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Space time integration plays an important role in analyzing scientific and engineering models. In this paper, we consider
an integrodifferential equation that comes from modeling ̇

𝜃 neuron networks. Here, we investigate various schemes for time
discretization of a theta-neuron model. We use collocation and midpoint quadrature formula for space integration and then apply
various time integration schemes to get a full discrete system. We present some computational results to demonstrate the schemes.

1. Introduction

Modeling real life problems using differential and integral
operators and search for numerical schemes of such models
are of ongoing interest [1–9]. We consider such a nonlinear
model of transmission line in neural networks with “𝜃-
synapses” during bursting activity [8, 10, 11]:

𝜃

𝑡
(𝑥, 𝑡) = 𝜀 ∫

Ω

𝐽

∞
(𝑥 − 𝑦) 𝜃

𝑡
(𝑦, 𝑡) 𝑑𝑦 + 𝑓 (𝜃, (𝑥, 𝑡)) (1)

with initial function 𝜃(𝑥, 0) = 𝜃

0
(𝑥), where 𝑥 ∈ Ω ⊆ R, 𝑡 ≥ 0,

the angle function 𝜃(𝑥, 𝑡) represents the phase of the signal
associated with a neuron at (𝑥, 𝑡), 𝑓 is a smooth function
that represents potential effects and external inputs, 𝐽∞ is a
kernel function, and 𝜀 > 0 is the parameter of the model.
When 𝐽

∞
< 0 the model (1) represents inhibitory neurons

and when 𝐽

∞
> 0 the model is an excitatory one. For this

paper, we consider 𝐽∞(𝑥) ≥ 0 and ∫

Ω
𝐽

∞
(𝑥)𝑑𝑥 = 1,which is a

nonnegative normalized kernel function. Now if we consider
a normalized kernel andΩ = 𝑅, then (1) can be written as

(L𝜃

𝑡
(⋅, 𝑡)) (𝑥) = 𝑓 (𝜃, (𝑥, 𝑡)) , (2)

where (L𝜓)(𝑥) = ∫

Ω
𝐽

∞
(𝑥 − 𝑦)(𝜓(𝑥) − 𝜖𝜓(𝑦))𝑑𝑦. In most

articles 𝑓(𝑡, 𝜃) = 𝑎(𝑡) ± cos(𝜃) has been considered as

a nonlinearity. Here 𝜃 → cos−1𝑎(𝑡) as 𝑡 → ∞ for all
0 ≤ 𝑎(𝑡) ≤ 1 which stabilizes the output, and 𝜃 → ∞ when
𝑎(𝑡) > 1 which oscillates the output [12]. One may observe
a saddle node bifurcation when 𝑎(𝑡) increases or decreases
through the value 𝑎(𝑡) = 1. In this study we consider

𝑎 (𝑡) = {

2, if 𝑡 ≤ 3

1, otherwise.
(3)

It is well understood from the studies [10, 11] that 𝜀 < 1

can be an excitatory parameter and the Gaussian kernels
are associated with its bidirectional influence. So we find
an intense interest in using a normalized Gaussian kernel
function:

𝐽

∞
(𝑥) =

√

𝛾

𝜋

exp (−𝛾𝑥

2
) ,

(4)

where 𝛾 > 0, 𝑥 ∈ Ω, and 0 ≤ 𝜀 < 1. Now the problem, with a
kernel of type

𝐽

∞
(𝑥) =

{

{

{

√

𝛾

𝜋

exp (−𝛾𝑥

2
) , when 𝑥 ≥ 0

0, otherwise
(5)
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and 𝛾 > 0, corresponds to unidirectional connectivity.
Thus (2) describes a one-dimensional chain of single neurons
interacting with each other where the interaction depends on
the choices of the kernel function 𝐽

∞
(𝑥). From the detailed

study in [10] that the integral operator is positive semidefinite,
bounded and invertible operator if 0 < 𝜀 < 1 which has been
well discussed in the next section.

Our study is motivated by [6]. In [6], the authors study
numerical approximation of a nonlocal, partly nonlinear,
phase transitions model. They analyze and approximate the
problem using various schemes, being a finite difference
method, finite element methods with collocation and the
Galerkin approach (using piecewise Lagrange polynomials to
form finite element basis functions), and the Legendre and
Tchebychef spectral methods in space followed by implicit
schemes for the time integration. The authors demonstrate
some numerical solutions as well as the computational error.
They also estimate the theoretical errors of finite difference
approximations and finite element approximations.

