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We deal with the existence of constant sign solutions for the following variable exponent systemNeumann boundary value problem:
−div(|∇𝑢|𝑝(𝑥)−2∇𝑢) + 𝜆|𝑢|𝑝(𝑥)−2𝑢 = 𝐹𝑢(𝑥, 𝑢, V) inΩ, −div(|∇V|

𝑞(𝑥)−2
∇V) + 𝜆|V|𝑞(𝑥)−2V = 𝐹V(𝑥, 𝑢, V) in Ω, 𝜕𝑢/𝜕𝛾 = 0 = 𝜕V/𝜕𝛾 on 𝜕Ω.

We give several sufficient conditions for the existence of the constant sign solutions, when 𝐹(𝑥, ⋅, ⋅) satisfies neither sub-(𝑝(𝑥), 𝑞(𝑥))
growth condition, nor Ambrosetti-Rabinowitz condition (subcritical). In particular, we obtain the existence of eight constant sign
solutions.

1. Introduction

In recent years, there is a lot of interest in the study of various
mathematical problems with variable exponent (see [1–32]).
We refer readers to [1, 23, 31, 33] for the background of these
problems. On the existence of solutions for elliptic systems
with variable exponent, we refer to [15, 25, 27]. In this paper,
we consider the existence of constant sign solutions for the
following problem:

− div (|∇𝑢|𝑝(𝑥)−2∇𝑢) + 𝜆|𝑢|𝑝(𝑥)−2𝑢 = 𝐹𝑢 (𝑥, 𝑢, V) in Ω,

− div (|∇V|𝑞(𝑥)−2∇V) + 𝜆|V|𝑞(𝑥)−2V = 𝐹V (𝑥, 𝑢, V) in Ω,

𝜕𝑢

𝜕𝛾

= 0 =

𝜕V
𝜕𝛾

on 𝜕Ω,

(P)

where Ω ⊂ R𝑁 is an open bounded domain and 𝜕Ω

possesses the cone property, 𝑝, 𝑞 ∈ 𝐶(Ω) and 𝑝(𝑥), 𝑞(𝑥) > 1,
−△𝑝(𝑥)𝑢 := − div(|∇𝑢|𝑝(𝑥)−2∇𝑢) is called the 𝑝(𝑥)-Laplacian,
𝜆 ≥ 1 is a positive parameter, and 𝛾 is the outward unit normal
to 𝜕Ω. 𝐹 satisfies

𝐹 (𝑥, 𝑠, 𝑡) = 𝑎 (𝑥) 𝐺 (𝑥, 𝑠, 𝑡) , ∀ (𝑥, 𝑠, 𝑡) ∈ Ω ×R ×R. (1)

We make the following assumption.
(A0) 𝑎 ∈ 𝐿

𝑟(⋅)
(Ω) is a nontrivial nonnegative singular

coefficient; 𝐺 ∈ 𝐶

1
(Ω ×R2

→ R) and satisfies









𝐺𝑠 (𝑥, 𝑠, 𝑡)








≤ 𝐶 (|𝑠|

𝛼(𝑥)−1
+ |𝑡|

𝛽(𝑥)/𝛼
0
(𝑥)

+ 1) ,

∀𝑥 ∈ Ω,









𝐺𝑡 (𝑥, 𝑠, 𝑡)








≤ 𝐶 (|𝑡|

𝛽(𝑥)−1
+ |𝑠|

𝛼(𝑥)/𝛽
0
(𝑥)

+ 1) ,

∀𝑥 ∈ Ω,

(2)

where 𝑟, 𝛼, 𝛽 ∈ 𝐶(Ω), 𝑟(𝑥) > 1, 1 < 𝛼(𝑥) < 𝑝

∗
(𝑥), 1 < 𝛽(𝑥) <

𝑞

∗
(𝑥) onΩ, 𝐺𝑠 = (𝜕/𝜕𝑠)𝐺, 𝐺𝑡 = (𝜕/𝜕𝑡)𝐺, and satisfies

𝑟 (𝑥) > max{(
𝑝

∗
(𝑥)

