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Inspired by Moudafi (2011) and Takahashi et al. (2008), we present the shrinking projection method for the split common fixed-
point problem in Hilbert spaces, and we obtain the strong convergence theorem. As a special case, the split feasibility problem is
also considered.

1. Introduction

Let 𝐶 and 𝑄 be nonempty closed convex sets in real Hilbert
spaces 𝐻

1
and 𝐻

2
, respectively. The split feasibility problem

(SFP) is to find

𝑥 ∈ 𝐶, such that 𝐴𝑥 ∈ 𝑄, (1)

where 𝐴 : 𝐻
1

→ 𝐻
2
is a bounded linear operator. We

use Φ to denote the solution set of the SFP (1). The SFP
in finite-dimensional Hilbert space was first introduced by
Censor and Elfving [1]. In 2010, Xu [2] considered the SFP
in the setting of infinite-dimensional Hilbert space. The SFP
has received much attention due to its wide applications in
signal processing, image reconstruction, intensity-modulated
radiation therapy, and so on (see [3–6]). Several iterative
methods can be used to solve the SFP (1). Censor and
Elfving [1] constructed the iterative process which involves
the computation of the inverse of a matrix. A more popular
algorithm that solves the SFP is the CQ algorithm of Byrne
[3, 4]; that is, let 𝑥

0
be an arbitrary point in𝐻

1
:

𝑥
𝑛+1

= 𝑃
𝐶
(𝐼 − 𝛾𝐴

∗
(𝐼 − 𝑃

𝑄
) 𝐴) 𝑥

𝑛
, (2)

where 𝛾 > 0 is a parameter and 𝑃
𝐶
and 𝑃

𝑄
are metric

projections onto 𝐶 and 𝑄, respectively.
Let 𝐾 be a nonempty closed convex subset of a real

Hilbert space 𝐻 and let 𝑇 : 𝐾 → 𝐾 be a mapping. We
denote by Fix(𝑇) the fixed-point set of 𝑇; that is, Fix(𝑇) =

{𝑥 ∈ 𝐾 : 𝑇𝑥 = 𝑥}. A mapping 𝑇 : 𝐾 → 𝐾 is
nonexpansive if ‖𝑇𝑥 − 𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖ forall 𝑥, 𝑦 ∈ 𝐾. A
mapping 𝑇 : 𝐾 → 𝐾 is quasinonexpansive if Fix(𝑇) ̸= 0

and ‖𝑇𝑥 − 𝑦‖ ≤ ‖𝑥 − 𝑦‖ forall 𝑥 ∈ 𝐾 and 𝑦 ∈ Fix(𝑇).
It is known that the fixed-point set of a quasinonexpansive
mapping is closed and convex (see [7, 8]). There are some
quasinonexpansive mappings which are not nonexpansive
(see [9–11]). For example, the level set of a continuous convex
function is characterized as the fixed-point set of a nonlinear
mapping called the subgradient projection, which is not
nonexpansive but quasinonexpansive.

Now we focus our attention on the following two-
operator split common fixed-point problem (SCFP):

find 𝑥
∗
∈ 𝐶, such that 𝐴𝑥∗ ∈ 𝑄, (3)

where 𝐴 : 𝐻
1
→ 𝐻

2
is a bounded linear operator and 𝑈 :

𝐻
1

→ 𝐻
1
and 𝑇 : 𝐻

2
→ 𝐻

2
are two quasinonexpansive

mappings with Fix(𝑈) = 𝐶 and Fix(𝑇) = 𝑄. The solution set
of the SCFP (3) is denoted by

Γ = {𝑥
∗
∈ 𝐶 : 𝐴𝑥

∗
∈ 𝑄} . (4)

As far as we know, the SCFP is introduced by Censor and
Segal [12]. By taking 𝑈 = 𝑃

𝐶
and 𝑇 = 𝑃

𝑄
, the SCFP

reduces to the SFP. Hence, the SCFP is a generalization of the
SFP. Moudafi [13] considered the following algorithm for the
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SCFP: let 𝑥
0
∈ 𝐻
1
be arbitrary, 𝑢

𝑘
= 𝑥
𝑘
− 𝛾𝛽𝐴

∗
(𝐼 − 𝑇)𝐴𝑥

𝑘

and
𝑥
𝑘+1

= (1 − 𝛼
𝑘
) 𝑢
𝑘
+ 𝛼
𝑘
𝑈 (𝑢
𝑘
) , (5)

where 𝛽 ∈ (0, 1), 𝛼
𝑘
∈ (0, 1), and 𝛾 ∈ (0, 1/𝜆𝛽), with 𝜆 being

the spectral radius of the operator𝐴∗𝐴. He obtained theweak
convergence of the algorithm (5).

