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Normally, chemical pesticides kill not only pests but also their natural enemies. In order to better control the pests, two-time delayed
stage-structured predator-prey models with birth pulse and pest control tactics are proposed and analyzed by using impulsive
differential equations in present work. The stability threshold conditions for the mature prey-eradication periodic solutions of two
models are derived, respectively. The effects of key parameters including killing efficiency rate, pulse period, the maximum birth
effort per unit of time of natural enemy, and maturation time of prey on the threshold values are discussed in more detail. By
comparing the two threshold values of mature prey-extinction, we provide the fact that the second control tactic is more effective
than the first control method.

1. Introduction

The outbreak of pest often triggers serious ecological and
economic problems. In recent years, the management of
pest has increasingly become the focus of attention. How to
effectively control pest is one primarily concern problem. In
practice, lots of factors can affect the efficiency of pest control,
for instance, the time of impulsive effects, the number of prey
stocked or naturally released, and the proportion of killing or
catching pests. Mathematical modelling is one of the main
ways for estimating and predicting the range of ecological
interactions between pest and predator. Lately, many papers
have been devoted to propose and analyze the predator-prey
systems [1–4].

In one aspect, many species have the life history that
goes through two stages, immature and mature, which
has significant morphological and behavioral differences
between them. Therefore, it is necessary to account for
these differences, and the dynamics of mathematical models
with stage-structured prey-predator model has been widely
studied [5–11] in recent years. In other aspects, in the natural
world, the immature predator always undergo a certain time
𝜏 (which is called maturation time delay) to be mature, so

time delays play an important role in biological meanings
in age-structured models. Time delay and stage-structured
systems are introduced into predator-prey models, which
greatly enriches biologic background. Many age-structured
models with time delay were extensively studied [12–14]. A
single species model with stage structure and time delay was
invested by Aiello and Freedman [15].

As far as the population dynamics is concerned, most
models often considered that the population reproduces
throughout all year. However, many species give birth sea-
sonally or in regular pules. In this regard, the continuous
reproduction of mature species should be removed from
the model and termed this growth form as birth pulse. For
instance, Tang and Chen study an age-structured model with
density-dependent birth pulse in [16] and Xiang et al. [17]
have considered a delayed Lotka-Volterra model with birth
pulse and impulsive effect at different moment on the prey.
Theories of impulsive differential equations have been studied
lately [18–20]. Impulsive systems are found in many domains
of applied sciences. The application of impulsive differential
equations to population dynamics is an interesting topic since
it is reasonable and corrects in modeling the evolution of
populations. Virtually, the pulses occur at different moments
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more realistic, which is more meaningful than the pulses
that occur at the same time. Recently, the qualitative analysis
of impulsive differential equations at different moments has
been widely investigated in many works [21–23].

Although, many authors have devoted to study the
effects of pesticide on pest and its natural enemies and lots
of instructive control strategies also have been given. An
optimal time of pesticide applications still seems to be a novel
interesting area. Following the practical pest management,
we firstly propose the predator-prey model with pulse at the
same time. Further, we assumed that the birth pulse and
pest control tactics occur at different time. Discussing and
comparing the mature prey-extinction of the two models, we
get some new effective pest management.

2. Predator-Prey Model with Impulsive Effects
at the Same Time

The purpose of this paper is to address how the time of
impulsive effects influences the pest control. On the basis of
the above discussion and motivated by [8, 16], we first will
extend the following impulsive model which introduces the
impulsive control tactics at the same time:

𝑥̇
1
(𝑡) = 𝑟𝑥

2
(𝑡) − 𝑟𝑒

−𝜔𝜏
𝑥
2
(𝑡 − 𝜏) − 𝜔𝑥

1
(𝑡) ,

𝑥̇
2
(𝑡) = 𝑟𝑒

−𝜔𝜏
𝑥
2
(𝑡 − 𝜏) − 𝛽𝑥

2
(𝑡) 𝑦 (𝑡)

−𝑑
1
𝑥
2
(𝑡) − 𝑑

2
𝑥
2

2
(𝑡) ,

̇𝑦 (𝑡) = 𝑘𝛽𝑥
2
(𝑡) 𝑦 (𝑡) − 𝑑

3
𝑦 (𝑡) ,

𝑡 ̸= 𝑛𝑇,

𝑥
1
(𝑡
+
) = (1 − 𝑝

0
) 𝑥
1
(𝑡) + 𝜇,

𝑥
2
(𝑡
+
) = 𝑥
2
(𝑡) ,

𝑦 (𝑡
+
) = (1 − 𝑝) 𝑦 (𝑡) +

𝑏𝑦 (𝑡)

𝑎 + 𝑦 (𝑡)

,

𝑡 = 𝑛𝑇,

(𝜔
1
(𝑠) , 𝜔

2
(𝑠) , 𝜔

3
(𝑠)) ∈ 𝐶

+

= 𝐶 ([−𝜏, 0] , 𝑅
3

+
) ,

𝜔
𝑖
(0) > 0, 𝑖 = 1, 2, 3,

(1)

where 𝑥
1
(𝑡) and 𝑥

2
(𝑡) are densities of the immature prey

and mature prey, respectively. 𝑦(𝑡) denotes the density of
predator. 𝜏 represents a constant time to maturity and
𝜔, 𝑑
1
, 𝑑
2
, 𝑑
3
, 𝑘, 𝑎, 𝑏, 𝛽, 𝑟 are positive constants. 𝑟 is the birth

rate of immature prey, 𝜔 (𝜔 > 𝑑
3
), 𝑑
1
are the mortality rates

of the immature prey andmature prey, and 𝑑
3
(𝑑
3
> 𝑑
1
) is the

death coefficient of 𝑦(𝑡). 𝑑
2
is the intraspecific competition

rate of the mature prey. 𝛽 is the transmission coefficient.
The term 𝑟𝑒

−𝜔𝜏
𝑥
2
(𝑡 − 𝜏) represents the immatures who were

born at time 𝑡 − 𝜏 and survive at time 𝑡 (with the immature
death rate 𝜔) and therefore represents the transformation of
immatures tomatures (𝑟𝑒−𝜔𝜏 > 𝑑

1
). 𝑘 is the rate of conversing

prey into predator.𝑝
0
, 𝑝 (0 ≤ 𝑝

0
, 𝑝 < 1) represent the killing

(or poisoning) rate of the prey and the predator, respectively.
𝜇 ≥ 0 is the stocking amount of the immature prey at 𝑡 = 𝑛𝑇.
𝑏𝑦(𝑡)/(𝑎+𝑦(𝑡)) denotes the birth effort of predator population
at 𝑡 = 𝑛𝑇, where 𝑏 means the maximum birth effort per
unit of time and 𝑎 the predator size at which 50% saturation
(𝑏𝑦(𝑡)/(𝑎 + 𝑦(𝑡))|

𝑦(𝑡)=𝑎
= 𝑏/2)measures how soon saturation

occurs.

Lemma 1 (see [24]). Consider the following equation:

𝑥̇ (𝑡) = 𝑎𝑥 (𝑡 − 𝜏) − 𝑏𝑥 (𝑡) − 𝑐𝑥
2
(𝑡) , (2)

where 𝑎, 𝑏, 𝑐, 𝜏 > 0 for −𝜏 ≤ 𝑡 ≤ 0. We have

(i) if 𝑎 < 𝑏, then lim
𝑡→∞

𝑥(𝑡) = 0;
(ii) if 𝑎 > 𝑏, then lim

𝑡→∞
𝑥(𝑡) = (𝑎 − 𝑏/𝑐).

Lemma 2. Consider the following system:

𝑢̇ (𝑡) = −𝑑
3
𝑢 (𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑢 (𝑡
+
) = (1 − 𝑝) 𝑢 (𝑡) +

𝑏𝑢 (𝑡)

𝑎 + 𝑢 (𝑡)

, 𝑡 = 𝑛𝑇,

(3)

(i) if 𝑝 > 1 + 𝑏/𝑎 − 𝑒
𝑑3𝑇, the fixed point 𝑢∗

0
= 0 is globally

asymptotically stable;

(ii) if 𝑝 < 1 + 𝑏/𝑎 − 𝑒
𝑑3𝑇, the fixed point 𝑢∗ = (𝑎(1 − 𝑝) +

𝑏 − 𝑎𝑒
𝑑3𝑇

)/(1 − (1 − 𝑝)𝑒
−𝑑3𝑇

) is globally asymptotically
stable.

Proof. Integrating the first equation of (3) on 𝑛𝑇 < 𝑡 < (𝑛 +

1)𝑇, we have

𝑢 (𝑡) = 𝑢 (𝑛𝑇
+
) 𝑒
−𝑑3(𝑡−𝑛𝑇)

, 𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1) 𝑇. (4)

With the successive pulse, we can obtain the following
stroboscopic map of system (3):

𝑢 ((𝑛 + 1) 𝑇
+
) = (1 − 𝑝) 𝑢 (𝑛𝑇

+
) 𝑒
−𝑑3𝑇

+

𝑏𝑢 (𝑛𝑇
+
) 𝑒
−𝑑3𝑇

𝑎 + 𝑢 (𝑛𝑇
+
) 𝑒
−𝑑3𝑇

.

