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One of themost important advantages of collocationmethod is the possibility of dealingwith nonlinear partial differential equations
(PDEs) as well as PDEs with variable coefficients. A numerical solution based on a Jacobi collocation method is extended to
solve nonlinear coupled hyperbolic PDEs with variable coefficients subject to initial-boundary nonlocal conservation conditions.
This approach, based on Jacobi polynomials and Gauss-Lobatto quadrature integration, reduces solving the nonlinear coupled
hyperbolic PDEs with variable coefficients to a system of nonlinear ordinary differential equation which is far easier to solve. In
fact, we deal with initial-boundary coupled hyperbolic PDEs with variable coefficients as well as initial-nonlocal conditions. Using
triangular, soliton, and exponential-triangular solutions as exact solutions, the obtained results show that the proposed numerical
algorithm is efficient and very accurate.

1. Introduction

For several decades, numericalmethods have been developed
to obtain more accurate solutions of differential and integral
equations. Spectral method [1–9] is one of the family of
weighted residual numerical methods for solving various
problems, including variable coefficient and nonlinear dif-
ferential equations [10, 11], integral equations [12, 13], inte-
grodifferential equations [14, 15], fractional orders differential
equations [16–19], and function approximation and varia-
tional problems [20]. The collocation method [21–28] can be
classified as a special type of spectral methods. In the last
few years, the collocation method has been introduced as a
powerful approximation method for numerical solutions of
all kinds of initial-boundary value problems.

Exact solutions for initial value problem for some non-
conservative hyperbolic systems are presented in [29], while
the analytical study of variable coefficient mixed hyperbolic
partial differential problems is discussed in [30]. The solitary
and periodic wave solutions have been studied for some
kinds of hyperbolic Klein-Gordon equations in [31, 32].

Other numerical methods based on the boundary integral
equation [33] and numerical integration techniques [34] are
used to numerically solve different types of hyperbolic partial
differential problems. In [35, 36], finite difference scheme
is considered to numerically solve hyperbolic equations.
Pseudospectral methods are used in [37–40] to solve Klein-
Gordon equations. In [41], Dehghan and Shokri used the
radial basis functions to solve a two-dimensional Sine-
Gordon equation; moreover in [42] they developed numer-
ical scheme to solve the one-dimensional nonlinear Klein-
Gordon equationwith quadratic and cubic nonlinearity using
collocation points and approximating the solution usingThin
Plate Splines and RBFs.

There are no results on Jacobi-Gauss-Lobatto collocation
(J-GL-C) method for solving nonlinear coupled hyperbolic
PDEs with variable coefficients subject to initial-boundary
and nonlocal conditions.Therefore, the objective of this work
is to present this method to numerically solve four nonlinear
coupled hyperbolic PDEs with variable coefficients. By using
collocation method, exponential convergence for the spatial
variables can be achieved to approximate the solution of PDE.
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The computerized mathematical algorithm is the main key
to apply this method for solving the problem. Moreover,
the nonlocal conservation conditions are efficiently treated
by Jacobi-Gauss-Lobatto quadrature rule at (𝑁 + 1) nodes
to obtain a system of ODEs in time and then proper
initial value software can be applied to solve this system of
ODEs. Several illustrative problems with various kinds of
exact solutions such as triangular, soliton, and exponential-
triangular solutions are presented for demonstrating the high
accuracy of this scheme. Moreover, with the freedom of
selecting the Jacobi indexes 𝜃 and 𝜗, the scheme can be
calibrated for awide variety of problems. Finally, the accuracy
of the proposedmethod is demonstrated by solving some test
nonlinear problems.

A brief outline of this paper is as follows. We present
some properties of Jacobi polynomials in the next section.
The third section is divided into two subsections: the first
one deals with coupled nonlinear hyperbolic PDE with
initial-boundary conditions. The numerical treatment of
solve initial-nonlocal conservation conditions is developed
in Section 3.2. In Section 4 the proposed method is applied
to four different test problems to show the accuracy of our
method. In the last section, we present some observations and
conclusions.

2. Jacobi Polynomials

Some basic properties of Jacobi polynomials have been
recalled in this section. A basic property of the Jacobi
polynomials is that they are the eigenfunctions to a singular
Sturm-Liouville problem:

(1 − 𝑥
2
) 𝜙

(𝑥) + [𝜗 − 𝜃 + (𝜃 + 𝜗 + 2) 𝑥] 𝜙


(𝑥)

+ 𝑛 (𝑛 + 𝜃 + 𝜗 + 1) 𝜙 (𝑥) = 0.
(1)

We recall that the Jacobi polynomials satisfy the following
recurrence relation:

𝐽
(𝜃,𝜗)

𝑘+1
(𝑥)

= (𝑎
(𝜃,𝜗)

𝑘
𝑥 − 𝑏
(𝜃,𝜗)

𝑘
) 𝐽
(𝜃,𝜗)

𝑘
(𝑥) − 𝑐

(𝜃,𝜗)

𝑘
𝐽
(𝜃,𝜗)

𝑘−1
(𝑥) , 𝑘 ≥ 1,

𝐽
(𝜃,𝜗)

0
(𝑥) = 1, 𝐽

(𝜃,𝜗)

1
(𝑥) =

1

2
(𝜃 + 𝜗 + 2) 𝑥 +

1

2
(𝜃 − 𝜗) ,

(2)

where

𝑎
(𝜃,𝜗)

𝑘
=

(2𝑘 + 𝜃 + 𝜗 + 1) (2𝑘 + 𝜃 + 𝜗 + 2)

2 (𝑘 + 1) (𝑘 + 𝜃 + 𝜗 + 1)
,

𝑏
(𝜃,𝜗)

𝑘
=

(𝜗2 − 𝜃2) (2𝑘 + 𝜃 + 𝜗 + 1)

2 (𝑘 + 1) (𝑘 + 𝜃 + 𝜗 + 1) (2𝑘 + 𝜃 + 𝜗)
,

𝑐
(𝜃,𝜗)

𝑘
=

(𝑘 + 𝜃) (𝑘 + 𝜗) (2𝑘 + 𝜃 + 𝜗 + 2)

(𝑘 + 1) (𝑘 + 𝜃 + 𝜗 + 1) (2𝑘 + 𝜃 + 𝜗)
.

(3)

Beside the following relations

𝐽
(𝜃,𝜗)

𝑘
(−𝑥) = (−1)

𝑘
𝐽
(𝜃,𝜗)

𝑘
(𝑥) ,

𝐽
(𝜃,𝜗)

𝑘
(−1) =

(−1)
𝑘
Γ (𝑘 + 𝜗 + 1)

𝑘!Γ (𝜗 + 1)
.

(4)

Moreover, the 𝑞th derivative of 𝐽(𝜃,𝜗)
𝑘

(𝑥) can be obtained from

𝐷
(𝑞)
𝐽
(𝜃,𝜗)

𝑘
(𝑥) =

Γ (𝑗 + 𝜃 + 𝜗 + 𝑞 + 1)

2𝑞Γ (𝑗 + 𝜃 + 𝜗 + 1)
𝐽
(𝜃+𝑞,𝜗+𝑞)

𝑘−𝑞
(𝑥) . (5)

Let 𝑤(𝜃,𝜗)(𝑥) = (1 − 𝑥)
𝜃
(1 + 𝑥)

𝜗; then we define the weighted
space 𝐿2

𝑤
(𝜃,𝜗) as usual. The inner product and the norm of

𝐿
2

𝑤
(𝜃,𝜗) with respect to the weight function are defined as

follows:

(𝑢, V)
𝑤
(𝜃,𝜗) = ∫

1

−1

𝑢 (𝑥) V (𝑥) 𝑤(𝜃,𝜗) (𝑥) 𝑑𝑥,

‖𝑢‖
𝑤
(𝜃,𝜗) = (𝑢, 𝑢)

1/2

𝑤
(𝜃,𝜗) .

