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We prove some common fixed point theorems of contractions restricted with variable positive linear bounded mappings in
𝜃-complete partial cone metric spaces over nonnormal cones and present some examples to support the usability of our results.

1. Introduction

In 2007, Huang and Zhang [1] introduced conemetric spaces,
being unaware that they already existed under the name
𝐾-metric and 𝐾-normed spaces that were introduced and
used in the middle of the 20th century in [2–9]. In both
cases, the set R of real numbers was replaced by an ordered
Banach space 𝐸. However, Huang and Zhang went further
and defined the convergence via interior points of the cone
by which the order in 𝐸 is defined. This approach allows the
investigation of cone spaces in the case that the cone is not
necessarily normal. Since then, there were many references
concerned with fixed point results and common fixed point
results in cone metric spaces over a nonnormal cone (see
[10–18]). In 2012, based on the definition of cone metric
spaces and partial metric spaces introduced by Matthews
[19], Sonmez [20, 21] defined a partial cone metric space and
proved some fixed point theorems of contractions restricted
with constants in complete partial cone metric spaces over
normal cones. Recently, without using the normality of the
cone, Malhotra et al. [22] and Jiang and Li [23] extended
the results of [20, 21] to 𝜃-complete partial cone metric
spaces. In addition, the contractions considered in [23] are
not necessarily restricted with constants but restricted with
positive linear bounded mappings.

In this paper, we prove some common fixed point theo-
rems of contractions restricted with variable positive linear
bounded mappings in 𝜃-complete partial cone metric spaces
over nonnormal cones, which improve the recent results of
[22, 23].

2. Preliminaries

Let𝐸 be a topological vector space. A cone of𝐸 is a nonempty
closed subset 𝑃 of 𝐸 such that 𝑎𝑥 + 𝑏𝑦 ∈ 𝑃 for each 𝑥, 𝑦 ∈ 𝑃

and each 𝑎, 𝑏 ≥ 0, and 𝑃 ∩ (−𝑃) = {𝜃}, where 𝜃 is the zero
element of 𝐸. A cone 𝑃 of 𝐸 determines a partial order ⪯ on
𝐸 by 𝑥 ⪯ 𝑦 ⇔ 𝑦 − 𝑥 ∈ 𝑃 for each 𝑥, 𝑦 ∈ 𝑋. In this case, 𝐸 is
called an ordered topological vector space.

A cone 𝑃 of a topological vector space 𝐸 is solid if
int𝑃 ̸=Ø, where int𝑃 is the interior of 𝑃. For each 𝑥, 𝑦 ∈ 𝐸

with 𝑦 − 𝑥 ∈ int𝑃, we write 𝑥 ≪ 𝑦. Let 𝑃 be a solid cone
of a topological vector space 𝐸. A sequence {𝑢

𝑛
} of 𝐸 weakly

converges [22] to 𝑢 ∈ 𝐸 (denote 𝑢
𝑛

𝑤

→ 𝑢) if, for each 𝜖 ∈ int𝑃,
there exists a positive integer 𝑛

0
such that 𝑢 − 𝜖 ≪ 𝑢

𝑛
≪ 𝑢 + 𝜖

for all 𝑛 ≥ 𝑛
0
.

A subset𝐷 of a topological vector space𝐸 is order-convex
if [𝑥, 𝑦] ⊂ 𝐷 for each 𝑥, 𝑦 ∈ 𝐷 with 𝑥 ⪯ 𝑦, where [𝑥, 𝑦] =

{𝑧 ∈ 𝐸 : 𝑥 ⪯ 𝑧 ⪯ 𝑦}. An ordered topological vector space 𝐸 is
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order-convex if it has a base of neighborhoods of 𝜃 consisting
of order-convex subsets. In this case, the cone 𝑃 is said to be
normal. In the case of a normed vector space, this condition
means that the unit ball is order-convex, which is equivalent
to the condition that there is some positive number 𝑁 such
that 𝑥, 𝑦 ∈ 𝐸 and 𝜃 ⪯ 𝑥 ⪯ 𝑦 implies that ‖𝑥‖ ≤ 𝑁‖𝑦‖,
and the minimal 𝑁 is called a normal constant of 𝑃. Another
equivalent condition is that

inf {
𝑥 + 𝑦

 : 𝑥, 𝑦 ∈ 𝑃, ‖𝑥‖ =
𝑦

 = 1} > 0. (1)

It is not hard to conclude from (1) that 𝑃 is a nonnormal cone
of a normed vector space (𝐸, ‖ ⋅ ‖) if and only if there exist
sequences {𝑢

𝑛
}, {V
𝑛
} ⊂ 𝑃 such that

𝑢
𝑛

+ V
𝑛

‖⋅‖

→ 𝜃  𝑢
𝑛

‖⋅‖

→ 𝜃, (2)

which implies that the Sandwich theorem does not hold.
However, the Sandwich theorem holds in the sense of weak
convergence even if 𝑃 is a nonnormal cone.

Lemma 1 (Sandwich theorem). Let 𝑃 be a solid cone of a
topological vector space 𝐸 and {𝑢

𝑛
}, {V
𝑛
}, {𝑤
𝑛
} ⊂ 𝐸. If

𝑢
𝑛

⪯ 𝑤
𝑛

⪯ V
𝑛
, ∀𝑛, (3)

and there exists some 𝑤 ∈ 𝐸 such that 𝑢
𝑛

𝑤

→ 𝑤 and V
𝑛

𝑤

→ 𝑤,
then 𝑤

𝑛

𝑤

→ 𝑤.

Proof. By 𝑢
𝑛

𝑤

→ 𝑤 and V
𝑛

𝑤

→ 𝑤, for each 𝜖 ∈ int𝑃, there exists
some positive integer 𝑛

0
such that, for all 𝑛 ≥ 𝑛

0
,

𝑤 − 𝜖 ≪ 𝑢
𝑛
, V

𝑛
≪ 𝑤 + 𝜖. (4)

Thus, by (3) and (4), we have 𝑤 − 𝜖 ≪ 𝑢
𝑛

⪯ 𝑤
𝑛

⪯ V
𝑛

⪯

V
𝑛

≪ 𝑤 + 𝜖 for all 𝑛 ≥ 𝑛
0
; that is, 𝑤

𝑛

𝑤

→ 𝑤. The proof is
completed.

The following lemma is needed in further arguments,
which directly follows from Lemma 1 and Remark 1 of [23].

Lemma 2. Let 𝑃 be a solid cone of a normed vector space
(𝐸, ‖ ⋅ ‖). Then, for each sequence {𝑢

𝑛
} ⊂ 𝐸, 𝑢

𝑛

‖⋅‖

→ 𝑢 implies
𝑢
𝑛

𝑤

→ 𝑢. Moreover, if 𝑃 is normal, then 𝑢
𝑛

𝑤

→ 𝑢 implies
𝑢
𝑛

‖⋅‖

→ 𝑢.

Let 𝑃 be a cone of a normed vector space (𝐸, ‖ ⋅ ‖) and 𝐿 :

𝐸 → 𝐸.Themapping𝐿 is said to be a positive linear bounded
mapping if 𝐿(𝑃) ⊂ 𝑃, 𝐿(𝑢 + V) = 𝐿𝑢 + 𝐿V for each 𝑢, V ∈ 𝐸,
and there exists some positive real number 𝑀 > 0 such that
‖𝐿‖ ≤ 𝑀. In the sequel, L and 𝐼 will denote the family of all
positive linear bounded mappings and the identity mapping,
respectively.