(5)

Let 𝐹(𝑢) = (1 − 𝑝)𝑢𝑒
−𝑑3𝑇

+ (𝑏𝑢𝑒
−𝑑3𝑇

)/(𝑎 + 𝑢𝑒
−𝑑3𝑇

). If 𝑝 >

1 + (𝑏/𝑎) − 𝑒
𝑑3𝑇, then the fixed point 𝑢∗

0
= 0, since

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝐹 (𝑢)

𝑑𝑢

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑢=0

= (1 − 𝑝) 𝑒
−𝑑3𝑇

+

𝑏𝑒
−𝑑3𝑇

𝑎

< 1; (6)

and unstable if 𝑝 < 1 + (𝑏/𝑎) − 𝑒
𝑑3𝑇, since

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝐹 (𝑢)

𝑑𝑢

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑢=0

= (1 − 𝑝) 𝑒
−𝑑3𝑇

+

𝑏𝑒
−𝑑3𝑇

𝑎

> 1. (7)

If 𝑝 < 1 + (𝑏/𝑎) − 𝑒
𝑑3𝑇, (5) has a unique positive fixed point:

𝑢
∗
=

𝑎 (1 − 𝑝) + 𝑏 − 𝑎𝑒
𝑑3𝑇

1 − (1 − 𝑝) 𝑒
−𝑑3𝑇

. (8)

By the same way, we can obtain the fact that the fixed point
𝑢
∗
= (𝑎(1 − 𝑝) + 𝑏 − 𝑎𝑒

𝑑3𝑇
)/(1 − (1 − 𝑝)𝑒

−𝑑3𝑇
) is globally

asymptotically stable if 𝑝 < 1 + (𝑏/𝑎) − 𝑒
𝑑3𝑇. This completes

the proof.
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which implies that corresponding periodic solution of (3)
on (𝑛𝑇, (𝑛 + 1)𝑇] is

𝑢̃ (𝑡) =

𝑎 (1 − 𝑝) + 𝑏 − 𝑎𝑒
𝑑3𝑇

1 − (1 − 𝑝) 𝑒
−𝑑3𝑇

𝑒
−𝑑3(𝑡−𝑛𝑇)

. (9)

Thus (1) has a mature prey-extinction periodic solution
(𝑥
1
(𝑡), 0, 𝑦(𝑡)), where 𝑥

1
(𝑡) = (𝜇𝑒

−𝜔(𝑡−𝑛𝑇)
)/(1 − (1 −

𝑝
0
)𝑒
−𝜔𝑇

), 𝑦(𝑡) = (𝑎(1 − 𝑝) + 𝑏 − 𝑎𝑒
𝑑3𝑇

)/(1 − (1 −

𝑝)𝑒
−𝑑3𝑇

)𝑒
−𝑑3(𝑡−𝑛𝑇).

Theorem 3. The mature prey-extinction periodic solution
(𝑥
1
(𝑡), 0, 𝑦(𝑡)) is globally asymptotically stable if

𝑅
1
< 1 (10)

holds, where 𝑅
1
= (𝑟𝑒

−𝜔𝜏
− 𝑑
1
)[1 − (1 − 𝑝)𝑒

−𝑑3𝑇
]/𝛽[𝑎(1 −

𝑝)𝑒
−𝑑3𝑇

+ 𝑏𝑒
−𝑑3𝑇

− 𝑎].

Proof. Let (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡)) be any solution of system (1).

Following from the third equation of system (1), we notice
that ̇𝑦(𝑡) ≥ −𝑑

3
𝑦(𝑡). Consider the following impulsive

differential system:

̇𝑦
1
(𝑡) = −𝑑

3
𝑦
1
(𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑦
1
(𝑡
+
) = (1 − 𝑝) 𝑦

1
(𝑡) +

𝑏𝑦
1
(𝑡)

𝑎 + 𝑦
1
(𝑡)

, 𝑡 = 𝑛𝑇.

(11)

According to Lemma 2, we obtain the fact that 𝑦
1
(𝑡) = ((𝑎(1−

𝑝)+𝑏−𝑎𝑒
𝑑3𝑇

)/(1−(1−𝑝)𝑒
−𝑑3𝑇

))𝑒
−𝑑3(𝑡−𝑛𝑇), for 𝑛𝑇 < 𝑡 ≤ (𝑛+1)𝑇.

By using the comparison differential theorem of impulsive
equation, we have𝑦(𝑡) ≥ 𝑦

1
(𝑡) and𝑦

1
(𝑡) → 𝑦

1
(𝑡) as 𝑡 → ∞.

Therefore, for an arbitrarily small positive constant 𝜀 and all 𝑡
large enough:

𝑦 (𝑡) ≥ 𝑦
1
(𝑡) ≥ 𝑦

1
(𝑡) − 𝜀 (12)

holds true.
For simplicity, we assume that (12) holds for all 𝑡 > 0.

From (12), we have

𝑑𝑥
2
(𝑡)

𝑑𝑡

≤ 𝑟𝑒
−𝜔𝜏

𝑥
2
(𝑡 − 𝜏) − (𝛽 (𝑦

1
(𝑡) − 𝜀) + 𝑑

1
) 𝑥
2
(𝑡)

− 𝑑
2
𝑥
2

2
(𝑡) , 𝑡 > 𝑛𝑇 + 𝜏.

(13)

Consider the following comparison differential equation:

𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑟𝑒
−𝜔𝜏

𝑥 (𝑡 − 𝜏)

− (𝛽 (𝑦
1
(𝑡) − 𝜀) + 𝑑

1
) 𝑥 (𝑡) − 𝑑

2
𝑥
2
(𝑡) ,

𝑡 > 𝑛𝑇 + 𝜏.

(14)

From (10) and Lemma 1, we have lim
𝑡→∞

𝑥(𝑡) = 0. By
the comparison differential theorem, we get lim

𝑡→∞
𝑥
2
(𝑡) <

lim
𝑡→∞

𝑥(𝑡) = 0. Noticing the positivity of 𝑥
2
(𝑡), we know

that lim
𝑡→∞

𝑥
2
(𝑡) = 0. Without loss of generality, we assume

that for any 𝜀
1
(sufficiently small)

𝑥
2
(𝑡) ≤ 𝜀

1
. (15)

Following from (1) and (15), we can obtain that

−𝑟𝑒
−𝜔𝜏

𝜀
1
− 𝜔𝑥
1
(𝑡) ≤ 𝑥̇

1
(𝑡) ≤ 𝑟𝜀

1
− 𝜔𝑥
1
(𝑡) , (16)

which yields 𝑧
1
(𝑡) ≤ 𝑥

1
(𝑡) ≤ 𝑧

2
(𝑡) and 𝑧

1
(𝑡) → 𝑥

1
(𝑡),

𝑧
2
(𝑡) → 𝑥

1
(𝑡) as 𝑡 → ∞ → ∞, while 𝑧

1
(𝑡), 𝑧
2
(𝑡) are the

solutions of

𝑧̇
1
(𝑡) = −𝑟𝑒

−𝜔𝜏
𝜀
1
− 𝜔𝑧
1
(𝑡) , 𝑡 ̸= 𝑛𝑇,

Δ𝑧
1
(𝑡) = −𝑝

0
𝑧
1
(𝑡) + 𝜇, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍

+
,

(17)

𝑧̇
2
(𝑡) = 𝑟𝜀

1
− 𝜔𝑧
2
(𝑡) , 𝑡 ̸= 𝑛𝑇,

Δ𝑧
2
(𝑡) = −𝑝

0
𝑧
2
(𝑡) + 𝜇, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍

+
,

(18)

respectively. Here, 𝑧̃
1
(𝑡) = −𝑟𝑒

−𝜔𝜏
𝜀
1
/𝜔 + ((𝜇 +

((𝑟𝑒
−𝜔𝜏

𝜀
1
)/𝜔)𝑝

0
)/(1 − (1 − 𝑝

0
)𝑒
−𝜔𝑇

))𝑒
−𝜔(𝑡−𝑛𝑇)and 𝑧̃

2
(𝑡) =

(𝑟𝜀
1
/𝜔) + ((𝜇 + (𝑟𝜀

1
/𝜔)𝑝
0
)/(1 − (1 − 𝑝

0
)𝑒
−𝜔𝑇

))𝑒
−𝜔(𝑡−𝑛𝑇), for

𝑡 ∈ (𝑛𝑇, (𝑛 + 1)𝑇].
In view of the comparison differential theorem, for any

𝜀
2
, let 𝜀
1
→ 0; then 𝑧̃

1
(𝑡) − 𝜀

2
< 𝑥
1
(𝑡) < 𝑧̃

2
(𝑡) + 𝜀

2
, for 𝑡 large

enough, which means 𝑥
1
(𝑡) → 𝑥

1
(𝑡) as 𝑡 → ∞.

Next, we will prove that 𝑦(𝑡) → 𝑦(𝑡) as 𝑡 → ∞. From
(1) and (15), we get

−𝑑
3
𝑦 (𝑡) ≤ ̇𝑦 (𝑡) ≤ − (𝑑

3
− 𝑘𝛽𝜀

1
) 𝑦 (𝑡) . (19)

For the left hand inequality, it follows from impulsive
differential equation (5) that 𝑦(𝑡) ≥ 𝑦

1
(𝑡) and 𝑦

1
(𝑡) → 𝑦

1
(𝑡)

as 𝑡 → ∞. For the right hand inequality, we consider the
following impulsive differential equation:

𝑧̇
3
(𝑡) = − (𝑑

3
− 𝑘𝛽𝜀

1
) 𝑧
3
(𝑡) , 𝑡 ̸= 𝑛𝑇,

𝑧
3
(𝑡
+
) = (1 − 𝑝) 𝑧

3
(𝑡) +

𝑏𝑧
3
(𝑡)

𝑎 + 𝑧
3
(𝑡)

, 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
,

(20)

and 𝑧̃
3
(𝑡) = ((𝑎(1 − 𝑝) + 𝑏 − 𝑎𝑒

𝑑3𝑇
)/(1 − (1 −

𝑝)𝑒
−𝑑3𝑇

))𝑒
−(𝑑3−𝜆𝛽𝜀1)(𝑡−𝑛𝑇).

