
r_{m}=2\left[r_{2 m}+\frac{1}{2} \sum_{k=1}^{M / 2} a_{2 k-1}\left(r_{2 m-2 k+1}+r_{2 m+2 k-1}\right)\right],
\end{gather*}
$$

in which a_{i} are autocorrelation coefficients of the QMFs

$$
\begin{equation*}
a_{i}=2 \sum_{m=0}^{M-i-1} \widetilde{h}_{m} h_{m+1}, \quad i=1, \ldots, M-1 \tag{15}
\end{equation*}
$$

And the matrix $T_{\text {Daube }}^{-1}$ is the inverse matrix of the forward transform matrix $T_{\text {Daube }}$ which satisfies $T_{\text {Daube }}^{-1}=T_{\text {Daube }}^{T}$ due to the orthogonality of the matrix $T_{\text {Daube }}$.
2.3. The Cubic Spline Wavelet Basis. Consider the cubic spline wavelets as the expansion base in HB technique. The cubic spline wavelets are constructed in [7], which are semiorthogonal wavelets. The high approximation rate and the interpolation property can be inherited from spline functions. Therefore, the cubic spline wavelet transform matrix $T_{\text {cubic }}$ and the differential operator representation matrix $D_{\text {cubic }}$ have the following properties which are suitable for HB method.

Due to the periodic condition $x(t+L)=x(t)$, we must use the periodization functions of the cubic spline wavelets on the interval $[0, L], L>4$. For convenience, we still denote by $v_{i}(t)$ the periodic function. Let us assume that expansion bases are

$$
\begin{align*}
&\left\{v_{i}\right\}_{i=1}^{N_{s}}=\left\{\phi_{0,-1}, \phi_{0, k}(0 \leq k \leq L-4), \phi_{0, L-3}\right. \tag{16}\\
&\left.\psi_{j, k}\left(0 \leq j \leq J-1,-1 \leq k \leq n_{j}-2\right)\right\}
\end{align*}
$$

where $n_{j}=2^{j} L, N_{s}=2^{J} L-1$. Correspondingly, the unknown state variable $x(t)$ is approximated by the bases of these spaces

$$
\begin{align*}
V_{J} & =V_{J-1} \oplus W_{J-1} \\
& \vdots \tag{17}\\
& =V_{0} \oplus W_{0} \oplus \cdots \oplus W_{J-1}
\end{align*}
$$

where

$$
\begin{gather*}
V_{0}=\operatorname{span}\left\{\phi_{-1,-1}(t), \ldots, \phi_{-1, L-4}(t), \phi_{-1, L-3}(L-t)\right\}, \\
W_{i}=\operatorname{span}\left\{\psi_{i,-1}(t), \psi_{i, 0}(t), \ldots, \psi_{i, n_{i}-2}(t)\right\} \tag{18}\\
0 \leq i \leq J-1
\end{gather*}
$$

Based on the interpolation property of the cubic spline wavelets, we have

$$
\begin{align*}
P_{V_{J}} x(t)= & I_{V_{b}} x(t)+\sum_{j=0}^{J-1} I_{W_{j}} x(t) \\
= & \widehat{x}_{-1,-3} \eta_{1}(t)+\widehat{x}_{-1,-2} \eta_{2}(t)+\widehat{x}_{-1,-1} \phi_{b}(t) \\
& +\sum_{k=0}^{L-4} \widehat{x}_{-1, k} \phi_{k}(t)+\widehat{x}_{-1, L-3} \phi_{b}(L-t) \tag{19}\\
& +\widehat{x}_{-1, L-2} \eta_{2}(L-t)+\widehat{x}_{-1, L-1} \eta_{1}(L-t) \\
& +\sum_{j=0}^{J-1}\left[\sum_{k=-1}^{n_{j}-2} \widehat{x}_{j, k} \psi_{j, k}(t)\right] .
\end{align*}
$$

