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We study the periodic solutions of Duffing equations with singularities 𝑥+𝑔(𝑥) = 𝑝(𝑡). By using Poincaré-Birkhoff twist theorem,
we prove that the given equation possesses infinitelymany positive periodic solutions provided that𝑔 satisfies the singular condition
and the time map related to autonomous system 𝑥 + 𝑔(𝑥) = 0 tends to zero.

1. Introduction

In this paper, we are concerned with the periodic solutions of
singular Duffing equations:

𝑥

+ 𝑔 (𝑥) = 𝑝 (𝑡) , (1)

where 𝑔 : (0, +∞) → R is locally Lipschitz continuous and
has a singularity at the origin and 𝑝 : R → R is continuous
and periodic, whose least period is 2𝜋.

The periodic problem of equations with singularities has
been widely studied lately because of their background in
applied sciences [1–15]. For example, the oscillation problem
of a spherical thick shell made of an elastic material can also
be modeled by this kind of equations [1].

The opening work on the existence of periodic solutions
of ordinary differential equations with singularities was done
by Lazer and Solimini [2], in which the equations

𝑥

−

1

𝑥
] = 𝑝 (𝑡) (2)

were studied. It was proved in [2] that if ] ≥ 1, then (2) has at
least one positive 2𝜋-periodic solution if and only if

∫

2𝜋

0

𝑝 (𝑡) 𝑑𝑡 < 0. (3)

Meanwhile, if 0 < ] < 1, then they constructed a periodic
function 𝑝(𝑡)with negative mean value such that (2) does not
have any 2𝜋-periodic solution.

It is well known that time map plays an important role in
studying the existence and multiplicity of periodic solutions
of Duffing equations without singularities. In case when 𝑔
has a singularity, we can also use time map to deal with the
periodic solutions of (1) (see [4] and the related references
therein).

Assume that 𝑔 satisfies

lim
𝑥→0

+

𝑔 (𝑥) = −∞,
(ℎ
1
)

and the primitive function 𝐺 of 𝑔 satisfies

lim
𝑥→0

+

𝐺 (𝑥) = +∞, (𝐺 (𝑥) = ∫

𝑥

1

𝑔 (𝑠) 𝑑𝑠) . (ℎ
2
)

Moreover, the following condition holds:

lim
𝑥→+∞

𝑔 (𝑥) = +∞. (ℎ
3
)

Let us define

𝜏 (𝑐) = ∫

𝑐

1

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠)

. (4)

Themap 𝜏 is usually called timemap, which is continuous for
𝑐 large enough.We shall deal with the multiplicity of periodic
solutions of (1) by means of asymptotic property of the time
map 𝜏. Assume that the time map satisfies

lim
𝑐→+∞

𝜏 (𝑐) = 0. (𝜏)
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It is easy to check that if 𝑔 satisfies superlinear condition

lim
𝑥→+∞

𝑔 (𝑥)

𝑥

= +∞, (5)

then condition (𝜏) is satisfied. However, the converse is not
true. In fact, we can find functions 𝑔, which do not satisfy
(5). But the corresponding time maps satisfy the condition
(𝜏). For example, let us define

𝑔 (𝑥) =

{
{
{

{
{
{

{

3 −

1

𝑥

, 0 < 𝑥 ≤ 1,

𝑥 + (𝑥 − 1)
3

+(𝑥 − 1)
3 sin (𝑥 − 1)4, 𝑥 ≥ 1.

(6)

Obviously, conditions (ℎ
𝑖
) (𝑖 = 1, 2, 3) hold and condition

(5) does not hold. Next, we will show that condition (𝜏) is
satisfied. In case when 𝑥 ≥ 1, we have

𝐺 (𝑥) = ∫

𝑥

1

(𝑠 + (𝑠 − 1)
3
+ (𝑠 − 1)

3 sin (𝑠 − 1)4) 𝑑𝑠

=

1

2

𝑥
2
+

1

4

(𝑥 − 1)
4
−

1

4

cos (𝑥 − 1)4 − 1
4

.

(7)

Therefore, we have

lim
𝑐→+∞

𝜏 (𝑐)

= lim
𝑐→+∞

∫

𝑐

1

(𝑑𝑠)

× (

1

2

(𝑐
2
− 𝑠
2
) +

1

4

((𝑐 − 1)
4
− (𝑠 − 1)

4
)

+

1

4

(cos (𝑠 − 1)4 − cos (𝑐 − 1)4))
−1/2

= lim
𝑐→+∞

1

𝑐

∫

1

1/𝑐

(𝑑𝑡)

× (

1

2𝑐
2
(1 − 𝑡

2
) +

1

4𝑐
4
((𝑐 − 1)

4
− (𝑐𝑡 − 1)

4
)

+

1

4𝑐
4
(cos (𝑐𝑡 − 1)4 − cos (𝑐 − 1)4))

−1/2

.

(8)

Since

lim
𝑐→+∞

∫

1

1/𝑐

(𝑑𝑡)

× (

1

2𝑐
2
(1 − 𝑡

2
) +

1

4𝑐
4
((𝑐 − 1)

4
− (𝑐𝑡 − 1)

4
)

+

1

4𝑐
4
(cos (𝑐𝑡 − 1)4 − cos (𝑐 − 1)4))

−1/2

= ∫

1

0

2𝑑𝑡

√1 − 𝑡
4

,

(9)

we get

lim
𝑐→+∞

𝜏 (𝑐) = 0. (10)

When the conditions (ℎ
1
), (ℎ
2
), and (5) hold, it was

proved in [6] that (1) has infinitely many periodic solutions.

In the present paper, we will deal with the multiplicity of
periodic solutions of (1) under the conditions (ℎ

1
), (ℎ
2
), (ℎ
3
),

and (𝜏). Obviously, the conditions (ℎ
3
) and (𝜏) generalize the

condition (5). Since (5) does not hold, the estimating method
in [6] is invalid. By taking some new estimating skills, we
obtain the following results.

Theorem 1. Assume that conditions (ℎ
𝑖
) (𝑖 = 1, 2, 3) and (𝜏)

hold. Then (1) has infinitely many positive harmonic solutions
{𝑥
𝑗
(𝑡)} satisfying

lim
𝑗→∞

( min
0≤𝑡≤2𝜋

(𝑥
𝑗
(𝑡) +






𝑥


𝑗
(𝑡)






)) = 0,

lim
𝑗→∞

(max
0≤𝑡≤2𝜋

(𝑥
𝑗
(𝑡) +






𝑥


𝑗
(𝑡)






)) = +∞.