In 2008, Takahashi et al. [14] developed the shrinking
projection method for the nonexpansive mapping. Let 𝑇 be
a nonexpansive mapping of𝐾 into itself such that Fix(𝑇) ̸= 0.
Let 𝑥
0
∈ 𝐻, 𝐶

1
= 𝐾 and 𝑢

1
= 𝑃
𝐶
1

𝑥
0
;

𝑦
𝑛
= 𝛼
𝑛
𝑢
𝑛
+ (1 − 𝛼

𝑛
) 𝑇𝑢
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢𝑛 − 𝑧

󵄩󵄩󵄩󵄩} ,

𝑢
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑥
0
,

(6)

where 0 ≤ 𝛼
𝑛
≤ 𝑎 < 1. They proved that the sequence {𝑢

𝑛
}

converges strongly to 𝑃Fix(𝑇)𝑥0.
Motivated by the above results, especially by Moudafi

[13] and Takahashi et al. [14], in this paper, we present the
shrinking projection methods for the split common fixed-
point problems. As a special case, the split feasibility problem
is also discussed.

2. Preliminaries

Throughout this paper, let N and R be the sets of positive
integers and real numbers, respectively. For any 𝑥 ∈ 𝐻, there
exists a unique point 𝑃

𝐾
𝑥 ∈ 𝐾 such that

󵄩󵄩󵄩󵄩𝑥 − 𝑃
𝐾
𝑥
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 ∀𝑦 ∈ 𝐾, (7)

where𝐾 is a nonempty closed convex subset of a real Hilbert
space𝐻.Themapping 𝑃

𝐾
is called the metric projection of𝐻

onto 𝐾. Note that 𝑃
𝐾
is a nonexpansive mapping. For 𝑥 ∈ 𝐻

and 𝑧 ∈ 𝐾, we have
𝑧 = 𝑃
𝐾
𝑥 ⇐⇒ ⟨𝑥 − 𝑧, 𝑦 − 𝑧⟩ ≤ 0 for every 𝑦 ∈ 𝐾. (8)

We say that a mapping 𝑇 : 𝐾 → 𝐾 is demiclosed at zero
if for any sequence {𝑥

𝑛
} ⊂ 𝐾which converges weakly to 𝑥, the

strong convergence of the sequence {𝑇𝑥
𝑛
} to zero implies that

𝑇𝑥 = 0. It is well known that 𝐼 − 𝑇 is demiclosed whenever
𝑇 is nonexpansive. In fact, this property is satisfied for more
general mappings (see [15, 16]).

We will use the following notations:
(1) 𝑥
𝑛
→ 𝑥 stands for the strong convergence of {𝑥

𝑛
} to

𝑥;
(2) 𝑥
𝑛
⇀ 𝑥 stands for the weak convergence of {𝑥

𝑛
} to 𝑥;

(3) 𝜔
𝜔
(𝑥
𝑛
) = {𝑥 : ∃𝑥

𝑛
𝑗

⇀ 𝑥} denotes the weak 𝜔-limit
set of {𝑥

𝑛
}.

Here are two useful lemmas.

Lemma 1. Let 𝑥, 𝑦 ∈ 𝐻 and let 𝜆 ∈ R. One has
󵄩󵄩󵄩󵄩𝜆𝑥 + (1 − 𝜆) 𝑦

󵄩󵄩󵄩󵄩

2

= 𝜆‖𝑥‖
2
+ (1 − 𝜆)

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

2

− 𝜆 (1 − 𝜆)
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩

2

.

(9)

Lemma 2 (see [17]). Let 𝐾 be a closed convex subset of a real
Hilbert space 𝐻 and let {𝑥

𝑛
} be a sequence in 𝐻 and 𝑢 ∈ 𝐻.

Let 𝑞 = 𝑃
𝐾
𝑢. If {𝑥

𝑛
} satisfies the following conditions:

(1) 𝜔
𝜔
(𝑥
𝑛
) ⊂ 𝐾,

(2) ‖𝑥
𝑛
− 𝑢‖ ≤ ‖𝑢 − 𝑞‖ for all 𝑛 ∈ N,

then one has 𝑥
𝑛
→ 𝑞.