(6)

The set of Jacobi polynomials forms a complete 𝐿2
𝑤
(𝜃,𝜗)-

orthogonal system, and


𝐽
(𝜃,𝜗)

𝑘

𝑤(𝜃,𝜗)

= ℎ
𝑘
=

2𝜃+𝜗+1Γ (𝑘 + 𝜃 + 1) Γ (𝑘 + 𝜗 + 1)

(2𝑘 + 𝜃 + 𝜗 + 1) Γ (𝑘 + 1) Γ (𝑘 + 𝜃 + 𝜗 + 1)
.

(7)

3. The Problem and the Numerical Algorithm

In this section, we approximate the solution of coupled
nonlinear hyperbolic types equationswith two different kinds
of boundary conditions for space variable by using the Jacobi
collocation method.

3.1. Initial-Boundary Conditions. In what follows, we propose
an efficient numerical algorithm to solve the coupled nonlin-
ear hyperbolic types equations in the following form:

𝐷
2

𝑡
𝑢 (𝑦, 𝑡) = 𝛾𝑢 (𝑦, 𝑡) V (𝑦, 𝑡)

× (𝐷
𝑦
𝑢 (𝑦, 𝑡) + 𝐷

𝑡
𝑢 (𝑦, 𝑡)

+𝐷
𝑦
V (𝑦, 𝑡) + 𝐷

𝑡
V (𝑦, 𝑡))

+ 𝑔
1
(𝑦, 𝑡)𝐷

2

𝑦
𝑢 (𝑦, 𝑡) + 𝑔

2
(𝑦, 𝑡) ,

𝐷
2

𝑡
V (𝑦, 𝑡) = 𝛿𝑢 (𝑦, 𝑡) V (𝑦, 𝑡)

× (𝐷
𝑦
𝑢 (𝑦, 𝑡) + 𝐷

𝑡
𝑢 (𝑦, 𝑡)

+𝐷
𝑦
V (𝑦, 𝑡) + 𝐷

𝑡
V (𝑦, 𝑡))

+ 𝑔
3
(𝑦, 𝑡)𝐷

2

𝑦
V (𝑦, 𝑡) + 𝑔

4
(𝑦, 𝑡) ,

(𝑦, 𝑡) ∈ [𝐴, 𝐵] × [0, 𝑇] ,

(8)

related to the initial conditions,

𝑢 (𝑦, 0) = 𝑓
1
(𝑦) , V (𝑦, 0) = 𝑓

2
(𝑦) ,

𝐷
𝑡
𝑢 (𝑦, 0) = 𝑓

3
(𝑦) , 𝐷

𝑡
V (𝑦, 0) = 𝑓

4
(𝑦) , 𝑦 ∈ [𝐴, 𝐵] ,

(9)
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and the boundary conditions,

𝑢 (𝐴, 𝑡) = 𝑘
1
(𝑡) , 𝑢 (𝐵, 𝑡) = 𝑘

2
(𝑡) ,

V (𝐴, 𝑡) = 𝑘
3
(𝑡) , V (𝐵, 𝑡) = 𝑘

4
(𝑡) , 𝑡 ∈ [0, 𝑇] .

(10)

Starting with the transformations 𝑥 = ((2/(𝐵 − 𝐴))𝑦) +

((𝐴 + 𝐵)/(𝐴 − 𝐵)), 𝑤(𝑥, 𝑡) = 𝑢(𝑦, 𝑡), and 𝑧(𝑥, 𝑡) = V(𝑦, 𝑡).
Problem (8)–(10) will be a new problem in the spatial variable
𝑥 ∈ [−1, 1]. This transformation enable us to use the Jacobi
collocation method on [−1, 1],

𝐷
2

𝑡
𝑤 (𝑥, 𝑡) = 𝛾𝑤 (𝑥, 𝑡) 𝑧 (𝑥, 𝑡) (

2 (𝐷
𝑦
𝑤 (𝑥, 𝑡) + 𝐷

𝑦
𝑧 (𝑥, 𝑡))

𝐵 − 𝐴

+𝐷
𝑡
𝑤 (𝑥, 𝑡) + 𝐷

𝑡
𝑧 (𝑥, 𝑡) )

+
4𝑔
1
(𝑦, 𝑡)𝐷2

𝑦
𝑤 (𝑥, 𝑡)

(𝐵 − 𝐴)
2

+ 𝑔
2
(𝑦, 𝑡) ,

𝐷
2

𝑡
𝑧 (𝑥, 𝑡) = 𝛿𝑤 (𝑥, 𝑡) 𝑧 (𝑥, 𝑡) (

2 (𝐷
𝑦
𝑤 (𝑥, 𝑡) + 𝐷

𝑦
𝑧 (𝑥, 𝑡))

𝐵 − 𝐴

+𝐷
𝑡
𝑤 (𝑥, 𝑡) + 𝐷

𝑡
𝑧 (𝑥, 𝑡) )

+
4𝑔
3
(𝑦, 𝑡)𝐷2

𝑦
𝑧 (𝑥, 𝑡)

(𝐵 − 𝐴)
2

+ 𝑔
4
(𝑦, 𝑡) ,

(𝑦, 𝑡) ∈ [𝐴, 𝐵] × [0, 𝑇] ,

(11)

subject to a new set of initial and boundary conditions,

𝑤 (𝑥, 0) = 𝑓
5
(𝑥) , 𝐷

𝑡
𝑤 (𝑥, 0) = 𝑓

7
(𝑥) ,

𝑧 (𝑥, 0) = 𝑓
6
(𝑥) , 𝐷

𝑡
𝑧 (𝑥, 0) = 𝑓

4
(𝑥) , 𝑥 ∈ [−1, 1] ,

(12)

𝑤 (−1, 𝑡) = 𝑘
1
(𝑡) , 𝑤 (1, 𝑡) = 𝑘

2
(𝑡) ,

𝑧 (−1, 𝑡) = 𝑘
3
(𝑡) , 𝑧 (1, 𝑡) = 𝑘

4
(𝑡) , 𝑡 ∈ [0, 𝑇] .

(13)

Now, we are interested in using the J-GL-C method to
transform the previous coupled PDEs into system of ODEs.
In order to do this, we approximate the spatial variable using
J-GL-C method at some nodal points. The node points are
the set of points in a specified domain where the dependent
variable values are approximated. In general, the choice of the
location of the node points is optional, but taking the roots
of the Jacobi orthogonal polynomials referred to as Jacobi
collocation points gives particularly accurate solutions for the

spectral methods. Now, we outline the main step of the J-
GL-Cmethod for solving couples hyperbolic problem. Let us
expand the dependent variable in a Jacobi series,

𝑤 (𝑥, 𝑡) =

𝑁

∑
𝑗=0

𝑎
𝑗
(𝑡) 𝐽
(𝜃,𝜗)

𝑗
(𝑥) ,

𝑧 (𝑥, 𝑡) =

𝑁

∑
𝑗=0

𝑏j (𝑡) 𝐽
(𝜃,𝜗)

𝑗
(𝑥) .

(14)

And, in virtue of (6)-(7), we evaluate 𝑎
𝑗
(𝑡) and 𝑏

𝑗
(𝑡) by

𝑎
𝑗
(𝑡) =

1

ℎ
𝑗

∫
1

−1

𝑤 (𝑥, 𝑡) 𝑤
(𝜃,𝜗)

(𝑥) 𝐽
(𝜃,𝜗)

𝑗
(𝑥) 𝑑𝑥,

𝑏
𝑗
(𝑡) =

1

ℎ
𝑗

∫
1

−1

𝑧 (𝑥, 𝑡) 𝑤
(𝜃,𝜗)

(𝑥) 𝐽
(𝜃,𝜗)

𝑗
(𝑥) 𝑑𝑥.

