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In a recent paper by J. Ren et al. (2012), a novel computer virus propagation model under the effect of the antivirus ability in a real
network is established. The analysis there only partially uncovers the dynamics behaviors of virus spread over the network in the
case where around bifurcation is local. In the present paper, by mathematical analysis, it is further shown that, under appropriate
parameter values, the model may undergo a global B-T bifurcation, and the curves of saddle-node bifurcation, Hopf bifurcation,
and homoclinic bifurcation are obtained to illustrate the qualitative behaviors of virus propagation. On this basis, a collection of
policies is recommended to prohibit the virus prevalence. To our knowledge, this is the first time the global bifurcation has been
explored for the computer virus propagation. Theoretical results and corresponding suggestions may help us suppress or eliminate
virus propagation in the network.

1. Introduction

More and more applications based on computer networks
go into our daily life. While bringing convenience to us,
computer networks are exposed to various threats. Com-
puter viruses, which are programs developed to attempt to
attach themselves to a host and spread to other computers
mainly through Internet, can damage network resources.
Consequently, understanding the law governing the spread
of computer virus is of considerable interest.

Due to the high similarity between computer viruses and
biological viruses [1], the classical SIR (Susceptible-Infected-
Recovered) computer virus propagation model borrowed
from its epidemic counterpart was proposed [2–4], which is
formulated as the following system of differential equations:

d𝑆
d𝑡

= 𝑏 − 𝜆𝑆 (𝑡) 𝐼 (𝑡) − 𝑑𝑆 (𝑡) ,

d𝐼
d𝑡

= 𝜆𝑆 (𝑡) 𝐼 (𝑡) − 𝜀𝐼 (𝑡) − 𝑑𝐼 (𝑡) ,

d𝑅
d𝑡

= 𝜀𝐼 (𝑡) − 𝑑𝑅 (𝑡) .

(1)

Here it is assumed that all the computers connected to
the network in concern are classified into three categories:
susceptible, infected, and recovered computers. Let 𝑆(𝑡), 𝐼(𝑡),
and 𝑅(𝑡) denote their corresponding numbers at time 𝑡,
respectively. This model involves four positive parameters: 𝑏
denotes the rate at which external computers are connected
to the network, 𝜀 denotes the recovery rate of infected com-
puters due to the antivirus ability of the network, 𝑑 denotes
the rate at which one computer is removed from the network,
and 𝜆 denotes the rate at which, when having connection to
one infected computer, one susceptible computer can become
infected. For some variants of thismodel or its extensions, see
[5–19].

The use of antivirus software is regarded as one of the
most effective approaches to recovering infected computers
[20]. In reality, the ability of an antivirus software is usually
proportional to its cost. Due to the limited software cost, the
antivirus ability of a network is limited. So, it is natural to
consider the following recovery function:

𝑇 (𝐼) = {
𝜀𝐼 if 0 ≤ 𝐼 ≤ 𝐼

0
,

𝑚 if 𝐼 > 𝐼
0
,

(2)
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where 𝜀 is the recovery rate when the antivirus ability is
not fully utilized; 𝑚 = 𝜀𝐼

0
. The susceptible individuals are

assumed to have the logistic growth with carrying capacity
𝑘 > 0 as well as intrinsic growth rate 𝑟 > 0.

Based on the above mentioned work, we establish a novel
computer virus propagation model in [19]:

d𝑆
d𝑡

= 𝑟𝑆 (1 −
𝑆

𝑘
) − 𝜆𝑆𝐼 − 𝑑𝑆,

d𝐼
d𝑡

= 𝜆𝑆𝐼 − 𝑇 (𝐼) − 𝑑𝐼,

d𝑅
d𝑡

= 𝑇 (𝐼) − 𝑑𝑅.