Denote the expansion coefficients by a $N_{s} \times 1$ dimensional vector \hat{x}_{J},

$$
\begin{align*}
& \widehat{x}_{J}=\left(\widehat{x}_{-1,-3}, \ldots, \widehat{x}_{-1, L-1}, \widehat{x}_{0,-1}, \ldots, \widehat{x}_{0, n_{0}-2}, \ldots, \widehat{x}_{J-1,-1},\right. \\
& \left.\quad \ldots, \widehat{x}_{J-1, k}, \ldots, \widehat{x}_{J-1, n_{J}-2}\right)^{T} \tag{20}
\end{align*}
$$

that will be determined by satisfying the collocation conditions, $N_{s}=2^{J} L+3$. Interpolate $P_{V_{J}}$ at the collocation points

$$
\begin{align*}
& \left\{t_{1}^{(-1)}=0, \quad t_{2}^{(-1)}=\frac{1}{2},\right. \\
& t_{k}^{(-1)}=k-2, \quad k=3, \ldots, L+1 \\
& \left.t_{L+2}^{(-1)}=L-\frac{1}{2}, \quad t_{L+3}^{(-1)}=L\right\} \tag{21}\\
& \left\{t_{-1}^{(j)}=\frac{1}{2^{j+2}}, \quad t_{k}^{(j)}=\frac{k+1.5}{2^{j}}, \quad 0 \leq k \leq n_{j}-3,\right. \\
& \left.t_{n_{j}-2}^{(j)}=L-\frac{1}{2^{j+2}}\right\},
\end{align*}
$$

as follows:

$$
\begin{gather*}
P_{V_{J}} x\left(t_{k}^{-1}\right)=x\left(t_{k}^{-1}\right), \quad 1 \leq k \leq L+3, \\
P_{V_{J}} x\left(t_{k}^{j}\right)=x\left(t_{k}^{j}\right), \quad j \geq 0,-1 \leq k \leq n_{j}-2, \quad 0 \leq j \leq J-1 . \tag{22}
\end{gather*}
$$

Substituting the expressions into (1), we obtain nonlinear discrete algebraic systems.

Denote by $T_{\text {cubic }}$ the cubic spline wavelet transform matrix. We introduce an inverse wavelet transform (IWT) $T_{\text {cubic }}^{-1}$ which maps its wavelet coefficients \widehat{x}_{J} to discrete sample values \mathbf{f}_{J} with length N_{s}; that is $T_{\text {cubic }}^{-1} \widehat{x}_{J}=\mathbf{f}_{J}$. The inverse transform matrix $T_{\text {cubic }}^{-1}$ is

$$
T_{\text {cubic }}^{-1}=\left(\begin{array}{ccccc}
B & & & & \tag{23}\\
& M_{0} & & & \\
& & M_{1} & & \\
& & & \vdots & \\
& & & & M_{J-1}
\end{array}\right) \text {, }
$$

where B denotes a tridiagonal matrix with dimension $L+2$ and M_{j} is a tridiagonal matrix with dimension $2^{j} L$.

We obtain the derivative matrix $D_{\text {cubic }}$ in [11] as follows:

$$
\begin{equation*}
D_{\text {cubic }}=H_{1}^{-1} H_{2} \tag{24}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{1}=\left[\begin{array}{ccccccccc}
\lambda_{1} & 1 & & & & & & & \\
\lambda_{1} & 2 & \mu_{1} & & & & & & \\
& \lambda_{2} & 2 & \mu_{2} & & & & & \\
& & & \cdot & \cdot & \cdot & & & \\
& & & & \lambda_{i} & \mu_{i} & & & \\
& & & & & \cdot & \cdot & \cdot & \\
& & & & & \lambda_{N_{s}-1} & 2 & \mu_{N_{s}-1} \\
& & & & & & & 1 & \mu_{N_{s}-1}
\end{array}\right]_{\left(N_{s}+1\right) \times\left(N_{s}+1\right)}, \\
& H_{2}=\left[\begin{array}{cccccccc}
a_{1} & a_{2} & a_{3} & & & & & \\
c_{1} & d_{1} & e_{1} & & & & & \\
& \cdot & \cdot & \cdot & & & & \\
& & \cdot & \cdot & \cdot & & & \\
& & & c_{i} & d_{i} & e_{i} & & \\
& & & & \cdot & \cdot & \cdot & \\
& & & & & c_{N_{s}-1} & d_{N_{s}-1} & e_{N_{s}-1} \\
& & & & & b_{3} & b_{2} & b_{1}
\end{array}\right]_{\left(N_{s}+1\right) \times\left(N_{s}+1\right)}, \tag{25}
\end{align*}
$$

and these constants in these matrices H_{1} and H_{2} can be referenced from the formulae (2.20a)-(2.20d) in [11].