Lemma 3. Let 𝑃 be a solid cone of a normed vector space
(𝐸, ‖ ⋅ ‖), {𝐾

𝑛
} ⊂ L and {𝑢

𝑛
} ⊂ 𝑃. If 𝑢

𝑛

𝑤

→ 𝜃 and sup
𝑛
‖𝐾
𝑛
‖ <

+∞, then 𝐾
𝑛
𝑢
𝑛

𝑤

→ 𝜃.

Proof. Let �̃�
𝑛

= 𝑏𝐾
𝑛
, for all 𝑛, where

𝑏 =

{{

{{

{

1, sup
𝑛

𝐾
𝑛

 < 1,

1

sup
𝑛

𝐾
𝑛

 + 1
, sup
𝑛

𝐾
𝑛

 ≥ 1.
(5)

It is clear that ‖�̃�
𝑛
‖ ≤ 𝑏‖𝐾

𝑛
‖ < 1 for all 𝑛, and hence, for all 𝑛,

the inverse of 𝐼 − �̃�
𝑛
exists (denoted by (𝐼 − �̃�

𝑛
)
−1). It follows

from {𝐾
𝑛
} ⊂ L that for all 𝑛(𝐼 − �̃�

𝑛
)
−1

∈ L for all 𝑛, and
then 𝐼 − �̃�

𝑛
∈ L for all 𝑛. By Lemma 2 and 𝑢

𝑛

𝑤

→ 𝜃, for each
𝜖 ∈ int𝑃, there exists some positive integer 𝑛

0
such that 𝜃 ⪯

𝑢
𝑛

≪ 𝑏𝜖 for all 𝑛 ≥ 𝑛
0
. Note that 𝐼 − �̃�

𝑛
∈ L for all 𝑛 implies

that �̃�
𝑛
𝑢 ⪯ 𝑢 for all 𝑛 and each 𝑢 ∈ 𝑃; then, 𝜃 ⪯ 𝐾

𝑛
𝑢
𝑛

=

�̃�
𝑛
(𝑢
𝑛
/𝑏) ⪯ (𝑢

𝑛
/𝑏) ≪ 𝜖 for all 𝑛 ≥ 𝑛

0
; that is, 𝐾

𝑛
𝑢
𝑛

𝑤

→ 𝜃. The
proof is completed.

Let 𝑋 be a nonempty set and let 𝑃 be a cone of a topo-
logical vector space 𝐸. A partial cone metric on 𝑋 is a mapp-
ing 𝑝 : 𝑋 × 𝑋 → 𝑃 such that, for each 𝑥, 𝑦, 𝑧 ∈ 𝑋,

(p1) 𝑝(𝑥, 𝑦) = 𝑝(𝑥, 𝑥) = 𝑝(𝑦, 𝑦) ⇔ 𝑥 = 𝑦;
(p2) 𝑝(𝑥, 𝑦) = 𝑝(𝑦, 𝑥);
(p3) 𝑝(𝑥, 𝑥) ⪯ 𝑝(𝑥, 𝑦);
(p4) 𝑝(𝑥, 𝑦) ⪯ 𝑝(𝑥, 𝑧) + 𝑝(𝑧, 𝑦) − 𝑝(𝑧, 𝑧).

The pair (𝑋, 𝑝) is called a partial cone metric space over 𝑃.
A partial cone metric 𝑝 on 𝑋 over a solid cone 𝑃 generates a
topology 𝜏

𝑝
on 𝑋 which has a base of the family of open 𝑝-

balls {𝐵
𝑝

(𝑥, 𝜖) : 𝑥 ∈ 𝑋, 𝜃 ≪ 𝜖}, where 𝐵
𝑝

(𝑥, 𝜖) = {𝑦 ∈ 𝑋 :

𝑝(𝑥, 𝑦) ≪ 𝑝(𝑥, 𝑥) + 𝜖} for each 𝑥 ∈ 𝑋 and each 𝜖 ∈ int𝑃.
Let (𝑋, 𝑝) be a partial cone metric space over a solid

cone 𝑃 of a topological vector space 𝐸. A sequence {𝑥
𝑛
} of

𝑋 converges to 𝑥 ∈ 𝑋 (denoted by 𝑥
𝑛

𝜏𝑝

→ 𝑥) if 𝑝(𝑥
𝑛
, 𝑥)
𝑤

→

𝑝(𝑥, 𝑥). A sequence {𝑥
𝑛
} of 𝑋 is 𝜃-Cauchy, if 𝑝(𝑥

𝑛
, 𝑥
𝑚

)
𝑤

→ 𝜃.
The partial cone metric space (𝑋, 𝑝) is 𝜃-complete, if each 𝜃-
Cauchy sequence {𝑥

𝑛
} of 𝑋 converges to a point 𝑥 ∈ 𝑋 such

that 𝑝(𝑥, 𝑥) = 𝜃. Every complete partial cone metric space
(𝑋, 𝑝) is 𝜃-complete, but the converse may not be true (see
[23]).

3. Common Fixed Point Theorems

Let (𝑋, 𝑝) be a partial cone metric space. The mappings 𝑇, 𝑆 :

𝑋 → 𝑋 are called contractions restricted with variable
positive linear boundedmappings if there exist 𝐿

𝑖
: 𝑋 × 𝑋 →

L (𝑖 = 1, 2, 3, 4) such that

𝑝 (𝑇𝑥, 𝑆𝑦) ⪯ 𝐿
1

(𝑥, 𝑦) 𝑝 (𝑥, 𝑦)

+ 𝐿
2

(𝑥, 𝑦) 𝑝 (𝑥, 𝑇𝑥) + 𝐿
3

(𝑥, 𝑦) 𝑝 (𝑦, 𝑆𝑦)

+ 𝐿
4

(𝑥, 𝑦) [𝑝 (𝑥, 𝑆𝑦) + 𝑝 (𝑦, 𝑇𝑥)] ,

∀𝑥, 𝑦 ∈ 𝑋.

(6)

In particular, if (6) holds with 𝐿
𝑖
(𝑥, 𝑦) ≡ 𝐴

𝑖
(𝑖 = 1, 2, 3, 4)

and 𝐴
𝑖

∈ L (𝑖 = 1, 2, 3, 4), then 𝑇 and 𝑆 are called contrac-
tions restricted with positive linear bounded mappings.
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We first present a common fixed point theorem of con-
tractions restricted with variable positive linear bounded
mappings in a partial cone metric space over a nonnormal
cone. In the sequel, N will denote the set of all nonnegative
integer numbers.

Theorem 4. Let (𝑋, 𝑝) be a 𝜃-complete partial cone metric
space over a solid cone 𝑃 of a normed vector space (𝐸, ‖ ⋅ ‖),
and let 𝑇, 𝑆 : 𝑋 → 𝑋 be contractions restricted with variable
positive linear bounded mappings. If

𝜌 (𝐿
3

(𝑥, 𝑦) + 𝐿
4

(𝑥, 𝑦)) < 1, 𝜌 (𝐿
2

(𝑥, 𝑦) + 𝐿
4

(𝑥, 𝑦)) < 1,

∀𝑥, 𝑦 ∈ 𝑋,

(7)

𝑙
1
𝑙
2

< 1 and 𝑙
3

< +∞, where 𝜌(⋅) denotes the spectral radius of
linear bounded mappings,

𝑙
1

= sup
𝑥,𝑦∈𝑋

𝐾
1

(𝑥, 𝑦)
 ,

𝑙
2

= sup
𝑥,𝑦∈𝑋

𝐾
2

(𝑥, 𝑦)
 ,

𝑙
3

= sup
𝑥,𝑦∈𝑋

𝐾
3

(𝑥, 𝑦)
 ,

(8)