(15)

The Jacobi-Gauss-Lobatto quadrature has been used to evalu-
ate the previous integrals accurately. For any𝜙 ∈ 𝑆

2𝑁−1
[−1, 1],

we have that

∫
1

−1

𝑤
(𝜃,𝜗)

(𝑥) 𝜙 (𝑥) 𝑑𝑥 =

𝑁

∑
𝑗=0

𝜛
(𝜃,𝜗)

𝑁,𝑗
𝜙 (𝑥
(𝜃,𝜗)

𝑁,𝑗
) . (16)

For any positive integer 𝑁, 𝑆
𝑁
[−1, 1] stands for the set of

polynomials of degree at most 𝑁, 𝑥(𝜃,𝜗)
𝑁,𝑗

(0 ≤ 𝑗 ≤ 𝑁)
and 𝜛

(𝜃,𝜗)

𝑁,𝑗
(0 ≤ 𝑗 ≤ 𝑁) are used as the nodes and the

corresponding Christoffel numbers in the interval [−1, 1],
respectively. Thanks to (6), the coefficients 𝑎

𝑗
(𝑡) in terms of

the solution at the collocation points can be approximated by

𝑎
𝑗
(𝑡) =

1

ℎ
𝑗

𝑁

∑
𝑖=0

𝐽
(𝜃,𝜗)

𝑗
(𝑥
(𝜃,𝜗)

𝑁,𝑖
) 𝜛
(𝜃,𝜗)

𝑁,𝑖
𝑤(𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡) ,

𝑏
𝑗
(𝑡) =

1

ℎ
𝑗

𝑁

∑
𝑖=0

𝐽
(𝜃,𝜗)

𝑗
(𝑥
(𝜃,𝜗)

𝑁,𝑖
) 𝜛
(𝜃,𝜗)

𝑁,𝑖
𝑧 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡) .

(17)

Due to (17), the approximate solution can be written as

𝑤 (𝑥, 𝑡) =

𝑁

∑
𝑖=0

(

𝑁

∑
𝑗=0

1

ℎ
𝑗

𝐽
(𝜃,𝜗)

𝑗
(𝑥
(𝜃,𝜗)

𝑁,𝑖
) 𝐽
(𝜃,𝜗)

𝑗
(𝑥) 𝜛
(𝜃,𝜗)

𝑁,𝑖
)

× 𝑤(𝑥
(𝜃,𝜗)

𝑁,𝑖
, 𝑡) ,

𝑧 (𝑥, 𝑡) =

𝑁

∑
𝑖=0

(

𝑁

∑
𝑗=0

1

ℎ
𝑗

𝐽
(𝜃,𝜗)

𝑗
(𝑥
(𝜃,𝜗)

𝑁,𝑖
) 𝐽
(𝜃,𝜗)

𝑗
(𝑥) 𝜛
(𝜃,𝜗)

𝑁,𝑖
)

× 𝑧 (𝑥
(𝜃,𝜗)

𝑁,𝑖
, 𝑡) .

(18)

Furthermore, if we differentiate (18) once and evaluate it at the
first𝑁+ 1 Jacobi-Gauss-Lobatto collocation points, it is easy
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to compute the first spatial partial derivative of the numerical
solution in terms of the values at these collocation points as

𝐷
𝑥
𝑤(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) =

𝑁

∑
𝑖=0

𝐴
𝑛𝑖
𝑤(𝑥
(𝜃,𝜗)

𝑁,𝑖
, 𝑡) ,

𝐷
𝑥
𝑧 (𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) =

𝑁

∑
𝑖=0

𝐴
𝑛𝑖
𝑧 (𝑥
(𝜃,𝜗)

𝑁,𝑖
, 𝑡) , 𝑛 = 0, 1, . . . , 𝑁,

(19)

where

𝐴
𝑛𝑖
=

𝑁

∑
𝑗=0

𝑗 + 𝜃 + 𝜗 + 1

2ℎ
𝑗

𝐽
(𝜃,𝜗)

𝑗
(𝑥
(𝜃,𝜗)

𝑁,𝑖
) 𝐽
(𝜃+1,𝜗+1)

𝑗−1

× (𝑥
(𝜃,𝜗)

𝑁,𝑛
) 𝜛
(𝜃,𝜗)

𝑁,𝑖
.

(20)

Accordingly, one can obtain the second spatial partial deriva-
tive as

𝐷
2

𝑥
𝑤(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) =

𝑁

∑
𝑖=0

𝐵
𝑛𝑖
𝑤(𝑥
(𝜃,𝜗)

𝑁,𝑖
, 𝑡) ,

𝐷
2

𝑥
𝑧 (𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) =

𝑁

∑
𝑖=0

𝐵
𝑛𝑖
𝑧 (𝑥
(𝜃,𝜗)

𝑁,𝑖
, 𝑡) , 𝑛 = 0, 1, . . . , 𝑁,

(21)

where

𝐵
𝑛𝑖
=

𝑁

∑
𝑗=0

(𝑗 + 𝜃 + 𝜗 + 2) (𝑗 + 𝜃 + 𝜗 + 1)

4ℎ
𝑗

𝐽
(𝜃,𝜗)

𝑗
(𝑥
(𝜃,𝜗)

𝑁,𝑖
)

× 𝐽
(𝜃+2,𝜗+2)

𝑗−2
(𝑥
(𝜃,𝜗)

𝑁,𝑛
) 𝜛
(𝜃,𝜗)

𝑁,𝑖
.

(22)

In the proposed J-GL-C method the residual of (11) is set
to zero at 𝑁 − 1 of Jacobi-Gauss-Lobatto points; moreover,
the boundary conditions (13) will be enforced at the two
collocation points −1 and 1. Therefore, the approximation of
(11)–(13) is

�̈�
𝑛
(𝑡) + 𝛾𝑤

𝑛
(𝑡) 𝑧
𝑛
(𝑡) (�̇�

𝑛
(𝑡) + �̇�

𝑛
(𝑡))

=
4𝑔
5
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) 𝑔
6
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) ∑
𝑁

𝑖=0
𝐵
𝑛𝑖
𝑤
𝑖
(𝑡)

(𝐵 − 𝐴)
2

+
2𝛾𝑤
𝑛
(𝑡) 𝑧
𝑛
(𝑡) (∑

𝑁

𝑖=0
𝐴
𝑛𝑖
(𝑤
𝑖
(𝑡) + 𝑧

𝑖
(𝑡)))

𝐵 − 𝐴
,

�̈�
𝑛
(𝑡) + 𝛿𝑤

𝑛
(𝑡) 𝑧
𝑛
(𝑡) (�̇�

𝑛
(𝑡) + �̇�

𝑛
(𝑡))

=
4𝑔
7
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) 𝑔
8
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) ∑
𝑁

𝑖=0
𝐵
𝑛𝑖
𝑧
𝑖
(𝑡)

(𝐵 − 𝐴)
2

+
2𝛿𝑤
𝑛
(𝑡) 𝑧
𝑛
(𝑡) (∑

𝑁

𝑖=0
𝐴
𝑛𝑖
(𝑤
𝑖
(𝑡) + 𝑧

𝑖
(𝑡)))

𝐵 − 𝐴
,

𝑛 = 1, . . . , 𝑁 − 1,

(23)

where

𝑤
𝑘
(𝑡) = 𝑤 (𝑥

(𝜃,𝜗)

𝑁,𝑘
, 𝑡) , 𝑧

𝑘
(𝑡) = 𝑧 (𝑥

(𝜃,𝜗)

𝑁,𝑘
, 𝑡) ,

𝑘 = 1, . . . , 𝑁 − 1.