(11)

Theorem 2. Assume that conditions (ℎ
𝑖
) (𝑖 = 1, 2, 3) and (𝜏)

hold. Then for any integer 𝑚 ≥ 2, (1) has infinitely many
positive𝑚-order subharmonic solutions {𝑥

𝑗
(𝑡)} satisfying

lim
𝑗→∞

( min
0≤𝑡≤2𝑚𝜋

(𝑥
𝑗
(𝑡) +






𝑥


𝑗
(𝑡)






)) = 0,

lim
𝑗→∞

( max
0≤𝑡≤2𝑚𝜋

(𝑥
𝑗
(𝑡) +






𝑥


𝑗
(𝑡)






)) = +∞.

(12)

Remark 3. In the following, for convenience and brevity, we
move the singular point 0 to the point −1. In fact, we can
take a transformation 𝑥 = 𝑢 + 1 to achieve this aim. We will
consider singular equations as follows:

𝑥

+ 𝑔 (𝑥) = 𝑝 (𝑡) , (1


)

where 𝑔 : (−1, +∞) → R is continuous and has a singularity
at 𝑥 = −1.We now assume that the following conditions hold:

lim
𝑥→−1

+

𝑔 (𝑥) = −∞,
(ℎ


1
)

lim
𝑥→−1

+

𝐺 (𝑥) = +∞.
(ℎ


2
)

Next, we will deal with the existence and multiplicity of
periodic solutions of (1) under conditions (ℎ

1
), (ℎ
2
), (ℎ
3
),

and (𝜏).

2. Basic Lemmas

In this section, we will perform some phase-plane analyses
for (1) when conditions (ℎ

1
), (ℎ
2
), and (ℎ

3
) hold. Consider

the equivalent system of (1):

𝑥

= 𝑦, 𝑦


= −𝑔 (𝑥) + 𝑝 (𝑡) . (13)

Let (𝑥(𝑡), 𝑦(𝑡)) = (𝑥(𝑡, 𝑥
0
, 𝑦
0
), 𝑦(𝑡, 𝑥

0
, 𝑦
0
)) be the solution of

(13) through the initial point:

𝑥 (0, 𝑥
0
, 𝑦
0
) = 𝑥
0
, 𝑦 (0, 𝑥

0
, 𝑦
0
) = 𝑦
0
. (14)

Lemma 4. Assume that conditions (ℎ
2
) and (ℎ

3
) hold. Then

every solution (𝑥(𝑡), 𝑦(𝑡)) of system (13) exists uniquely on the
whole 𝑡-axis.
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Proof. Define a potential function

𝑉 (𝑥, 𝑦) =

1

2

𝑦
2
+ 𝐺 (𝑥) . (15)

Set

𝑉 (𝑡) =

1

2

𝑦
2

(𝑡) + 𝐺 (𝑥 (𝑡)) . (16)

Then we have

𝑉


(𝑡) = 𝑝 (𝑡) 𝑦 (𝑡) ≤ 𝑀




𝑦 (𝑡)





, (17)

where𝑀 = max{|𝑝(𝑡)| : 𝑡 ∈ R}. From (ℎ
2
) and (ℎ

3
)we know

that there exists a constant𝑀 > 0 such that

𝐺 (𝑥) +𝑀

≥ 0, 𝑥 ∈ (−1, +∞) . (18)

From (17) and (18) we get

𝑉


(𝑡) ≤ 𝑀




𝑦 (𝑡)





+ 𝐺 (𝑥 (𝑡)) + 𝑀


≤ 𝑉 (𝑡) + 𝑀


, (19)

where𝑀 = 𝑀 +𝑀2/2. Then, for any finite 𝑇 > 0, we have

𝑉 (𝑡) ≤ 𝑉 (0) 𝑒
𝑇
+𝑀

(𝑒
𝑇
− 1) , 𝑡 ∈ [0, 𝑇) . (20)

Therefore, (𝑥(𝑡), 𝑦(𝑡)) is bounded for 𝑡 ∈ [0, 𝑇). Furthermore,
(𝑥(𝑡), 𝑦(𝑡)) exists on the interval [0, +∞). Similarly, we can
prove that (𝑥(𝑡), 𝑦(𝑡)) exists on the interval (−∞, 0]. The
uniqueness of the solution (𝑥(𝑡), 𝑦(𝑡)) follows directly from
the local Lipschitzian condition on 𝑔.

On the basis of Lemma 4, we can define the Poincaré map
𝑃 : (−1, +∞) × R → R2 as follows:

𝑃 : (𝑥
0
, 𝑦
0
) → (𝑥

1
, 𝑦
1
) = (𝑥 (2𝜋, 𝑥

0
, 𝑦
0
) , 𝑦 (2𝜋, 𝑥

0
, 𝑦
0
)) .

(21)

We know that fixed points of the Poincaré map 𝑃 correspond
to 2𝜋-periodic solutions of (13).

To show the position of orbit (𝑥(𝑡), 𝑦(𝑡)) of (13), we
introduce a function 𝜁 : (−1, +∞) × R → R+,

𝜁 (𝑥, 𝑦) = 𝑥
2
+ 𝑦
2
+

1

(1 + 𝑥)
2
. (22)

Lemma 5. There exists a constant 𝑐
0
> 0 such that, for any

𝑐 ≥ 𝑐
0
, Γ
𝑐
: 𝜁(𝑥, 𝑦) = 𝑐 is a closed star-shaped curve around the

origin.

Proof. Consider autonomous system:

𝑥

= 𝑦, 𝑦


= −𝑥 +

1

(1 + 𝑥)
3
. (23)

Obviously, Γ
𝑐
is one orbit of the autonomous system above.

From the expression of 𝜁 we know that there exists 𝑐
1
> 0

such that, for 𝑐 ≥ 𝑐
1
, Γ
𝑐
is a closed curve around the origin.