Therefore, for any 𝜀
3
, 𝑦
1
(𝑡) − 𝜀

3
< 𝑦(𝑡) < 𝑧̃

3
(𝑡) + 𝜀

3
. Let

𝜀
1
→ 0; then we get

𝑦 (𝑡) − 𝜀
3
< 𝑦 (𝑡) < 𝑦 (𝑡) + 𝜀

3
, (21)

for 𝑡 large enough, which means 𝑦(𝑡) → 𝑦(𝑡) as 𝑡 → ∞.
The proof is completed.

Corollary 4. (i) If 𝑝 < 1 + (𝑏𝛽/((𝑟𝑒
−𝜔𝜏

− 𝑑
1
) + 𝑎𝛽)) −

𝑒
𝑑3𝑇 holds, then the mature prey-extinction periodic solution
(𝑥
1
(𝑡), 0, 𝑦(𝑡)) is globally asymptotically stable.
(ii) If 𝑇 < (1/𝑑

3
) ln(1 + (𝑏𝛽/((𝑟𝑒

−𝜔𝜏
− 𝑑
1
) + 𝑎𝛽)) −

𝑝) holds, then the mature prey-extinction periodic solution
(𝑥
1
(𝑡), 0, 𝑦(𝑡)) is globally asymptotically stable.
In biological terms, since 𝑝 < 1+(𝑏𝛽/((𝑟𝑒

−𝜔𝜏
−𝑑
1
)+𝑎𝛽))−

𝑒
𝑑3𝑇 or 𝑇 < (1/𝑑

3
) ln(1 + (𝑏𝛽/((𝑟𝑒

−𝜔𝜏
− 𝑑
1
) + 𝑎𝛽)) − 𝑝), the

mature prey will extinct and immature prey and predators will
coexist.
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3. Predator-Prey Model with Impulsive Effects
at the Different Time

In particular, in order to avoid the adverse effects of pesticides
on the newly released natural enemies, we consider the
following method implemented in practice to avoid such
antagonism. That is, we assume that the pulse occurs at 𝑡 =
(𝑛 + 𝑙)𝑇 (0 < 𝑙 < 1) and 𝑡 = (𝑛 + 1)𝑇. The detailed changes
are shown as follows:

𝑥̇
1
(𝑡) = 𝑟𝑥

2
(𝑡) − 𝑟𝑒

−𝜔𝜏
𝑥
2
(𝑡 − 𝜏) − 𝜔𝑥

1
(𝑡) ,

𝑥̇
2
(𝑡) = 𝑟𝑒

−𝜔𝜏
𝑥
2
(𝑡 − 𝜏) − 𝛽𝑥

2
(𝑡) 𝑦 (𝑡)

−𝑑
1
𝑥
2
(𝑡) − 𝑑

2
𝑥
2

2
(𝑡) ,

̇𝑦 (𝑡) = 𝑘𝛽𝑥
2
(𝑡) 𝑦 (𝑡) − 𝑑

3
𝑦 (𝑡) ,

𝑡 ̸= (𝑛 + 𝑙) 𝑇,

𝑡 ̸= (𝑛 + 1) 𝑇,

𝑥
1
(𝑡
+
) = (1 − 𝑝

0
) 𝑥
1
(𝑡) ,

𝑥
2
(𝑡
+
) = 𝑥
2
(𝑡) ,

𝑦 (𝑡
+
) = (1 − 𝑝) 𝑦 (𝑡) ,

𝑡 = (𝑛 + 𝑙) 𝑇,

𝑥
1
(𝑡
+
) = 𝑥
1
(𝑡) + 𝜇,

𝑥
2
(𝑡
+
) = 𝑥
2
(𝑡) ,

𝑦 (𝑡
+
) = 𝑦 (𝑡) +

𝑏𝑦 (𝑡)

𝑎 + 𝑦 (𝑡)

,

𝑡 = (𝑛 + 1) 𝑇, 𝑛 ∈ 𝑍
+
.

(𝜔
1
(𝑠) , 𝜔

2
(𝑠) , 𝜔

3
(𝑠)) ∈ 𝐶

+
= 𝐶 ([−𝜏, 0] , 𝑅

3

+
) ,

𝜔
𝑖
(0) > 0, 𝑖 = 1, 2, 3.

(22)

If the mature prey 𝑥
2
(𝑡) is absent, then system (22) reduces to

𝑥̇
1
(𝑡) = −𝜔𝑥

1
(𝑡) ,

̇𝑦 (𝑡) = −𝑑
3
𝑦 (𝑡) ,

𝑡 ̸= (𝑛 + 𝑙) 𝑇, 𝑡 ̸= (𝑛 + 1) 𝑇,

𝑥
1
(𝑡
+
) = (1 − 𝑝

0
) 𝑥
1
(𝑡) ,

𝑦 (𝑡
+
) = (1 − 𝑝) 𝑦 (𝑡) ,

𝑡 = (𝑛 + 𝑙) 𝑇,

𝑥
1
(𝑡
+
) = 𝑥
1
(𝑡) + 𝜇,

𝑦 (𝑡
+
) = 𝑦 (𝑡) +

𝑏𝑦 (𝑡)

𝑎 + 𝑦 (𝑡)

,
𝑡 = (𝑛 + 1) 𝑇, 𝑛 ∈ 𝑍

+
.

(23)

We can easily obtain the analytic solution of system (23) at
the interval [𝑛𝑇, (𝑛 + 1)𝑇):

𝑥
1
(𝑡) =

{
{
{
{

{
{
{
{

{

𝑥
1
(𝑛𝑇
+
) 𝑒
−𝜔(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 𝑙) 𝑇] ,

𝑥
1
((𝑛 + 𝑙) 𝑇

+
) 𝑒
−𝜔(𝑡−(𝑛+𝑙)𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙) 𝑇, (𝑛 + 1) 𝑇] ,

𝑦 (𝑡) =

{
{
{
{

{
{
{
{

{

𝑦 (𝑛𝑇
+
) 𝑒
−𝑑3(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 𝑙) 𝑇] ,

𝑦 ((𝑛 + 𝑙) 𝑇
+
) 𝑒
−𝑑3(𝑡−(𝑛+𝑙)𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙) 𝑇, (𝑛 + 1) 𝑇] .

(24)

Lemma 5. (i) If 𝑝 > 1 − 𝑎𝑒
𝑑3𝑇

/(𝑎 + 𝑏), the fixed point 𝑦∗
0
= 0

is globally asymptotically stable.
(ii) If 𝑝 < 1−𝑎𝑒

𝑑3𝑇
/(𝑎+𝑏), the fixed point 𝑦∗ = ((𝑎+𝑏)(1−

𝑝) − 𝑎𝑒
𝑑3𝑇

)/(1 − 𝑝)[1 − (1 − 𝑝)𝑒
−𝑑3𝑇

] is globally asymptotically
stable.

Proof. Consider system (24), which yields the following
stroboscopic map:

𝑦 ((𝑛 + 1) 𝑇
+
) = (1 − 𝑝) 𝑦 (𝑛𝑇

+
) 𝑒
−𝑑3𝑇

+

𝑏 (1 − 𝑝) 𝑦 (𝑛𝑇
+
) 𝑒
−𝑑3𝑇

𝑎 + (1 − 𝑝) 𝑦 (𝑛𝑇
+
) 𝑒
−𝑑3𝑇

.

(25)

Let 𝐹(𝑦) = (1−𝑝)𝑦𝑒
−𝑑3𝑇

+𝑏(1−𝑝)𝑦𝑒
−𝑑3𝑇

/(𝑎+(1−𝑝)𝑦𝑒
−𝑑3𝑇

).
If 𝑝 > 1 − 𝑎𝑒

𝑑3𝑇
/(𝑎 + 𝑏), there exists a unique trivial fixed

point 𝑦∗
0

= 0. The trivial fixed point 𝑦∗
0
is locally stable if

𝑝 > 1 − 𝑎𝑒
𝑑3𝑇

/(𝑎 + 𝑏), since

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝐹 (𝑦)

𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑦=0

=

𝑎 (1 − 𝑝) 𝑒
−𝑑3𝑇

+ 𝑏 (1 − 𝑝) 𝑒
−𝑑3𝑇

𝑎

< 1, (26)

and unstable if 𝑝 < 1 − 𝑎𝑒
𝑑3𝑇

/(𝑎 + 𝑏), since

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑𝐹 (𝑦)

𝑑𝑦

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨𝑦=0

=

𝑎 (1 − 𝑝) 𝑒
−𝑑3𝑇

+ 𝑏 (1 − 𝑝) 𝑒
−𝑑3𝑇

𝑎

> 1. (27)

If 𝑝 < 1−𝑎𝑒
𝑑3𝑇

/(𝑎+𝑏), (25) has a positive fixed point denoted
by 𝑦∗, where 𝑦∗ = ((𝑎 + 𝑏)(1 − 𝑝) − 𝑎𝑒

𝑑3𝑇
)/(1 − 𝑝)[1 − (1 −

𝑝)𝑒
−𝑑3𝑇

], when 𝑝 < 1−𝑎𝑒
𝑑3𝑇

/(𝑎 + 𝑏). The positive fixed point
𝑦
∗ is locally stable since 𝑑𝐹(𝑦)/(𝑑𝑦)|

𝑦=𝑦
∗ = |(1 − 𝑝)𝑒

−𝑑3𝑇
+

𝑎[1−(1−𝑝)𝑒
−𝑑3𝑇

]
2
/𝑏(1−𝑝)𝑒

−𝑑3𝑇
| < 1, if 𝑝 < 1−𝑎𝑒

𝑑3𝑇
/(𝑎+𝑏).

Further, we can show that 𝑦∗ is globally asymptotically
stable, if the following statements are satisfied:

(i) if 𝑦∗ > 𝑦 > 0, then 𝑦∗ > 𝐹(𝑦) > 𝑦;

(ii) if 𝑦 > 𝑦
∗, then 𝑦 > 𝐹(𝑦) > 𝑦

∗.