(24)

This approach provides a (2𝑁 − 2) system of second order
ODEs in the expansion coefficients 𝑎

𝑗
(𝑡), 𝑏
𝑗
(𝑡),

�̈�
𝑛
(𝑡) + 𝛾𝑤

𝑛
(𝑡) 𝑧
𝑛
(𝑡) (�̇�

𝑛
(𝑡) + �̇�

𝑛
(𝑡))

=
4𝑔
5
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) 𝑔
6
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) ∑
𝑁

𝑖=0
𝐵
𝑛𝑖
𝑤
𝑖
(𝑡)

(𝐵 − 𝐴)
2

+
2𝛾𝑤
𝑛
(𝑡) 𝑧
𝑛
(𝑡) (∑

𝑁

𝑖=0
𝐴
𝑛𝑖
(𝑤
𝑖
(𝑡) + 𝑧

𝑖
(𝑡)))

𝐵 − 𝐴
,

�̈�
𝑛
(𝑡) + 𝛿𝑤

𝑛
(𝑡) 𝑧
𝑛
(𝑡) (�̇�

𝑛
(𝑡) + �̇�

𝑛
(𝑡))

=
4𝑔
7
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) 𝑔
8
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) ∑
𝑁

𝑖=0
𝐵
𝑛𝑖
𝑧
𝑖
(𝑡)

(𝐵 − 𝐴)
2

+
2𝛿𝑤
𝑛
(𝑡) z
𝑛
(𝑡) (∑

𝑁

𝑖=0
𝐴
𝑛𝑖
(𝑤
𝑖
(𝑡) + 𝑧

𝑖
(𝑡)))

𝐵 − 𝐴
,

(25)

with the following initial conditions:

𝑤
𝑛
(0) = 𝑓

5
(𝑥
(𝜃,𝜗)

𝑁,𝑛
) , �̇�

𝑛
(0) = 𝑓

7
(𝑥
(𝜃,𝜗)

𝑁,𝑛
) ,

𝑧
𝑛
(0) = 𝑓

6
(𝑥
(𝜃,𝜗)

𝑁,𝑛
) , �̇�

𝑛
(0) = 𝑓

8
(𝑥
(𝜃,𝜗)

𝑁,𝑛
) ,

𝑛 = 1, . . . , 𝑁 − 1,

(26)

or in matrix notation as

(
(
(
(
(

(

�̈�
1
(𝑡) + 𝛾𝑤

1
(𝑡) 𝑧
𝑛
(𝑡) (�̇�

1
(𝑡) + �̇�

1
(𝑡))

⋅ ⋅ ⋅

⋅ ⋅ ⋅

�̈�
𝑁−1

(𝑡) + 𝛾𝑤
𝑁−1

(𝑡) 𝑧
𝑁−1

(𝑡) (�̇�
𝑁−1

(𝑡) + �̇�
𝑁−1

(𝑡))

�̈�
1
(𝑡) + 𝛾𝑤

1
(𝑡) 𝑧
𝑛
(𝑡) (�̇�

1
(𝑡) + �̇�

1
(𝑡))

⋅ ⋅ ⋅

⋅ ⋅ ⋅

�̈�
𝑁−1

(𝑡) + 𝛾𝑤
𝑁−1

(𝑡) 𝑧
𝑛
(𝑡) (�̇�

𝑁−1
(𝑡) + �̇�

𝑁−1
(𝑡))

)
)
)
)
)

)

=

(
(
(
(

(

𝐹
1
(𝑡, 𝑤 (𝑡) , 𝑧 (𝑡))

⋅ ⋅ ⋅

⋅ ⋅ ⋅

𝐹
𝑁−1

(𝑡, 𝑤 (𝑡) , 𝑧 (𝑡))

𝐺
1
(𝑡, 𝑤 (𝑡) , 𝑧 (𝑡))

⋅ ⋅ ⋅

⋅ ⋅ ⋅

𝐺
𝑁−1

(𝑡, 𝑤 (𝑡) , 𝑧 (𝑡))

)
)
)
)

)

(27)
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with

(
(
(
(

(

𝑤
1
(0)

⋅ ⋅ ⋅

⋅ ⋅ ⋅

𝑤
𝑁−1

(0)

𝑧
1
(0)

⋅ ⋅ ⋅

⋅ ⋅ ⋅

𝑧
𝑁−1

(0)

)
)
)
)

)

=

(
(
(
(
(
(
(
(

(

𝑓
5
(𝑥
(𝜃,𝜗)

𝑁,1
)

⋅ ⋅ ⋅

⋅ ⋅ ⋅

𝑓
5
(𝑥
(𝜃,𝜗)

𝑁,𝑁−1
)

𝑓
6
(𝑥
(𝜃,𝜗)

𝑁,1
)

⋅ ⋅ ⋅

⋅ ⋅ ⋅

𝑓
6
(𝑥
(𝜃,𝜗)

𝑁,𝑁−1
)

)
)
)
)
)
)
)
)

)

,

(
(
(
(

(

�̇�
1
(0)

⋅ ⋅ ⋅

⋅ ⋅ ⋅

�̇�
𝑁−1

(0)

�̇�
1
(0)

⋅ ⋅ ⋅

⋅ ⋅ ⋅

�̇�
𝑁−1

(0)

)
)
)
)

)

=

(
(
(
(
(
(

(

𝑓
7
(𝑥
(𝜃,𝜗)

𝑁,1
)

⋅ ⋅ ⋅

⋅ ⋅ ⋅

𝑓
7
(𝑥
(𝜃,𝜗)

𝑁,𝑁−1
)

𝑓
8
(𝑥
(𝜃,𝜗)

𝑁,1
)

⋅ ⋅ ⋅

⋅ ⋅ ⋅

𝑓
8
(𝑥
(𝜃,𝜗)

𝑁,𝑁−1
)

)
)
)
)
)
)

)

,

(28)

where

𝐹
𝑛
(𝑡, 𝑤 (𝑡) , 𝑧 (𝑡))

=
4𝑔
5
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) 𝑔
6
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) ∑
𝑁

𝑖=0
𝐵
𝑛𝑖
𝑤
𝑖
(𝑡)

(𝐵 − 𝐴)
2

+
2𝛾𝑤
𝑛
(𝑡) 𝑧
𝑛
(𝑡) (∑

𝑁

𝑖=0
𝐴
𝑛𝑖
(𝑤
𝑖
(𝑡) + 𝑧

𝑖
(𝑡)))

𝐵 − 𝐴
,

𝐺
𝑛
(𝑡, 𝑤 (𝑡) , 𝑧 (𝑡))

=
4𝑔
7
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) 𝑔
8
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) ∑
𝑁

𝑖=0
𝐵
𝑛𝑖
𝑧
𝑖
(𝑡)

(𝐵 − 𝐴)
2

+
2𝛿𝑤
𝑛
(𝑡) 𝑧
𝑛
(𝑡) (∑

𝑁

𝑖=0
𝐴
𝑛𝑖
(𝑤
𝑖
(𝑡) + 𝑧

𝑖
(𝑡)))

𝐵 − 𝐴
.

(29)

The system of second order (27)-(28) can be solved by using
diagonally implicit Runge-Kutta-Nyström (DIRKN).

3.2. Initial-Nonlocal Conservation Conditions. Here, we will
implement the J-GL-C algorithm for the coupled nonlinear
hyperbolic type equations with nonlocal conditions:

𝐷
2

𝑡
𝑢 (𝑦, 𝑡) = 𝛾𝑢 (𝑦, 𝑡) V (𝑦, 𝑡)

× (𝐷
𝑦
𝑢 (𝑦, 𝑡)

+𝐷
𝑡
𝑢 (𝑦, 𝑡) + 𝐷

𝑦
V (𝑦, 𝑡) + 𝐷

𝑡
V (𝑦, 𝑡))

+ 𝑔
1
(𝑦, 𝑡)𝐷

2

𝑦
𝑢 (𝑦, 𝑡) + 𝑔

2
(𝑦, 𝑡) ,

𝐷
2

𝑡
V (𝑦, 𝑡) = 𝛿𝑢 (𝑦, 𝑡) V (𝑦, 𝑡)

× (𝐷
𝑦
𝑢 (𝑦, 𝑡) + 𝐷

𝑡
𝑢 (𝑦, t)

+𝐷
𝑦
V (𝑦, 𝑡) + 𝐷

𝑡
V (𝑦, 𝑡))

+ 𝑔
3
(𝑦, 𝑡)𝐷

2

𝑦
V (𝑦, 𝑡) + 𝑔

4
(𝑦, 𝑡) ,

(𝑦, 𝑡) ∈ [𝐴, 𝐵] × [0, 𝑇] ,

(30)
subject to the initial conditions,

𝑢 (𝑦, 0) = 𝑓
1
(𝑦) , 𝐷

𝑡
𝑢 (𝑦, 0) = 𝑓

3
(𝑦) ,

V (𝑦, 0) = 𝑓
2
(𝑦) , 𝐷

𝑡
V (𝑦, 0) = 𝑓

4
(𝑦) , 𝑦 ∈ [𝐴, 𝐵] ,

(31)
and the boundary conditions,

𝑢 (𝐴, 𝑡) = 𝑘
1
(𝑡) , V (𝐴, 𝑡) = 𝑘

3
(𝑡) , 𝑡 ∈ [0, 𝑇] , (32)

while the other two boundary conditions have the nonlocal
conservation form

∫
𝐵

𝐴

𝑢 (𝑦, 𝑡) 𝑑𝑦 = 𝑘
2
(𝑡) ,

∫
𝐵

𝐴

V (𝑦, 𝑡) 𝑑𝑦 = 𝑘
4
(𝑡) , 𝑡 ∈ [0, 𝑇] .