In [8, 11], Jackiewicz et al. consider the model (1). They
use the forward Euler method for time integration to form
the resulting model as an integral of Fredholm type. Then
the authors approximate the resulting problem using various
spectral collocation methods. They present some numerical
results to demonstrate their schemes. The motivation was
to use global polynomials to approximate 𝜃(⋅, 𝑡). Solutions
converge fast in such approximations if one considers smooth
initial condition as well as smooth boundaries.

In [8, 11], the authors consider forward Euler scheme for
time integration only.Thuswe find an interest to approximate
the problem using piecewise basis functions for spatial
approximation and then investigate various time integration
schemes.

Now if we consider a spatially one-periodic initial func-
tion 𝜃(𝑥, 0), then for all 𝑥 ∈ R and 𝑡 ∈ R

+
, that is, 𝜃(𝑥, 𝑡) =

𝜃(𝑥 + 1, 𝑡). Then (2) can be written as

(L𝜃

𝑡
(⋅, 𝑡)) (𝑥) = 𝑓 (𝜃, (𝑥, 𝑡)) , (6)

where

(L𝜓) (𝑥) = ∫

1

0

𝐽 (𝑥 − 𝑦) (𝜓 (𝑥) − 𝜖𝜓 (𝑦)) 𝑑𝑦,
(7)

with

𝐽 (𝑥) =

∞

∑

𝑟=−∞

𝐽

∞
(𝑥 − 𝑟) , ∀𝑥 ∈ [0, 1] . (8)

We are interested to consider the periodic domainΩ = [0, 1]

for spatial approximations of the model.
However, it is well understood from [13] that an integrod-

ifferential equation of type (2) defined in the infinite domain
can be defined in a truncated finite domain [𝐴, 𝐵], where 𝐴

and 𝐵 depend on the decay of the kernel function 𝐽

∞
(𝑥). A

closed form formula to find suitable𝐴 and 𝐵 is well presented
in [13]. Thus the analysis and the approximation we present
here in a periodic spatial interval Ω = [0, 1] can also be
applied to any bounded interval [𝐴, 𝐵].

In this study, we consider the integrodifferential equation
(6) with a Gaussian kernel defined by (8) and 0 < 𝜀 < 1.

The rest of the paper is organized in the following way. In
Section 2, we discuss some preliminary results. We present
the approximation of the problem using collocation and
quadrature for space integration in Section 3. We present
some time integration schemes in Section 4. We conclude
this study in Section 5 presenting some numerical results and
discussions.

2. Preliminaries

In this section we discuss some properties of the model
operator which shows the boundedness and inevitability of
the integral operator. Here

(𝜃

𝑡
,L𝜃

𝑡
)

= ∬

Ω

𝐽

∞
(𝑥 − 𝑦) (𝜃

2

𝑡
(𝑥, 𝑡) − 𝜀𝜃

𝑡
(𝑥, 𝑡) 𝜃

𝑡
(𝑦, 𝑡)) 𝑑𝑦 𝑑𝑥

=

1

2

∬

Ω

𝐽

∞
(𝑥 − 𝑦) (𝜃

2

𝑡
(𝑥, 𝑡) + 𝜃

2

𝑡
(𝑦, 𝑡)

− 2𝜀𝜃

𝑡
(𝑥, 𝑡) 𝜃

𝑡
(𝑦, 𝑡) ) 𝑑𝑦 𝑑𝑥,

(9)

and thus (𝜃

𝑡
,L𝜃

𝑡
) ≥ 0. This shows the positive semidefi-

niteness of the operator L when 𝜀 ≤ 1. To investigate the
boundedness property of the operator L let us introduce a
proposition. For more details see [3].

Theorem 1 (see [3]). Assume that 𝐽(𝑥) ∈ 𝐿

1
(R) and the

following conditions hold:

(H1) is 𝐽(𝑥) ≥ 0;

(H2) is normalized such that ∫∞
−∞

𝐾(𝑥)𝑑𝑥 = 1;

(H3) is symmetric; that is, 𝐽(𝑥) = 𝐽(−𝑥), for all 𝑥 ∈ R;

(H4) is decreasing on (0,∞);

(H5) is ̂𝐾(𝜉) > 0.