𝐾
1

(𝑥, 𝑦) = �̃�
1

(𝑥, 𝑦) [𝐿
1

(𝑥, 𝑦) + 𝐿
2

(𝑥, 𝑦) + 𝐿
4

(𝑥, 𝑦)] ,

𝐾
2

(𝑥, 𝑦) = �̃�
2

(𝑥, 𝑦) [𝐿
1

(𝑥, 𝑦) + 𝐿
3

(𝑥, 𝑦) + 𝐿
4

(𝑥, 𝑦)] ,

𝐾
3

(𝑥, 𝑦) = �̃�
2

(𝑥, 𝑦) [𝐼 + 𝐿
3

(𝑥, 𝑦) + 𝐿
4

(𝑥, 𝑦)] ,

∀𝑥, 𝑦 ∈ 𝑋,

(9)

where �̃�
1
(𝑥, 𝑦) and �̃�

2
(𝑥, 𝑦) denote the inverses of 𝐼−𝐿

3
(𝑥, 𝑦)−

𝐿
4
(𝑥, 𝑦) and 𝐼 − 𝐿

2
(𝑥, 𝑦) − 𝐿

4
(𝑥, 𝑦), respectively. Then, 𝑇 and

𝑆 have a common fixed point in 𝑋. Moreover, if

𝜌 (𝐿
1

(𝑥, 𝑦) + 𝐿
2

(𝑥, 𝑦) + 𝐿
3

(𝑥, 𝑦) + 2𝐿
4

(𝑥, 𝑦)) < 1,

∀𝑥, 𝑦 ∈ 𝑋,

(10)

then 𝑇 and 𝑆 have a unique common fixed point 𝑥
∗

∈ 𝑋 such
that, for each 𝑥

0
∈ 𝑋, 𝑥

𝑛

𝜏𝑝

→ 𝑥
∗, where 𝑥

𝑛
is defined by

𝑥
𝑛+1

= {
𝑇𝑥
𝑛
, 𝑛 is an even number,

𝑆𝑥
𝑛
, 𝑛 is an odd number.

(11)

Proof. For each 𝑥, 𝑦 ∈ 𝑋, by (7), the inverses of 𝐼 − 𝐿
3
(𝑥, 𝑦) −

𝐿
4
(𝑥, 𝑦) and 𝐼 − 𝐿

2
(𝑥, 𝑦) − 𝐿

4
(𝑥, 𝑦) exist. Then, it is clear that

�̃�
1
and �̃�

2
are meaningful, and so 𝐾

1
, 𝐾
2
, 𝐾
3
are well defined.

Moreover, by Neumann’s formula,

�̃�
1

(𝑥, 𝑦) =

∞

∑

𝑖=0

[𝐿
3
(𝑥, 𝑦) + 𝐿

4
(𝑥, 𝑦)]

𝑖

,

�̃�
2

(𝑥, 𝑦) =

∞

∑

𝑖=0

[𝐿
2
(𝑥, 𝑦) + 𝐿

4
(𝑥, 𝑦)]

𝑖

,

∀𝑥, 𝑦 ∈ 𝑋,

(12)

which together with 𝐿
𝑖

: 𝑋 × 𝑋 → L (𝑖 = 2, 3, 4) implies
that �̃�

𝑖
: 𝑋 × 𝑋 → L (𝑖 = 1, 2), and hence 𝐾

𝑖
: 𝑋 × 𝑋 →

L (𝑖 = 1, 2, 3). By (6), (11), (p4), and 𝐿
4

: 𝑋 × 𝑋 → L,

𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

) = 𝑝 (𝑇𝑥
2𝑘

, 𝑆𝑥
2𝑘+1

)

⪯ 𝐿
1

(𝑥
2𝑘

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

)

+ 𝐿
2

(𝑥
2𝑘

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

)

+ 𝐿
3

(𝑥
2𝑘

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

)

+ 𝐿
4

(𝑥
2𝑘

, 𝑥
2𝑘+1

) [𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+2

)

+𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+1

)]

⪯ 𝐿
1

(𝑥
2𝑘

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

)

+ 𝐿
2

(𝑥
2𝑘

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

)

+ 𝐿
3

(𝑥
2𝑘

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

)

+ 𝐿
4

(𝑥
2𝑘

, 𝑥
2𝑘+1

) [𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

)

+𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

)] ,

∀𝑘 ∈ N,

(13)

and so

[𝐼 − 𝐿
3

(𝑥
2𝑘

, 𝑥
2𝑘+1

) − 𝐿
4

(𝑥
2𝑘

, 𝑥
2𝑘+1

)] 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

)

⪯ [𝐿
1

(𝑥
2𝑘

, 𝑥
2𝑘+1

) + 𝐿
2

(𝑥
2𝑘

, 𝑥
2𝑘+1

)

+𝐿
4

(𝑥
2𝑘

, 𝑥
2𝑘+1

)] 𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

) , ∀𝑘 ∈ N.

(14)

Act the above inequality with �̃�
1
(𝑥
2𝑘

, 𝑥
2𝑘+1

); then, by �̃�
1

: 𝑋×

𝑋 → L,

𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

) ⪯ 𝐾
1

(𝑥
2𝑘

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘

, 𝑥
2𝑘+1

) , ∀𝑘 ∈ N.

(15)

Similarly, by (6), (p3), (p4), and 𝐿
4

: 𝑋 × 𝑋 → L,

𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+3

) = 𝑝 (𝑥
2𝑘+3

, 𝑥
2𝑘+2

)

= 𝑝 (𝑇𝑥
2𝑘+2

, 𝑆𝑥
2𝑘+1

)

⪯ 𝐿
1

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+1

)

+ 𝐿
2

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+3

)

+ 𝐿
3

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

)

+ 𝐿
4

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) [𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+2

)

+𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+3

)]

⪯ 𝐿
1

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+1

)

+ 𝐿
2

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+3

)

+ 𝐿
3

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

)
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+ 𝐿
4

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) [𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+1

)

+𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+3

)] ,

∀𝑘 ∈ N,

(16)

and so

[𝐼 − 𝐿
2

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) − 𝐿
4

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

)] 𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+3

)

⪯ [𝐿
1

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) + 𝐿
3

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

)

+ 𝐿
4

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

)] 𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+1

) , ∀𝑘 ∈ N.

(17)

Act the above inequality with �̃�
2
(
2𝑘+2

, 𝑥
2𝑘+1

); then, by �̃�
2

:

𝑋 × 𝑋 → L,

𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+3

) ⪯ 𝐾
2

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) 𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

) ,

∀𝑘 ∈ N.

(18)

Moreover, by (15), (18), and 𝐾
1
, 𝐾
2

: 𝑋 × 𝑋 → L,

𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

) ⪯ 𝐾
1

(𝑥
2𝑘

, 𝑥
2𝑘+1

)

× 𝐾
2

(𝑥
2𝑘

, 𝑥
2𝑘−1

) ⋅ ⋅ ⋅ 𝐾
1

(𝑥
0
, 𝑥
1
) 𝑝 (𝑥

0
, 𝑥
1
) ,

𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+3

) ⪯ 𝐾
2

(𝑥
2𝑘+2

, 𝑥
2𝑘+1

) 𝐾
1

(𝑥
2𝑘

, 𝑥
2𝑘+1

)

× 𝐾
2

(𝑥
2𝑘

, 𝑥
2𝑘−1

) ⋅ ⋅ ⋅ 𝐾
1

(𝑥
0
, 𝑥
1
) 𝑝 (𝑥

0
, 𝑥
1
) ,

∀𝑘 ∈ N.