Applying the polar coordinate transformation 𝑥 = 𝜌 cos 𝜗,
𝑦 = 𝜌 sin 𝜗 to this system, we get

𝜗


(𝑡) = −1 +

cos 𝜗
𝜌(1 + 𝜌 cos 𝜗)3

. (24)

In the case when −1 < 𝜌 cos 𝜗 ≤ 0, we have 𝜗(𝑡) ≤ −1. In
the case when cos 𝜗 ≥ 0 and 𝜌 ≥ 2, we have cos 𝜗/(𝜌(1 +
𝜌 cos 𝜗)3) ≤ 1/2, which implies 𝜗(𝑡) ≤ −1/2.Therefore, there
exists 𝑐

2
> 0 such that, for 𝜁(𝜌 cos 𝜗, 𝜌 sin 𝜗) ≥ 𝑐

2
, 𝜗(𝑡) is

decreasing strictly. Take 𝑐
0
= max{𝑐

1
, 𝑐
2
}. Then for 𝑐 ≥ 𝑐

0
,

Γ
𝑐
is a closed star-shaped curve around the origin.

Lemma 6 (see [1]). Assume that conditions (ℎ
1
), (ℎ
2
), and

(ℎ
3
) hold. Then, for any 𝑇 > 0 and  > 0, there exists 

0
> 0

sufficiently large such that, for 𝜁(𝑥
0
, 𝑦
0
) ≥ 
2

0
,

𝜁 (𝑥 (𝑡) , 𝑦 (𝑡)) ≥ 
2
, 𝑡 ∈ [0, 𝑇] , (25)

where (𝑥(𝑡), 𝑦(𝑡)) is the solution of (13) through the initial point
(𝑥
0
, 𝑦
0
).

From Lemma 6 we know that if 𝜁(𝑥
0
, 𝑦
0
) is large enough,

then 𝑥2(𝑡) + 𝑦2(𝑡) > 0, 𝑡 ∈ [0, 𝑇]. Therefore, we can take the
polar coordinate transformation

𝑥 = 𝑟 cos 𝜃, 𝑦 = 𝑟 sin 𝜃. (26)

Under this transformation, system (13) becomes

𝑑𝑟

𝑑𝑡

= 𝑟 sin 𝜃 cos 𝜃 − 𝑔 (𝑟 cos 𝜃) sin 𝜃 + 𝑝 (𝑡) sin 𝜃,

𝑑𝜃

𝑑𝑡

= −sin2𝜃 − 1
𝑟

𝑔 (𝑟 cos 𝜃) cos 𝜃 + 1
𝑟

𝑝 (𝑡) cos 𝜃.
(27)

Let (𝑟(𝑡), 𝜃(𝑡)) = (𝑟(𝑡, 𝑟
0
, 𝜃
0
), 𝜃(𝑡, 𝑟

0
, 𝜃
0
)) be the solution of

(27) satisfying condition

𝑟 (0) = 𝑟
0
, 𝜃 (0) = 𝜃

0
(28)

with 𝑥
0
= 𝑟
0
cos 𝜃
0
, 𝑦
0
= 𝑟
0
sin 𝜃
0
.

Then we can rewrite the Poincaré map 𝑃 as follows:

𝑃 : (𝑟
0
, 𝜃
0
) → (𝑟

1
, 𝜃
1
) = (𝑟 (2𝜋, 𝑟

0
, 𝜃
0
) , 𝜃 (2𝜋, 𝑟

0
, 𝜃
0
)) ,

(29)

with 𝑥
0
= 𝑟
0
cos 𝜃
0
> −1, 𝑦

0
= 𝑟
0
sin 𝜃
0
.

Lemma 7. Assume that conditions (ℎ
1
), (ℎ
2
), and (ℎ

3
) hold.

Then, for any 𝑇 > 0, there exist 𝜌
0
> 0 and 𝜔 > 0 such that, for

𝜁(𝑥
0
, 𝑦
0
) ≥ 𝜌
2

0
,

𝜃


(𝑡) ≤ −𝜔, 𝑡 ∈ [0, 𝑇] . (30)

Proof. From (ℎ
3
) we know that there exist constants 𝛼 > 0

and 𝑐 > 0 such that

𝑔 (𝑥) − 𝑝 (𝑡)

𝑥

≥ 𝛼, 𝑥 ∈ (𝑐, +∞) , 𝑡 ∈ R. (31)

Moreover, we know from (ℎ
1
) that there exist 𝛽 > 0 and −1 <

𝑑 < 0 such that

𝑔 (𝑥) − 𝑝 (𝑡)

𝑥

≥ 𝛽, 𝑥 ∈ (−1, 𝑑) , 𝑡 ∈ R. (32)
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If 𝑥(𝑡) > 𝑐, 𝑡 ∈ [0, 𝑇], then

𝜃


(𝑡) ≤ −sin2𝜃 − 𝛼cos2𝜃 ≤ −min (1, 𝛼) . (33)

If −1 < 𝑥(𝑡) < 𝑑 < 0, 𝑡 ∈ [0, 𝑇], then

𝜃


(𝑡) ≤ −sin2𝜃 − 𝛽cos2𝜃 ≤ −min (1, 𝛽) . (34)

On the other hand, we know from Lemma 6 that there exists
𝜌
0
> 0 large enough such that if 𝜁(𝑥

0
, 𝑦
0
) ≥ 𝜌

2

0
and 𝑥(𝑡) ∈

[𝑑, 𝑐], 𝑡 ∈ [0, 𝑇], then




𝑔 (𝑥 (𝑡)) − 𝑝 (𝑡)






𝑟 (𝑡)

≤

1

3

, |sin 𝜃 (𝑡)| ≥
√2

2

. (35)

Hence,

𝜃


(𝑡) ≤ −sin2𝜃 (𝑡) +




𝑔 (𝑥 (𝑡)) − 𝑝 (𝑡)






𝑟 (𝑡)

|cos 𝜃 (𝑡)| ≤ −1
6

.

(36)

Consequently, the conclusion of Lemma 7 holds.

Lemma 8. Assume that conditions (ℎ
1
), (ℎ
2
), (ℎ
3
), and (𝜏)

hold. Let 𝐴 ≥ 0 be a given constant. Then we have

lim
𝑐→+∞

∫

𝑐

0

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠) − 𝐴 (𝑐 − 𝑠)

= 0,

lim
𝑐→−1

+

∫

0

𝑐

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠) + 𝐴 (𝑐 − 𝑠)

= 0.