(3)

Because the first two equations in (3) are independent of 𝑅,
we can consider the following reduced model:

d𝑆
d𝑡

= 𝑟𝑆 (1 −
𝑆

𝑘
) − 𝜆𝑆𝐼 − 𝑑𝑆,

d𝐼
d𝑡

= 𝜆𝑆𝐼 − 𝑇 (𝐼) − 𝑑𝐼.

(4)

In [19], we carry out the global qualitative analysis of
the model and obtain rich dynamical properties. First, we
give the threshold value determining whether the virus dies
out completely. Second, we study the existence of equilibria
and investigate their local and global asymptotic stability.
Next, we find that, depending on the antivirus ability, the
system may undergo a local backward bifurcation or a
Hopf bifurcation. Finally, we prove that, under appropriate
conditions, the system may admit bistable states: a stable
virus-free equilibrium and a stable virus equilibrium, or two
stable virus equilibria. In this case, the initial condition is
critical for the eventual steady state of the system.

In consideration of the fact that our former work on
the dynamics behaviors of virus spread in model (4) is
incomplete. In this paper, we continue the previous work and
give detailed theoretical analysis of the presented model so as
to supplement its rich dynamics. In fact, by ourmathematical
analysis, we have not only theoretically proved the existence
of global Bogdanov-Takens bifurcation in the model, but
also obtained the curves of saddle-node bifurcation, Hopf
bifurcation, and homoclinic bifurcation, even for unstable
limit cycle and stable virus equilibrium cases and especially
found stability switches for the virus equilibria near the
Bogdanov-Takens bifurcation point so that the qualitative
behaviors of virus spread have been illustrated, all of which
are instructive for us to choose appropriate virus-controlling
strategy. On this basis, a set of policies is recommended for
eradicating viruses spreading across the Internet effectively.

The remaining materials of this paper are organized
this way: Section 2 studies the existence of equilibria of
model (4); Section 3 examines the global Bogdanov-Takens
bifurcation; Section 4 illustrates the qualitative behaviors of
the bifurcation. We end the paper with a brief concluding
remark in Section 5.

2. Equilibria

To obtain equilibria, model (4) can be written as

𝑟𝑆 (1 −
𝑆

𝑘
) − 𝑑𝑆 − 𝜆𝑆𝐼 = 0, 𝜆𝑆𝐼 − 𝐼 (𝑑 + 𝜀) = 0,

if 0 ≤ 𝐼 ≤ 𝐼
0
,

(5)

𝑟𝑆 (1 −
𝑆

𝑘
) − 𝜆𝑆𝐼 − 𝑑𝑆 = 0, 𝜆𝑆𝐼 − 𝑚 − 𝑑𝐼 = 0,

if 𝐼
0
< 𝐼.

(6)

Equation (5) has a trivial equilibrium 𝐸
0
= (0, 0) and a virus-

free equilibrium𝐸
∗

0
= (𝑘(𝑟−𝑑)/𝑟, 0). Let𝑅

0
= 𝑘𝜆(𝑟−𝑑)/𝑟(𝑑+

𝜀) and if 𝑅
0
> 1, then (5) admits a unique positive solution

𝐸
∗
(𝑆
∗
, 𝐼
∗
), where

𝑆
∗
=
𝑘 (𝑟 − 𝑑)

𝑟𝑅
0

, 𝐼
∗
=
(𝑅
0
− 1) (𝑟 − 𝑑)

𝜆𝑅
0

. (7)

Obviously, 𝐸∗ is a virus equilibrium of (5) if and only if

1 < 𝑅
0
≤ 1 +

𝜆𝐼
0

(𝑟 − 𝑑 − 𝜆𝐼
0
)
. (8)

From (6) we get a quadratic equation in 𝐼:

𝑘𝜆
2
𝐼
2
− 𝑏𝐼 + 𝑚𝑟 = 0, (9)

where 𝑏 = 𝑘𝜆(𝑟−𝑑)−𝑟𝑑.When 𝑏 > 0 andΔ = 𝑏
2
−4𝑘𝑚𝑟𝜆

2
≥ 0

(which is equivalent to 𝑅
0
≥ 1+ (2𝜆√𝑘𝑚𝑟− 𝑟𝜀)/𝑟(𝑑 + 𝜀)), (6)

has the following positive solutions:

𝐼
1
=
𝑏 − √Δ

2𝑘𝜆2
, 𝐼

2
=
𝑏 + √Δ

2𝑘𝜆2
. (10)

Accordingly,

𝐸
1
= (𝑆
1
, 𝐼
1
) = (

2𝑘𝜆 − (𝑏 − √Δ)

2𝜆𝑟
,
𝑏 − √Δ

2𝑘𝜆2
) ,

𝐸
2
= (𝑆
2
, 𝐼
2
) = (

2𝑘𝜆 − (𝑏 + √Δ)

2𝜆𝑟
,
𝑏 + √Δ

2𝑘𝜆2
) .

(11)

𝐸
1
, 𝐸
2
are virus equilibria if 𝐼

1
, 𝐼
2
> 𝐼
0
.

Let us consider the inequality 𝐼
1
> 𝐼
0
, which is equivalent

to 2𝑘𝜆2𝐼
0
− 𝑏 ≤ −√Δ. By solving it, we get

1 +
2𝑘𝜆
2
𝐼
0
− 𝑟𝜀

𝑟 (𝑑 + 𝜀)
< 𝑅
0
< 1 +

𝑘𝜆
2
𝐼
0

𝑟 (𝑑 + 𝜀)
. (12)

Likewise, we can derive 𝐼
2
> 𝐼
0
if

𝑅
0
> 1 +

2𝑘𝜆
2
𝐼
0
− 𝑟𝜀

𝑟 (𝑑 + 𝜀)
, (13)

or

1 +
𝑘𝜆
2
𝐼
0

𝑟 (𝑑 + 𝜀)
< 𝑅
0
< 1 +

2𝑘𝜆
2
𝐼
0
− 𝑟𝜀

𝑟 (𝑑 + 𝜀)
. (14)

Notice that 𝑅
0
< 1 + 𝑘𝜆

2
𝐼
0
/𝑟(𝑑 + 𝜀) is equivalent to 𝑅

0
<

1 + 𝜆𝐼
0
/(𝑟 − 𝑑 − 𝜆𝐼

0
). To summarize, we get the following.
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Theorem 1 (see [19]). Consider model (4). Let

𝑅
0
=
𝑘𝜆 (𝑟 − 𝑑)

𝑟 (𝑑 + 𝜀)
,

𝑝
0
= 1 +

2𝜆√𝑘𝑚𝑟 − 𝑟𝜀

𝑟 (𝑑 + 𝜀)
,

𝑝
1
= 1 +

2𝑘𝜆
2
𝐼
0
− 𝑟𝜀

𝑟 (𝑑 + 𝜀)
,

𝑝
2
= 1 +

𝑘𝜆
2
𝐼
0

𝑟 (𝑑 + 𝜀)
.

(15)

If 𝑅
0
> 𝑝
0
, then 𝐸

1
and 𝐸

2
are the only possible equilibria.

Moreover,

(i) if 2𝑘𝜆2𝐼
0
< 𝑟𝜀 + 𝑘𝜆

2
𝐼
0
and 𝑝

1
< 𝑅
0
< 𝑝
2
, then both 𝐸

1

and 𝐸
2
are equilibria;

(ii) if 2𝑘𝜆2𝐼
0
< 𝑟𝜀 + 𝑘𝜆

2
𝐼
0
and 𝑅

0
≥ 𝑝
2
, then 𝐸

1
is an

equilibrium but 𝐸
2
is not;

(iii) if 2𝑘𝜆2𝐼
0

> 𝑟𝜀 + 𝑘𝜆
2
𝐼
0
, then 𝐸

1
does not exist.

Furthermore, 𝐸
2
exists if and only if 𝑅

0
> 𝑝
2
.