(19)

In the following, we will prove that

𝑝 (𝑥
𝑛
, 𝑥
𝑚

)
𝑤

→ 𝜃. (20)

For all 𝑚 > 𝑛, we have four cases: (i) 𝑚 = 2𝑝 + 1, 𝑛 = 2𝑞 + 1;
(ii) 𝑚 = 2𝑝 + 1, 𝑛 = 2𝑞; (iii) 𝑚 = 2𝑝, 𝑛 = 2𝑞 + 1; and (iv)
𝑚 = 2𝑝, 𝑛 = 2𝑞, where 𝑝 and 𝑞 are two nonnegative integers
such that 𝑝 > 𝑞. We only show that (20) holds for case (i); the
proofs of the other three cases are similar.

It follows from (p4) and (19) that

𝜃 ⪯ 𝑝 (𝑥
𝑛
, 𝑥
𝑚

)

= 𝑝 (𝑥
2𝑞+1

, 𝑥
2𝑝+1

)

⪯ 𝑝 (𝑥
2𝑞+1

, 𝑥
2𝑞+2

) + 𝑝 (𝑥
2𝑞+2

, 𝑥
2𝑞+3

)

+ ⋅ ⋅ ⋅ + 𝑝 (𝑥
2𝑝−1

, 𝑥
2𝑝

) + 𝑝 (𝑥
2𝑝

, 𝑥
2𝑝+1

)

⪯ 𝑝
𝐾1𝐾2

(𝑥
0
, 𝑥
1
)

= 𝐾
1

(𝑥
2𝑞

, 𝑥
2𝑞+1

)

× 𝐾
2

(𝑥
2𝑞

, 𝑥
2𝑞−1

) ⋅ ⋅ ⋅ 𝐾
1

(𝑥
0
, 𝑥
1
) 𝑝 (𝑥

0
, 𝑥
1
)

+ 𝐾
2

(𝑥
2𝑞+2

, 𝑥
2𝑞+1

) 𝐾
1

(𝑥
2𝑞

, 𝑥
2𝑞+1

)

× 𝐾
2

(𝑥
2𝑞

, 𝑥
2𝑞−1

) ⋅ ⋅ ⋅ 𝐾
1

(𝑥
0
, 𝑥
1
) 𝑝 (𝑥

0
, 𝑥
1
)

+ ⋅ ⋅ ⋅ + 𝐾
1

(𝑥
2𝑝−2

, 𝑥
2𝑝−1

)

× 𝐾
2

(𝑥
2𝑝−2

, 𝑥
2𝑝−3

) ⋅ ⋅ ⋅ 𝐾
1

(𝑥
0
, 𝑥
1
) 𝑝 (𝑥

0
, 𝑥
1
)

+ 𝐾
2

(𝑥
2𝑝

, 𝑥
2𝑝−1

)

× 𝐾
1

(𝑥
2𝑝−2

, 𝑥
2𝑝−1

) ⋅ ⋅ ⋅ 𝐾
1

(𝑥
0
, 𝑥
1
) 𝑝 (𝑥

0
, 𝑥
1
) ,

∀𝑝 > 𝑞.

(21)

By 𝑙
1
𝑙
2

< 1,


𝑝
𝐾1𝐾2

(𝑥
0
, 𝑥
1
)


≤ (𝑙
𝑞+1

1
𝑙
𝑞

2
+ 𝑙
𝑞+1

1
𝑙
𝑞+1

2
+ ⋅ ⋅ ⋅ + 𝑙

𝑝+1

1
𝑙
𝑝

2
+ 𝑙
𝑝

1
𝑙
𝑝

2
)

𝑝 (𝑥
0
, 𝑥
1
)


= (𝑙
1

𝑝

∑

𝑖=𝑞

(𝑙
1
𝑙
2
)
𝑖

+

𝑝

∑

𝑖=𝑞+1

(𝑙
1
𝑙
2
)
𝑖

)
𝑝 (𝑥
0
, 𝑥
1
)


≤
(𝑙
1

+ 𝑙
1
𝑙
2
) (𝑙
1
𝑙
2
)
𝑞 𝑝 (𝑥

0
, 𝑥
1
)


1 − 𝑙
1
𝑙
2

, ∀𝑝 > 𝑞,

(22)

which implies that 𝑝
𝐾1𝐾2

(𝑥
0
, 𝑥
1
)
‖⋅‖

→ 𝜃, and hence 𝑝
𝐾1𝐾2

(𝑥
0
,

𝑥
1
)
𝑤

→ 𝜃 by Lemma 2. Thus, by (21) and Lemma 1, 𝑝(𝑥
𝑛
,

𝑥
𝑚

)
𝑤

→ 𝜃; that is, (20) holds. It is proved that {𝑥
𝑛
} is a 𝜃-

Cauchy sequence in (𝑋, 𝑝), and so by the 𝜃-completeness of
(𝑋, 𝑝), there exists 𝑥

∗

∈ 𝑋 such that 𝑥
𝑛

𝜏𝑝

→ 𝑥
∗ and 𝑝(𝑥

∗

,

𝑥
∗

) = 𝜃; that is,

𝑝 (𝑥
𝑛
, 𝑥
∗

)
𝑤

→ 𝜃. (23)

For all 𝑘 ∈ N, by (6) and (p4),

𝑝 (𝑇𝑥
∗

, 𝑥
∗

) ⪯ 𝑝 (𝑇𝑥
∗

, 𝑥
2𝑘

) + 𝑝 (𝑥
2𝑘

, 𝑥
∗

)

= 𝑝 (𝑇𝑥
∗

, 𝑆𝑥
2𝑘−1

) + 𝑝 (𝑥
2𝑘

, 𝑥
∗

)

⪯ 𝐿
1

(𝑥
∗

, 𝑥
2𝑘−1

) 𝑝 (𝑥
∗

, 𝑥
2𝑘−1

)

+ 𝐿
2

(𝑥
∗

, 𝑥
2𝑘−1

) 𝑝 (𝑥
∗

, 𝑇𝑥
∗

)

+ 𝐿
3

(𝑥
∗

, 𝑥
2𝑘−1

) 𝑝 (𝑥
2𝑘−1

, 𝑥
2𝑘

)

+ 𝐿
4

(𝑥
∗

, 𝑥
2𝑘−1

)

× [𝑝 (𝑥
∗

, 𝑥
2𝑘

) + 𝑝 (𝑥
2𝑘−1

, 𝑇𝑥
∗

)]

+ 𝑝 (𝑥
2𝑘

, 𝑥
∗

)
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⪯ 𝐿
1

(𝑥
∗

, 𝑥
2𝑘−1

) 𝑝 (𝑥
∗

, 𝑥
2𝑘−1

)

+ 𝐿
2

(𝑥
∗

, 𝑥
2𝑘−1

) 𝑝 (𝑥
∗

, 𝑇𝑥
∗

)

+ 𝐿
3

(𝑥
∗

, 𝑥
2𝑘−1

)

× [𝑝 (𝑥
2𝑘−1

, 𝑥
∗

) + 𝑝 (𝑥
∗

, 𝑥
2𝑘

)]

+ 𝐿
4

(𝑥
∗

, 𝑥
2𝑘−1

)

× [𝑝 (𝑥
∗

, 𝑥
2𝑘

) + 𝑝 (𝑥
2𝑘−1

, 𝑥
∗

)

+𝑝 (𝑥
∗

, 𝑇𝑥
∗

)] + 𝑝 (𝑥
2𝑘

, 𝑥
∗

) ,

(24)

and so

[𝐼 − 𝐿
2

(𝑥
∗

, 𝑥
2𝑘−1

) − 𝐿
4

(𝑥
∗

, 𝑥
2𝑘−1

)] 𝑝 (𝑇𝑥
∗

, 𝑥
∗

)

⪯ [𝐿
1

(𝑥
∗

, 𝑥
2𝑘−1

) + 𝐿
3

(𝑥
∗

, 𝑥
2𝑘−1

)

+ 𝐿
4

(𝑥
∗

, 𝑥
2𝑘−1

)] 𝑝 (𝑥
∗

, 𝑥
2𝑘−1

)

+ [𝐼 + 𝐿
3

(𝑥
∗

, 𝑥
2𝑘−1

) + 𝐿
4

(𝑥
∗

, 𝑥
2𝑘−1

)] 𝑝 (𝑥
2𝑘

, 𝑥
∗

) .