(37)

Proof. We now prove the first estimation. From condition
(ℎ
3
) we know that there exists a constant 𝜂 > 1 such that,

for 𝜂 ≤ 𝑠 ≤ 𝑐,

𝐺 (𝑐) − 𝐺 (𝑠) ≥ 2𝐴 (𝑐 − 𝑠) . (38)

Then, for 𝜂 ≤ 𝑠 ≤ 𝑐, we have

𝐺 (𝑐) − 𝐺 (𝑠) − 𝐴 (𝑐 − 𝑠) ≥

1

2

[𝐺 (𝑐) − 𝐺 (𝑠)] . (39)

Write

∫

𝑐

0

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠) − 𝐴 (𝑐 − 𝑠)

= 𝐼
1
+ 𝐼
2
, (40)

where

𝐼
1
= ∫

𝜂

0

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠) − 𝐴 (𝑐 − 𝑠)

,

𝐼
2
= ∫

𝑐

𝜂

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠) − 𝐴 (𝑐 − 𝑠)

.

(41)

Fromcondition (ℎ
3
)we can derive easily that lim

𝑐→+∞
𝐼
1
= 0.

From (39) we get

𝐼
2
≤ √2∫

𝑐

𝜂

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠)

≤ √2∫

𝑐

1

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠)

. (42)

According to condition (𝜏), we have that lim
𝑐→+∞

𝐼
2
= 0.

Hence, we get

lim
𝑐→+∞

∫

𝑐

0

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠) − 𝐴 (𝑐 − 𝑠)

= 0. (43)

Next, we prove the second estimation. Let 0 < 𝜀 < 1 be a
sufficiently small constant. In the case when −1 < 𝑐 < −1 + 𝜀,
we write

∫

0

𝑐

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠) + 𝐴 (𝑐 − 𝑠)

= 𝐽
1
+ 𝐽
2
, (44)

where

𝐽
1
= ∫

−1+𝜀

𝑐

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠) + 𝐴 (𝑐 − 𝑠)

,

𝐽
2
= ∫

0

−1+𝜀

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠) + 𝐴 (𝑐 − 𝑠)

.

(45)

If 𝑠 ∈ (𝑐, −1 + 𝜀) ⊂ (−1, −1 + 𝜀), then we have

𝐺 (𝑐) − 𝐺 (𝑠) = 𝑔 (𝜁) (𝑐 − 𝑠) ,

𝜁 ∈ (𝑐, 𝑠) ⊂ (−1, −1 + 𝜀) .

(46)

Set

𝜉 (𝜀) = sup {𝑔 (𝑥) : 𝑥 ∈ (−1, −1 + 𝜀)} . (47)

Obviously, 𝑔(𝜁) ≤ 𝜉(𝜀). From condition (ℎ
1
) we know

lim
𝜀→0
+

𝜉 (𝜀) = −∞. (48)

According to (46), we get that, for 𝑠 ∈ (𝑐, −1+𝜀) ⊂ (−1, −1+𝜀),

𝐺 (𝑐) − 𝐺 (𝑠) = 𝑔 (𝜁) (𝑐 − 𝑠) ≥ 𝜉 (𝜀) (𝑐 − 𝑠) . (49)

Hence,

𝐽
1
≤ ∫

−1+𝜀

𝑐

𝑑𝑠

√𝜉 (𝜀) (𝑐 − 𝑠) + 𝐴 (𝑐 − 𝑠)

=

2√−1 + 𝜀 − 𝑐

√−𝜉 (𝜀) − 𝐴

, (50)

which, together with (48),means that lim
𝑐→−1

+𝐽
1
= 0. On the

other hand,we can infer easily from (ℎ
1
) that lim

𝑐→−1
+𝐽
2
= 0.

Consequently, we have

lim
𝑐→−1

+

∫

0

𝑐

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠) + 𝐴 (𝑐 − 𝑠)

= 0. (51)

Thus, the proof is completed.

Lemma 9. Assume that conditions (ℎ
1
), (ℎ
2
), (ℎ
3
), and (𝜏)

hold. Let 𝑚 be a given positive integer. Then, for any given
positive integer 𝑛, there is a constant 𝑅

𝑛
> 0 such that, for

𝜁(𝑥
0
, 𝑦
0
) ≥ 𝑅
2

𝑛
,

𝜃 (2𝑚𝜋) − 𝜃
0
< −2𝑛𝜋. (52)
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Proof. From Lemmas 6 and 7 we know that, for any suffi-
ciently large  > 0, there is a constant 

0
>  such that, for

𝜁(𝑥
0
, 𝑦
0
) ≥ 
2

0
and 𝑡 ∈ [0, 2𝑚𝜋],

𝜁 (𝑥 (𝑡) , 𝑦 (𝑡)) ≥ 
2
,

𝜃


(𝑡) < 0.

(53)

Let (𝑥(𝑡), 𝑦(𝑡)) be a solution of (13) satisfying 𝜁(𝑥
0
, 𝑦
0
) ≥ 
2

0
.

Then the solution (𝑥(𝑡), 𝑦(𝑡)) will move clockwise during the
time period [0, 2𝑚𝜋]. Without loss of generality, we assume
that (𝑥

0
, 𝑦
0
) lies in the first quadrant. Then there exist 𝑡

0
=

0 < 𝑡
1
< 𝑡
2
< 𝑡
3
< 𝑡
4
< 𝑡
5
such that

𝑥 (𝑡
1
) > 0, 𝑦 (𝑡

1
) = 0; 𝑥 (𝑡) > 0, 𝑦 (𝑡) > 0,

𝑡 ∈ (𝑡
0
, 𝑡
1
) ,

𝑥 (𝑡
2
) = 0, 𝑦 (𝑡

2
) < 0; 𝑥 (𝑡) > 0, 𝑦 (𝑡) < 0,

𝑡 ∈ (𝑡
1
, 𝑡
2
) ,

𝑥 (𝑡
3
) < 0, 𝑦 (𝑡

3
) = 0; 𝑥 (𝑡) < 0, 𝑦 (𝑡) < 0,

𝑡 ∈ (𝑡
2
, 𝑡
3
) ,

𝑥 (𝑡
4
) = 0, 𝑦 (𝑡

4
) > 0; 𝑥 (𝑡) < 0, 𝑦 (𝑡) > 0,

𝑡 ∈ (𝑡
3
, 𝑡
4
) ,

𝑥 (𝑡
5
) > 0, 𝑦 (𝑡

5
) = 0; 𝑥 (𝑡) > 0, 𝑦 (𝑡) > 0,

𝑡 ∈ (𝑡
4
, 𝑡
5
) .