3. Global Bifurcation

In this section, we will study the global bifurcation of the
above model. In fact, if the condition Δ = 𝑏

2
− 4𝑘𝑚𝑟𝜆

2
= 0

(which is equivalent to 𝑅
0
= 1+ (2𝜆√𝑘𝑚𝑟− 𝑟𝜀)/𝑟(𝑑 + 𝜀)), (6)

has the following unique positive solution:

𝐼
∗
=

𝑏

2𝑘𝜆2
. (16)

Accordingly, the virus equilibrium is

𝐸
∗
= (𝑆
∗
, 𝐼
∗
) = (

2𝑘𝜆 − 𝑏

2𝜆𝑟
,

𝑏

2𝑘𝜆2
) . (17)

Solving the inequality 𝐼
∗
> 𝐼
0
, we can obtain

𝑅
0
>
2𝑘𝜆
2
𝐼
0
+ 𝑟𝑑

𝑟 (𝑑 + 𝜀)
. (18)

To summarize, we get the following.

Theorem 2. Consider model (4). Let

𝑅
0
=
𝑘𝜆 (𝑟 − 𝑑)

𝑟 (𝑑 + 𝜀)
,

𝑅
∗

0
= 1 +

2𝜆√𝑘𝑚𝑟 − 𝑟𝜀

𝑟 (𝑑 + 𝜀)
,

𝑝
3
=
2𝑘𝜆
2
𝐼
0
+ 𝑟𝑑

𝑟 (𝑑 + 𝜀)
.

(19)

If 𝑅∗
0
= 𝑅
0
> 𝑝
3
holds, then 𝐸

∗
is a unique virus equilibrium.

Theorem3. If the virus equilibrium𝐸
∗
exists, then𝐸

∗
is a cusp

of codimension 2; that is, it is a Bogdanov-Takens singularity.

Proof. To translate 𝐸
∗
to the origin, let 𝑥 = 𝑆 − 𝑆

∗
, 𝑦 = 𝐼 − 𝐼

∗
;

then (4) becomes

d𝑥
d𝑡

= (𝑟 −
2𝑟𝑆
∗

𝑘
− 𝜆𝐼
∗
− 𝑑)𝑥 − 𝜆𝑆

∗
𝑦 −

𝑟𝑥
2

𝑘
− 𝜆𝑥𝑦,

d𝑦
d𝑡

= 𝜆𝐼
∗
𝑥 + (𝜆𝑆

∗
− 𝑑) 𝑦 + 𝜆𝑥𝑦.

(20)

That the Jacobinmatrices at the virus equilibrium𝐸
∗
have the

double-zero eigenvalue implies that

𝜆𝑆
∗
(𝑟 − 𝑑) +

2𝑟𝑆
∗
(𝑑 − 𝜆𝑆

∗
)

𝑘
= 𝑑 (𝑟 − 𝑑) − 𝜆𝑑𝐼

∗
,

− (𝑟 −
2𝑟𝑆
∗

𝑘
− 𝜆𝐼
∗
− 𝑑) = (𝜆𝑆

∗
− 𝑑) .

(21)

Let 𝑋 = 𝑥, 𝑌 = −(𝜆𝑆
∗
− 𝑑) − 𝑦(𝜆𝑆

∗
− 𝑑)
2
/𝜆𝐼
∗
; then (21) can

become the following:

d𝑋
d𝑡

= 𝑌 + 𝑎
1
𝑋
2
+ 𝑎
2
𝑋𝑌,

d𝑌
d𝑡

= 𝑏
1
𝑋
2
+ 𝑏
2
𝑋𝑌,

(22)

where 𝑎
1
= ((𝜆𝑆

∗
−𝑑)/𝑆

∗
−𝑟/𝑘), 𝑎

2
= 1/𝑆
∗
, 𝑏
1
= (𝜆𝑆
∗
−𝑑)(𝜆−

𝑎
1
), and 𝑏

2
= 𝜆 − 𝑎

2
(𝜆𝑆
∗
− 𝑑).