By calculation, we get 𝑑𝐹/𝑑𝑦 = (1 − 𝑝)𝑒
−𝑑3𝑇

+ 𝑎𝑏(1 −

𝑝)𝑒
−𝑑3𝑇

/[𝑎+(1−𝑝)𝑒
−𝑑3𝑇

𝑦]
2
> 0, which shows that𝑦∗ > 𝐹(𝑦),

when 𝑦∗ > 𝑦 > 0; we know

𝐹 (𝑦) − 𝑦 = (1 − 𝑝) 𝑦𝑒
−𝑑3𝑇

+

𝑏 (1 − 𝑝) 𝑒
−𝑑3𝑇

𝑎 + (1 − 𝑝) 𝑦𝑒
−𝑑3𝑇

− 𝑦

> 𝑦((1 − 𝑝) 𝑒
−𝑑3𝑇

+

𝑏 (1 − 𝑝) 𝑒
−𝑑3𝑇

𝑎 + (1 − 𝑝) 𝑦
∗
𝑒
−𝑑3𝑇

− 1)

= 0.

(28)

This yields 𝐹(𝑦) > 𝑦. So we have 𝑦∗ > 𝐹(𝑦) > 𝑦 under the
assumption 𝑦∗ > 𝑦 > 0; otherwise 𝑦 > 𝐹(𝑦) > 𝑦

∗ if 𝑦 > 𝑦
∗.

Thus the statements (i) and (ii) are satisfied. This completes
the proof.

Now we can deduce that the positive equilibrium 𝑦
∗ of

system (25) is globally asymptotically stable. So we have the
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corresponding positive periodic solution (𝑥
1
(𝑡), 𝑦(𝑡)) in the

following, which is globally stable:

𝑥
1
(𝑡)

=

{
{
{
{

{
{
{
{

{

𝜇

1 − (1 − 𝑝
0
) 𝑒
−𝜔𝑇

𝑒
−𝜔(𝑡−𝑛𝑇)

, 𝑡 ∈ (𝑛𝑇, (𝑛 + 𝑙) 𝑇] ,

𝜇 (1 − 𝑝
0
)

1 − (1 − 𝑝
0
) 𝑒
−𝜔𝑇

𝑒
−𝜔(𝑡−𝑛𝑇)

, 𝑡 ∈ ((𝑛 + 𝑙) 𝑇, (𝑛 + 1) 𝑇] ,

𝑦 (𝑡) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
𝑑3𝑇

(1 − 𝑝) [1 − (1 − 𝑝) 𝑒
−𝑑3𝑇]

𝑒
−𝑑3(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 𝑙) 𝑇] ,

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
𝑑3𝑇

1 − (1 − 𝑝) 𝑒
−𝑑3𝑇

𝑒
−𝑑3(𝑡−𝑛𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙) 𝑇, (𝑛 + 1) 𝑇] .

(29)

Theorem 6. Assume that

𝑅
∗

1
< 1 (30)

holds, where 𝑅∗
1
= (𝑟𝑒
−𝜔𝜏

−𝑑
1
)[1− (1−𝑝)𝑒

−𝑑3𝑇
]/𝛽[(1−𝑝)(𝑎+

𝑏)𝑒
−𝑑3𝑇

−𝑎]. Then the mature prey-extinction periodic solution
(𝑥
1
(𝑡), 0, 𝑦(𝑡)) is globally asymptotically stable.

Proof. Following from the second equation of system (22),
we notice that ̇𝑦(𝑡) ≥ −𝑑

3
𝑦(𝑡); thus consider the following

impulsive differential system:

𝑧̇
4
(𝑡) = −𝑑

3
𝑧
4
(𝑡) , 𝑡 ̸= (𝑛 + 𝑙) 𝑇, 𝑡 ̸= (𝑛 + 1) 𝑇,

Δ𝑧
4
(𝑡) = −𝑝𝑧

4
(𝑡) , 𝑡 = (𝑛 + 𝑙) 𝑇,

Δ𝑧
4
(𝑡) =

𝑏𝑧
4
(𝑡)

𝑎 + 𝑧
4
(𝑡)

, 𝑡 = (𝑛 + 1) 𝑇, 𝑛 ∈ 𝑍
+
.

(31)

According to Lemma 5 and the comparison theorem on
impulsive differential equations, we have 𝑦(𝑡) ≥ 𝑧

4
(𝑡) and

𝑧
4
(𝑡) → 𝑦(𝑡) as 𝑡 → ∞.Then there exists an integer 𝑘

2
> 𝑘
1
,

𝑛 > 𝑘
2
, such that

𝑦 (𝑡) ≥ 𝑧
4
(𝑡) ≥ 𝑦 (𝑡) − 𝜀 (32)

holds for all t large enough.
This is

𝑦 (𝑡) ≥ 𝑦 (𝑡) − 𝜀

≥

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
𝑑3𝑇

(1 − 𝑝) [1 − (1 − 𝑝) 𝑒
−𝑑3𝑇]

𝑒
−𝑑3𝑙𝑇

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 𝑙) 𝑇] ,

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
𝑑3𝑇

1 − (1 − 𝑝) 𝑒
−𝑑3𝑇

𝑒
−𝑑3𝑇

,

𝑡 ∈ ((𝑛 + 𝑙) 𝑇, (𝑛 + 1) 𝑇] .

(33)

Since (((𝑎+𝑏)(1−𝑝)−𝑎𝑒𝑑3𝑇)/(1−𝑝)[1−(1−𝑝)𝑒−𝑑3𝑇])𝑒−𝑑3𝑙𝑇 >
(((𝑎 + 𝑏)(1 − 𝑝) − 𝑎𝑒

𝑑3𝑇
)/(1 − (1 − 𝑝)𝑒

−𝑑3𝑇
))𝑒
−𝑑3𝑇, we have

𝑦 (𝑡) ≥

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
𝑑3𝑇

1 − (1 − 𝑝) 𝑒
−𝑑3𝑇

𝑒
−𝑑3𝑇

− 𝜀 ≜ 𝜓,

𝑡 ∈ (𝑛𝑇, (𝑛 + 1) 𝑇] , 𝑛 > 𝑘
2
.

(34)

For simplicity, we assume that (34) holds for all 𝑡 ≥ 0. From
(22) we have

𝑑𝑥
2
(𝑡)

𝑑𝑡

≤ 𝑟𝑒
−𝜔𝜏

𝑥
2
(𝑡 − 𝜏)

− (𝛽 (𝑦 (𝑡) − 𝜀) + 𝑑
1
) 𝑥
2
(𝑡) − 𝑑

2
𝑥
2

2
(𝑡) ,

𝑡 > 𝑛𝑇 + 𝜏, 𝑛 > 𝑘
2
.

(35)

Consider the following comparison differential system:

𝑑𝑧
5
(𝑡)

𝑑𝑡

= 𝑟𝑒
−𝜔𝜏

𝑧
5
(𝑡 − 𝜏)

− (𝛽 (𝑦 (𝑡) − 𝜀) + 𝑑
1
) 𝑧
5
(𝑡) − 𝑑

2
𝑧
2

5
(𝑡) ,

𝑡 > 𝑛𝑇 + 𝜏, 𝑛 > 𝑘
2
.

(36)

From (23) and Lemma 1, we have lim
𝑡→∞

𝑧
5
(𝑡) = 0. By the

comparison differential theorem, we have lim
𝑡→∞

𝑥
2
(𝑡) <

lim
𝑡→∞

𝑧
5
(𝑡) = 0. Noticing the positivity of 𝑥

2
(𝑡), we know

that lim
𝑡→∞

𝑥
2
(𝑡) = 0. Without loss of generality, we assume

that there exists an integer 𝑘
3
, 𝑘
3
> 𝑘
2
, for any 𝜀

1
(sufficiently

small), such that

𝑥
2
(𝑡) ≤ 𝜀

1
. (37)

In view of (22) and (37), it is easy to obtain that

−𝑟𝑒
−𝜔𝜏

𝜀
1
− 𝜔𝑥
1
(𝑡) ≤ 𝑥̇

1
(𝑡) ≤ 𝑟𝜀

1
− 𝜔𝑥
1
(𝑡) , (38)

we get 𝑧
6
(𝑡) ≤ 𝑥

1
(𝑡) ≤ 𝑧

7
(𝑡), and 𝑧

6
(𝑡) → 𝑥

1
(𝑡), 𝑧
7
(𝑡) →

𝑥
1
(𝑡) as 𝑡 → ∞, where

𝑧̇
6
(𝑡) = −𝑟𝑒

−𝜔𝜏
𝜀
1
− 𝜔𝑧
6
(𝑡) ,

𝑡 ̸= (𝑛 + 𝑙) 𝑇, 𝑡 ̸= (𝑛 + 1) 𝑇,

𝑧
6
(𝑡
+
) = (1 − 𝑝

0
) 𝑧
6
(𝑡) , 𝑡 = (𝑛 + 𝑙) 𝑇,

𝑧
6
(𝑡
+
) = 𝑧
6
(𝑡) +

𝑏𝑧
6
(𝑡)

𝑎 + 𝑧
6
(𝑡)

, 𝑡 = (𝑛 + 1) 𝑇, 𝑛 ∈ 𝑍
+
,

𝑧̇
7
(𝑡) = 𝑟𝜀

1
− 𝜔𝑧
7
(𝑡) , 𝑡 ̸= (𝑛 + 𝑙) 𝑇, 𝑡 ̸= (𝑛 + 1) 𝑇,

𝑧
7
(𝑡
+
) = (1 − 𝑝

0
) 𝑧
7
(𝑡) , 𝑡 = (𝑛 + 𝑙) 𝑇,

𝑧
7
(𝑡
+
) = 𝑧
7
(𝑡) +

𝑏𝑧
7
(𝑡)

𝑎 + 𝑧
7
(𝑡)

, 𝑡 = (𝑛 + 1) 𝑇, 𝑛 ∈ 𝑍
+
.