(54)

Next, we will estimate 𝑡
𝑖
− 𝑡
𝑖−1

(𝑖 = 1, 2, 3, 4, 5), respectively.
We first estimate 𝑡

1
− 𝑡
0
. If 𝑡 ∈ [𝑡

0
, 𝑡
1
], then 𝑦(𝑡) ≥ 0. Let us

define an auxiliary function

𝑤 (𝑡) =

1

2

𝑦
2

(𝑡) + 𝐺 (𝑥 (𝑡)) − 𝑀𝑥 (𝑡) , (55)

where𝑀 = max{|𝑝(𝑡)| : 𝑡 ∈ [0, 2𝜋]}. Then we have that, for
𝑡 ∈ [𝑡
0
, 𝑡
1
],

𝑤


(𝑡) = 𝑦 (𝑡) 𝑦


(𝑡) + 𝑔 (𝑥 (𝑡)) 𝑥


(𝑡) − 𝑀𝑥


(𝑡)

= 𝑦 (𝑡) (𝑝 (𝑡) − 𝑀) ≤ 0,

(56)

which implies that 𝑤(𝑡) is decreasing on the interval [𝑡
0
, 𝑡
1
].

Therefore, we get that, for 𝑡 ∈ [𝑡
0
, 𝑡
1
],

1

2

𝑦
2

(𝑡) + 𝐺 (𝑥 (𝑡)) − 𝑀𝑥 (𝑡) ≥ 𝐺 (𝑥 (𝑡
1
)) − 𝑀𝑥 (𝑡

1
) , (57)

which means

𝑥


(𝑡) ≥ √2 (𝐺 (𝑥 (𝑡
1
)) − 𝐺 (𝑥 (𝑡))) − 2𝑀 (𝑥 (𝑡

1
) − 𝑥 (𝑡)).

(58)

Hence, we obtain

𝑡
1
− 𝑡
0

≤ ∫

𝑥(𝑡
1
)

𝑥(𝑡
0
)

𝑑𝑥

√2 (𝐺 (𝑥 (𝑡
1
)) − 𝐺 (𝑥)) − 2𝑀(𝑥 (𝑡

1
) − 𝑥)

≤ ∫

𝑥(𝑡
1
)

0

𝑑𝑥

√2 (𝐺 (𝑥 (𝑡
1
)) − 𝐺 (𝑥)) − 2𝑀(𝑥 (𝑡

1
) − 𝑥)

.

(59)

Similarly, we can obtain

𝑡
5
− 𝑡
4
≤ ∫

𝑥(𝑡
5
)

0

𝑑𝑥

√2 (𝐺 (𝑥 (𝑡
5
)) − 𝐺 (𝑥)) − 2𝑀(𝑥 (𝑡

5
) − 𝑥)

.

(60)

Wenext estimate 𝑡
2
−𝑡
1
. If 𝑡 ∈ [𝑡

1
, 𝑡
2
], then𝑦(𝑡) ≤ 0.Therefore,

we have

𝑤


(𝑡) = 𝑦 (𝑡) (𝑝 (𝑡) − 𝑀) ≥ 0, 𝑡 ∈ [𝑡
1
, 𝑡
2
] , (61)

which implies that 𝑤(𝑡) is increasing on the interval [𝑡
1
, 𝑡
2
].

Furthermore, we have that, for 𝑡 ∈ [𝑡
1
, 𝑡
2
],

1

2

𝑦
2

(𝑡) + 𝐺 (𝑥 (𝑡)) − 𝑀𝑥 (𝑡) ≥ 𝐺 (𝑥 (𝑡
1
)) − 𝑀𝑥 (𝑡

1
) , (62)

which yields

−𝑥


(𝑡) ≥ √2 (𝐺 (𝑥 (𝑡
1
)) − 𝐺 (𝑥 (𝑡))) − 2𝑀 (𝑥 (𝑡

1
) − 𝑥 (𝑡)).

(63)

Consequently, we get

𝑡
2
− 𝑡
1
≤ ∫

𝑥(𝑡
1
)

0

𝑑𝑥

√2 (𝐺 (𝑥 (𝑡
1
)) − 𝐺 (𝑥)) − 2𝑀(𝑥 (𝑡

1
) − 𝑥)

.

(64)

We now estimate 𝑡
3
− 𝑡
2
. If 𝑡 ∈ [𝑡

2
, 𝑡
3
], then 𝑦(𝑡) ≤ 0. Define

𝑤 (𝑡) =

1

2

𝑦
2

(𝑡) + 𝐺 (𝑥 (𝑡)) + 𝑀𝑥 (𝑡) . (65)

Then we have that, for 𝑡 ∈ [𝑡
2
, 𝑡
3
],

𝑤 (𝑡) = 𝑦 (𝑡) (𝑝 (𝑡) + 𝑀) ≤ 0, (66)

which implies that 𝑤(𝑡) is decreasing on the interval [𝑡
2
, 𝑡
3
].

Therefore, we get that, for 𝑡 ∈ [𝑡
2
, 𝑡
3
],

1

2

𝑦
2

(𝑡) + 𝐺 (𝑥 (𝑡)) + 𝑀𝑥 (𝑡) ≥ 𝐺 (𝑥 (𝑡
3
)) + 𝑀𝑥 (𝑡

3
) , (67)

which implies

−𝑥


(𝑡) ≥ √2 (𝐺 (𝑥 (𝑡
3
)) − 𝐺 (𝑥 (𝑡))) + 2𝑀 (𝑥 (𝑡

3
) − 𝑥 (𝑡)).

(68)

Hence,

𝑡
3
− 𝑡
2
≤ ∫

0

𝑥(𝑡
3
)

𝑑𝑥

√2 (𝐺 (𝑥 (𝑡
3
)) − 𝐺 (𝑥)) + 2𝑀(𝑥 (𝑡

3
) − 𝑥)

.