3. Shrinking Projection Methods

Now we are in a position to give the shrinking projection
method for split common fixed-point problem (3).

Theorem 3. Let 𝐻
1
and 𝐻

2
be real Hilbert spaces and let 𝐴 :

𝐻
1
→ 𝐻

2
be a bounded linear operator. Let 𝑈 : 𝐻

1
→ 𝐻

1

and 𝑇 : 𝐻
2
→ 𝐻

2
be two quasinonexpansive mappings with

Fix(𝑈) = 𝐶 and Fix(𝑇) = 𝑄. Suppose that 𝐼 − 𝑈 and 𝐼 −

𝑇 are demiclosed at zero and solution set Γ of the SCFP (3) is
nonempty. For 𝑢 ∈ 𝐻

1
chosen arbitrarily, 𝐶

1
= 𝐻
1
, ℎ
1
= 𝑃
𝐶
1

𝑢,
define a sequence {ℎ

𝑛
} by the following algorithm:

𝑤
𝑛
= ℎ
𝑛
− 𝛾𝐴
∗
(𝐼 − 𝑇)𝐴ℎ

𝑛
,

𝑦
𝑛
= 𝛼
𝑛
𝑤
𝑛
+ (1 − 𝛼

𝑛
) 𝑈𝑤
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑧

󵄩󵄩󵄩󵄩} ,

ℎ
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑢.

(10)

If the following are satisfied:

(1) {𝛼
𝑛
} ⊂ (0, 1) and lim inf

𝑛→∞
𝛼
𝑛
(1 − 𝛼

𝑛
) > 0,

(2) 0 < 𝛾 < (1/𝜆
𝐴𝐴
∗), where 𝜆

𝐴𝐴
∗ denotes the spectral

radius of the operator 𝐴𝐴∗,

then the sequence {ℎ
𝑛
} converges strongly to 𝑃

Γ
𝑢.

Proof. We first show that Γ ⊂ 𝐶
𝑛
for all 𝑛 ∈ N. It is obvious

that Γ is contained in 𝐶
1
= 𝐻
1
. Suppose that Γ ⊂ 𝐶

𝑘
for some

𝑘 ∈ N. We have, for any 𝑝 ∈ Γ ⊂ 𝐶
𝑘
,

󵄩󵄩󵄩󵄩𝑦𝑘 − 𝑝
󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑘𝑤𝑘 + (1 − 𝛼

𝑘
) 𝑈𝑤
𝑘
− 𝑝

󵄩󵄩󵄩󵄩

2

≤ 𝛼
𝑘

󵄩󵄩󵄩󵄩𝑤𝑘 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑘
)
󵄩󵄩󵄩󵄩𝑤𝑘 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩ℎ𝑘 − 𝛾𝐴

∗
(𝐼 − 𝑇)𝐴ℎ

𝑘
− 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩ℎ𝑘 − 𝑝

󵄩󵄩󵄩󵄩

2

− 2𝛾 ⟨𝐴
∗
(𝐼 − 𝑇)𝐴ℎ

𝑘
, ℎ
𝑘
− 𝑝⟩

+ 𝛾
2󵄩󵄩󵄩󵄩𝐴
∗
(𝐼 − 𝑇)𝐴ℎ

𝑘

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩ℎ𝑘 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 2𝛾 ⟨𝑇𝐴ℎ
𝑘
− 𝐴ℎ
𝑘
, 𝐴ℎ
𝑘
− 𝐴𝑝⟩
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+ 𝛾
2
⟨(𝐼 − 𝑇)𝐴ℎ

𝑘
, 𝐴𝐴
∗
(𝐼 − 𝑇)𝐴ℎ

𝑘
⟩

≤
󵄩󵄩󵄩󵄩ℎ𝑘 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛾
2
𝜆
𝐴𝐴
∗

󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴ℎ
𝑘

󵄩󵄩󵄩󵄩

2

+ 𝛾 [
󵄩󵄩󵄩󵄩𝑇𝐴ℎ𝑘 − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑇𝐴ℎ𝑘 − 𝐴ℎ

𝑘

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝐴ℎ𝑘 − 𝐴𝑝

󵄩󵄩󵄩󵄩

2

]

≤
󵄩󵄩󵄩󵄩ℎ𝑘 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛾
2
𝜆
𝐴𝐴
∗

󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴ℎ
𝑘

󵄩󵄩󵄩󵄩

2

− 𝛾
󵄩󵄩󵄩󵄩𝑇𝐴ℎ𝑘 − 𝐴ℎ

𝑘

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩ℎ𝑘 − 𝑝

󵄩󵄩󵄩󵄩

2

+ 𝛾 (𝛾𝜆
𝐴𝐴
∗ − 1)

󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴ℎ
𝑘

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩ℎ𝑘 − 𝑝

󵄩󵄩󵄩󵄩

2

.