Then (H1)–(H4) give the DFT results 0 ≤

̃

𝐽(0) and ̂

𝐽(𝜉) ≤

̃

𝐽(0) ≤ (2/
√
2𝜋) +

̂

𝐽(𝜉) for all 𝜉 ∈ [−(𝜋/ℎ), 𝜋/ℎ] and the CFT
results ̂

𝐽(𝜉) ≤

̃

𝐽(0) ≤ (2/
√
2𝜋) +

̂

𝐽(𝜉). Further, if (H5) holds,
then ̂

𝐽(𝜉) ≥ 0 for all 𝐽 ∈ 𝐻

𝑟, 𝑟 > 1/2.

The following theorem concludes with the boundedness
of the operator.

Theorem 2 (see [10]). If 𝐽(𝑥) ≥ 0 for all 𝑥 ∈ R, 𝐽 ∈ 𝐿

2
(R),

and ∫

R
𝐽(𝑥)𝑑𝑥 = 1, thenL is bounded and ‖L‖ ≤ 1 + 𝜀.

The invertibility of the operator can be obtained by the
following theorem.

Theorem 3 (see [10]). If the kernel function satisfies (H1)–
(H5), then, for any 𝜗(𝑥) ∈ 𝐿

2
(R), there exist constants

0 < 𝐶

1
< 𝐶

2
such that 𝐶

1
(𝜗(x), 𝜗(x)) ≤ (L𝜗(𝑥), 𝜗(𝑥)) ≤

𝐶

2
(𝜗(𝑥), 𝜗(𝑥)).
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3. Numerical Approximation

We consider the periodic domain Ω = [0, 1]. We subdivide
Ω into 𝑁 subintervals so that Ω = ∪Ω

𝑖
, where Ω

𝑖
=

[𝑦

𝑖
, 𝑦

𝑖+1
], 𝑦
𝑖
= 𝑖ℎ, 𝑖 = 0, 1, 2, . . . , 𝑁. Let 𝑥

𝑖
be the midpoint

of Ω
𝑖
for all 𝑖 = 0, 1, 2, 3, . . . , 𝑁, ℎ = 1/𝑁. Now we collocate

(6) at 𝑥
𝑖
to get

∫

Ω

𝐽 (𝑥

𝑖
− 𝑦) (𝜃

𝑡
(𝑥

𝑖
, 𝑡) − 𝜀𝜃

𝑡
(𝑦, 𝑡)) 𝑑𝑦 = 𝑓 (𝜃

𝑡
(𝑥

𝑖
, 𝑡)) . (10)

Now using midpoint quadrature formula in the above equa-
tion for spatial integration, one gets

∫

Ω

𝐽 (𝑥

𝑖
− 𝑦) 𝜃

𝑡
(𝑥

𝑖
, 𝑡) 𝑑𝑦

= 𝜃

𝑡
(𝑥

𝑖
, 𝑡) ∫

Ω

𝐽 (𝑥

𝑖
− 𝑦) 𝑑𝑦

= 𝜃

𝑡
(𝑥

𝑖
, 𝑡) Δ𝑥∑

𝑗

𝐽 (𝑥

𝑖
− 𝑥

𝑗
) ,

(11)

and we write

∫

Ω

𝐽 (𝑥

𝑖
− 𝑦) 𝜃

𝑡
(𝑦, 𝑡) 𝑑𝑦

= 𝜃

𝑡
(𝑥

𝑖
, 𝑡) ∫

Ω

𝐽 (𝑥

𝑖
− 𝑦) 𝑑𝑦

= ∑

𝑗

𝜃

𝑡
(𝑥

𝑖
, 𝑡) Δ𝑥𝐽 (𝑥

𝑖
− 𝑥

𝑗
) .

(12)

Thus we get

L𝜃

𝑡
(𝑡) = L

1
𝜃

𝑡
(𝑡) +L

2
𝜃

𝑡
(𝑡) ≈ 𝐴

1
𝜃

𝑡
(𝑡) − 𝜀𝐴

2
𝜃

𝑡
(𝑡) , (13)

where

𝐴

1
(𝑖, 𝑗) =

{

{

{

∑

𝑗

Δ𝑥𝐽 (𝑥

𝑖
− 𝑥

𝑗
) , if 𝑖 = 𝑗

0, if 𝑖 ̸= 𝑗,

𝐴

2
(𝑖, 𝑗) = Δ𝑥 𝐽 (𝑥

𝑖
− 𝑥

𝑗
) , ∀𝑖, 𝑗.