(39)

From the comparison differential theorem, for any 𝜀
2
, there

exists an integer 𝑘
4
, 𝑛 > 𝑘

4
; let 𝜀
1
→ 0; then 𝑧̃

6
(𝑡) − 𝜀

2
<
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𝑥
1
(𝑡) < 𝑧̃

7
(𝑡) + 𝜀

2
, for 𝑡 large enough, which means 𝑥

1
(𝑡) →

𝑥
1
(𝑡) as 𝑡 → ∞, where

𝑧̃
6
(𝑡)

=

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

−𝑟𝑒
−𝜔𝜏

𝜀
1

𝜔

+(

𝜇

1 − (1 − 𝑝
0
) 𝑒
−𝜔𝑇

−

−𝑟𝑒
−𝜔𝜏

𝜀
1

𝜔

) 𝑒
−𝜔(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 𝑙) 𝑇] ,

−𝑟𝑒
−𝜔𝜏

𝜀
1

𝜔

+(

𝜇 (1 − 𝑝
0
) 𝑒
−𝜔𝑙𝑇

1 − (1 − 𝑝
0
) 𝑒
−𝜔𝑇

−

−𝑟𝑒
−𝜔𝜏

𝜀
1

𝜔

) 𝑒
−𝜔(𝑡−(𝑛+𝑙)𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙) 𝑇, (𝑛 + 1) 𝑇] ,

𝑧̃
7
(𝑡) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

𝑟𝜀
1

𝜔

+ (

𝜇

1 − (1 − 𝑝
0
) 𝑒
−𝜔𝑇

−

𝑟𝜀
1

𝜔

) 𝑒
−𝜔(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 𝑙) 𝑇] ,

𝑟𝜀
1

𝜔

+ (

𝜇 (1 − 𝑝
0
) 𝑒
−𝜔𝑙𝑇

1 − (1 − 𝑝
0
) 𝑒
−𝜔𝑇

−

𝑟𝜀
1

𝜔

) 𝑒
−𝜔(𝑡−(𝑛+𝑙)𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙) 𝑇, (𝑛 + 1) 𝑇] .

(40)

Next, we will prove that 𝑦(𝑡) → 𝑦(𝑡) as 𝑡 → ∞. From (22)
and (37), we get

−𝑑
3
𝑦 (𝑡) ≤ ̇𝑦 (𝑡) ≤ − (𝑑

3
− 𝜆𝛽𝜀

1
) 𝑦 (𝑡) . (41)

For the left hand inequality, it follows from impulsive differ-
ential equation (31) that 𝑦(𝑡) ≥ 𝑧

4
(𝑡) and 𝑧

4
(𝑡) → 𝑦

1
(𝑡)

as 𝑡 → ∞. For the right hand inequality, we consider the
following impulsive differential equation:

𝑧̇
8
(𝑡) = − (𝑑

3
− 𝜆𝛽𝜀

1
) 𝑧
8
(𝑡) ,

𝑡 ̸= (𝑛 + 𝑙) 𝑇, 𝑡 ̸= (𝑛 + 1) 𝑇,

Δ𝑧
8
(𝑡) = −𝑝𝑧

8
(𝑡) , 𝑡 = (𝑛 + 𝑙) 𝑇,

Δ𝑧
8
(𝑡) =

𝑏𝑧
8
(𝑡)

𝑎 + 𝑧
8
(𝑡)

, 𝑡 = (𝑛 + 1) 𝑇, 𝑛 ∈ 𝑍
+
,

𝑧̃
8
(𝑡) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
(𝑑3−𝜆𝛽𝜀1)𝑇

(1 − 𝑝) [1 − (1 − 𝑝) 𝑒
−(𝑑3−𝜆𝛽𝜀1)𝑇]

𝑒
−(𝑑3−𝜆𝛽𝜀1)(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 𝑙) 𝑇] ,

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
(𝑑3−𝜆𝛽𝜀1)𝑇

1 − (1 − 𝑝) 𝑒
−(𝑑3−𝜆𝛽𝜀1)𝑇

𝑒
−(𝑑3−𝜆𝛽𝜀1)(𝑡−𝑛𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙) 𝑇, (𝑛 + 1) 𝑇] .

(42)

Therefore, for any 𝜀
3
, there exists an integer 𝑘

5
, 𝑛 > 𝑘

5
such

that

𝑧̃
4
(𝑡) − 𝜀

3
< 𝑦 (𝑡) < 𝑧̃

8
(𝑡) + 𝜀

3
. (43)

Let 𝜀
1
→ 0; then we get

𝑦 (𝑡) − 𝜀
3
< 𝑦 (𝑡) < 𝑦 (𝑡) + 𝜀

3
, (44)

for 𝑡 large enough, which means 𝑦(𝑡) → 𝑦(𝑡) as 𝑡 → ∞.
The proof is completed.

Corollary 7. (i) If 𝑝 < 1 − [(𝑟𝑒
−𝜔𝜏

− 𝑑
1
) + 𝑎𝛽]𝑒

𝑑3𝑇
/((𝑟𝑒
−𝜔𝜏

−

𝑑
1
) + (𝑎 + 𝑏)𝛽) holds, then the mature prey-extinction periodic

solution (𝑥
1
(𝑡), 0, 𝑦(𝑡)) is globally asymptotically stable.

(ii) If𝑇 < (1/𝑑
3
) ln([(𝑟𝑒−𝜔𝜏−𝑑

1
)+(𝑎+𝑏)𝛽](1−𝑝)/[(𝑟𝑒

−𝜔𝜏
−

𝑑
1
) + 𝑎𝛽]𝑒

𝑑3𝑇
) holds, then the mature prey-extinction periodic

solution (𝑥
1
(𝑡), 0, 𝑦(𝑡)) is globally asymptotically stable.

The biological significance of Corollary 7 is the same as
Corollary 4, so we omit it.

In order to investigate the permanence of system (22), we
should give the following Definition and Lemma.

Lemma 8. There exists a constant 𝑀 > 0 such that
𝑥
1
(𝑡) ≤ 𝑀/𝑘, 𝑥

2
(𝑡) ≤ 𝑀/𝑘, 𝑦(𝑡) ≤ 𝑀 for each solution

(𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡)) of system (22) with all 𝑡 large enough.

Proof. Define𝑉(𝑡) = 𝑘𝑥
1
(𝑡) + 𝑘𝑥

2
(𝑡) + 𝑦(𝑡), note that 𝜔 > 𝑑

3
,

then 𝑡 ̸= (𝑛 + 𝑙)𝑇, 𝑡 ̸= (𝑛 + 1)𝑇 and we have

𝐷
+
𝑉 (𝑡) + 𝑑

3
𝑉 (𝑡)

= −𝑘 (𝜔 − 𝑑
3
) 𝑥
1
(𝑡) + 𝑘 (𝑟 + 𝑑

3
− 𝑑
1
) 𝑥
2
(𝑡) − 𝑘𝑑

2
𝑥
2

2
(𝑡)

≤ −𝑘𝑑
2
(𝑥
2

2
(𝑡) −

𝑟 + 𝑑
3
− 𝑑
1

2𝑑
2

)

2

+

𝑘(𝑟 + 𝑑
3
− 𝑑
1
)
2

4𝑑
2

≤

𝑘(𝑟 + 𝑑
3
− 𝑑
1
)
2

4𝑑
2

≜ 𝑀
1
.

(45)

When 𝑡 = (𝑛 + 𝑙)𝑇,

𝑉 ((𝑛 + 𝑙) 𝑇
+
)

= 𝑘𝑥
1
((𝑛 + 𝑙) 𝑇

+
) + 𝑘𝑥

2
((𝑛 + 𝑙) 𝑇

+
) + 𝑦 ((𝑛 + 𝑙) 𝑇

+
)

= 𝑘 ((1 − 𝑝
0
)) 𝑥
1
((𝑛 + 𝑙) 𝑇)

+ 𝑘𝑥
2
((𝑛 + 𝑙) 𝑇) + (1 − 𝑝) 𝑦 ((𝑛 + 𝑙) 𝑇)

≤ 𝑉 ((𝑛 + 𝑙) 𝑇) .

(46)

When 𝑡 = (𝑛 + 1)𝑇,

𝑉 ((𝑛 + 1) 𝑇
+
)

= 𝑘𝑥
1
((𝑛 + 1) 𝑇

+
) + 𝑘𝑥

2
((𝑛 + 1) 𝑇

+
) + 𝑦 ((𝑛 + 1) 𝑇

+
)

= 𝑉 ((𝑛 + 1) 𝑇) + 𝑘𝜇 +

𝑏𝑦 ((𝑛 + 1) 𝑇)

𝑎 + 𝑦 ((𝑛 + 1) 𝑇)

≤ 𝑉 ((𝑛 + 1) 𝑇) + 𝑘𝜇 + 𝑏.

(47)

Let us denote𝑀
2
= 𝑘𝜇 + 𝑏.
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It follows from the comparison theorem of impulsive
differential equations (see lemma 2.2 [25], page 23) that

𝑉 (𝑡) ≤𝑉 (0
+
) 𝑒
−𝑑3𝑡

+𝑀
1

1 − 𝑒
−𝑑3𝑡

𝑑
3

+𝑀
2

𝑒
−𝑑3(𝑡−𝑇)

1 − 𝑒
𝑑3𝑇

+𝑀
2

𝑒
𝑑3𝑇

𝑒
𝑑3𝑇 − 1

󳨀→

𝑀
1

𝑑
3

+𝑀
2

𝑒
𝑑3𝑇

𝑒
𝑑3𝑇 − 1

,

as 𝑡 󳨀→ ∞.