(11)

It follows that 𝑝 ∈ 𝐶
𝑘+1

. Thus, we get Γ ⊂ 𝐶
𝑛
for all 𝑛 ∈ N.

Next we show that 𝐶
𝑛
is closed and convex for all 𝑛 ∈ N.

The set𝐶
1
= 𝐻
1
is obviously closed and convex. Suppose that

𝐶
𝑘
is closed and convex.We see that𝐶

𝑘+1
is closed and convex

since ‖𝑦
𝑛
− 𝑧‖ ≤ ‖ℎ

𝑛
− 𝑧‖ is equivalent to

󵄩󵄩󵄩󵄩𝑦𝑛
󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩ℎ𝑛

󵄩󵄩󵄩󵄩

2

− 2 ⟨𝑦
𝑛
− ℎ
𝑛
, 𝑧⟩ ≤ 0. (12)

It follows that𝐶
𝑛
is closed and convex for all 𝑛 ∈ N.Therefore,

we obtain that the sequence {ℎ
𝑛
} is well defined.

From ℎ
𝑛
= 𝑃
𝐶
𝑛

𝑢, we have

⟨𝑢 − ℎ
𝑛
, ℎ
𝑛
− 𝑦⟩ ≥ 0 ∀𝑦 ∈ 𝐶

𝑛
. (13)

Recalling that Γ ⊂ 𝐶
𝑛
, one has

⟨𝑢 − ℎ
𝑛
, ℎ
𝑛
− 𝑝⟩ ≥ 0 ∀𝑝 ∈ Γ. (14)

Hence,

0 ≤ ⟨𝑢 − ℎ
𝑛
, ℎ
𝑛
− 𝑝⟩

= ⟨𝑢 − ℎ
𝑛
, ℎ
𝑛
− 𝑢 + 𝑢 − 𝑝⟩

≤ −
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢 − 𝑝

󵄩󵄩󵄩󵄩 .

(15)

This implies that
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢 − 𝑝

󵄩󵄩󵄩󵄩 , (16)

which yields that {ℎ
𝑛
} is bounded.

From ℎ
𝑛
= 𝑃
𝐶
𝑛

𝑢 and ℎ
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑢 ∈ 𝐶
𝑛+1

⊂ 𝐶
𝑛
, we get

0 ≤ ⟨𝑢 − ℎ
𝑛
, ℎ
𝑛
− ℎ
𝑛+1

⟩

≤ −
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛

󵄩󵄩󵄩󵄩
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛+1

󵄩󵄩󵄩󵄩 ,

(17)

which gives that
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛+1

󵄩󵄩󵄩󵄩 . (18)

Hence,

the limit lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑢 − ℎ
𝑛

󵄩󵄩󵄩󵄩 exists. (19)

It follows from (17) that

󵄩󵄩󵄩󵄩ℎ𝑛 − ℎ
𝑛+1

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑢

󵄩󵄩󵄩󵄩

2

+ 2 ⟨ℎ
𝑛
− 𝑢, 𝑢 − ℎ

𝑛+1
⟩

+
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛+1

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑢

󵄩󵄩󵄩󵄩

2

+ 2 ⟨ℎ
𝑛
− 𝑢, 𝑢 − ℎ

𝑛
+ ℎ
𝑛
− ℎ
𝑛+1

⟩

+
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛+1

󵄩󵄩󵄩󵄩

2

= −
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑢

󵄩󵄩󵄩󵄩

2

+ 2 ⟨ℎ
𝑛
− 𝑢, ℎ

𝑛
− ℎ
𝑛+1

⟩

+
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛+1

󵄩󵄩󵄩󵄩

2

≤ −
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑢

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑢 − ℎ

𝑛+1

󵄩󵄩󵄩󵄩

2

.