Again by letting 𝑥 = 𝑋−(1/2)𝑎
2
𝑋
2
, 𝑦 = 𝑌+𝑎

1
𝑋
2, we can

obtain the following:

d𝑥
d𝑡

= 𝑦 + 𝑅
1
(𝑥, 𝑦) ,

d𝑦
d𝑡

= 𝑏
1
𝑥
2
+ (𝑏
2
+ 2𝑎
1
) 𝑥𝑦 + 𝑅

2
(𝑥, 𝑦) ,

(23)

where 𝑅
1
, 𝑅
2
are smooth functions in (𝑥, 𝑦) at least of third

order and 𝑏
1
= (𝜆𝑆

∗
− 𝑑)(𝜆 − 𝑎

1
) = (𝑏/2𝑟)(𝑑/𝑆

∗
+ 𝑟/𝑘) >

0, 𝑏
2
= 𝜆 − 𝑎

2
(𝜆𝑆
∗
− 𝑑) = 𝑑/𝑆

∗
> 0. It follows from [21, 22]

that model (4) admits a Bogdanov-Takens bifurcation.

Next, we will explore the approximating BT bifurcation
curves by choosing 𝑚 and 𝑟 as bifurcation parameters. First
we fix the parameters 𝑘 = 𝑘

0
, 𝜆 = 𝜆

0
, and 𝑑 = 𝑑

0
and let

𝑟 = 𝑟
0
+ 𝜆
1
, 𝑚 = 𝑚

0
+ 𝜆
2
, where 𝜆

1
and 𝜆

2
are parameters

which vary in a small neighborhood of the origin. Let 𝑥 =

𝑆−𝑆
∗
, 𝑦 = 𝐼−𝐼

∗
; then 𝐸

∗
is translated to (0, 0) andmodel (4)

becomes

d𝑥
d𝑡

= 𝑎
1
𝜆
1
+ 𝑎
2
𝑥 − 𝑎
3
𝑦 − 𝑎
4
𝑥
2
− 𝜆𝑥𝑦,

d𝑦
d𝑡

= −𝜆
2
+ 𝜆𝐼
∗
𝑥 + (𝜆𝑆

∗
− 𝑑) 𝑦 + 𝜆𝑥𝑦,

(24)

where 𝑎
1
= 𝜆
1
𝑆
∗
(1 − 𝑆

∗
/𝑘), 𝑎
2
= 𝑟
0
+ 𝜆
1
+ 2𝑆
∗
(𝑟
0
− 𝜆
1
)/𝑘 −

𝜆𝐼
∗
− 𝑑, 𝑎

3
= 𝜆𝑆
∗
, and 𝑎

4
= (𝑟
0
+ 𝜆
1
)/𝑘.
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Let 𝑋 = 𝑥, 𝑌 = 𝑎
1
𝜆
1
+ 𝑎
2
𝑥 − 𝑎
3
𝑦 − 𝑎
4
𝑥
2
− 𝜆𝑥𝑦; then (24)

becomes
d𝑋
d𝑡

= 𝑌,

d𝑦
d𝑡

= 𝑏
1
+ 𝑏
2
𝑋 + 𝑏
3
𝑌 + 𝑏
4
𝑋
2

+ 𝑏
5
𝑋𝑌 + 𝑏

6
𝑌
2
+ 𝑅
3
(𝑋, 𝑌) ,

(25)

where

𝑏
1
= − 𝜆

2
𝑎
3
− 𝑎
1
(𝜆
0
𝑆
∗
− 𝑑) ,

𝑏
2
= − 𝜆

2
𝜆
0
− 𝑎
3
𝜆
0
𝐼
∗
− 𝑎
2
(𝜆
0
𝑆
∗
− 𝑑) − 𝑎

1
𝜆
0
,

𝑏
3
= 𝑎
2
−
𝜆
0
(𝑎
1
+ 1)