For the whole nonlinear equation system

$$
\begin{align*}
& \left(\widehat{C} H_{1}^{-1} H_{2}+\widehat{G}+T_{\text {cubic }}\left[\frac{\partial f_{k}}{\partial x_{l}}\right] T_{\text {cubic }}^{-1}\right)\left(X^{(i+1)}-X^{(i)}\right) \tag{26}\\
& \quad=-\Phi\left(X^{(i)}\right),
\end{align*}
$$

where H_{1}, H_{2}, and $T_{\text {cubic }}^{-1}$ are tridiagonal matrices, the triangular decomposition of the tridiagonal matrix can be used to decompose the Jacobian iterative matrix.

3. Comparison Analysis

Using HB method to solve nonlinear ODEs, the Newton iterative form is obtained. Here we want to analyze the sparsity of derivative matrix D and wavelet transform matrix T of the Jacobian matrix based on two wavelets.
3.1. The Comparison of the Wavelet Transform Matrixes $T_{\text {Daube }}$ and $T_{\text {cubic }}$. Now we analyze the sparsity of the matrixes $T_{\text {Daube }}$ and $T_{\text {cubic }}$. The computation cost $T\left[\partial f_{k} / \partial x_{l}\right] T^{-1}$ of Jacobian matrix $J(X)$ results from the number of nonzero elements of the wavelet transform matrix T. We analyze the nonzero elements (NZ) of matrices $T_{\text {Daube }}$ and $T_{\text {cubic }}$. Let the maximum level of wavelet decomposition be $J, N=2^{n}$, $J \leq$ n. From [12], we have the nonzero numbers $\mathrm{NZ}_{T_{\text {Daube }}}$ of the $\operatorname{matrix} T_{\text {Daube }}$ are

$$
\begin{align*}
\mathrm{NZ}_{T_{\text {Daube }}} \leq & J 2^{J-1} M+\left(2^{J}-1\right) M \\
& +2^{J}-1 \sim O(N \log (N)) . \tag{27}
\end{align*}
$$

For the cubic spline interpolation wavelets, the transform matrix $T_{\text {cubic }}^{-1}$ has the following property:

$$
\begin{align*}
\mathrm{NZ}_{T_{\text {cubic }}^{-1}} & =[3(L-1)-2]+\sum_{j=0}^{J-1}\left(2^{j} \times 3 \times L-2\right) \tag{28}\\
& =3 L \times 2^{J}-2 J-5 \sim O\left(N_{s}\right) .
\end{align*}
$$

3.2. Comparison of the Derivative Matrices $D_{\text {Daube }}$ and $D_{\text {cubic }}$. The sparsity of the derivative matrix D is an important property of Jacobian matrix $J(X)$. According to the approach in [4], matrix $D_{\text {Daube }}$ is composed of $T_{\text {Daube }} R T_{\text {Daube }}^{-1}$, where $T_{\text {Daube }}^{-1}$ is the transpose of the matrix $T_{\text {Daube }}$. Since both $T_{\text {Daube }}$ and $T_{\text {Daube }}^{-1}$ in this case are band-limited matrices, as well as R, the resulting matrix $D_{\text {Daube }}$ is also a band-limited matrix. Especially, the nonzero element numbers of matrix R are $(M-5) \times N+2 \sum_{i=1}^{M-2} i \sim O(N)$, so we have

$$
\begin{equation*}
N Z_{D_{\text {Daube }}} \sim O(N \log (N)) \tag{29}
\end{equation*}
$$

By the formulation in Section 2.3, the number of nonzero element of matrix $D_{\text {cubic }}=H_{1}^{-1} H_{2}$ is $O\left(N_{s}\right)$. It follows that cubic spline wavelets yield a sparser derivative matrix than that of Daubechies wavelets. Thus, the Jacobian matrix of the cubic spline wavelets is much sparser than the periodic Daubechies wavelet.