(20)

Thus, we get

lim
𝑛→∞

󵄩󵄩󵄩󵄩ℎ𝑛 − ℎ
𝑛+1

󵄩󵄩󵄩󵄩 = 0. (21)

The fact that ℎ
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑢 ∈ 𝐶
𝑛+1

gives

󵄩󵄩󵄩󵄩𝑦𝑛 − ℎ
𝑛+1

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩ℎ𝑛 − ℎ

𝑛+1

󵄩󵄩󵄩󵄩 󳨀→ 0. (22)

The expressions (21) and (22) yield

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑦𝑛 − ℎ
𝑛

󵄩󵄩󵄩󵄩 = 0. (23)

We will prove that 𝜔
𝜔
(ℎ
𝑛
) ⊂ Γ. Without loss of generality,

we assume that ℎ
𝑛
⇀ ℎ
∗. It follows from (11) that

𝛾 (1 − 𝛾𝜆
𝐴𝐴
∗)
󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴ℎ

𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 .

(24)

This together with (23) implies that

lim
𝑛→∞

󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝐴ℎ
𝑛

󵄩󵄩󵄩󵄩 = 0. (25)

We have 𝐴ℎ∗ ∈ Fix(𝑇) = 𝑄 since 𝐼 − 𝑇 is demiclosed at zero.
Using (??) and (25), we get 𝑤

𝑛
⇀ ℎ
∗. For any 𝑝 ∈ Γ, one

has
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝛼𝑛𝑤𝑛 + (1 − 𝛼

𝑛
) 𝑈𝑤
𝑛
− 𝑝

󵄩󵄩󵄩󵄩

2

= 𝛼
𝑛

󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝
󵄩󵄩󵄩󵄩

2

+ (1 − 𝛼
𝑛
)
󵄩󵄩󵄩󵄩𝑈𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑈𝑤𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑤𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑈𝑤𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

− 𝛼
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑈𝑤𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩

2

,

(26)
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which implies that

𝛼
𝑛
(1 − 𝛼

𝑛
)
󵄩󵄩󵄩󵄩𝑈𝑤𝑛 − 𝑤

𝑛

󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩

2

≤ (
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑝

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑝

󵄩󵄩󵄩󵄩)
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑦

𝑛

󵄩󵄩󵄩󵄩 .

(27)

Therefore, one has

lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑈𝑤𝑛 − 𝑤
𝑛

󵄩󵄩󵄩󵄩 = 0. (28)

It follows that ℎ∗ ∈ Fix(𝑈) = 𝐶 since 𝐼 − 𝑈 is demiclosed
at zero. Thus, we have obtained 𝜔

𝜔
(ℎ
𝑛
) ∈ Γ. According to

Lemma 2, we see that ℎ
𝑛
→ 𝑃
Γ
𝑢.

By Theorem 3, we immediately obtain the shrinking
projection method for the split feasibility problem.

Theorem4. Let𝐻
1
and𝐻

2
be realHilbert spaces and let𝐶 and

𝑄 be nonempty closed convex subsets of𝐻
1
and𝐻

2
, respectively.

Let 𝐴 : 𝐻
1
→ 𝐻
2
be a bounded linear operator. Suppose that

the solution setΦ of the SFP (1) is nonempty. For 𝑢 ∈ 𝐻
1
chosen

arbitrarily, 𝐶
1
= 𝐻
1
, ℎ
1
= 𝑃
𝐶
1

𝑢, define a sequence {ℎ
𝑛
} by the

following algorithm:

𝑤
𝑛
= ℎ
𝑛
− 𝛾𝐴
∗
(𝐼 − 𝑃

𝑄
) 𝐴ℎ
𝑛
,

𝑦
𝑛
= 𝛼
𝑛
𝑤
𝑛
+ (1 − 𝛼

𝑛
) 𝑃
𝐶
𝑤
𝑛
,

𝐶
𝑛+1

= {𝑧 ∈ 𝐶
𝑛
:
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑧

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩ℎ𝑛 − 𝑧

󵄩󵄩󵄩󵄩} ,

ℎ
𝑛+1

= 𝑃
𝐶
𝑛+1

𝑢.

(29)

If the following are satisfied:

(1) {𝛼
𝑛
} ⊂ (0, 1) and lim inf

𝑛→∞
𝛼
𝑛
(1 − 𝛼

𝑛
) > 0,

(2) 0 < 𝛾 < 1/𝜆
𝐴𝐴
∗ , where 𝜆

𝐴𝐴
∗ denotes the spectral

radius of the operator 𝐴𝐴∗,

then the sequence {ℎ
𝑛
} converges strongly to 𝑃

Φ
𝑢.

Remark 5. Letting 𝑢 = 0 in Theorems 3 and 4, we obtain the
shrinking projection methods for minimum-norm solutions
of corresponding problems.
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