(33)

Again, we used the change of variables 𝑥 = ((2/(𝐵 − 𝐴))𝑦) +

((𝐴 + 𝐵)/(𝐴 − 𝐵)), 𝑤(𝑥, 𝑡) = 𝑢(𝑦, 𝑡), 𝑧(𝑥, 𝑡) = V(𝑦, 𝑡), to
reduce problem (30)–(33) into

𝐷
2

𝑡
𝑤 (𝑥, 𝑡) = 𝛾𝑤 (𝑥, 𝑡) 𝑧 (𝑥, 𝑡)

× (
2 (𝐷
𝑦
𝑤 (𝑥, 𝑡) + 𝐷

𝑦
𝑧 (𝑥, 𝑡))

𝐵 − 𝐴

+𝐷
𝑡
𝑤 (𝑥, 𝑡) + 𝐷

𝑡
𝑧 (𝑥, 𝑡) )

+
4𝑔
1
(𝑦, 𝑡)𝐷2

𝑦
𝑤 (𝑥, 𝑡)

(𝐵 − 𝐴)
2

+ 𝑔
2
(𝑦, 𝑡) ,

𝐷
2

𝑡
𝑧 (𝑥, 𝑡) = 𝛿𝑤 (𝑥, 𝑡) 𝑧 (𝑥, 𝑡) (

2 (𝐷
𝑦
𝑤 (𝑥, 𝑡) + 𝐷

𝑦
𝑧 (𝑥, 𝑡))

𝐵 − 𝐴

+𝐷
𝑡
𝑤 (𝑥, 𝑡) + 𝐷

𝑡
𝑧 (𝑥, 𝑡) )

+
4𝑔
3
(𝑦, 𝑡)𝐷2

𝑦
𝑧 (𝑥, 𝑡)

(𝐵 − 𝐴)
2

+ 𝑔
4
(𝑦, 𝑡) ,

(𝑦, 𝑡) ∈ [𝐴, 𝐵] × [0, 𝑇]

(34)
related to the new initial conditions,

𝑤 (𝑥, 0) = 𝑓
5
(𝑥) , 𝐷

𝑡
𝑤 (𝑥, 0) = 𝑓

7
(𝑥) ,

𝑧 (𝑥, 0) = 𝑓
6
(𝑥) , 𝐷

𝑡
𝑧 (𝑥, 0) = 𝑓

4
(𝑥) , 𝑥 ∈ [−1, 1] ,

(35)
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the boundary conditions,

𝑤 (−1, 𝑡) = 𝑘
1
(𝑡) , 𝑧 (−1, 𝑡) = 𝑘

3
(𝑡) , 𝑡 ∈ [0, 𝑇] , (36)

and the nonlocal conservation conditions,

𝐵 − 𝐴

2
∫
1

−1

𝑤 (𝑥, 𝑡) 𝑑𝑥 = 𝑘
2
(𝑡) ,

𝐵 − 𝐴

2
∫
1

−1

𝑧 (𝑥, 𝑡) 𝑑𝑥 = 𝑘
4
(𝑡) , 𝑡 ∈ [0, 𝑇] .

(37)

The problem now is how to deal with the nonlocal conditions
(37). For this purpose, let us introduce a collocation treatment
for the integral conservation conditions (37) as

𝐵 − 𝐴

2

× ∫
1

−1

𝑁

∑
𝑖=0

(

𝑁

∑
𝑗=0

1

ℎ
𝑗

𝐽
𝜃,𝜗

𝑗
(𝑥
𝜃,𝜗

𝑁,𝑖
) 𝐽
𝜃,𝜗

𝑗
(𝑥) 𝜛
𝜃,𝜗

𝑁,𝑖
)𝑤
𝑖
(𝑡) 𝑑𝑥 = 𝑘

2
(𝑡) ,

𝐵 − 𝐴

2

× ∫
1

−1

𝑁

∑
𝑖=0

(

𝑁

∑
𝑗=0

1

ℎ
𝑗

𝐽
𝜃,𝜗

𝑗
(𝑥
𝜃,𝜗

𝑁,𝑖
) 𝐽
𝜃,𝜗

𝑗
(𝑥) 𝜛
𝜃,𝜗

𝑁,𝑖
)𝑧
𝑖
(𝑡) 𝑑𝑥 = 𝑘

4
(𝑡) .

(38)

The above equations may be rearranged as

𝐵 − 𝐴

2

𝑁

∑
𝑖=0

(

𝑁

∑
𝑗=0

1

ℎ
𝑗

𝐽
𝜃,𝜗

𝑗
(𝑥
𝜃,𝜗

𝑁,𝑖
) 𝜛
𝜃,𝜗

𝑁,𝑖
(∫
1

−1

𝐽
𝜃,𝜗

𝑗
(𝑥) 𝑑𝑥))𝑤

𝑖
(𝑡)

= 𝑘
2
(𝑡) ,

𝐵 − 𝐴

2

𝑁

∑
𝑖=0

(

𝑁

∑
𝑗=0

1

ℎ
𝑗

𝐽
𝜃,𝜗

𝑗
(𝑥
𝜃,𝜗

𝑁,𝑖
) 𝜛
𝜃,𝜗

𝑁,𝑖
(∫
1

−1

𝐽
𝜃,𝜗

𝑗
(𝑥) 𝑑𝑥))𝑧

𝑖
(𝑡)

= 𝑘
4
(𝑡) ,

(39)

or briefly
𝑁

∑
𝑖=0

𝐼
𝑖
𝑤
𝑖
(𝑡) = 𝑘

2
(𝑡) ,

𝑁

∑
𝑖=0

𝐼
𝑖
𝑧
𝑖
(𝑡) = 𝑘

4
(𝑡) , (40)

where

𝐼
𝑖
=
𝐵 − 𝐴

2
(

𝑁

∑
𝑗=0

1

ℎ
𝑗

𝐽
𝜃,𝜗

𝑗
(𝑥
𝜃,𝜗

𝑁,𝑖
) 𝜛
𝜃,𝜗

𝑁,𝑖
(∫
1

−1

𝐽
𝜃,𝜗

𝑗
(𝑥) 𝑑𝑥)) .

(41)

Consequently,𝑤
𝑁
(𝑡) and 𝑧

𝑁
(𝑡) are expressed as the following

expansion of 𝑤
𝑖
(𝑡) and 𝑧

𝑖
(𝑡), 𝑖 = 1, . . . , 𝑁:

𝑤
𝑁
(𝑡) =

1

𝐼
𝑁

(𝑘
2
(𝑡) − 𝐼

0
𝑤
0
(𝑡) −

𝑁−1

∑
𝑖=1

𝐼
𝑖
𝑤
𝑖
(𝑡)) ,

=
1

𝐼
𝑁

(𝑘
2
(𝑡) − 𝐼

0
𝑘
1
(𝑡) −

𝑁−1

∑
𝑖=1

𝐼
𝑖
𝑤
𝑖
(𝑡)) ,

𝑧
𝑁
(𝑡) =

1

𝐼
𝑁

(𝑘
4
(𝑡) − 𝐼

0
𝑧
0
(𝑡) −

𝑁−1

∑
𝑖=1

𝐼
𝑖
𝑧
𝑖
(𝑡)) ,

=
1

𝐼
𝑁

(𝑘
4
(𝑡) − 𝐼

0
𝑘
3
(𝑡) −

𝑁−1

∑
𝑖=1

𝐼
𝑖
𝑧
𝑖
(𝑡)) .