(25)

Act the above inequality with �̃�
2
(𝑥
∗

, 𝑥
2𝑘−1

); then, by �̃�
2

: 𝑋 ×

𝑋 → L,

𝜃 ⪯ 𝑝 (𝑇𝑥
∗

, 𝑥
∗

)

⪯ 𝐾
2,2𝑘−1

𝑝 (𝑥
∗

, 𝑥
2𝑘−1

) + 𝐾
3,2𝑘−1

𝑝 (𝑥
2𝑘

, 𝑥
∗

) , ∀𝑘 ∈ N,

(26)

where 𝐾
2,2𝑘−1

= 𝐾
2
(𝑥
∗

, 𝑥
2𝑘−1

) and 𝐾
3,2𝑘−1

= 𝐾
3
(𝑥
∗

, 𝑥
2𝑘−1

). It
is clear that {𝐾

2,2𝑘−1
}, {𝐾
3,2𝑘−1

} ⊂ L and sup
𝑘
‖𝐾
3,2𝑘−1

‖ <

+∞, sup
𝑘
‖𝐾
3,2𝑘−1

‖ < +∞ by 𝑙
1
𝑙
2

< 1 and 𝑙
3

< +∞. Then,
it follows from Lemma 3 and (23) that

𝐾
2,2𝑘−1

𝑝 (𝑥
∗

, 𝑥
2𝑘−1

) + 𝐾
3,2𝑘−1

𝑝 (𝑥
2𝑘

, 𝑥
∗

)
𝑤

→ 𝜃, (27)

which together with Lemma 1 and (26) implies that 𝑝(𝑇𝑥
∗

,

𝑥
∗

) = 𝜃. Therefore, 𝑇𝑥
∗

= 𝑥
∗ by (p1) and (p3). Similarly, we

can show that 𝑆𝑥
∗

= 𝑥
∗. Hence, 𝑥

∗ is a common fixed point
of 𝑇 and 𝑆.

Now, we show the uniqueness of fixed point. Let 𝑥 and 𝑥
∗

be two common fixed points of 𝑇 and 𝑆. Then, by (6), (p3),
and 𝐿

𝑖
: 𝑋 × 𝑋 → L (𝑖 = 2, 3),

𝑝 (𝑥
∗

, 𝑥) = 𝑝 (𝑇𝑥
∗

, 𝑆𝑥)

⪯ 𝐿
1

(𝑥
∗

, 𝑥) 𝑝 (𝑥
∗

, 𝑥) + 𝐿
2

(𝑥
∗

, 𝑥) 𝑝 (𝑥
∗

, 𝑇𝑥
∗

)

+ 𝐿
3

(𝑥
∗

, 𝑥) 𝑝 (𝑥, 𝑆𝑥)

+ 𝐿
4

(𝑥
∗

, 𝑥) [𝑝 (𝑥
∗

, 𝑆𝑥) + 𝑝 (𝑥, 𝑇𝑥
∗

)]

= [𝐿
1

(𝑥
∗

, 𝑥) + 2𝐿
4

(𝑥
∗

, 𝑥)] 𝑝 (𝑥
∗

, 𝑥)

+ 𝐿
2

(𝑥
∗

, 𝑥) 𝑝 (𝑥
∗

, 𝑥
∗

) + 𝐿
3

(𝑥
∗

, 𝑥) 𝑝 (𝑥, 𝑥)

⪯ [𝐿
1

(𝑥
∗

, 𝑥) + 𝐿
2

(𝑥
∗

, 𝑥)

+𝐿
3

(𝑥
∗

, 𝑥) + 2𝐿
4

(𝑥
∗

, 𝑥)] 𝑝 (𝑥
∗

, 𝑥) ,

(28)

and so

[𝐼 − 𝐿
1

(𝑥
∗

, 𝑥) − 𝐿
2

(𝑥
∗

, 𝑥) − 𝐿
3

(𝑥
∗

, 𝑥)

−2𝐿
4

(𝑥
∗

, 𝑥)] 𝑝 (𝑥
∗

, 𝑥) ⪯ 𝜃.

(29)

It follows from (9) that the inverse of 𝐼 − 𝐿
1
(𝑥
∗

, 𝑥) −

𝐿
2
(𝑥
∗

, 𝑥) − 𝐿
3
(𝑥
∗

, 𝑥) − 2𝐿
4
(𝑥
∗

, 𝑥) exists (denoted by
[𝐼 − 𝐿

1
(𝑥
∗

, 𝑥) − 𝐿
2
(𝑥
∗

, 𝑥) − 𝐿
3
(𝑥
∗

, 𝑥) − 2𝐿
4
(𝑥
∗

, 𝑥)]
−1), and

[𝐼 − 𝐿
1
(𝑥
∗

, 𝑥) − 𝐿
2
(𝑥
∗

, 𝑥) − 𝐿
3
(𝑥
∗

, 𝑥) − 2𝐿
4
(𝑥
∗

, 𝑥)]
−1

∈ L
by Neumann’s formula. Act (29) with [𝐼 − 𝐿

1
(𝑥
∗

,

𝑥) − 𝐿
2
(𝑥
∗

, 𝑥) − 𝐿
3
(𝑥
∗

, 𝑥) − 2𝐿
4
(𝑥
∗

, 𝑥)]
−1; then, 𝑝(𝑥

∗

, 𝑥) ⪯

𝜃, and hence 𝑥 = 𝑥
∗ by (p1) and (p3). The proof is comp-

leted.

Remark 5. Theorem 3 of [23] is a special case of Theorem 4
with 𝑇 = 𝑆 and 𝐿

𝑖
(𝑥, 𝑦) ≡ 𝑐

𝑖
𝐼 (𝑖 = 1, 2, 3, 4), where 𝑐

𝑖
(𝑖 =

1, 2, 3, 4) are nonnegative numbers such that 𝑐
1

+𝑐
2

+𝑐
3

+2𝑐
4

<

1.
Note that Theorem 4 is still valid if 𝐿

𝑖
(𝑖 = 1, 2, 3, 4) are

replaced with nonnegative bounded real functions; then, we
have the following corollary for which 𝐸 is not necessarily
confined to a normed vector space.

Corollary 6. Let (𝑋, 𝑝) be a 𝜃-complete partial cone metric
space over a solid cone 𝑃 of a topological vector space 𝐸 and
𝑇, 𝑆 : 𝑋 → 𝑋. Assume that there exist four nonnegative boun-
ded functions 𝛼

𝑖
: 𝑋 × 𝑋 → [0, +∞) (𝑖 = 1, 2, 3, 4) such that

𝑝 (𝑇𝑥, 𝑆𝑦) ⪯ 𝛼
1

(𝑥, 𝑦) 𝑝 (𝑥, 𝑦)

+ 𝛼
2

(𝑥, 𝑦) 𝑝 (𝑥, 𝑇𝑥) + 𝛼
3

(𝑥, 𝑦) 𝑝 (𝑦, 𝑆𝑦)

+ 𝛼
4

(𝑥, 𝑦) [𝑝 (𝑥, 𝑆𝑦) + 𝑝 (𝑦, 𝑇𝑥)] ,

∀𝑥, 𝑦 ∈ 𝑋.