(14)

Now considering 𝜃

𝑡
(𝑥, 𝑡) = 0(𝑥, 𝑡), (6) can be written as

0 (𝑥

𝑖
, 𝑡) = 𝜀 ∫

Ω

𝐽 (𝑥

𝑖
, 𝑦) 0 (𝑦, 𝑡) 𝑑𝑦 + 𝑓 (𝜃 (𝑥

𝑖
, 𝑡) , 𝑡) , (15)

and so

0 (𝑥

𝑖
, 𝑡) = 𝜀

𝑛

∑

𝑗=1

∫

Ω𝑗

𝐽 (𝑥

𝑖
, 𝑦) 0 (𝑦, 𝑡) 𝑑𝑦 + 𝑓 (𝜃 (𝑥

𝑖
, 𝑡) , 𝑡) .

(16)

Using (6) we get

0 (𝑥

𝑖
, 𝑡) = 𝜀ℎ

𝑛

∑

𝑗=1

𝐽 (𝑥

𝑖
, 𝑥

𝑗
) 0 (𝑥

𝑗
, 𝑡) + 𝑓 (𝜃 (𝑥

𝑖
, 𝑡) , 𝑡) . (17)

The above mentioned equations can be presented in the
matrix form as

0 (𝑡) = 𝜀ℎ𝐴0 (𝑡) + 𝑓 (𝜃) , (18)

where

0 (𝑡) = (

0 (𝑥

1
, 𝑡)

0 (𝑥

2
, 𝑡)

...
0 (𝑥

𝑛
, 𝑡)

) ,

𝐴 = (

𝐽 (𝑥

1
, 𝑦

1
) 𝐽 (𝑥

1
, 𝑦

2
) ⋅ ⋅ ⋅ 𝐽 (𝑥

1
, 𝑦

𝑛
)

𝐽 (𝑥

2
, 𝑦

1
) 𝐽 (𝑥

2
, 𝑦

2
) ⋅ ⋅ ⋅ 𝐽 (𝑥

2
, 𝑦

𝑛
)

...
...

...
...

𝐽 (𝑥

𝑛
, 𝑦

1
) 𝐽 (𝑥

𝑛
, 𝑦

2
) ⋅ ⋅ ⋅ 𝐽 (𝑥

𝑛
, 𝑦

𝑛
)

) ,

𝑓 (𝜃) = (

𝑓(𝜃

1
)

𝑓 (𝜃

2
)

...
𝑓 (𝜃

𝑛
)

) .

(19)

The above system of (18) can be arranged as (𝐼 − 𝜀ℎ𝐴)0(𝑡) =

𝑓(𝜃), which yields

(𝐼 − 𝜀ℎ𝐴)

𝑑𝜃

𝑑𝑡

= 𝑓 (𝜃) .
(20)

Substituting𝐵 = (𝐼−𝜀ℎ𝐴), we get a first-order timedependent
system of equations:

𝐵

𝑑𝜃

𝑑𝑡

= 𝑓 (𝜃) , with inition function 𝜃

0
.

(21)

4. Time Integration to Solve the System of
Differential Equations

Here in this section we investigate various one- andmultistep
schemes to approximate the system of first-order nonlinear
differential equation (21).

4.1. Euler’s Methods. Let 𝑡
𝑛
be the time at the 𝑛th time-step,

let 𝜃𝑛 be the computed solution at the nth time-step, let 𝜃𝑛 ≡
𝜃(𝑡

𝑛
), let Δ𝑡 be the step size, and let Δ𝑡 = 𝑡

𝑛
−𝑡

𝑛−1
be constant

here. Now from (21)

𝐵

𝜃

𝑖+1
− 𝜃

𝑖

Δ𝑡

= 𝑓 (𝜃

𝑖
) ,

(22)

which can be written as 𝜃

𝑖+1
= (𝜃

𝑖
) + Δ𝑡(𝐵

−1
(𝑓(𝜃

𝑖
))), 𝑖 =

0, 1, 2, . . ., which is known as forward Euler scheme for initial
value problems. The explicit forward/Euler method is based
on a truncated Taylor series expansion. Expanding 𝜃 in the
neighborhood of = 𝑡

𝑛
, one gets

𝜃

𝑛+1
= 𝜃 (𝑡

𝑛
) + Δ𝑡𝐵

−1
𝑓 (𝜃

𝑛
(𝑡

𝑛
)) + 𝑂 (Δ𝑡

2
) . (23)