(48)

So 𝑉(𝑡) is ultimately bounded. Hence, by the definition of
𝑉(𝑡), there exists a constant 𝑀 > 0, such that 𝑥

1
(𝑡) ≤

𝑀/𝑘, 𝑥
2
(𝑡) ≤ 𝑀/𝑘, 𝑦(𝑡) ≤ 𝑀 for all 𝑡 large enough. This

completes the proof.

Remark 9. According to Lemma 8, it is clear that
lim sup

𝑡→∞
𝑉(𝑡) → 𝑀

1
/𝑑
3
+ 𝑀
2
(𝑒
𝑑3𝑇

/(𝑒
𝑑3𝑇

− 1)). For
convenience, we note that 𝑀 = (𝑘(𝑟 + 𝑑

3
− 𝑑
1
)
2
/4𝑑
2
𝑑
3
) +

(𝑘𝜇 + 𝑏)(𝑒
𝑑3𝑇

/(𝑒
𝑑3𝑇

− 1)).

Definition 10. The system (22) is said to be permanent if there
are constants𝑚,𝑀 > 0 (independent of all initial values) and
a finite time 𝑇

0
, such that for all solutions (𝑥

1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡))

with all initial values 𝑥
1
(0
+
) > 0, 𝑥

2
(0
+
) > 0, 𝑦(0

+
) > 0, 𝑚 ≤

𝑥
1
(𝑡) ≤ 𝑀/𝑘, 𝑚 ≤ 𝑥

2
(𝑡) ≤ 𝑀/𝑘, and 𝑚 ≤ 𝑦(𝑡) ≤ 𝑀 holds

for all 𝑡 ≥ 𝑇
0
.

In biological terms, the permanence of (22) implies that
prey (both immature and mature) and predators will coexist,
none of them facing extinction or growing indefinitely.
Denote

𝑅
∗
=

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
(𝑑3−𝑘𝛽𝜃)𝑇

(1 − 𝑝) [1 − (1 − 𝑝) 𝑒
−(𝑑3−𝑘𝛽𝜃)𝑇]

,

𝜃 =

(𝑎 + 𝑏) (1 − 𝑝)

𝑎𝑒
𝑑3𝑇

(1 −

1

𝑅
∗

2

) +

1

𝑅
∗

2

.

(49)

Theorem 11. If

𝑅
∗

2
> 1 (50)

holds, where 𝑅∗
2
= ((𝑟𝑒

−𝜔𝜏
− 𝑑
1
− 𝑑
2
(𝑀/𝑘))/𝛽𝑅

∗
), system (22)

is permanent.

Proof. It is seen that the second equation of system (22) can
be rewritten as

𝑑𝑥
2
(𝑡)

𝑑𝑡

= (𝑟𝑒
−𝜔𝜏

− 𝛽𝑦 (𝑡) − 𝑑
1
− 𝑑
2
𝑥
2
(𝑡)) 𝑥
2
(𝑡)

− 𝑟𝑒
−𝜔𝜏 𝑑

𝑑𝑡

∫

𝑡

𝑡−𝜏

𝑥
2
(𝑢) 𝑑𝑢.

(51)

Let us consider any positive solution (𝑥
1
(𝑡), 𝑥
2
(𝑡), 𝑦(𝑡)) of

system (22). By (51), 𝑉(𝑡) is defined as

𝑉 (𝑡) = 𝑥
2
(𝑡) + 𝑟𝑒

−𝜔𝜏 𝑑

𝑑𝑡

∫

𝑡

𝑡−𝜏

𝑥
2
(𝑢) 𝑑𝑢. (52)

Taking the first derivative of 𝑉(𝑡) with respect to 𝑡, we have

𝑑𝑉 (𝑡)

𝑑𝑡

= (𝑟𝑒
−𝜔𝜏

− 𝛽𝑦 (𝑡) − 𝑑
1
− 𝑑
2
𝑥
2
(𝑡)) 𝑥
2
(𝑡) . (53)

As seen in Lemma 8, (53) can be written as

𝑑𝑉 (𝑡)

𝑑𝑡

> (𝑟𝑒
−𝜔𝜏

− 𝛽𝑦 (𝑡) − 𝑑
1
− 𝑑
2

𝑀

𝑘

)𝑥
2
(𝑡) . (54)

From the definition of 𝑅∗
2
, we have

𝑒
𝑘𝛽𝑇𝜃

=

(𝑎 + 𝑏) (1 − 𝑝)

𝑎𝑒
𝑑3𝑇

(1 −

1

𝑅
∗

2

) +

1

𝑅
∗

2

> 1, (55)

and then 𝜃 > 0; it is easy to know that there exists a sufficiently
small 𝜀 such that

𝑟𝑒
−𝜔𝜏

> 𝛽 (𝑅
∗
+ 𝜀) + 𝑑

1
+ 𝑑
2

𝑀

𝑘

. (56)

We claim that, for any 𝑡
0
> 0, it is impossible that 𝑥

2
(𝑡) < 𝜃

for all 𝑡 > 𝑡
0
. Otherwise, there is a 𝑡

0
> 0 such that 𝜃 for all

𝑡 > 𝑡
0
. It follows from the third equation of (22) that

̇𝑦 (𝑡) < (𝑘𝛽𝜃 − 𝑑
3
) 𝑦 (𝑡) , (57)

for all 𝑡 > 𝑡
0
. Consider the following comparison impulsive

system of (57):

𝑧̇
9
(𝑡) = − (𝑑

3
− 𝑘𝛽𝜃) 𝑧

9
(𝑡) ,

𝑡 ̸= (𝑛 + 𝑙) 𝑇, 𝑡 ̸= (𝑛 + 1) 𝑇,

Δ𝑧
9
(𝑡) = −𝑝𝑧

9
(𝑡) , 𝑡 = (𝑛 + 𝑙) 𝑇,

Δ𝑧
9
(𝑡) =

𝑏𝑧
9
(𝑡)

𝑎 + 𝑧
9
(𝑡)

, 𝑡 = (𝑛 + 1) 𝑇, 𝑛 ∈ 𝑍
+
,

(58)

and we have

𝑧̃
9
(𝑡) =

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
(𝑑3−𝑘𝛽𝜃)𝑇

(1 − 𝑝) [1 − (1 − 𝑝) 𝑒
−(𝑑3−𝑘𝛽𝜃)𝑇]

𝑒
−(𝑑3−𝑘𝛽𝜃)(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 𝑙) 𝑇] ,

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
(𝑑3−𝑘𝛽𝜃)𝑇

[1 − (1 − 𝑝) 𝑒
−(𝑑3−𝑘𝛽𝜃)]

𝑒
−(𝑑3−𝑘𝛽𝜃)(𝑡−𝑛𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙) 𝑇, (𝑛 + 1) 𝑇] .

(59)

In view of the comparison differential theorem for equation,
there exists a 𝑇

1
> 0, such that

𝑦 (𝑡) < 𝑧
9
(𝑡) < 𝑧̃

9
(𝑡) + 𝜀

1

≤

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
(𝑑3−𝑘𝛽𝜃)𝑇

(1 − 𝑝) [1 − (1 − 𝑝) 𝑒
−(𝑑3−𝑘𝛽𝜃)𝑇]

+ 𝜀
1
,

𝑡 ∈ (𝑛𝑇, (𝑛 + 𝑙) 𝑇] ,

𝑒
−(𝑑3−𝑘𝛽𝜃)𝑙𝑇

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
(𝑑3−𝑘𝛽𝜃)𝑇

[1 − (1 − 𝑝) 𝑒
−(𝑑3−𝑘𝛽𝜃)]

+ 𝜀
1
,

𝑡 ∈ ((𝑛 + 𝑙) 𝑇, (𝑛 + 1) 𝑇] ,

(60)
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for 𝑡 > 𝑇
1
, which implies that 𝑦(𝑡) ≤ 𝑧̃

9
(𝑡) + 𝜀

1
, where

𝑧̃
9
(𝑡) ≤

(𝑎 + 𝑏) (1 − 𝑝) − 𝑎𝑒
(𝑑3−𝑘𝛽𝜃)𝑇

(1 − 𝑝) [1 − (1 − 𝑝) 𝑒
−(𝑑3−𝑘𝛽𝜃)𝑇]

= 𝑅
∗
. (61)

Thus

𝑦 (𝑡) ≤ 𝑅
∗
+ 𝜀
1
≜ 𝜂, 𝑡 > 𝑇

1
. (62)

From (54), we get

𝑟𝑒
−𝜔𝜏

> 𝛽𝜂 + 𝑑
1
+ 𝑑
2

𝑀

𝑘

. (63)

By (54) and (63), we have

𝑉̇ (𝑡) > (𝑟𝑒
−𝜔𝜏

− 𝛽𝜂 − 𝑑
1
− 𝑑
2

𝑀

𝑘

)𝑥
2
(𝑡) , 𝑡 ≥ 𝑇

1
. (64)

Let

𝑥
𝑚

2
= min
𝑡∈[𝑇1,𝑇1+𝜏]

𝑥
2
(𝑡) . (65)

In the following we show that 𝑥
2
(𝑡) ≥ 𝑥

𝑚

2
for all 𝑡 ≥ 𝑇

1
.