(30)

If

𝛼
1

(𝑥, 𝑦) + 𝛼
2

(𝑥, 𝑦) + 𝛼
3

(𝑥, 𝑦) + 2𝛼
4

(𝑥, 𝑦) < 1,

∀𝑥, 𝑦 ∈ 𝑋,

(31)

𝑚
1
𝑚
2

< 1 and 𝑚
3

< +∞, where

𝑚
1

= sup
𝑥,𝑦∈𝑋

𝛼
1

(𝑥, 𝑦) + 𝛼
2

(𝑥, 𝑦) + 𝛼
4

(𝑥, 𝑦)

1 − 𝛼
3

(𝑥, 𝑦) − 𝛼
4

(𝑥, 𝑦)
,

𝑚
2

= sup
𝑥,𝑦∈𝑋

𝛼
1

(𝑥, 𝑦) + 𝛼
3

(𝑥, 𝑦) + 𝛼
4

(𝑥, 𝑦)

1 − 𝛼
2

(𝑥, 𝑦) − 𝛼
4

(𝑥, 𝑦)
,

𝑚
3

= sup
𝑥,𝑦∈𝑋

1 + 𝛼
3

(𝑥, 𝑦) + 𝛼
4

(𝑥, 𝑦)

1 − 𝛼
2

(𝑥, 𝑦) − 𝛼
4

(𝑥, 𝑦)
.

(32)

Then, 𝑇 and 𝑆 have a unique common fixed point 𝑥
∗

∈ 𝑋 such
that, for each 𝑥

0
∈ 𝑋, 𝑥

𝑛

𝜏𝑝

→ 𝑥
∗, where 𝑥

𝑛
is defined by (11).

Corollary 7. Let (𝑋, 𝑝) be a 𝜃-complete partial cone metric
space over a solid cone 𝑃 of a normed vector space (𝐸, ‖ ⋅ ‖), and
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let 𝑇, 𝑆 : 𝑋 → 𝑋 be contractions restricted with positive linear
bounded mappings. If

𝐴
1

+ 𝐴
2

+ 𝐴
4

 +
𝐴
3

+ 𝐴
4

 < 1,

𝐴
1

+ 𝐴
3

+ 𝐴
4

 +
𝐴
2

+ 𝐴
4

 < 1,

(33)

then 𝑇 and 𝑆 have a unique common fixed point 𝑥
∗

∈ 𝑋 such
that, for each 𝑥

0
∈ 𝑋, 𝑥

𝑛

𝜏𝑝

→ 𝑥
∗, where 𝑥

𝑛
is defined by (11).

Proof. Let 𝐿
𝑖
(𝑥, 𝑦) ≡ 𝐴

𝑖
(𝑖 = 1, 2, 3, 4). It is easy to check that

(6) holds with 𝐿
𝑖
(𝑥, 𝑦) ≡ 𝐴

𝑖
(𝑖 = 1, 2, 3, 4), 𝐿

𝑖
, 𝐾
𝑖

: 𝑋 × 𝑋 →

L (𝑖 = 1, 2, 3, 4), where 𝐾
1
(𝑥, 𝑦) ≡ (𝐼 − 𝐴

3
− 𝐴
4
)
−1

(𝐴
1

+

𝐴
2

+ 𝐴
4
), 𝐾
2
(𝑥, 𝑦) ≡ (𝐼 − 𝐴

2
− 𝐴
4
)
−1

(𝐴
1

+ 𝐴
3

+ 𝐴
4
), and

𝐾
3
(𝑥, 𝑦) ≡ (𝐼−𝐴

2
−𝐴
4
)
−1

(𝐼+𝐴
3
+𝐴
4
). By (33) andNeumann’s

formula,
𝐾
1

(𝑥, 𝑦)
 ≤


(𝐼 − 𝐴

3
− 𝐴
4
)
−1

𝐴
1

+ 𝐴
2

+ 𝐴
4



≤

𝐴
1

+ 𝐴
2

+ 𝐴
4



1 −
𝐴
3

+ 𝐴
4



< 1,

𝐾
2

(𝑥, 𝑦)
 ≤


(𝐼 − 𝐴

2
− 𝐴
4
)
−1

𝐴
1

+ 𝐴
3

+ 𝐴
4



≤

𝐴
1

+ 𝐴
3

+ 𝐴
4



1 −
𝐴
2

+ 𝐴
4



< 1,

𝐾
3

(𝑥, 𝑦)
 ≤


(𝐼 − 𝐴

2
− 𝐴
4
)
−1

𝐼 + 𝐴
3

+ 𝐴
4



≤
2

1 −
𝐴
2

+ 𝐴
4



< +∞,

(34)

for each 𝑥, 𝑦 ∈ 𝑋; that is, 𝑙
1
𝑙
2

< 1 and 𝑙
3

< +∞. Note that
both (7) and (10) hold with 𝐿

𝑖
(𝑥, 𝑦) ≡ 𝐴

𝑖
(𝑖 = 1, 2, 3, 4) by

(33); then, the conclusion directly follows from Theorem 4.
The proof is completed.

Note that (33) hold naturally if ‖𝐴
1
‖ + ‖𝐴

2
‖ + ‖𝐴

3
‖ +

2‖𝐴
4
‖ < 1. In this case, Corollary 7 holds true.

The following common fixed point theorem improves
Theorem 2 of [23].

Theorem 8. Let (𝑋, 𝑝) be a 𝜃-complete partial cone metric
space over a solid cone 𝑃 of a normed vector space (𝐸, ‖ ⋅ ‖)

and 𝑇, 𝑆 : 𝑋 → 𝑋. Assume that there exists 𝐴 ∈ L such that

𝑝 (𝑇𝑥, 𝑆𝑦) ⪯ 𝐴𝑝 (𝑥, 𝑦) , ∀𝑥, 𝑦 ∈ 𝑋. (35)

If 𝜌(𝐴) < 1, then 𝑇 and 𝑆 have a unique common fixed point
𝑥
∗

∈ 𝑋 such that, for each 𝑥
0

∈ 𝑋, there exists some positive
integer 𝑛

0
such that 𝑥

𝑛

𝜏𝑝

→ 𝑥
∗, where 𝑥

𝑛
is defined by

𝑥
𝑛+1

= {
𝑇
𝑛0𝑥
𝑛
, 𝑛 is an even number,

𝑆
𝑛0𝑥
𝑛
, 𝑛 is an odd number.

(36)

Proof. By 𝜌(𝐴) < 1 and Gelfand’s formula, there exists 0 <

𝛽 < 1 such that lim
𝑛→∞

𝑛√‖𝐴𝑛‖ = 𝜌(𝐴) ≤ 𝛽, which implies
that there exists a positive integer 𝑛

0
such that

𝐴
𝑛 ≤ 𝛽

𝑛

, ∀𝑛 ≥ 𝑛
0
. (37)

By (35), (36), and (p2),

𝑝 (𝑥
2𝑘+1

, 𝑥
2𝑘+2

) = 𝑝 (𝑇
𝑛0𝑥
2𝑘

, 𝑆
𝑛0𝑥
2𝑘+1

)

⪯ 𝐴
𝑛0𝑝 (𝑥

2𝑘
, 𝑥
2𝑘+1

) ,

𝑝 (𝑥
2𝑘+2

, 𝑥
2𝑘+3

) = 𝑝 (𝑇
𝑛0𝑥
2𝑘+2

, 𝑆
𝑛0𝑥
2𝑘+1

)

⪯ 𝐴
𝑛0𝑝 (𝑥

2𝑘+1
, 𝑥
2𝑘+2

) , ∀𝑘 ∈ N

(38)

and so

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ⪯ 𝐴
𝑛0𝑝 (𝑥

𝑛−1
, 𝑥
𝑛
) , ∀𝑛 ∈ N, (39)

which together with 𝐴 ∈ L implies that

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ⪯ 𝐴
𝑛𝑛0𝑝 (𝑥

0
, 𝑥
1
) , ∀𝑛 ∈ N. (40)

Thus, by (p4),

𝑝 (𝑥
𝑛
, 𝑥
𝑚

) ⪯

𝑚−1

∑

𝑖=𝑛

𝑝 (𝑥
𝑖
, 𝑦
𝑖+1

)

⪯

𝑚−1

∑

𝑖=𝑛

𝐴
𝑖𝑛0𝑝 (𝑥

0
, 𝑥
1
) , ∀𝑚 > 𝑛.