4 Abstract and Applied Analysis

Here the local truncation error of the forward Euler method
is 𝑂(Δ𝑡

2
). That is to say, the forward Euler method is a first-

order technique. A simple Taylor expansion can be used to
show that

𝐸 =

̂

𝜃 (𝑡

𝑛
+ Δ𝑡) − 𝜃 (𝑡

𝑛
+ Δ𝑡)

= Δ𝑡𝐵

−1
[𝑓 (𝜃

𝑛
) − 𝜃

󸀠
(𝑡

𝑛
)] −

1

2

Δ𝑡

2
𝜃

󸀠󸀠
(𝜉) ,

(24)

which shows that there is an error of𝑂(Δ𝑡

2
) in a single step of

the explicit Euler method; that is, we get second-order local
truncation error.

In this subsection, our goal is to find finite difference
schemes which are more accurate than the simple Euler
method; that is, the global error of the soughtmethods should
be 𝑂(Δ𝑡

2
) or better. We first want to develop an intuitive

understanding of how this can be done and then actually do
it. An alternative to the above scheme can be to consider the
midpoint of the interval to approximate

𝜃

𝑖+1
= 𝜃

𝑖
+ Δ𝑡𝐵

−1
𝑓(𝜃

𝑖
+

Δ𝑡

2

𝑓 (𝜃

𝑖
)) . (25)

Equation (25) is referred to as the midpoint method, which is
also known as amodified Euler scheme. Similar to the explicit
Euler’s scheme expanding 𝜃

𝑖+1 one can easily show that (25)
is determined from the requirement that the corresponding
finite difference scheme has the global error 𝑂(Δ𝑡

2
) or,

equivalently, the local truncation error 𝑂(Δ𝑡

3
).

4.2. Runge-Kutta Method. We start with the following Taylor
expansion:

𝜃 (𝑡 + Δ𝑡) = 𝜃 (𝑡) + Δ𝑡𝜃

󸀠
(𝑡) +

Δ𝑡

2

2

𝜃

󸀠󸀠
(𝑡) + 𝑂 (Δ𝑡

3
) .

(26)

The first derivative can be replaced by the right hand side
if the differential equation (21) and the second derivatives is
obtained by differentiating (21)

𝜃

󸀠󸀠
(𝑡) = 𝐵

−1
𝑓

𝑡
(𝜃, 𝑡) + 𝐵

−1
𝑓

𝜃
(𝜃, 𝑡) 𝜃

󸀠
(𝑡)

= 𝐵

−1
𝑓

𝑡
(𝜃, 𝑡) + (𝐵

−1
)

2

𝑓

𝜃
(𝜃, 𝑡) 𝑓 (𝜃, 𝑡) ,

(27)

with Jacobian 𝑓

𝜃
. We will from now neglect the dependence

of 𝜃 on 𝑡 when it appears as an argument to 𝑓; therefore the
Taylor expansion and the multivariate Taylor expansion

𝜃

𝑖+1
= 𝜃

𝑖
+

Δ𝑡

2

𝐵

−1
𝑓 (𝜃

𝑖
) +

Δ𝑡

2

𝐵

−1
𝑓 (𝜃

𝑖
+ Δ𝑡𝐵

−1
𝑓 (𝜃

𝑖
)) ,

(28)

which is the classical second-order Runge-Kutta method. It is
also known as Heun’s method or the improved Euler method.

As of the similar fashion the fourth-order Runge-Kutta
method can be presented as

𝜃

𝑖+1
= 𝜃

𝑖
+ Δ𝑡 (

𝑘

1

6

+

𝑘

2

3

+

𝑘

3

3

+

𝑘

4

6

) . (29)

with
𝑘

1
= 𝐵

−1
𝑓 (𝜃

𝑖
) ,

𝑘

2
= 𝐵

−1
𝑓(𝜃

𝑖
+

Δ𝑡

2

𝑘

1
) ,

𝑘

3
= 𝑓(𝑡

𝑖
+

Δ𝑡

2

, 𝜃

𝑖
+

Δ𝑡

2

𝑘

2
) ,

𝑘

4
= 𝑓(𝑡

𝑖
+

Δ𝑡

2

, 𝜃

𝑖
+

Δ𝑡

2

𝑘

3
) .