(69)

Similarly, we get

𝑡
4
− 𝑡
3
≤ ∫

0

𝑥(𝑡
3
)

𝑑𝑥

√2 (𝐺 (𝑥 (𝑡
3
)) − 𝐺 (𝑥)) + 2𝑀(𝑥 (𝑡

3
) − 𝑥)

.

(70)
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According to Lemma 6, if we take 
0
>> 1, then we have

𝑥(𝑡
1
) >> 1, 0 < 1+𝑥(𝑡

3
) << 1 and 𝑥(𝑡

5
) >> 1. FromLemma 8

and (59)–(70) we know that, for any sufficiently small 𝜀 > 0,
there exists 

0
>> 1 such that

𝑡
𝑖
− 𝑡
𝑖−1
< 𝜀, (𝑖 = 1, 2, 3, 4, 5) . (71)

It follows that

𝑡
5
− 𝑡
0
< 5𝜀. (72)

Therefore, the motion (𝑥(𝑡), 𝑦(𝑡)) rotates clockwise a turn in
a period less than 5𝜀. Consequently, (𝑥(𝑡), 𝑦(𝑡)) can rotate
a sufficiently large number of turns during the period 2𝑚𝜋
provided that 𝜁(𝑥

0
, 𝑦
0
) ≥ 
2

0
(
0
>> 1) is satisfied.

The proof is thus completed.

3. Infinity of Harmonic Solutions

To proveTheorem 1, we first prove the following proposition.

Proposition 10. Assume that conditions (ℎ
1
), (ℎ
2
), (ℎ
3
), and

(𝜏) hold. Then (1) has infinitely many harmonic solutions
{𝑥
𝑗
(𝑡)} satisfying

lim
𝑗→∞

( min
0≤𝑡≤2𝜋

(1 + 𝑥
𝑗
(𝑡) +






𝑥


𝑗
(𝑡)






)) = 0,

lim
𝑗→∞

(max
0≤𝑡≤2𝜋

(1 + 𝑥
𝑗
(𝑡) +






𝑥


𝑗
(𝑡)






)) = +∞.

(73)

Proof. From Lemma 6 we know that there exist 𝑎
1
> 𝑐
0
(𝑐
0
is

given in Lemma 5) and 𝜔
1
> 0 such that, for 𝜁(𝑥

0
, 𝑦
0
) ≥ 𝑎
2

1
,

𝜁(𝑥(𝑡), 𝑦(𝑡)) ≥ 2 and 𝜃(𝑡) < −𝜔
1
, 𝑡 ∈ [0, 2𝜋]. For 𝜁(𝑥

0
, 𝑦
0
) ≥

𝑎
2

1
, we consider

Φ(𝑟
0
, 𝜃
0
) = 𝜃 (2𝜋, 𝑟

0
, 𝜃
0
) − 𝜃
0
, (74)

with 𝑥
0
= 𝑟
0
cos 𝜃
0
, 𝑦
0
= 𝑟
0
sin 𝜃
0
. Obviously, there exists an

integer 𝑘 ≥ 1 such that

𝜃 (2𝜋, 𝑟
0
, 𝜃
0
) − 𝜃
0
> −2𝑘𝜋, for 𝜁 (𝑟

0
cos 𝜃
0
, 𝑟
0
sin 𝜃
0
) = 𝑎
2

1
.

(75)

On the other hand, it follows from Lemma 9 that there exists
𝑎
2
> 𝑎
1
such that

𝜃 (2𝜋, 𝑟
0
, 𝜃
0
) − 𝜃
0
< −2𝑘𝜋, for 𝜁 (𝑟

0
cos 𝜃
0
, 𝑟
0
sin 𝜃
0
) = 𝑎
2

2
.

(76)

Meanwhile, there exists an integer 𝑘 > 𝑘 such that

𝜃 (2𝜋, 𝑟
0
, 𝜃
0
) − 𝜃
0
> −2𝑘


𝜋, for 𝜁 (𝑟

0
cos 𝜃
0
, 𝑟
0
sin 𝜃
0
) = 𝑎
2

2
.

(77)

From (75) and (76) we know that the area-preserving home-
omorphism 𝑃 is twisting on the annulus 𝐴

1
= {(𝑥, 𝑦) ∈

(−1, +∞)×R : 𝑎
1
≤ 𝜁(𝑥, 𝑦) ≤ 𝑎

2
}. Obviously, we have 𝑟(2𝜋) >

0 provided that 𝜁(𝑥
0
, 𝑦
0
) ≥ 𝑎

2

1
. Hence, 𝑂 ∈ 𝑃(𝐷), where

𝐷 is an open region with boundary 𝜁(𝑥, 𝑦) = 𝑎
2

1
. Finally,

we know from Lemma 5 that both Γ
𝑎
1

: 𝜁(𝑥, 𝑦) = 𝑎
2

1
and

Γ
𝑎
2

: 𝜁(𝑥, 𝑦) = 𝑎
2

2
are closed star-shaped curves with respect

to the origin 𝑂. Thus, we have proved that all conditions
of the generalized Poincaré-Birkhoff theorem [16, 17] are
satisfied. Consequently, the Poincaré map 𝑃 has at least
two fixed points (𝑟

1𝑖
, 𝜃
1𝑖
) (𝑖 = 1, 2) in annulus 𝐴

1
and

then (13) has two 2𝜋 periodic solutions (𝑥
1𝑖
(𝑡), 𝑦
1𝑖
(𝑡)) =

(𝑥(𝑡, 𝑥
1𝑖
, 𝑦
1𝑖
), 𝑦(𝑡, 𝑥

1𝑖
, 𝑦
1𝑖
)) (𝑥
1𝑖
= 𝑟
1𝑖
cos 𝜃
1𝑖
, 𝑦
1𝑖
= 𝑟
1𝑖
sin 𝜃
1𝑖
).