(42)

Based on the information included in this subsection and the
recent one, we obtain the following system of ODEs:

�̈�
𝑛
(𝑡) + 𝛾𝑤

𝑛
(𝑡) 𝑧
𝑛
(𝑡) (�̇�

𝑛
(𝑡) + �̇�

𝑛
(𝑡))

=
4𝑔
5
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) 𝑔
6
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) ∑
𝑁

𝑖=0
𝐵
𝑛𝑖
𝑤
𝑖
(𝑡)

(𝐵 − 𝐴)
2

+
2𝛾𝑤
𝑛
(𝑡) 𝑧
𝑛
(𝑡) (∑

𝑁

𝑖=0
𝐴
𝑛𝑖
(𝑤
𝑖
(𝑡) + 𝑧

𝑖
(𝑡)))

𝐵 − 𝐴
,

�̈�
𝑛
(𝑡) + 𝛿𝑤

𝑛
(𝑡) 𝑧
𝑛
(𝑡) (�̇�

𝑛
(𝑡) + �̇�

𝑛
(𝑡))

=
4𝑔
7
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) 𝑔
8
(𝑥
(𝜃,𝜗)

𝑁,𝑛
, 𝑡) ∑
𝑁

𝑖=0
𝐵
𝑛𝑖
𝑧
𝑖
(𝑡)

(𝐵 − 𝐴)
2

+
2𝛿𝑤
𝑛
(𝑡) 𝑧
𝑛
(𝑡) (∑

𝑁

𝑖=0
𝐴
𝑛𝑖
(𝑤
𝑖
(𝑡) + 𝑧

𝑖
(𝑡)))

𝐵 − 𝐴
,

(43)

with the following initial conditions:

𝑤
𝑛
(0) = 𝑓

5
(𝑥
(𝜃,𝜗)

𝑁,n ) , �̇�
𝑛
(0) = 𝑓

7
(𝑥
(𝜃,𝜗)

𝑁,𝑛
) ,

𝑧
𝑛
(0) = 𝑓

6
(𝑥
(𝜃,𝜗)

𝑁,𝑛
) , �̇�

𝑛
(0) = 𝑓

8
(𝑥
(𝜃,𝜗)

𝑁,𝑛
) ,

𝑛 = 1, . . . , 𝑁 − 1,

(44)

where 𝑤
0
, 𝑤
𝑁
, 𝑧
0
, and 𝑧

𝑁
are given in (36) and (42).

4. Test Problems

We test the numerical accuracy of the proposed method by
introducing four test problems with different types of exact
solutions.

4.1. Triangular Solution. As a first example, we consider the
coupled nonlinear hyperbolic equation (8) with the following
functions:

𝑔
1
(𝑦, 𝑡) = (1 + 𝑒

𝑡 cos (𝑦)) ,

𝑔
2
=
1

2
cos (𝑡) (𝑒𝑡 − 2𝛾 cos (𝑡 + 𝑦) sin (𝑡)) sin (2𝑦) ,

𝑔
3
(𝑦, 𝑡) = (1 + 𝑒

𝑡 sin (𝑦)) ,

𝑔
4
=
1

2
(𝑒
𝑡
− 2𝛿 cos (𝑡) cos (𝑡 + 𝑦)) sin (𝑡) sin (2𝑦) ,

(45)
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Table 1

𝑁 MAE1 RMSE1 𝑁
𝑒1

MAE2 RMSE2 𝑁
𝑒2

𝛼 = 0, 𝛽 = 0

4 3.73 × 10−4 2.88 × 10−4 7.93 × 10−4 3.44 × 10−4 1.47 × 10−4 4.04 × 10−4

8 2.02 × 10
−8

6.37 × 10
−9

1.74 × 10
−8

7.68 × 10
−8

2.22 × 10
−8

6.05 × 10
−8

12 1.52 × 10−8 2.87 × 10−9 7.81 × 10−9 1.86 × 10−8 1.19 × 10−8 3.24 × 10−8

𝛼 = 0, 𝛽 = 1/2

4 7.26 × 10−4 4.15 × 10−4 11.20 × 10−4 5.05 × 10−4 1.40 × 10−4 3.76 × 10−4

8 1.93 × 10
−8

9.64 × 10
−9

2.60 × 10
−8

5.64 × 10
−8

2.22 × 10
−8

5.97 × 10
−8

12 2.23 × 10−8 4.33 × 10−9 1.17 × 10−9 1.86 × 10−8 1.10 × 10−8 2.96 × 10−8

𝛼 = 1/2, 𝛽 = 0

4 6.81 × 10−4 3.03 × 10−4 8.46 × 10−4 4.96 × 10−4 2.57 × 10−4 7.18 × 10−4

8 2.02 × 10
−8

7.98 × 10
−9

2.19 × 10
−8

8.61 × 10
−8

3.72 × 10
−8

8.99 × 10
−8

12 2.49 × 10−8 7.92 × 10−9 2.16 × 10−8 3.43 × 10−8 1.86 × 10−8 5.09 × 10−8

subject to

𝑘
1
(𝑡) = sin (𝐴) cos (𝑡) , 𝑘

2
(𝑡) = sin (𝐵) cos (𝑡) ,

𝑘
3
(𝑡) = sin (𝑡) cos (𝐴) , 𝑘

4
(𝑡) = cos (𝐵) sin (𝑡) ,

𝑓
1
(𝑡) = sin (𝑦) , 𝑓

2
(𝑡) = 𝑓

3
(𝑡) = 0,

𝑓
4
(𝑡) = cos (𝑦) .

(46)

The exact solutions of this problem are

𝑢 (𝑦, 𝑡) = sin (𝑦) cos (𝑡) , V (𝑦, 𝑡) = sin (𝑡) cos (𝑦) .
(47)

The absolute errors in the given tables are

𝐸 (𝑦, 𝑡) =
𝑢 (𝑦, 𝑡) − �̃� (𝑦, 𝑡)

 , (48)

where 𝑢(𝑦, 𝑡) and �̃�(𝑦, 𝑡) are the exact and approximate
solutions at the point (𝑦, 𝑡), respectively. Moreover, the
maximum absolute error is given by

𝑀
𝐸
= Max {𝐸 (𝑦, 𝑡) : ∀ (𝑦, 𝑡) ∈ [𝐴, 𝐵] × [0, 𝑇]} . (49)

The root mean square (RMS) and𝑁
𝑒
errors may be given by

RMS = √
𝑁

∑
𝑖=0

(𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡
𝑖
) − �̃� (𝑥

(𝛼,𝛽)

𝑁,𝑖
, 𝑡
𝑖
))
2

𝑁 + 1
,

𝑁
𝑒
= √

∑
𝑁

𝑖=0
(𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡
𝑖
) − �̃� (𝑥

(𝛼,𝛽)

𝑁,𝑖
, 𝑡
𝑖
))
2

∑
𝑁

𝑖=0
𝑢 (𝑥
(𝛼,𝛽)

𝑁,𝑖
, 𝑡
𝑖
)

.

(50)

Maximum absolute, root mean square, and𝑁
𝑒
errors of (45)

are introduced in Table 1 using J-GL-C method with three
different choices of 𝑁, 𝛼, and 𝛽 in the interval [0, 1]. The
approximate solutions �̃� and Ṽ of problem (45) have been
plotted in Figures 1 and 2, with values of parameters listed in
their captions. Moreover, we plot the curves of approximate
and exact solutions of �̃� at different values of𝑥 and 𝑡 in Figures
3 and 4. Again, the curves of approximate and exact solutions
of Ṽ at different values of 𝑥 and 𝑡 are displayed in Figures 5
and 6.
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ũ
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,
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Figure 1:The approximate solution �̃� of problem (45), where𝑁 = 16

and 𝛼 = 𝛽 = 0 in the interval [−𝜋, 𝜋].