Otherwise, there is a 𝑇
2
> 0 such that 𝑥

2
(𝑡) ≥ 𝑥

𝑚

2
for 𝑇
1
≤ 𝑡 ≤

𝑇
1
+ 𝜏 + 𝑇

2
, 𝑥
2
(𝑇
1
+ 𝜏 + 𝑇

2
) = 𝑥

𝑚

2
and 𝑥̇

2
(𝑇
1
+ 𝜏 + 𝑇

2
) < 0,

which implies that,

𝑥̇
2
(𝑇
1
+ 𝑇
2
+ 𝜏)

= 𝑟𝑒
−𝜔𝜏

𝑥
2
(𝑇
1
+ 𝑇
2
+ 𝜏)

− 𝛽𝑥
2
(𝑇
1
+ 𝑇
2
+ 𝜏) 𝑦 (𝑇

1
+ 𝑇
2
+ 𝜏)

− 𝑑
1
𝑥
2
(𝑇
1
+ 𝑇
2
+ 𝜏) − 𝑑

2
𝑥
2

2
(𝑇
1
+ 𝑇
2
+ 𝜏)

≥ (𝑟𝑒
−𝜔𝜏

− 𝛽𝜂 − 𝑑
1
− 𝑑
2
𝑀)𝑥
𝑚

2
> 0,

(66)

it is a contradiction. Thus, 𝑥
2
≥ 𝑥
𝑚

2
for all 𝑡 ≥ 𝑇

1
. Hence, for

𝑡 ≥ 𝑇
1
, we get

𝑉̇ (𝑡) > 𝑥
𝑚

2
(𝑟
1
𝑒
−𝜔𝜏

− 𝛽𝜂 − 𝑑
1
− 𝑑
2
𝑀) > 0, (67)

which means 𝑉(𝑡) → ∞ as 𝑡 → ∞. This is contrary to the
boundedness of 𝑉(𝑡). The claim is proved.

By the claim, consider the following two possibilities.

Case 1. 𝑥
2
(𝑡) ≥ 𝑥

∗

2
for all 𝑡 large enough.

Case 2. 𝑥
2
oscillates about 𝑥∗

2
for 𝑡 large enough. Set

𝑞 = min{
𝑥
∗

2

2

, 𝑥
∗

2
𝑒
−(𝛽𝑀+𝑑1+𝑑2𝑥

∗

2
)𝜏
} . (68)

We will show that 𝑥
2
(𝑡) ≥ 𝑞 for all 𝑡 large enough. The

conclusion is evident inCase 1. ForCase 2, suppose that there
exists the positive constant 𝑡, 𝜉 satisfying 𝑥

2
(𝑡) = 𝑥

2
(𝑡 + 𝜉) =

𝑥
∗

2
and 𝑥

2
(𝑡) < 𝑥

∗

2
for all 𝑡 < 𝑡 < 𝑡 + 𝜉, where 𝑡 is enough large

such that

𝑥
2
(𝑡) > 𝑞 for 𝑡 < 𝑡 < 𝑡 + 𝜉, (69)

since 𝑥
2
(𝑡) is continuous and bounded and is not affected by

impulses. Thus 𝑥
2
(𝑡) is uniformly continuous. Consequently,

there exists a constant 𝑇
3
(0 < 𝑇

3
< 𝜏 and 𝑇

3
is independent

of the choice of 𝑡) such that 𝑥
2
(𝑡) > (𝑥

∗

2
/2) for 𝑡 ≤ 𝑡 ≤ 𝑡 + 𝑇

3
.

If 𝜉 ≤ 𝑇
3
, our aim is obtained. Then we consider the case

𝑇
3
< 𝜉 < 𝜏. From the second equation of (22) and the above

assumption, we have that 𝑥̇
2
(𝑡) ≥ −(𝛽𝑀 + 𝑑

1
+ 𝑑
2
𝑥
∗

2
)𝑥
2
(𝑡)

for 𝑡 < 𝑡 ≤ 𝑡 + 𝜉 ≤ 𝑡 + 𝜏. Hence one obtains 𝑥
2
(𝑡) ≥

𝑥
∗

2
𝑒
−(𝛽𝑀+𝑑1+𝑑2𝑥

∗

2
)𝜏. It is clear that 𝑥

2
(𝑡) ≥ 𝑞 for 𝑡 < 𝑡 ≤ 𝑡 + 𝜉.

If 𝜉 ≥ 𝜏, then we have 𝑥
2
(𝑡) ≥ 𝑞 for 𝑡 < 𝑡 ≤ 𝑡 + 𝜏. The

same arguments can be continued; we can obtain 𝑥
2
(𝑡) ≥ 𝑞

for 𝑡+𝜏 < 𝑡 ≤ 𝑡+𝜉. Since the kind of interval [𝑡, 𝑡+𝜉] is chosen
in arbitrary way, we have 𝑥

2
(𝑡) ≥ 𝑞 for 𝑡 large enough. In view

of the above discussion, the selection of 𝑞 is independent of
the positive solution of (22) which satisfies 𝑥

2
(𝑡) ≥ 𝑞 for all 𝑡

large enough.
Next, from the first, the fourth, and the seventh equation

of system (22), we have

𝑥̇
1
(𝑡) ≥ −𝜔𝑥

1
(𝑡) , 𝑡 ̸= (𝑛 + 𝑙) 𝑇, 𝑡 ̸= (𝑛 + 1) 𝑇,

Δ𝑥
1
(𝑡) = −𝑝

0
𝑥
1
(𝑡) , 𝑡 = (𝑛 + 𝑙) 𝑇,

Δ𝑥
1
(𝑡) = 𝜇, 𝑡 = (𝑛 + 1) 𝑇, 𝑛 ∈ 𝑍

+
.

(70)

Considering the comparison system,

𝑧̇
10
(𝑡) = −𝜔𝑧

10
(𝑡) , 𝑡 ̸= (𝑛 + 𝑙) 𝑇, 𝑡 ̸= (𝑛 + 1) 𝑇,

Δ𝑧
10
(𝑡) = −𝑝

0
𝑧
10
(𝑡) , 𝑡 = (𝑛 + 𝑙) 𝑇,

Δ𝑧
10
(𝑡) = 𝜇, 𝑡 = (𝑛 + 1) 𝑇, 𝑛 ∈ 𝑍

+
.

(71)

Therefore for any 𝜀
4
> 0 small enough such that 𝑥

1
(𝑡) ≥

𝑧̃
10
(𝑡) − 𝜀

4
for 𝑡 sufficiently large,

𝑧̃
10
(𝑡) =

{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{

{

𝜇

1 − (1 − 𝑝
0
) 𝑒
−𝜔𝑇

𝑒
−𝜔(𝑡−𝑛𝑇)

,

𝑡 ∈ (𝑛𝑇, (𝑛 + 𝑙) 𝑇] ,

𝜇 (1 − 𝑝
0
)

1 − (1 − 𝑝
0
) 𝑒
−𝜔𝑇

𝑒
−𝜔(𝑡−𝑛𝑇)

,

𝑡 ∈ ((𝑛 + 𝑙) 𝑇, (𝑛 + 1) 𝑇] .

(72)

In view of the comparison theorem of impulsive differential
equation and theTheorem 6, we get

𝑥
1
(𝑡) ≥

𝜇 (1 − 𝑝
0
)

1 − (1 − 𝑝
0
) 𝑒
−𝜔𝑇

𝑒
−𝜔𝑇

− 𝜀
2
≜ 𝑚
1
. (73)

From (34) and (68), set 𝜓 ≜ 𝑚
3
and 𝑞 ≜ 𝑚

2
.

Define 𝑚 = min{𝑚
1
, 𝑚
2
, 𝑚
3
}, and thus we have 𝑥

1
(𝑡) ≥

𝑚, 𝑥
2
(𝑡) ≥ 𝑚, 𝑦(𝑡) ≥ 𝑚. By Lemma 8 and the above discus-

sion, the system is permanent. The proof is completed.

4. Numerical Analysis

In the previous sections, we introduced the analytical tools
and used them for a qualitative analysis of the system
obtaining some results about the dynamics of the system. In
this section, we perform a numerical analysis of the model
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Figure 1: Dynamical behavior of system (1); the parameter values are as follows: 𝑟 = 1.2, 𝜏 = 0.5, 𝜔 = 0.2, 𝛽 = 2, 𝜇 = 2, 𝑘 = 0.2, 𝑑
1
= 0.1, 𝑑

2
=

0.2, 𝑑
3
= 0.15, 𝑝

0
= 0.1, 𝑝 = 0.5, 𝑎 = 5, 𝑏 = 6, and 𝑇 = 3.

based on the previous results. What we are interested in is
how the key factors affect the thresholds 𝑅

1
and 𝑅

∗

1
. Let

𝑅
1
(𝑝, 𝑇, 𝜏) = ((𝑟𝑒

−𝜔𝜏
−𝑑
1
)[1− (1−𝑝)𝑒

−𝑑3𝑇
]/𝛽[𝑎(1−𝑝)𝑒

−𝑑3𝑇
+

𝑏𝑒
−𝑑3𝑇

− 𝑎]). Taking the first derivatives 𝑅
1
(𝑝, 𝑇, 𝜏) with

respect to 𝑝, 𝑇 and 𝜏, respectively, one obtains

𝜕𝑅
1

𝜕𝑝

=

(𝑟𝑒
−𝜔𝜏

− 𝑑
1
)

𝛽

𝑏𝑒
−2𝑑3𝑇

[𝑎 (1 − 𝑝) 𝑒
−𝑑3𝑇 + 𝑏𝑒

−𝑑3𝑇 − 𝑎]
2
> 0,

𝜕𝑅
1

𝜕𝑇

=

(𝑟𝑒
−𝜔𝜏

− 𝑑
1
)

𝛽

𝑑
3
𝑏𝑒
−𝑑3𝑇

[𝑎 (1 − 𝑝) 𝑒
−𝑑3𝑇 + 𝑏𝑒

−𝑑3𝑇 − 𝑎]
2
> 0,

𝜕𝑅
1

𝜕𝜏

= −𝜔

𝑟𝑒
−𝜔𝜏

[1 − (1 − 𝑝) 𝑒
−𝑑3𝑇

]

𝛽 [𝑎 (1 − 𝑝) 𝑒
−𝑑3𝑇 + 𝑏𝑒

−𝑑3𝑇 − 𝑎]

< 0.