Therefore, 𝑥
1𝑖
(𝑡) are 2𝜋 periodic solutions of (1). On the

other hand, since the period of any periodic solution of (1)
must be multiple of the period of 𝑝(𝑡), then 2𝜋 is the minimal
period of 𝑥

1𝑖
(𝑡). Therefore, 𝑥

1𝑖
(𝑡) are harmonic solutions of

(1

).
Similarly, we can find a sequence

(𝑎
1
< 𝑎
2
<) 𝑎
3
< ⋅ ⋅ ⋅ < 𝑎

𝑗
< 𝑎
𝑗+1
< ⋅ ⋅ ⋅ , lim

𝑗→∞

𝑎
𝑗
= +∞,

(78)

such that the area-preserving homeomorphism 𝑃 is twisting
on the annuli

𝐴
𝑗
= {(𝑥, 𝑦) ∈ (−1, +∞) × R : 𝑎

𝑗
≤ 𝜁 (𝑥, 𝑦) ≤ 𝑎

𝑗+1
} ,

𝑗 = 2, 3, . . . .

(79)

Therefore, the Poincaré map 𝑃 has at least two fixed points
(𝑟
𝑗𝑖
, 𝜃
𝑗𝑖
) (𝑖 = 1, 2) in each 𝐴

𝑗
, (𝑗 = 2, 3, . . .). Conse-

quently, (13) has two 2𝜋 periodic solutions (𝑥
𝑗𝑖
(𝑡), 𝑦
𝑗𝑖
(𝑡)) =

(𝑥(𝑡, 𝑥
𝑗𝑖
, 𝑦
𝑗𝑖
), 𝑦(𝑡, 𝑥

𝑗𝑖
, 𝑦
𝑗𝑖
)) (𝑥
𝑗𝑖
= 𝑟
𝑗𝑖
cos 𝜃
𝑗𝑖
, 𝑦
𝑗𝑖
= 𝑟
𝑗𝑖
sin 𝜃
𝑗𝑖
)

and then 𝑥
𝑗𝑖
(𝑡) are 2𝜋 periodic solutions of (1). Similarly,

we know that 𝑥
𝑗𝑖
(𝑡) are harmonic solutions of (1). Since

lim
𝑗→∞

𝑎
𝑗
= +∞, we have

min {𝑥 + 1 + 

𝑦




: 𝜁 (𝑥, 𝑦) = 𝑎

𝑗
} → 0, 𝑗 → ∞,

max {𝑥 + 1 + 

𝑦




: 𝜁 (𝑥, 𝑦) = 𝑎

𝑗
} → +∞, 𝑗 → ∞.

(80)

Furthermore, we know from Lemma 6 that, for 𝑖 = 1, 2,

lim
𝑗→∞

( min
0≤𝑡≤2𝜋

(1 + 𝑥
𝑗𝑖
(𝑡) +






𝑥


𝑗𝑖
(𝑡)






)) = 0,

lim
𝑗→∞

(max
0≤𝑡≤2𝜋

(1 + 𝑥
𝑗𝑖
(𝑡) +






𝑥


𝑗𝑖
(𝑡)






)) = +∞.

(81)

Thus we have proved Proposition 10.

Proof of Theorem 1. Consider the equivalent equation of (1):

𝑢

+ 𝑔 (𝑢) = 𝑝 (𝑡) , (82)

where 𝑔(𝑢) = 𝑔(1+𝑢). Obviously, 𝑔 satisfies conditions (ℎ
1
),

(ℎ


2
), and (ℎ

3
). To use Proposition 10, we only need to prove

that condition (𝜏) holds for function 𝐺(𝑢)(= ∫𝑢
1
𝑔(𝑠)𝑑𝑠). Set

𝜏 (𝑐) = ∫

𝑐

1

𝑑𝑠

√𝐺 (𝑐) − 𝐺 (𝑠)

. (83)
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Then we have

𝜏 (𝑐) = ∫

1+𝑐

1

𝑑𝑠

√𝐺 (1 + 𝑐) − 𝐺 (𝑠)

− ∫

2

1

𝑑𝑠

√𝐺 (1 + 𝑐) − 𝐺 (𝑠)

.

(84)

From conditions (𝜏) and (ℎ
3
) we get lim

𝑐→+∞
𝜏(𝑐) = 0.

Therefore, all conditions of Proposition 10 are satisfied.
Accordingly, (82) has infinitely many harmonic solutions
{𝑢
𝑗
(𝑡)} satisfying

lim
𝑗→∞

( min
0≤𝑡≤2𝜋

(1 + 𝑢
𝑗
(𝑡) +






𝑢


𝑗
(𝑡)






)) = 0,

lim
𝑗→∞

(max
0≤𝑡≤2𝜋

(1 + 𝑢
𝑗
(𝑡) +






𝑢


𝑗
(𝑡)






)) = +∞.

(85)

Recalling that (82) is obtained by taking a parallel transforma-
tion𝑥 = 1+𝑢 to (1), we know that the conclusion ofTheorem 1
holds.

Remark 11. In [16], the Poincaré-Birkhoff theorem was
proved in case that the inner closed curve of the annulus is
star shaped. From [17] we know that there is a need for both
boundaries of the annulus to be star shaped in the Poincaré-
Birkhoff theorem.

4. Infinity of Subharmonic Solutions

To proveTheorem 2, we first prove the following proposition.

Proposition 12. Assume that conditions (ℎ
1
), (ℎ
2
), (ℎ
3
), and

(𝜏) hold. Then, for any given integer 𝑚 ≥ 2, (1) has infinitely
many𝑚-order subharmonic solutions {𝑥

𝑗
(𝑡)} satisfying

lim
𝑗→∞

( min
0≤𝑡≤2𝑚𝜋

(1 + 𝑥
𝑗
(𝑡) +






𝑥


𝑗
(𝑡)






)) = 0,

lim
𝑗→∞

( max
0≤𝑡≤2𝑚𝜋

(1 + 𝑥
𝑗
(𝑡) +






𝑥


𝑗
(𝑡)






)) = +∞.