(30)

Here 𝜃

𝑖+1 is the Runge-Kutta approximation of 𝜃(𝑡
𝑖+1

) and
next value is determined by the value 𝜃

𝑖 plus the weighted
average of four increments, where each increment is the
product of the size of the interval, Δ𝑡, and an estimated
slope specified by function 𝑓 on the right hand side of the
differential equation.

4.3. An Explicit Two-Step Scheme. Let 𝑡
𝑛
be the time at the

𝑛th time-step, let 𝜃

𝑛 be the computed solution at the nth
time-step, let 𝜃𝑛 ≡ 𝜃(𝑡

𝑛
), let Δ𝑡 be the step size, and let Δ𝑡 =

𝑡

𝑛
−𝑡

𝑛−1
be constant here. Now from (21)𝐵((𝜃𝑖+1−𝜃𝑖−1)/2Δ𝑡) =

𝑓(𝜃

𝑖
) and so 𝜃

𝑖+1
= 𝜃

𝑖−1
+ 2Δ𝑡(𝐵

−1
(𝑓(𝜃

𝑖
))). By computer

implementation we notice that the above mentioned scheme
does not work well. So we modify the scheme by 𝜃

𝑖+1
=

𝜃

𝑖−1
+ 2Δ𝑡(𝐵

−1
(𝑓(𝜃

𝑖−1
))), which converges numerically as of

the other schemes discussed previously.

4.4. A Linear Two-Step Adams-Bashforth Scheme. Keeping
the notations as above using a simple two-step scheme (21)
can be approximated by

𝜃

𝑖+2
= 𝜃

𝑖+1
+

3

2

Δ𝑡𝐵

−1
𝑓 (𝜃

𝑖+1
) −

1

2

Δ𝑡𝐵

−1
𝑓 (𝜃

𝑖
) , (31)

which needs two values 𝜃𝑖 and 𝜃

𝑖+1 to compute the value of
𝜃

𝑖+2.
In Table 1 we present some one-order and higher order

schemes with local truncation errors for the system of (21).

4.5. Implicit Schemes. Let 𝑡

𝑛
be the time at the 𝑛th time-

step, let 𝜃𝑛 be the computed solution at the 𝑛th time-step, let
𝜃

𝑛
≡ 𝜃(𝑡

𝑛
), let Δ𝑡 be the step size, and let Δ𝑡 = 𝑡

𝑛
− 𝑡

𝑛−1
be

constant here. Now using backward substitution (21) can be
approximated by 𝐵((𝜃

𝑖+1
− 𝜃

𝑖
)/Δ𝑡) = 𝑓(𝜃

𝑖+1
), which can be

written as 𝜃𝑖+1 = (𝜃

𝑖
) +Δ𝑡(𝐵

−1
(𝑓(𝜃

𝑖+1
))), 𝑖 = 0, 1, 2, . . ., which

is popularly known as implicit/backward Euler scheme. As of
the explicit Euler scheme, expanding 𝜃

𝑖+1 at 𝑡
𝑖
one can easily

show that this scheme is determined from the requirement
that the corresponding finite difference scheme have the
global error 𝑂(Δ𝑡) or equivalently, the local truncation error
𝑂(Δ𝑡

2
).

Another popular alternative to the forward Euler is

𝜃

𝑖+1
= 𝜃

𝑖
+

1

2

Δ𝑡𝐵

−1
(𝑓 (𝜃

𝑖+1
) + 𝑓 (𝜃

𝑖
)) , (32)

which is an implicit scheme.The scheme (32) is known as the
Trapezoidalmethod. As of the explicit Euler scheme, expand-
ing 𝜃

𝑖+1 at 𝑡

𝑖
, one can easily show that (32) is determined



Abstract and Applied Analysis 5

Table 1

Order Formula Local truncation error

1 𝜃

𝑖+1
= 𝜃

𝑖
+ Δ𝑡𝐵

−1
𝑓 (𝜃

𝑖
)

Δ𝑡

2

2

𝜃

󸀠󸀠
(𝜉)

2 𝜃

𝑖+2
= 𝜃

𝑖+1
+

Δ𝑡

2

𝐵

−1
(3𝑓 (𝜃

𝑖+1
) − 𝑓 (𝜃

𝑖
))

5Δ𝑡

3

12

𝜃

󸀠󸀠󸀠
(𝜉)