𝑎
3

+ (𝜆
0
𝑆
∗
− 𝑑) ,

𝑏
4
= − 𝜆

2

0
𝐼
∗
+ 𝑎
4
(𝜆
0
𝑆
∗
− 𝑑) − 𝑎

2
𝜆
0
,

𝑏
5
= 𝜆
0
− 2𝑎
4
− 𝜆
0

𝑎
2

𝑎
3

+ 𝜆
2

0

𝑎
1

𝑎
2

3

,

𝑏
6
=
𝜆
0

𝑎
3

,

(26)

and 𝑅
3
(𝑋, 𝑌) is a smooth function of 𝑋,𝑌 at least of third

order.
Let 𝑥 = 𝑋 + 𝑏

3
/𝑏
5
, 𝑦 = 𝑌; then (26) becomes

𝑑𝑥

𝑑𝑡
= 𝑦,

d𝑦
d𝑡

= ℎ
1
+ ℎ
2
𝑥 + 𝑏
4
𝑥
2
+ 𝑏
5
𝑥𝑦 + 𝑏

6
𝑦
2
+ 𝑅
4
(𝑥, 𝑦) ,

(27)

where ℎ
1
= 𝑏
1
+ 𝑏
4
𝑏
2

3
/𝑏
2

5
− 𝑏
2
𝑏
3
/𝑏
5
, ℎ
2
= 𝑏
2
− 2𝑏
3
𝑏
4
/𝑏
5
, and

𝑅
4
(𝑥, 𝑦) is a smooth function of 𝑥, 𝑦 at least of third order.
A new time variable 𝜏 is introduced which satisfies d𝑡 =

(1 − 𝑏
6
𝑥)d𝜏. Still write 𝜏 as 𝑡; then (27) can be written as

follows:
d𝑥
d𝑡

= (1 − 𝑏
6
𝑥) 𝑦,

d𝑦
d𝑡

= (1 − 𝑏
6
𝑥) (ℎ
1
+ ℎ
2
𝑥 + 𝑏
4
𝑥
2
+ 𝑏
5
𝑥𝑦 + 𝑏

6
𝑦
2
)

+ 𝑅
5
(𝑥, 𝑦) ,

(28)

where 𝑅
5
(𝑥, 𝑦) is a smooth function of 𝑥, 𝑦 at least of third

order.
Let 𝑋 = 𝑥, 𝑌 = (1 − 𝑏

6
𝑥)𝑦, rewrite 𝑋,𝑌as 𝑥, 𝑦, and then

(28) becomes

d𝑥
d𝑡

= 𝑦,

d𝑦
d𝑡

= 𝑐
1
+ 𝑐
2
𝑥 + 𝑐
3
𝑥
2
+ 𝑐
4
𝑥𝑦 + 𝑅

6
(𝑥, 𝑦) ,

(29)

where 𝑐
1
= ℎ
1
, 𝑐
2
= ℎ
2
− 2ℎ
1
𝑏
6
, 𝑐
3
= 𝑏
4
+ ℎ
1
𝑏
2

6
, and 𝑐

4
=

𝑏
5
, 𝑅
6
(𝑥, 𝑦) is a smooth function of 𝑥, 𝑦 at least of third order.
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Figure 1: The bifurcation diagram of our model.