(41)

It follows from (37) that



𝑚−1

∑

𝑖=𝑛

𝐴
𝑖𝑛0𝑝 (𝑥

0
, 𝑥
1
)



≤
𝑝 (𝑥
0
, 𝑥
1
)


𝑚−1

∑

𝑖=𝑛

𝐴
𝑛0
𝑖

≤
𝑝 (𝑥
0
, 𝑥
1
)


𝑚−1

∑

𝑖=𝑛

𝛽
𝑖𝑛0

≤
𝛽
𝑛𝑛0

𝑝 (𝑥
0
, 𝑥
1
)


1 − 𝛽𝑛0
, ∀𝑚 > 𝑛,

(42)

which implies ∑
𝑚−1

𝑖=𝑛
𝐴
𝑖𝑛0𝑝(𝑥

0
, 𝑥
1
)
‖⋅‖

→ 𝜃, and hence
∑
𝑚−1

𝑖=𝑛
𝐴
𝑖𝑛0𝑝(𝑥

0
, 𝑥
1
)
𝑤

→ 𝜃 by Lemma 2.Therefore, by Lemma 1
and (41), we get 𝑝(𝑥

𝑛
, 𝑥
𝑚

)
𝑤

→ 𝜃; that is, {𝑥
𝑛
} is a 𝜃-Cauchy

sequence in (𝑋, 𝑝). Then, by analogy with the proof of
Theorem 4, by 𝐴 ∈ L, 𝜌(𝐴) < 1 and Lemma 3, we can prove
that there exists some 𝑥

∗

∈ 𝑋 with 𝑝(𝑥
∗

, 𝑥
∗

) = 𝜃 such that
𝑝(𝑥
𝑛
, 𝑥
∗

)
𝑤

→ 𝜃, and 𝑥
∗ is the unique common fixed point of

𝑇
𝑛0 and 𝑆

𝑛0 . For this 𝑥
∗, we have 𝑇

𝑛0(𝑇𝑥
∗

) = 𝑇(𝑇
𝑛0𝑥
∗

) = 𝑇𝑥
∗

and 𝑆
𝑛0(𝑆𝑥
∗

) = 𝑆(𝑆
𝑛0𝑥
∗

) = 𝑆𝑥
∗; that is, 𝑇𝑥

∗ and 𝑆𝑥
∗ are fixed

points of 𝑇
𝑛0 and 𝑆

𝑛0 , respectively. It follows from (35) and
𝑝(𝑥
∗

, 𝑥
∗

) = 𝜃 that 𝑝(𝑇𝑥
∗

, 𝑆𝑥
∗

) ⪯ 𝐿𝑝(𝑥
∗

, 𝑥
∗

) = 𝜃, and hence
𝑇𝑥
∗

= 𝑆𝑥
∗ by (p1) and (p3).This shows that𝑇𝑥

∗ is a common
fixed point of𝑇

𝑛0 and 𝑆
𝑛0 . Note that 𝑥

∗ is the unique common
fixed point of 𝑇

𝑛0 and 𝑆
𝑛0 ; then, 𝑇𝑥

∗

= 𝑆𝑥
∗

= 𝑥
∗; that is, 𝑥

∗

is a common fixed point of 𝑇 and 𝑆. Moreover, it is easy to
show that 𝑥

∗ is the unique common fixed point of 𝑇 and 𝑆 by
𝐴 ∈ L and 𝜌(𝐴) < 1. The proof is completed.

Example 9. Let 𝐸 = 𝐶
1

R[0, 1] with the norm ‖𝑢‖ = ‖𝑢‖
∞

+

‖𝑢


‖
∞
, and 𝑋 = 𝑃 = {𝑢 ∈ 𝐸 : 𝑢(𝑡) ≥ 0, 𝑡 ∈ [0, 1]}, which is
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nonnormal solid cone [24]. Define amapping𝑝 : 𝑋×𝑋 → 𝑃

by

𝑝 (𝑥, 𝑦) = {
𝑥, 𝑥 = 𝑦,

𝑥 + 𝑦, otherwise.
(43)

It follows from Example 2 of [22] that (𝑋, 𝑝) is a partial cone
metric space. Let (𝐴𝑥)(𝑡) = ∫

𝑡

0

𝑥(𝑠)𝑑𝑠 for each 𝑥 ∈ 𝑋 and
𝑡 ∈ [0, 1], 𝑇𝑥 = 𝐴𝑥/2 and 𝑆𝑥 = 𝐴𝑥/3 for each 𝑥 ∈ 𝑋. Clearly,
𝜃 is the unique common fixed point of 𝑇 and 𝑆.

By the definitions of 𝑝, 𝑇, 𝑆, and 𝐴,

𝑝 (𝑇𝑥, 𝑆𝑦)

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

𝜃 = 𝐴𝑝 (𝑥, 𝑦) , 𝑥 = 𝑦 = 𝜃,

5𝐴𝑥

6
⪯ 𝐴𝑥 = 𝐴𝑝 (𝑥, 𝑦) , 𝑥 = 𝑦 ̸= 𝜃,

𝐴𝑥

2
⪯

5𝐴𝑥

2
= 𝐴𝑝 (𝑥, 𝑦) , 𝑥 ̸= 𝑦, 𝑦 =

3𝑥

2
,

𝐴𝑥

2
+

𝐴𝑦

3
⪯ 𝐴𝑥 + 𝐴𝑦 = 𝐴𝑝 (𝑥, 𝑦) , 𝑥 ̸= 𝑦, 𝑦 ̸=

3𝑥

2
;

(44)

that is, (35) is satisfied. It is clear that (𝐴
𝑛

𝑥)(𝑡) ≤ (𝑡
𝑛

/𝑛!)‖𝑥‖
∞

for each 𝑡 ∈ [0, 1], and hence ‖𝐴
𝑛

𝑥‖
∞

≤ (1/𝑛!)‖𝑥‖
∞
. Note

that (𝐴
𝑛

𝑥)


(𝑡) = (𝐴
𝑛−1

𝑥)(𝑡), and then

𝐴
𝑛

𝑥
 =

𝐴
𝑛

𝑥
∞ +


(𝐴
𝑛

𝑥)
∞

≤ (
1

𝑛!
+

1

(𝑛 − 1)!
) ‖𝑥‖
∞

≤ (
1

𝑛!
+

1

(𝑛 − 1)!
) ‖𝑥‖ ,

(45)

which implies that ‖𝐴
𝑛

‖ ≤ (1
𝑛

/𝑛!) + (1
𝑛

/(𝑛 − 1)!). Therefore,
by Gelfand’s formula, 𝜌(𝐴) = lim

𝑛→∞

𝑛√‖𝐴𝑛‖ = 0 since
lim
𝑛→∞

(1/
𝑛√𝑛!) = 0, and hence 𝑇 and 𝑆 have a unique

common fixed point byTheorem 8.

Finally, we present a fixed point theorem of contractions
restricted with positive linear bounded mappings, which
generalizes Theorem 3.1 of [22].