𝛼 (𝑥)

)

0

, (𝑝 (𝑥))

0
, (

𝑞

∗
(𝑥)

𝛽 (𝑥)

)

0

, (𝑞 (𝑥))

0
} ,

(3)

where the notation 𝑓

0
(𝑥) means the conjugate function of

𝑓(𝑥), namely, (1/𝑓(𝑥)) + (1/𝑓0
(𝑥)) ≡ 1, and

𝑝

∗
(𝑥) =

{

{

{

𝑁𝑝 (𝑥)

(𝑁 − 𝑝 (𝑥))

, 𝑝 (𝑥) < 𝑁,

∞, 𝑝 (𝑥) ≥ 𝑁.

(4)
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When 𝑝(⋅) ≡ 𝑝 (a constant), 𝑝(𝑥)-Laplacian is the
usual 𝑝-Laplacian. The 𝑝(𝑥)-Laplacian is nonhomogeneity.
Because of its nonhomogeneity, the 𝑝(𝑥)-Laplacian possesses
more complicated nonlinearity than the 𝑝-Laplacian. Many
results and methods for 𝑝-Laplacian problems do not hold
for 𝑝(𝑥)-Laplacian problems anymore. For the following
examples.

(10) ifΩ ⊂ R𝑁 is an open bounded domain, the Rayleigh
quotient

𝜆𝑝(⋅) = inf
𝑢∈𝑊
1,𝑝(⋅)

0
(Ω)\{0}

∫

Ω
(1/𝑝 (𝑥)) |∇𝑢|

𝑝(𝑥)
𝑑𝑥

∫

Ω
(1/𝑝 (𝑥)) |𝑢|

𝑝(𝑥)
𝑑𝑥

(5)

is zero in general. Only under some special conditions, we
have 𝜆𝑝(⋅) > 0. For example, 𝜆𝑝(⋅) > 0 if and only if 𝑝(⋅) is
monotone in one-dimensional case (i.e., 𝑁 = 1) (see [11]).
It is well known that the fact that 𝜆𝑝 > 0 is very important
in the study of 𝑝-Laplacian problems. For instance, in [34],
the first eigenvalue and first eigenfunction are used to discuss
the existence of positive solutions of 𝑝-Laplacian problems
successfully. But the 𝑝(𝑥)-Laplacian does not have the first
eigenvalue and first eigenfunction in general.

(20) The norm in 𝐿𝑝(⋅)(Ω) is of Luxemburg type (we will
explain later in Section 2). It is easy to see that ∫

Ω
|𝑢|

𝑝(𝑥)
𝑑𝑥 =

|𝑢|

𝑝(𝜉)

𝑝(⋅)
for some 𝜉 ∈ Ω. Hence the integral and the norm

cannot keep the constant exponent relationship. It implies
that we will have more difficulties in the study of 𝑝(𝑥)-
Laplacian problems. For example, it is very difficult to get
the best Sobolev imbedding constant when we deal with the
critical Sobolev exponent problems. Even if the best Sobolev
imbedding constant could be obtained, it is also very hard to
be applied to study the critical exponent problems.

(30) In [35], the authors applied the homogeneous
transformation method to discuss the existence of positive
solutions for a class of superlinear semipositon systems.
Nonetheless, the 𝑝(𝑥)-Laplacian is nonhomogeneity; this
method is very hard to be used on the 𝑝(𝑥)-Laplacian
problems.

On the existence of constant sign solutions of𝑝-Laplacian
problems, we refer to [35–40]. On the results of the constant
sign solutions of variable exponent differential equations, we
refer to [14, 19, 29].