4.2. Soliton Solution. Secondly, consider the coupled nonlin-
ear hyperbolic equation (8) with the following functions:

𝑔
1
(𝑦, 𝑡) = (1 + 𝑒

𝑡 cos (𝑦)) , 𝑔
3
(𝑦, 𝑡) = (1 + 𝑒

𝑡 sin (𝑦)) ,

𝑔
4
= −2sech(𝑦 + 𝑡)

2

(sech (𝑦 + 𝑡) − 𝑒
𝑡 sin (𝑦) − tanh (𝑦 + 𝑡))

× tanh (𝑦 + 𝑡) ,

𝑔
2
= sech (𝑦 + 𝑡) (sech (𝑦 + 𝑡) − tanh (𝑦 + 𝑡))

× (−2sech (𝑦 + 𝑡) tanh (𝑦 + 𝑡) + 𝑒
𝑡 cos (𝑦)

× (sech (𝑦 + 𝑡) + tanh (𝑦 + 𝑡)) ) ,

(51)

subject to

𝑘
1
(𝑡) = sech (𝐴 + 𝑡) , 𝑘

2
(𝑡) = sech (𝐵 + 𝑡) ,

𝑘
3
(𝑡) = tanh (𝐴 + 𝑡) , 𝑘

4
(𝑡) = tanh (𝐵 + 𝑡) ,
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Figure 2: The approximate solution Ṽ of problem (45), where 𝑁 =

16 and 𝛼 = 𝛽 = 0 in the interval [−𝜋, 𝜋].
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Figure 3: The approximate �̃� and the exact 𝑢 solutions for different
values of 𝑡 = 0.1, 0.5, and 1.0 of problem (45), where 𝑁 = 16 and
𝛼 = 𝛽 = 0 in the interval [−𝜋, 𝜋].

𝑓
1
(𝑡) = sech (𝑦) , 𝑓

2
(𝑡) = tanh (𝑦) ,

𝑓
3
(𝑡) = −sech (𝑦) tanh (𝑦) , 𝑓

4
(𝑡) = sech(𝑦)2.

(52)

The exact solutions are

𝑢 (𝑦, 𝑡) = sech (𝑦 + 𝑡) , V (𝑦, 𝑡) = tanh (𝑦 + 𝑡) . (53)

Table 2 shows the accurate results for maximum absolute,
root mean square, and𝑁

𝑒
errors of (51) for various choices of

𝑁, 𝛼, and 𝛽 in the interval [0, 1]. Figures 7 and 8 show that
the absolute errors 𝐸

1
and 𝐸

2
are very small with values of

parameters listed in their captions. We also plot the curves of
approximate and exact solutions of �̃� at different values of 𝑥
and 𝑡 in Figures 9 and 10. Moreover, in Figures 11 and 12, the
approximate and exact solutions of Ṽ are plotted at different
values of 𝑥 and 𝑡.
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Figure 4: The approximate �̃� and the exact 𝑢 solutions for different
values of 𝑦 = 0.1, 0.5, and 1.0 of problem (45), where 𝑁 = 16 and
𝛼 = 𝛽 = 0 in the interval [−𝜋, 𝜋].

v(y, 0.2)

ṽ(y, 0.2)

v(y, 0.5)

ṽ(y, 0.5)

v(y, 1.0)

ṽ(y, 1.0)
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ṽ
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Figure 5: The approximate Ṽ and the exact V solutions for different
values of 𝑡 = 0.2, 0.5, and 1.0 of problem (45), where 𝑁 = 16 and
𝛼 = 𝛽 = 0 in the interval [−𝜋, 𝜋].

4.3. Exponential-Triangular Solution. In the third example,
consider the coupled nonlinear hyperbolic equations (8)-(9)
with the following functions:

𝑔
1
(𝑦, 𝑡) = (1 + 𝑒

𝑡 cos (𝑦)) , 𝑔
3
(𝑦, 𝑡) = (1 + 𝑒

𝑡 sin (𝑦)) ,

𝑔
2
= 𝑒
𝑡 cos (𝑦) + 𝑒

𝑡 cos (𝑦) (1 + 𝑒
𝑡 cos (𝑦))

− 2𝑒
3𝑡
𝜆 cos (𝑦)2 sin (𝑦) ,

𝑔
4
= −𝑒
𝑡 sin (𝑦) (−2 + 2𝑒

2𝑡
𝛾 cos (𝑦)2 − 𝑒

𝑡 sin (𝑦)) ;
(54)
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Table 2

𝑁 MAE1 RMSE1 𝑁
𝑒1

MAE2 RMSE2 𝑁
𝑒2

𝛼 = 𝛽 = 0

4 1.35 × 10−3 4.35 × 10−4 6.13 × 10−4 2.63 × 10−3 1.51 × 10−3 2.15 × 10−3

8 1.61 × 10
−6

9.88 × 10
−7

1.40 × 10
−6

9.83 × 10
−7

4.12 × 10
−7

5.84 × 10
−7

12 7.44 × 10−8 3.33 × 10−8 4.70 × 10−8 9.30 × 10−8 3.95 × 10−8 5.59 × 10−8

𝛼 = 𝛽 = 1/2

4 1.95 × 10−3 6.44 × 10−4 9.10 × 10−4 4.34 × 10−3 2.27 × 10−3 3.22 × 10−3

8 2.85 × 10
−6

1.68 × 10
−6

2.38 × 10
−6

1.62 × 10
−6

6.59 × 10
−7

9.31 × 10
−7

12 1.34 × 10−7 6.02 × 10−8 8.52 × 10−8 1.69 × 10−7 6.79 × 10−8 9.60 × 10−8

𝛼 = 𝛽 = −1/2

4 7.59 × 10−4 2.72 × 10−4 3.82 × 10−4 1.69 × 10−3 7.67 × 10−4 1.09 × 10−3

8 6.01 × 10
−7

3.44 × 10
−7

4.85 × 10
−8

4.16 × 10
−7

1.19 × 10
−7

1.68 × 10
−7

12 3.06 × 10−8 1.48 × 10−8 2.09 × 10−8 3.83 × 10−8 1.49 × 10−8 2.11 × 10−8
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Figure 6: The approximate Ṽ and the exact V solutions for different
values of 𝑦 = 0.0, 0.5, and 0.9 of problem (45), where𝑁 = 16 in the
interval [−𝜋, 𝜋].
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Figure 7: The absolute error 𝐸
1
of problem (51), where𝑁 = 12 and

𝛼 = 𝛽 = −(1/2) in the interval [0, 1].
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Figure 8: The absolute error 𝐸
2
of problem (51), where𝑁 = 12 and

𝛼 = 𝛽 = −(1/2) in the interval [0, 1].
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ũ

u(y, 0.1)
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Figure 9: The approximate �̃� and the exact 𝑢 solutions for different
values of 𝑡 = 0.1, 0.5, and 0.9 of problem (51), where 𝑁 = 12 and
𝛼 = 𝛽 = −(1/2) in the interval [0, 1].
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ũ(0.9, t)

u
an
d
ũ

Figure 10:The approximate �̃� and the exact 𝑢 solutions for different
values of 𝑦 = 0.1, 0.5, and 0.9 of problem (51), where 𝑁 = 12 and
𝛼 = 𝛽 = −(1/2) in the interval [0, 1].

the initial-boundary conditions (9) and (10) may be given by

𝑘
1
(𝑡) = 𝑒

𝑡 cos (𝐴) , 𝑘
2
(𝑡) = 𝑒

𝑡 cos (𝐵) ,

𝑘
3
(𝑡) = 𝑒

𝑡 sin (𝐴) , 𝑘
4
(𝑡) = 𝑒

𝑡 sin (𝐵) ,

𝑓
1
(𝑡) = cos (𝑦) , 𝑓

2
(𝑡) = sin (𝑦) ,

𝑓
3
(𝑡) = cos (𝑦) , 𝑓

4
(𝑡) = sin (𝑦) .