Theorem 10. Let (𝑋, 𝑝) be a 𝜃-complete partial cone metric
space over a solid cone 𝑃 of a normed vector space (𝐸, ‖ ⋅ ‖) and
𝑇 : 𝑋 → 𝑋. Assume that there exist 𝐴

𝑖
∈ L (𝑖 = 1, 2, 3, 4, 5)

such that

𝑝 (𝑇𝑥, 𝑇𝑦) ⪯ 𝐴
1
𝑝 (𝑥, 𝑦) + 𝐴

2
𝑝 (𝑥, 𝑇𝑥)

+ 𝐴
3
𝑝 (𝑦, 𝑇𝑦) + 𝐴

4
𝑝 (𝑥, 𝑇𝑦)

+ 𝐴
5
𝑝 (𝑦, 𝑇𝑥) , ∀𝑥, 𝑦 ∈ 𝑋.

(46)

If ‖𝐴
2

+ 𝐴
4
‖ < 1 and

𝐴
2

+ 𝐴
3

+ 𝐴
4

+ 𝐴
5

 +
2𝐴
1

+ 𝐴
2

+ 𝐴
3

+ 𝐴
4

+ 𝐴
5

 < 2,

(47)

then 𝑇 and 𝑆 have a unique common fixed point 𝑥
∗

∈ 𝑋 such
that, for each 𝑥

0
∈ 𝑋, 𝑥

𝑛

𝜏𝑝

→ 𝑥
∗, where 𝑥

𝑛+1
= 𝑇𝑥
𝑛
for all

𝑛 ∈ N.

Proof. Let 𝐵 = (𝐴
2

+ 𝐴
3

+ 𝐴
4

+ 𝐴
5
)/2. Then, ‖𝐵‖ < 1 by

(47), and so the inverse of 𝐵 exists (denoted by (𝐼 − 𝐵)
−1). It

follows from Neumann’s formula that (𝐼 − 𝐵)
−1

∈ L and


(𝐼 − 𝐵)

−1


≤
1

1 − ‖𝐵‖
. (48)

Let 𝐾 = (𝐼 − 𝐵)
−1

(𝐴
1

+ 𝐵). Then, 𝐾 ∈ L by (𝐼 − 𝐵)
−1

∈ L and
𝐴
𝑖

∈ L (𝑖 = 1, 2, 3, 4, 5). Moreover, by (47) and (48),

‖𝐾‖ ≤

(𝐼 − 𝐵)

−1


𝐴
1

+ 𝐵
 ≤

𝐴
1

+ 𝐵


1 − ‖𝐵‖
< 1. (49)

By (46), (p4), and 𝐴
4

∈ L,

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑝 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛
)

⪯ 𝐴
1
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝐴
2
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
)

+ 𝐴
3
𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) + 𝐴
4
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛+1

)

+ 𝐴
5
𝑝 (𝑥
𝑛
, 𝑥
𝑛
)

⪯ 𝐴
1
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝐴
2
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
)

+ 𝐴
3
𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)

+ 𝐴
4

[𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

) − 𝑝 (𝑥
𝑛
, 𝑥
𝑛
)]

+ 𝐴
5
𝑝 (𝑥
𝑛
, 𝑥
𝑛
) , ∀𝑛 ∈ N.

(50)

Similarly, take 𝑥 = 𝑥
𝑛
and 𝑦 = 𝑥

𝑛−1
in (46), and we get

𝑝 (𝑥
𝑛+1

, 𝑥
𝑛
) = 𝑝 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1

)

⪯ 𝐴
1
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝐴
2
𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)

+ 𝐴
3
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝐴
4
𝑝 (𝑥
𝑛
, 𝑥
𝑛
)

+ 𝐴
5
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛+1

)

⪯ 𝐴
1
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝐴
2
𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

)

+ 𝐴
3
𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝐴
4
𝑝 (𝑥
𝑛
, 𝑥
𝑛
)

+ 𝐴
5

[𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) + 𝑝 (𝑥

𝑛
, 𝑥
𝑛+1

)

−𝑝 (𝑥
𝑛
, 𝑥
𝑛
)] , ∀𝑛 ∈ N.

(51)

It follows from (50) and (51) that

(𝐼 − 𝐵) 𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ⪯ (𝐴
1

+ 𝐵) 𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) , ∀𝑛 ∈ N.

(52)

Act the above inequality with (𝐼 − 𝐵)
−1; then, by (𝐼 − 𝐵)

−1

∈

L,

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ⪯ 𝐾𝑝 (𝑥
𝑛−1

, 𝑥
𝑛
) , ∀𝑛 ∈ N, (53)
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and so, by 𝐾 ∈ L,

𝑝 (𝑥
𝑛
, 𝑥
𝑛+1

) ⪯ 𝐾
𝑛

𝑝 (𝑥
0
, 𝑥
1
) , ∀𝑛 ∈ N. (54)

By (p4),

𝑝 (𝑥
𝑛
, 𝑥
𝑚

) ⪯

𝑚−1

∑

𝑖=𝑛

𝑝 (𝑥
𝑖
, 𝑥
𝑖+1

) ⪯

𝑚−1

∑

𝑖=𝑛

𝐾
𝑖

𝑝 (𝑥
0
, 𝑥
1
) , ∀𝑚 > 𝑛.

(55)

It follows from (49) that


𝑚−1

∑

𝑖=𝑛

𝐾
𝑖

𝑝 (𝑥
0
, 𝑥
1
)



≤
‖𝐾‖
𝑛 𝑝 (𝑥

0
, 𝑥
1
)


1 − ‖𝐾‖
, (56)

which implies ∑
𝑚−1

𝑖=𝑛
𝐾
𝑖

𝑝(𝑥
0
, 𝑥
1
)
‖⋅‖

→ 𝜃, and hence
∑
𝑚−1

𝑖=𝑛
𝐾
𝑖

𝑝(𝑥
0
, 𝑥
1
)
𝑤

→ 𝜃 by Lemma 2. Therefore, by Lemma 1
and (55), 𝑝(𝑥

𝑛
, 𝑥
𝑚

)
𝑤

→ 𝜃; that is, {𝑥
𝑛
} is a 𝜃-Cauchy sequence

in (𝑋, 𝑝). By analogy with the proof of Theorem 4, by
𝐴
𝑖

∈ L (𝑖 = 1, 2, 3, 4, 5), ‖𝐴
2

+ 𝐴
4
‖ < 1, and Lemma 3, we

can prove that there exists some 𝑥
∗

∈ 𝑋 with 𝑝(𝑥
∗

, 𝑥
∗

) = 𝜃

such that 𝑝(𝑥
𝑛
, 𝑥
∗

)
𝑤

→ 𝜃 and 𝑥
∗ is a fixed point of 𝑇. Note

that (47) implies ‖𝐴
1

+ 𝐴
2

+ 𝐴
3

+ 𝐴
4

+ 𝐴
5
‖ < 1; then, similar

to the proof of Theorem 4, we can show 𝑥
∗ is the unique

fixed point of 𝑇. The proof is completed.

Remark 11. It is easy to check that all the conditions of
Theorem 10 are satisfied if ∑

5

𝑖=1
‖𝐴
𝑖
‖ < 1. Therefore,

Theorem 10 is valid with ∑
𝑛

𝑖=1
‖𝐴
𝑖
‖ < 1, and hence Theorem

3.1 of [22] is a special case of Theorem 10 with 𝐴
𝑖

= 𝑐
𝑖
𝐼 (𝑖 =

1, 2, 3, 4, 5), where 𝑐
𝑖

(𝑖 = 1, 2, 3, 4, 5) are four nonnegative
real numbers such that ∑

5

𝑖=1
𝑐
𝑖

< 1.
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