Regarding the existence of solutions of (P), if 𝐹(𝑥, ⋅, ⋅)
satisfies the sub-(𝑝−, 𝑞−) growth condition, that is,

max
𝑥∈Ω

𝛼 (𝑥) < min
𝑥∈Ω

𝑝 (𝑥) , max
𝑥∈Ω

𝛽 (𝑥) < min
𝑥∈Ω

𝑞 (𝑥) , (6)

then the corresponding functional of (P) is coercive; if
𝐹(𝑥, ⋅, ⋅) satisfies the super-(𝑝+, 𝑞+) growth condition (sub-
critical), that is, the following Ambrosetti-Rabinowitz condi-
tion:

0 < 𝐺 (𝑥, 𝑠, 𝑡) ≤

𝑠

𝜃1

𝜕

𝜕𝑠

𝐺 (𝑥, 𝑠, 𝑡) +

𝑡

𝜃2

𝜕

𝜕𝑡

𝐺 (𝑥, 𝑠, 𝑡) ,

∀𝑥 ∈ Ω,

(7)

where positive constants 𝜃1 and 𝜃2 satisfy

max
𝑥∈Ω

𝑝 (𝑥) < 𝜃1 < 𝑝

∗
(𝑥) , max

𝑥∈Ω

𝑞 (𝑥) < 𝜃2 < 𝑞

∗
(𝑥) ,

(8)

then the corresponding functional of (P) satisfies Palais-
Smale conditions (see [15, 25]). If𝐹(𝑥, ⋅, ⋅) satisfies the subcrit-
ical growth condition, but it satisfies neither the sub-(𝑝−, 𝑞−)
growth condition nor the super-(𝑝+, 𝑞+) growth condition,
then it would be difficult to testify that the corresponding
functional is coercive or satisfying Palais-Smale conditions;
the results in this case are rare.

In this paper, we deal with the existence of constant sign
solutions of the problem (P), when the corresponding func-
tional neither is coercive nor satisfies Ambrosetti-Rabinowitz
condition. For example, we discuss the existence of solutions
of (P), when 𝐹 satisfies sub-(𝑝(𝑥), 𝑞(𝑥)) growth condition
near the origin in local; that is, the following condition

𝐹 (𝑥, 𝑠, 𝑡) ≥ 𝜎 (|𝑠|

𝜖1(𝑥)
+ |𝑡|

𝜖2(𝑥)
) ,

∀ (𝑥, 𝑠, 𝑡) ∈ Ω0 × (0, 𝛿) × (0, 𝛿) ,

where 1 < 𝜖1 (𝑥) < 𝑝 (𝑥) , 1 < 𝜖2 (𝑥) < 𝑞 (𝑥) on Ω0,

(9)

or 𝐹 satisfies super-(𝑝(𝑥), 𝑞(𝑥)) growth condition in local
(subcritical growth); that is, the following condition:

0 < 𝐺 (𝑥, 𝑠, 𝑡) ≤

𝑠

𝜃1 (𝑥)

𝜕

𝜕𝑠

𝐺 (𝑥, 𝑠, 𝑡) +

𝑡

𝜃2 (𝑥)

𝜕

𝜕𝑡

𝐺 (𝑥, 𝑠, 𝑡) ,

𝑥 ∈ Ω, 𝑠 > 0, 𝑡 > 0, |𝑠| + |𝑡| ≥ 𝑀,

(10)

where positive functions 𝜃1(⋅) and 𝜃2(⋅) satisfy

𝑝 (𝑥) < 𝜃1 (𝑥) < 𝑝

∗
(𝑥) , 𝑞 (𝑥) < 𝜃2 (𝑥) < 𝑞

∗
(𝑥) ,

∀𝑥 ∈ Ω.

(11)

In particular, we get the existence of eight constant sign
solutions of (P).

This paper is divided into four sections. In Section 2,
we introduce some basic properties of the variable exponent
Lebesgue-Sobolev spaces. In Section 3, several properties
of 𝑝(𝑥)-Laplacian are presented. In Section 4, we give the
existence results of constant sign solutions of problem (P).

2. Preliminary Results and Notations

Throughout this paper, the letters 𝑐, 𝑐𝑖, 𝐶𝑖, 𝑖 = 1, 2, . . ., denote
positive constants which may vary from line to line but are
independent of the terms which will take part in any limit
process.