3 𝜃

𝑖+3
= 𝜃

𝑖+2
+

Δ𝑡

12

𝐵

−1
(23𝑓 (𝜃

𝑖+2
) − 16𝑓 (𝜃

𝑖+1
) + 5𝑓 (𝜃

𝑖
))

3Δ𝑡

4

8

𝜃

(4)
(𝜉)

4 𝜃

𝑖+4
= 𝜃

𝑖+3
+

Δ𝑡

24

𝐵

−1
(55𝑓 (𝜃

𝑖+3
) − 59𝑓 (𝜃

𝑖+2
) + 37𝑓 (𝜃

𝑖+1
) − 9𝑓 (𝜃

𝑖
))

251Δ𝑡

5

720

𝜃

(5)
(𝜉)

5 𝜃

𝑖+5
= 𝜃

𝑖+4
+

Δ𝑡

720

𝐵

−1
(1901𝑓 (𝜃

𝑖+4
) − 2774𝑓 (𝜃

𝑖+3
) + 2616𝑓 (𝜃

𝑖+2
) − 1274𝑓 (𝜃

𝑖+1
) + 251𝑓 (𝜃

𝑖
))

95Δ𝑡

6

2888

𝜃

(6)
(𝜉)
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Figure 1: Here we present contour of cos(𝜃
ℎ
(𝑥, 𝑡)) for 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 10. Here we use 𝑁 = 128 space nodes to compute the spatial

integrals, then we use Δ𝑡 = 0.1 for time integration, and we use modified Euler for time integration.

from the requirement that the corresponding finite difference
scheme has the global error 𝑂(Δ𝑡

2
) or, equivalently, the local

truncation error 𝑂(Δ𝑡

3
). It is to note that both the implicit

solvers give us system of nonlinear equations in terms of 𝜃𝑖+1
which needs to be solved by using Newton or some Newton
type solvers. We keep ourselves restricted with the schemes
discussed above. However there are many other one-order

and higher order schemes that are also available for time
integration.

5. Numerical Experiments and Discussions

In this section we discuss computer implementation of the
schemes. For all the computationswe consider𝑁 subintervals
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Figure 2: Here we present contour of cos(𝜃
ℎ
(𝑥, 𝑡)) for 0 ≤ 𝑥 ≤ 1, 0 ≤ 𝑡 ≤ 10. Here we use 𝑁 = 128 space nodes to compute the spatial

integrals and then use various choices of Δ𝑡 for time integration. Here (a) backward Euler, (b) Trapezoidal method.

[𝑥

𝑖
, 𝑥

𝑖+1
], 𝑖 = 0, 1, 2, . . . , 𝑁 − 1, for the spatial domain [0, 1],

and consider the midpoints of the interval for collocation to
derive the semidiscrete time dependent system of differential
equation (21). Then depending on the choice of the solver
for the system (21) we choose different time stepping Δ𝑡 as
required. For all the computations we consider the Gaussian
kernel defined in (8) with 𝛾 = 100, and 0 < 𝜖 < 1.

In Figure 1 we present solutions for (21) for different
choices of the parameter 𝜖. In all cases we consider 𝜃(𝑥, 0) =

8𝜋𝑥, if 0 ≤ 𝑥 < 0.5, and 𝜃(𝑥, 0) = 8𝜋(1 − 𝑥), if 0.5 ≤ 𝑥 < 1.
Here we observe different patterns for different choices of the
parameter values. The bifurcation of the solutions at 𝑡 = 3

are also visible from all the computational results. The other
explicit one and multistep solvers also produce same results.

In Figure 2 we present solutions for different choices time
schemes for (21). In both cases we consider that 𝜖 = 0.5,
and 𝜃(𝑥, 0) = 16𝜋𝑥, if 0 ≤ 𝑥 < 0.5, and 𝜃(𝑥, 0) =

16𝜋(1 − 𝑥), if 0.5 ≤ 𝑥 < 1. From this computations
we notice a bifurcation of solutions at the transition point
𝑡 = 3 of the nonlinearity 𝑓(𝜃). Here from the computations
we observe that the implicit solvers work well for large Δ𝑡,
and as a result they need less computational time, though
the explicit solvers are easy to implement. In terms of
computational costs and stability issues we recommend the
implicit and multistep schemes for this type of nonlinear
integrodifferential equations.

Here we restrict ourselves with piecewise constant
approximations for space integrations, and we study one
space dimensional model only. Thus the multidimensional
version of the model with higher order quadratures and
higher order schemes for time integration leaves as future
studies.
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