(74)

Those inequalities demonstrate that threshold value 𝑅
1
is

a monotonic increasing function with respect to 𝑝 and 𝑇

and is a monotonic decreasing function with 𝜏. These results
indicate that the smaller killing (or poisoning) rate 𝑝 or the
shorter pulse period 𝑇, the smaller the threshold value 𝑅

1

which follows, so, the result shows that it is more effective for
pest control. Similarly, when pests have very short maturity
𝜏, the bigger the threshold value 𝑅

1
which follows, and hence

make it more difficult for pest control. Therefore, we must
carefully select the impulsive catching (or poisoning) rate or
the time of pesticide applications or reduce the dosages of the
pesticide.

So far, we have considered the global attractive mature
prey-eradication solution of systems (1) and (22). We first

focus on the system (1); when threshold value 𝑅
1
< 1, the

mature prey is eradicated totally and the immature prey and
the predator populationwill tend to a stable level; see Figure 1,
where 𝑟 = 1.2, 𝜏 = 0.5, 𝜔 = 0.2, 𝛽 = 2, 𝜇 = 2, 𝑘 = 0.2, 𝑑

1
=

0.1, 𝑑
2
= 0.2, 𝑑

3
= 0.15, 𝑝

0
= 0.1, 𝑝 = 0.5, 𝑎 = 5, 𝑏 = 6, 𝑇 = 3,

and 𝑅
1
≈ 0.7997 < 1, while if we chose the parameters

set as those in Figure 2, then the all populations oscillate
periodically, which indicates that the system (1) is permanent.
Furthermore, we can carry out two-parameter bifurcation
analysis for the threshold value 𝑅

1
, as those shown in Figures

3(a)–3(d). In each subplot, we let two key parameters vary
simultaneously and see how those parameters affect the
threshold value 𝑅

1
. All simulation results shown in Figure 3

indicate that the 𝑅
1
appears to be quite sensitive to small

changes in parameters, 𝑝, 𝑇, 𝜏, and 𝑏. However, we note
that the dynamical behaviour of system (1) is dominated
by several types of periodic solutions and their coexistence,
even with very high intrinsic growth rates. In Figure 4, we
studied the influence of killing rate 𝑝 on the complexity of
system (1); numerical results show that when killing rate 𝑝
varies from 0.45 to 0.95, the dynamical behaviour of system
(1) is very complex. A typical chaos oscillation is captured
when 𝑝 = 0.7 (see Figure 5). Figure 6 shows the bifurcation
diagrams of system (1); the system analyzed here could take
on many forms of complexity, including period doubling
bifurcation, symmetry-breaking pitchfork bifurcation, and
chaotic solutions. Meanwhile, system (1) also has a certain
type of coexistence if the intrinsic growth rate of the pest
population is large enough.

For system (22), according to Theorem 6, we know that,
if 𝑅∗
1
< 1, the mature prey-extinction periodic solution is
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Figure 2: Dynamical behavior of system (1); the parameter values are as follows: 𝑟 = 1.2, 𝜏 = 0.5, 𝜔 = 0.2, 𝛽 = 1.2, 𝑘 = 0.2, 𝑑
1
= 0.1, 𝑑

2
=

0.2, 𝑑
3
= 0.15, 𝑝

0
= 0.1, 𝑝 = 0.7, 𝑎 = 5, 𝑏 = 6, 𝜇 = 2, and 𝑇 = 3.

globally attractive. This can be seen clearly from Figure 7,
where 𝑟 = 5, 𝜏 = 0.5, 𝜔 = 0.2, 𝛽 = 0.6, 𝑘 = 0.2, 𝑑

1
=

0.15, 𝑑
2
= 0.2, 𝑑

3
= 0.1, 𝑝

0
= 0.2, 𝑝 = 0.5, 𝑎 = 3, 𝑏 = 6, 𝑇 =

2, 𝑙 = 0.7, and 𝜇 = 2; then 𝑅
∗

1
≈ 0.8733 < 1, while if we

chose the parameters set as those in Figure 8, it is clear that
the system (22) is permanent. By using the same methods as
those for system (1), we can investigate the effects of killing
rate 𝑝, pulse periodic 𝑇, birth rate 𝑟 of pest populations,
and the biggest birth rate 𝑏 of predator on the threshold

value 𝑅
∗

1
and discuss their biological implications, so we

omitted them here.
We are more interested in how different patterns of insec-

ticide applications affect the two threshold values (𝑅
1
, 𝑅
∗

1
)

and which strategy is more conducive to pest control. To
do this, we investigate the superiority of the two strategies.
Assume that the 𝑅

1
and 𝑅

∗

1
are with the same parameters;

Figure 9 provides the details of how different control strate-
gies affect the threshold values 𝑅

1
and 𝑅

∗

1
. If 𝑝 = 0, that
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Figure 3: The influence of some key parameters on the threshold level 𝑅
1
; the other parameter values are as follows: 𝑟 = 3, 𝜔 = 0.2, 𝑘 =

0.2, 𝑑
1
= 0.1, 𝑑

2
= 0.2, 𝑑

3
= 0.15, and 𝑎 = 5. (a) 𝑏 = 7, 𝜏 = 0.2, 𝑇 : 1 → 3.8, 𝑝 : 0.2 → 0.6; (b) 𝑏 = 7, 𝑝 = 0.25, 𝑇 : 3.5 → 4.5, 𝜏 : 0.1 → 0.5;

(c) 𝑏 = 7, 𝑇 = 4, 𝑝 : 0.1 → 0.5, 𝜏 : 0.1 → 0.5; (d) 𝜏 = 0.2, 𝑇 = 3, 𝑏 : 5 → 8, 𝑝 : 0.1 → 0.4.
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Figure 4: Complex dynamic properties of system (1) with 𝑟 = 3, 𝜏 = 0.5, 𝜔 = 0.2, 𝜇 = 4, 𝛽 = 4, 𝑘 = 0.2, 𝑝
0
= 0.1, 𝑑

1
= 0.1, 𝑑

2
= 0.2, 𝑑

3
=

0.15, 𝑎 = 5, 𝑏 = 7, and 𝑇 = 4, where killing rate 𝑝 varies from 0.45 to 0.95.

is, do not spray insecticide, 𝑅
1

= 𝑅
∗

1
, the effect of two

control strategies is; if 𝑝 ̸= 0, then 𝑅
1

> 𝑅
∗

1
; this result

indicates that if natural enemies were born at the same time
as spraying insecticide, the side-effects of pesticides on the
natural enemy population are very strong. Obviously, part of

the newborn natural enemies will be killed and the number
of natural enemies will be sharply reduced; the contribution
of chemical control for the threshold value𝑅

1
is stronger than

𝑅
∗

1
. From the practical point of view, we should avoid to spray

insecticide when the predators are born.
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Figure 5: Time-series of the system (1) with pulse, where killing rate 𝑝 = 0.7; other parameters are the same as of those in Figure 4.

8 9 10 11 12 13 14 15 16 17
3.4

3.6

3.8

r

x
1
(t
)

(a)

8 9 10 11 12 13 14 15 16 17
0

1

2

x
2
(t
)

(b)

8 9 10 11 12 13 14 15 16 17
r

0

2

4

y
(t
)

(c)

Figure 6: Bifurcation diagrams of system (1) with 𝜔 = 0.2, 𝛽 = 4, 𝜇 = 4, 𝑘 = 0.2, 𝑝
0
= 0.1, 𝑝 = 0.6, 𝑑

1
= 0.1, 𝑑

2
= 0.2, 𝑑

3
= 0.15, 𝜏 = 0.05, 𝑎 =

5, 𝑏 = 7, and 𝑇 = 4, where the birth rate 𝑟 varies from 8 to 17.

5. Discussion

When using integrated pest management as an approach to
control insect pests, one must be committed to a long-term
strategy. It is well known that pesticides usually act not only
on the pest species but also, with even stronger impact, on
their natural enemies; then, despite the fact that pesticides kill
the target pest, they are simultaneously reducing the popu-
lation density of natural enemies; the influence of pesticides
on natural enemies is even greater than on insect pests. As a

result of this indirect effect, treatments can counterintuitively
lead to an effective increase of the pest species, even pest
breakout again.

In this paper, our idea is to contribute to pest control
programs with pesticide applications and with birth pulse
in natural enemies and to provide some strategies; that is,
spraying pesticides and natural enemies were born at the
same time and at a different time. The threshold condi-
tions which guarantee the existence and stability of the
mature prey-extinction periodic solution are provided. If
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Figure 7: Dynamical behavior of system (22); the parameter values are as follows: 𝑟 = 5, 𝜏 = 0.5, 𝜔 = 0.2, 𝛽 = 0.6, 𝑘 = 0.2, 𝑑
1
= 0.15, 𝑑

2
=

0.2, 𝑑
3
= 0.1, 𝑝

0
= 0.2, 𝑝 = 0.5, 𝑎 = 3, 𝑏 = 6, 𝑇 = 2, 𝑙 = 0.7, and 𝜇 = 2. Here, 𝑅∗

1
≈ 0.8733, 𝑝 < 1 − ((𝑎𝑒

𝑑3𝑇
)/(𝑎 + 𝑏)) ≈ 0.7181.

the integrated control methods cannot completely eradicate
the mature prey, the pest population can have outbreaks
at different scales. By numerical bifurcation investigations,
we found that, when choosing different parameter spaces,
two attractors from which the pest population oscillates
with different amplitudes can coexist for a wide range
of parameters. Moreover, the effects of times of spraying
pesticides (or the enemy was born) and control tactics
on the threshold conditions were carefully investigated. In
particular, the effects of the killing rates of pesticides for
pest and natural enemy populations and spraying period

on the stability of the mature prey-extinction periodic solu-
tions were discussed. The results imply that the modeling
methods described can help the pest control specialist to
decide appropriate control strategies and assist management
decision-making.
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