In order to discuss the problem (P), we need some
theories on space𝑊1,𝑝(⋅)

(Ω) which we call variable exponent
Sobolev space. Firstly, we state somebasic properties of spaces
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𝑊

1,𝑝(⋅)
(Ω) and 𝑝(𝑥)-Laplacian which we will use later (for

details, see [6, 10, 12, 13]). Write

𝐶+ (Ω) = {ℎ | ℎ ∈ 𝐶 (Ω) , ℎ (𝑥) ≥ 1 for 𝑥 ∈ Ω} ,

ℎ

+
= ess sup

𝑥∈Ω

ℎ (𝑥) , ℎ

−
= ess inf

𝑥∈Ω
ℎ (𝑥) ,

for any ℎ ∈ 𝐿∞ (Ω) ;

𝑆 (Ω) = {𝑢 | 𝑢 is a measurable real-valued function in Ω} ,

𝐿

𝑝(⋅)
(Ω) = {𝑢 ∈ 𝑆 (Ω) | ∫

Ω

|𝑢(𝑥)|

𝑝(𝑥)
𝑑𝑥 < ∞} .

(12)

We introduce the norm on 𝐿𝑝(⋅)(Ω) by

|𝑢|𝑝(⋅) = inf {𝜆 > 0 | ∫

Ω

















𝑢(𝑥)

𝜆

















𝑝(𝑥)

𝑑𝑥 ≤ 1} ,
(13)

and (𝐿𝑝(⋅)(Ω), | ⋅ |𝑝(⋅)) becomes a Banach space; we call it
variable exponent Lebesgue space.

Proposition 1 (see [6]). (i) The space (𝐿𝑝(⋅)(Ω), | ⋅ |𝑝(⋅)) is a
separable, uniform convex Banach space, and its conjugate
space is 𝐿𝑝

0
(⋅)
(Ω), where (1/𝑝(𝑥)) + (1/𝑝

0
(𝑥)) ≡ 1. For any

𝑢 ∈ 𝐿

𝑝(⋅)
(Ω) and V ∈ 𝐿𝑝

0
(⋅)
(Ω), one has















∫

Ω

𝑢V 𝑑𝑥














≤ (

1

𝑝

−
+

1

(𝑝

0
)

−
) |𝑢|𝑝(⋅)|V|𝑝0(⋅). (14)

(ii) If 𝑝1, 𝑝2 ∈ 𝐶+(Ω), 𝑝1(𝑥) ≤ 𝑝2(𝑥) for any 𝑥 ∈ Ω, then
𝐿

𝑝2(⋅)
(Ω) ⊂ 𝐿

𝑝1(⋅)
(Ω), and the imbedding is continuous.

Denote 𝑌 = ∏

𝑘

𝑖=1
𝐿

𝑝𝑖(⋅)
(Ω) with the norm









𝑦







𝑌
=

𝑘

∑

𝑖=1











𝑦

𝑖






𝑝𝑖(⋅)
, ∀𝑦 = (𝑦

1
, . . . , 𝑦

𝑘
) ∈ 𝑌,

(15)

where 𝑝𝑖(𝑥) ∈ 𝐶+(Ω), 𝑖 = 1, . . . , 𝑚; then 𝑌 is a Banach space.

Proposition 2. If 𝑓(𝑥, 𝑦) : Ω ×R𝑘
→ R𝑚 is a Caratheodory

function, that is, 𝑓 satisfies the following:

(i) for a.e. 𝑥 ∈ Ω, 𝑦 → 𝑓(𝑥, 𝑦) is a continuous function
from R𝑘 to R𝑚;

(ii) for any 𝑦 ∈ R𝑘, 𝑥 → 𝑓(𝑥, 𝑦) is measurable.