(86)

Proof. Let 𝑚 ≥ 2 be a given integer. From Lemmas 6 and 9
we know that there exists 𝑏

1
> 𝑐
0
(𝑐
0
is given in Lemma 5) and

𝜔


1
> 0 such that, for 𝜁(𝑥

0
, 𝑦
0
) ≥ 𝑏
2

1
,

𝜃


(𝑡) < −𝜔


1
, 𝜁 (𝑥 (𝑡) , 𝑦 (𝑡)) ≥ 2, 𝑡 ∈ [0, 2𝑚𝜋] , (87)
𝜃 (2𝜋, 𝑟

0
, 𝜃
0
) − 𝜃
0
< −2𝜋. (88)

For 𝜁(𝑥
0
, 𝑦
0
) ≥ 𝑏
2

1
, we consider

Ψ (𝑟
0
, 𝜃
0
) = 𝜃 (2𝑚𝜋, 𝑟

0
, 𝜃
0
) − 𝜃
0
, (89)

with 𝑥
0
= 𝑟
0
cos 𝜃
0
, 𝑦
0
= 𝑟
0
sin 𝜃
0
. Obviously, there exists a

positive prime integer 𝑞 such that

𝜃 (2𝑚𝜋, 𝑟
0
, 𝜃
0
) − 𝜃
0
> −2𝑞𝜋,

for 𝜁 (𝑟
0
cos 𝜃
0
, 𝑟
0
sin 𝜃
0
) = 𝑏
2

1
.

(90)

On the other hand, it follows from Lemma 8 that there exists
𝑏
2
> 𝑏
1
such that

𝜃 (2𝑚𝜋, 𝑟
0
, 𝜃
0
) − 𝜃
0
< −2𝑞𝜋,

for 𝜁 (𝑟
0
cos 𝜃
0
, 𝑟
0
sin 𝜃
0
) = 𝑏
2

2
.

(91)

From (90) and (91) we know that the map 𝑃𝑚 is twisting on
the annulus 𝐵

1
= {(𝑥, 𝑦) ∈ (−1, +∞) × R : 𝑏

1
≤ 𝜁(𝑥, 𝑦) ≤

𝑏
2
}. Using the generalized Poincaré-Birkhoff twist theorem,

we know that 𝑃𝑚 has at least two fixed points (𝑟
𝑚1𝑖
, 𝜃
𝑚1𝑖
) (𝑖 =

1, 2) in 𝐵
1
, which satisfy

𝜃 (2𝑚𝜋, 𝑟
𝑚1𝑖
, 𝜃
𝑚1𝑖
) − 𝜃
𝑚1𝑖
= −2𝑞𝜋, (𝑖 = 1, 2) . (92)

It follows that (13) has two 2𝑚𝜋-periodic solutions (𝑥
𝑚1𝑖
(𝑡),

𝑦
𝑚1𝑖
(𝑡)) and then (1


) has two 2𝑚𝜋-periodic solutions

𝑥
𝑚1𝑖
(𝑡).
Next, we will prove that 2𝑚𝜋 is the minimal period of

𝑥
𝑚1𝑖
(𝑡). Assume by contradiction that 2𝑙𝜋 (1 ≤ 𝑙 ≤ 𝑚 − 1) is

the minimal period of 𝑥
𝑚1𝑖
(𝑡). Then we have 𝑚 = 𝑛𝑙 (𝑛 ≥ 2).

Since (𝑥
𝑚1𝑖
(𝑡), 𝑦
𝑚1𝑖
(𝑡)) is 2𝑙𝜋periodic, we know from (88) that

there exists a positive integer 𝑘
𝑖
≥ 2 such that

𝜃 (2𝑙𝜋, 𝑟
𝑚1𝑖
, 𝜃
𝑚1𝑖
) − 𝜃
𝑚1𝑖
= −2𝑘

𝑖
𝜋. (93)

Furthermore,

𝜃 (2𝑚𝜋, 𝑟
𝑚1𝑖
, 𝜃
𝑚1𝑖
) − 𝜃
𝑚1𝑖
= −2𝑛𝑘

𝑖
𝜋. (94)

Hence, we have 𝑛𝑘
𝑖
= 𝑞. Since 𝑞 is a prime integer, we get

a contradiction. This proves that 2𝑚𝜋 is the minimal period
of 𝑥
𝑚1𝑖
(𝑡). Consequently, 𝑥

𝑚1𝑖
(𝑡) are 𝑚-order subharmonic

solutions of (1).
In a similar manner, we can find a sequence

(𝑏
1
< 𝑏
2
<) 𝑏
3
< ⋅ ⋅ ⋅ < 𝑏

𝑗
< 𝑏
𝑗+1
< ⋅ ⋅ ⋅ , lim

𝑗→∞

𝑏
𝑗
= +∞,

(95)

such that the area-preserving homeomorphism𝑃𝑚 is twisting
on the annuli

𝐵
𝑗
= {(𝑥, 𝑦) ∈ (−1, +∞) × R : 𝑏

𝑗
≤ 𝜁 (𝑥, 𝑦) ≤ 𝑏

𝑗+1
} . (96)

Therefore, the Poincaré map 𝑃𝑚 has at least two fixed points
(𝑟
𝑚𝑗𝑖
, 𝜃
𝑚𝑗𝑖
) (𝑖 = 1, 2) in each 𝐵

𝑗
, (𝑗 = 2, 3, . . .). Consequently,

(13) has two 2𝑚𝜋 periodic solutions (𝑥
𝑚𝑗𝑖
(𝑡), 𝑦
𝑚𝑗𝑖
(𝑡)) and then

𝑥
𝑚𝑗𝑖
(𝑡) are 2𝑚𝜋 periodic solutions of (1). Similarly, we know

that 𝑥
𝑚𝑗𝑖
(𝑡) are𝑚-order subharmonic solutions of (1). Since

lim
𝑗→∞

𝑏
𝑗
= +∞, we have

min {𝑥 + 1 + 

𝑦




: 𝜁 (𝑥, 𝑦) = 𝑏

𝑗
} → 0, 𝑗 → ∞,

max {𝑥 + 1 + 

𝑦




: 𝜁 (𝑥, 𝑦) = 𝑏

𝑗
} → +∞, 𝑗 → ∞.

(97)

Furthermore, we know from Lemma 6 that, for 𝑖 = 1, 2,

lim
𝑗→∞

( min
0≤𝑡≤2𝑚𝜋

(1 + 𝑥
𝑚𝑗𝑖
(𝑡) +






𝑥


𝑚𝑗𝑖
(𝑡)






)) = 0,

lim
𝑗→∞

( max
0≤𝑡≤2𝑚𝜋

(1 + 𝑥
𝑚𝑗𝑖
(𝑡) +






𝑥


𝑚𝑗𝑖
(𝑡)






)) = +∞.

(98)

Thus we have proved Proposition 12.

Proof of Theorem 2. Using Proposition 12 and the same
method as provingTheorem 1, we can proveTheorem 2.
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