(55)

The exact solutions of this problem are

𝑢 (𝑦, 𝑡) = 𝑒
𝑡 cos (𝑦) , V (𝑦, 𝑡) = 𝑒

𝑡 sin (𝑦) . (56)

More accurate results for maximum absolute, root mean
square, and𝑁

𝑒
errors of (55) are given in Table 3, for different

choices of Jacobi parameters; even we use limited values of
𝑁. The approximate solutions �̃� and Ṽ of problem (55) are
plotted in Figures 13 and 14 with values of parameters listed
in their captions. In addition, Figures 15 and 16 present the
approximate and exact solutions of �̃�(𝑦, 𝑡); moreover, the
corresponding figures for Ṽ(𝑦, 𝑡) at parameters listed in their
captions are displayed in Figures 17 and 18.

4.4. Triangular Solution. In the last example, consider the
coupled nonlinear hyperbolic equation (30) with the follow-
ing functions:

𝑔
1
(𝑦, 𝑡) = (1 + 𝑒

𝑡 cos (𝑦)) ,

𝑔
2
=

1

2
cos (𝑡) (𝑒𝑡 − 2𝛾 cos (𝑡 + 𝑦) sin (𝑡)) sin (2𝑦) ,

𝑔
3
(𝑦, 𝑡) = (1 + 𝑒

𝑡 sin (𝑦)) ,

𝑔
4
=

1

2
(𝑒
𝑡
− 2𝛿 cos (𝑡) cos (𝑡 + 𝑦)) sin (𝑡) sin (2𝑦) ,

(57)
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Figure 11: The approximate Ṽ and the exact V solutions for different
values of 𝑡 = 0.1, 0.5, and 0.9 of problem (51), where 𝑁 = 12 and
𝛼 = 𝛽 = −(1/2) in the interval [0, 1].
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Figure 12: The approximate Ṽ and the exact V solutions for different
values of 𝑦 = 0.0, 0.5, and 0.9 of problem (51), where 𝑁 = 12 and
𝛼 = 𝛽 = −(1/2) in the interval [0, 1].

related to the initial conditions (31),

𝑓
1
(𝑡) = sin (𝑦) , 𝑓

2
(𝑡) = 𝑓

3
(𝑡) = 0,

𝑓
4
(𝑡) = cos (𝑦) ,

(58)

and the boundary conditions (32),

𝑘
1
(𝑡) = sin (𝐴) cos (𝑡) , 𝑘

3
(𝑡) = sin (𝑡) cos (𝐴) , (59)

while the nonlocal conservation conditions are (33)

𝑘
2
(𝑡) = (cos (𝐴) − cos (𝐵)) cos (𝑡) ,

𝑘
4
(𝑡) = (sin (𝐵) − sin (𝐴)) sin (𝑡) .

(60)
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Table 3

𝑁 MAE1 RMSE1 𝑁
𝑒1

MAE2 RMSE2 𝑁
𝑒2

𝛼 = 0, 𝛽 = 0

4 2.71 × 10
−3

1.05 × 10
−3

7.78 × 10
−4

2.47 × 10
−3

4.77 × 10
−3

3.61 × 10
−4

6 6.84 × 10
−6

1.86 × 10
−6

1.38 × 10
−6

6.82 × 10
−6

1.47 × 10
−6

1.13 × 10
−6

8 8.31 × 10−8 1.19 × 10−8 8.80 × 10−9 9.64 × 10−8 6.91 × 10−9 5.35 × 10−9

𝛼 = 1/2, 𝛽 = 0

4 3.74 × 10−3 1.43 × 10−3 1.07 × 10−3 3.79 × 10−3 6.02 × 10−4 4.70 × 10−4

6 1.03 × 10
−5

2.91 × 10
−6

2.17 × 10
−6

1.15 × 10
−5

1.81 × 10
−6

1.43 × 10
−6

8 1.26 × 10−7 2.28 × 10−8 1.69 × 10−8 1.10 × 10−7 1.01 × 10−8 8.04 × 10−9

𝛼 = 1, 𝛽 = 1

4 5.00 × 10−3 1.88 × 10−3 1.39 × 10−3 5.33 × 10−3 1.20 × 10−3 9.27 × 10−4

6 1.55 × 10
−5

4.76 × 10
−6

3.51 × 10
−6

1.64 × 10
−5

2.88 × 10
−6

2.26 × 10
−6

8 2.45 × 10−7 4.06 × 10−8 2.99 × 10−8 2.39 × 10−7 2.53 × 10−8 2.01 × 10−8

Table 4

𝑁 MAE1 RMSE1 𝑁
𝑒1

MAE2 RMSE2 𝑁
𝑒2

𝛼 = 0, 𝛽 = 0

4 7.46 × 10−4 2.34 × 10−4 6.44 × 10−4 2.30 × 10−4 1.14 × 10−4 3.13 × 10−4

8 7.84 × 10−7 1.13 × 10−7 3.08 × 10−7 3.02 × 10−6 7.51 × 10−7 2.05 × 10−6

𝛼 = 𝛽 = −1/2

4 8.06 × 10
−4

2.55 × 10
−4

7.07 × 10
−4

1.17 × 10
−4

6.09 × 10
−5

1.69 × 10
−4

8 4.74 × 10−7 1.08 × 10−7 2.97 × 10−7 5.27 × 10−7 1.18 × 10−7 4.97 × 10−7

𝛼 = 0, 𝛽 = −1/2

4 7.54 × 10−4 2.81 × 10−4 7.90 × 10−4 9.02 × 10−4 4.16 × 10−4 1.17 × 10−4

8 2.32 × 10
−7

9.26 × 10
−8

2.56 × 10
−7

1.41 × 10
−6

2.21 × 10
−7

6.11 × 10
−7
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Figure 13: The approximate solution �̃� of problem (55), where𝑁 =

10 and 𝛼 = 𝛽 = 1/2 in the interval [0, 1].

The exact solutions of (30) are

𝑢 (𝑦, 𝑡) = sin (𝑦) cos (𝑡) , V (𝑦, 𝑡) = sin (𝑡) cos (𝑦) .
(61)

Maximum absolute, root mean square, and𝑁
𝑒
errors of (57)

are introduced in Table 4 using J-GL-C method with various
choices of 𝑁, 𝛼, and 𝛽 in the interval [0, 1]. From numerical
results of this table, it can be concluded that the numerical
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ṽ
(
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,
t
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Figure 14: The approximate solution Ṽ of problem (55), where𝑁 =

10 and 𝛼 = 𝛽 = 1/2 in the interval [0, 1].

solutions for problemswith nonlocal conservation conditions
are in good agreement with the exact solutions.

5. Conclusion

For boundary and nonlocal conditions, we have proposed an
efficient and accurate numerical algorithm based on Jacobi-
Gauss-Lobatto spectral method to get high accurate solutions
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Figure 15:The approximate �̃� and the exact 𝑢 solutions for different
values of 𝑡 = 0.1, 0.5, and 1.0 of problem (55), where 𝑁 = 10 and
𝛼 = 𝛽 = 1/2 in the interval [0, 1].
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ũ(1.0, t)

Figure 16:The approximate �̃� and the exact 𝑢 solutions for different
values of 𝑦 = 0.1, 0.5, and 1.0 of problem (55), where 𝑁 = 10 and
𝛼 = 𝛽 = 1/2 in the interval [0, 1].

for nonlinear coupled hyperbolic equations. The method is
based upon reducing the mentioned problem into a system
of second order ODEs in the expansion coefficient of the
solution. The use of the Jacobi-Gauss-Lobatto points as col-
location nodes saves the spectral convergence for the spatial
variable in the approximate solution. Numerical examples
were also provided to illustrate the effectiveness of the derived
algorithm. The numerical experiments show that the Jacobi
collocation approximation is very accurate with a limited
number of collocation nodes.
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ṽ(y, 0.5)

v(y, 1.0)
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