Let 𝑋 = (𝑐
2

4
/𝑐
3
)𝑥, 𝑌 = (𝑐

3

4
/𝑐
2

3
)𝑦, and 𝜏 = (𝑐

3
/𝑐
4
)𝑡, rewrite

𝑋,𝑌, 𝜏 as 𝑥, 𝑦, 𝑡, and then (29) can become the following:

d𝑥
d𝑡

= 𝑦,

d𝑦
d𝑡

= 𝛽
1
+ 𝛽
2
𝑥 + 𝑥
2
+ 𝑥𝑦 + 𝑅

7
(𝑥, 𝑦) ,

(30)

where 𝛽
1
= 𝑐
1
𝑐
4

4
/𝑐
3

3
, 𝛽
2
= 𝑐
2
𝑐
2

4
/𝑐
2

3
, and 𝑅

7
(𝑥, 𝑦) is a smooth

function of 𝑥, 𝑦 at least of third order.
According to the theorems of [23], we can obtain the

following theorem:

Theorem 4. If the virus equilibrium 𝐸
∗
exists, then model (4)

admits the following bifurcation behavior:

(1) there is a saddle-node bifurcation curve 𝑆𝑁 = {(𝜆
1
, 𝜆
2
)

: 4𝛽
1
= 𝛽
2

2
+ 𝑜(‖𝜆‖

2
)};

(2) there is a Hopf bifurcation curve 𝐻 = {(𝜆
1
, 𝜆
2
) : 𝛽
1
+

𝑜(‖𝜆
1
, 𝜆
2
‖
2
) = 0, 𝛽

2
< 0};

(3) there is a homoclinic curve 𝐻𝐿 = {(𝜆
1
, 𝜆
2
) : 25𝛽

1
+

6𝛽
2

2
= 0 + 𝑜(‖𝜆

1
‖
2
)}.

4. Further Discussions and Suggestions

From the above theorem, we have found that, depending on
the parameters (𝜆

1
, 𝜆
2
) that vary in a small neighborhood

of the original, model (4) undergoes a B-T bifurcation
consisting of the curves of saddle-node bifurcation, Hopf
bifurcation, and homoclinic bifurcation where the virus
exhibits the different spread behaviors. In the following, we
will illustrate the qualitative behaviors and the bifurcation
diagram as sketched in Figure 1.

Now, Let us make a roundtrip near the Bogdanov-Takens
point𝜆 = 0.When the point lies in region 1where there are no
virus equilibria (and thus no limit cycles are possible) and the
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corresponding flow is parallelizable. When the point lies on
the curve SN

+
, model (4) has exactly one virus equilibrium

𝐸, which is saddle-node, and 𝐸 has three separatrices: one
of them tends to 𝐸 as 𝑡 to −∞ (unstable separatrix) and two
are stable separatrices (tend to 𝐸 as 𝑡 to +∞). Entering from
region 2 into region 3 through the component SN

+
of the fold

curve yields two virus equilibria: a saddle and a stable node
and has no periodic solution. It is worth noting that when
the points pass from one side of the cure SN

+
to the other

side, the number of equilibria of model (4) changes from zero
to two. This hints that model (4) undergoes a saddle-node
bifurcation of codimension 1, and the surface SN is called a
saddle-node bifurcation surface. Then, the node turns into a
focus and loses stability when crossing the Hopf bifurcation
boundary𝐻. While entering into region 3, there exist exactly
two virus equilibria: one saddle point and another stable
focus surrounded by one limit cycle, which is unstable. As
we move clockwise, it “grows” and approaches the saddle,
turning into a homoclinic orbit at HL. For our remainder
journey clockwise, no limit cycles must remain. Therefore,
there must be global bifurcations “destroying” the cycle
somewhere between 𝐻 and SN

−
. When reaching curve HL,

two virus equilibria appear, one saddle point and one stable
focus. Two separatrices of the saddle point form a closed
separatrix loop surrounding the stable focus. There is no
periodic solution and if we trace the homoclinic orbit along
the curve HL toward the Bogdanov-Takens point, the loop-
like orbit shrinks and disappears. To complete our roundtrip,
note that there are no cycles in region 4 located below the
curve HL, and a stable node and a saddle, existing for the
parameter values in these regions, collide and disappear,
consequently, resulting in only one virus equilibrium which
has three separatrices, one unstable and two stable at the fold
curve SN

−
. Let us also point out that at 𝜆 = 0 the critical

equilibrium with a double-zero eigen value has exactly two
asymptotic orbits (one tending to the equilibrium for 𝑡 →