4. Numerical Experiments

In this section, we will give the sparsity figures of the transform matrix and the derivative matrix based on two kinds of wavelets. For simplicity, assume the matrices \widehat{C}, \widehat{G},

Figure 1: (a): Sparsity pattern of the periodized transform matrix $T_{\text {Daube }}$ by the periodized D 4 wavelets; (b): sparsity pattern of the inverse transform matrix $T_{\text {cubic }}^{-1}$ of the cubic spline wavelet.

Figure 2: (a): Sparsity pattern of the derivative matrix $D_{\text {Daube }}$ by the periodized D4 wavelets; (b): sparsity pattern of H_{1} or H_{2} of the derivative matrix of the cubic spline wavelet, where $D_{\text {cubic }}=H_{1}^{-1} H_{2}$.
and $\left[\partial f / \partial x_{l}\right]$ are diagonal. Figure 1 is the sparsity of $T_{\text {Daube }}$ using the periodized D4 Daubechies wavelets.

In Figure 2 we plot the sparsity of the derivative matrix of periodic Daubechies wavelets and the matrix H_{2} or H_{1} of the derivative matrix $D_{\text {cubic }}$.

5. Conclusions

In this paper, we formulate the comparison analysis of harmonic balance method based on the cubic spline wavelets and periodic Daubechies wavelets. It is shown that the cubic spline wavelet HB method has the special structure for

Jacobian matrix compared to the Daubechies wavelet HB method to solve steady-state analysis of nonlinear circuits.

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The work was supported by the Natural Science Foundation of China (NSFC) (Grant nos. 11201370 and 11171270) and the Fundamental Research Funds for the Central Universities.

References

[1] D. Long, R. Melville, K. Ashby, and B. Horton, "Full-chip harmonic balance," in Proceedings of the IEEE Custom Integrated Circuits Conference, pp. 379-382, Santa Clara, Calif, USA, May 1997.
[2] M. S. Nakhla and J. Vlach, "A piecewise harmonic balance technique for determination of periodic response of nonlinear systems," IEEE Transactions on Circuits and Systems, vol. 23, no. 2, pp. 85-91, 1976.
[3] V. Rizzoli, F. Mastri, F. Sgallari, and G. Spaletta, "Harmonicbalance simulation of strongly nonlinear very large-size microwave circuits by inexact Newton methods," in Proceedings of the IEEE MTT-S International Microwave Symposium Digest, pp. 1357-1360, June 1996.
[4] N. Soveiko and M. S. Nakhla, "Steady-state analysis of multitone nonlinear circuits in wavelet domain," IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 785-797, 2004.
[5] M. Steer and C. Christoffersen, "Generalized circuit formulation for the transient simulation of circuits using wavelet convolution and time marching techniques," in Proceedings of the 15th European Conference on Circuit Theory and Design (ECCTD '01), pp. 205-208, 2001.
[6] W. Cai and J. Wang, "Adaptive multiresolution collocation methods for initial boundary value problems of nonlinear PDEs," SIAM Journal on Numerical Analysis, vol. 33, no. 3, pp. 937-970, 1996.
[7] J. Wang, "Cubic spline wavelet bases of sobolev spaces and multilevel interpolation," Applied and Computational Harmonic Analysis, vol. 3, no. 2, pp. 154-163, 1996.
[8] J. Vlach and K. Singhal, Computer Methods for Circuit Analysis and Design, Van Nostrand Reinhold, New York, NY, USA, 1983.
[9] I. Daubechies, Ten Lectures on Wavelet, SIAM, Philadelphia, Pa, USA, 1992.
[10] G. Beylkin, "On the representation of operators in bases of compactly supported wavelets," SIAM Journal on Numerical Analysis, vol. 29, no. 6, pp. 1716-1740, 1992.
[11] D. Zhou and W. Cai, "A fast wavelet collocation method for high-speed circuit simulation," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 46, no. 8, pp. 920-930, 1999.
[12] N. Guan, K. Yashiro, and S. Ohkawa, "On a choice of wavelet bases in the wavelet transform approach," IEEE Transactions on Antennas and Propagation, vol. 48, no. 8, pp. 1186-1191, 2000.