+∞ and one approaching it as 𝑡 → −∞).
We know that the virus propagation behaviors mainly

depend on the dynamics, specifically, the existence and
stability of virus-free equilibrium or virus equilibrium and
the limit cycles of model. Based on the above analysis, we
can see that the dynamics of B-T bifurcation can broadly
fall into three types between different regions and curves:
unstable virus equilibrium, no virus equilibrium, and no
limit cycle; stable virus equilibrium; stable virus equilibrium
and unstable limit cycle. Next, we provide some suggestions
aiming at each type to suppress or eliminate the virus spread
in the real network.

Case 1. Existence of an unstable virus equilibrium, no equi-
librium, and no limit cycle: this implies that any positive orbit
of model (4) meets the positive 𝑆-axis in finite time; that is,
there is no infected computer in the network, and therefore,
the virus will become extinct. Thus, the virus should be left
alone in a network.

Case 2. Existence of a stable virus equilibrium: this implies
that the virus cannot be eradicated, but can be suppressed.

Virus bootstrap module

Virus destruction module

Virus infection module

Infection judgement module Infection achievement module

Computer virus code

Destruction achievement
module

Destruction judgement
module

Figure 2: The logic structure of virus.

Thus, virus prevalence, which is defined as the infected
computers, independent of any initial state, would attain a
certain level. So, it is necessary for us to carry out certain
steps to inhibit the virus prevalence to an acceptable level.
A proper suggestion is to increase 𝜆

2
, which corresponds

to the increase of the antivirus ability 𝑚. Say, it is sufficient
to increase 𝑚 to the extent where a virus equilibrium
becomes unstable so as to eliminate the virus in a real
network. This leads us to perceive that, on the one hand,
we should understand the structure of currently prevalent
viruses, because the new antivirus software developed based
on this understanding would possess a powerful capability
to detect and clear existing viruses; toward this direction, we
give the structure of the virus in Figure 2. On the other hand,
we should invest more on developing antivirus software or
updating it timely so as to enhance its antivirus ability.

Case 3. Coexistence of a stable virus equilibrium and an
unstable limit cycle, that is, a unique unstable limit cycle
inside which the positive orbits of model (4) tend to a virus
equilibrium as 𝑡 tends to infinity: this implies that virus
is persistent inside the cycle, whereas the virus becomes
disappeared outside this cycle, which leads us to perceive
that, on the one hand, we should enhance the antivirus ability
of the network; on the other hand, we should take proper
measures to make the initial position lie outside the cycle so
as to eliminate the virus.

5. Concluding Remarks

In our previous work, we presented a novel computer virus
model describing the virus spread behaviors under the effect
of the antivirus ability in a real network and analyzed its
dynamics for the case where around bifurcation is local. In
order to supplement these partial dynamical behaviors, in
the present paper, it is further shown that, under appropriate
parameter values, the model may undergo a global B-T
bifurcation, and the curves of saddle-node bifurcation, Hopf
bifurcation, and homoclinic bifurcation are obtained at the
virus equilibrium. To our knowledge, this is the first time the
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global bifurcation has been explored for the computer virus
propagation. Based on the theoretical results, corresponding
suggestions may help us take practical measures to suppress
or eliminate virus in the network.

Towards this direction, there are some further issues
that are yet to be studied. First, the inherent structure of
a computer virus represents the resource of its breakout.
Therefore, it is crucial to dissect the logical structure of virus
and analyze the function of each of the modules and their
interrelations so as to uncover the resource of virus burst.
Second, it is well known that a computer virus may spread
through the Internet, which can be reflected in two-layer
structure: router layer and autonomous systems layer. The
former processes different extents of the antivirus ability due
to the limit cost of antivirus and the latter emerges power-
law distribution topology features [24], both of which will
be combined to model and analyze the virus propagation
behaviors on the Internet in our next work.
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