If there exist 𝛽(𝑥), 𝑝1(𝑥), . . . , 𝑝𝑘(𝑥) ∈ 𝐶+(Ω), 𝜌(𝑥) ∈

𝐿

𝛽(⋅)
(Ω), and positive constant 𝑐 > 0 such that









𝑓 (𝑥, 𝑦)









≤ 𝜌 (𝑥) + 𝑐

𝑘

∑

𝑖=1









𝑦𝑖









𝑝𝑖(𝑥)/𝛽(𝑥)

𝑓𝑜𝑟 𝑎𝑛𝑦 𝑥 ∈ Ω, 𝑦 ∈ R
𝑘
,

(16)

then the Nemytsky operator from 𝑌 to (𝐿𝛽(⋅)(Ω))𝑚 defined by
(𝑁𝑓𝑢)(𝑥) = 𝑓(𝑥, 𝑢(𝑥)) is a continuous and bounded operator.

Proof. Similar to the proof of [41], we omit it here.

Proposition 3 (see [6]). If one denotes

𝜌 (𝑢) = ∫

Ω

|𝑢|

𝑝(𝑥)
𝑑𝑥, ∀𝑢 ∈ 𝐿

𝑝(⋅)
(Ω) , (17)

then
(i) |𝑢|𝑝(⋅) < 1(= 1; > 1) ⇔ 𝜌(𝑢) < 1(= 1; > 1);

(ii) |𝑢|𝑝(⋅) > 1 ⇒ |𝑢|

𝑝
−

𝑝(⋅)
≤ 𝜌(𝑢) ≤ |𝑢|

𝑝
+

𝑝(⋅)
; |𝑢|𝑝(⋅) < 1 ⇒

|𝑢|

𝑝
−

𝑝(⋅)
≥ 𝜌(𝑢) ≥ |𝑢|

𝑝
+

𝑝(⋅)
;

(iii) |𝑢|𝑝(⋅) → 0 ⇔ 𝜌(𝑢) → 0; |𝑢|𝑝(⋅) → ∞ ⇔ 𝜌(𝑢) →

∞.

Proposition 4 (see [6]). If 𝑢, 𝑢𝑛 ∈ 𝐿𝑝(⋅)(Ω), 𝑛 = 1, 2, . . ., then
the following statements are equivalent to each other:

(1) lim𝑛→∞|𝑢𝑛 − 𝑢|𝑝(⋅)
= 0;

(2) lim𝑛→∞𝜌(𝑢𝑛 − 𝑢) = 0;
(3) 𝑢𝑛 → 𝑢 in measure in Ω and lim𝑛→∞𝜌(𝑢𝑛) = 𝜌(𝑢).

The spaces𝑊1,𝑝(⋅)
(Ω) and𝑊1,𝑞(⋅)

(Ω) are defined by

𝑊

1,𝑝(⋅)
(Ω) = {𝑢 ∈ 𝐿

𝑝(⋅)
(Ω) | |∇𝑢| ∈ 𝐿

𝑝(⋅)
(Ω)} ,

𝑊

1,𝑞(⋅)
(Ω) = {V ∈ 𝐿𝑞(⋅) (Ω) | |∇V| ∈ 𝐿𝑞(⋅) (Ω)} ,

(18)

and endowed with the following norm:

‖𝑢‖𝑝(⋅) = inf {𝜇 > 0 | ∫

Ω

















∇𝑢

𝜇

















𝑝(𝑥)

𝑑𝑥+∫

Ω

















𝑢(𝑥)

𝜇

















𝑝(𝑥)

𝑑𝑥 ≤ 1} ,

‖𝑢‖𝑞(⋅) = inf {𝜇 > 0 | ∫

Ω

















∇𝑢

𝜇

















𝑞(𝑥)

𝑑𝑥+∫

Ω

















𝑢(𝑥)

𝜇

















𝑞(𝑥)

𝑑𝑥 ≤ 1} .

(19)

We denote by 𝑊

1,𝑝(⋅)

0
(Ω) the closure of 𝐶

∞

0
(Ω) in

𝑊

1,𝑝(⋅)
(Ω).

Proposition 5 (see [6]). (i) 𝑊1,𝑝(⋅)
(Ω) is a separable reflexive

Banach space.
(ii) If 𝛽 ∈ 𝐶+(Ω) and 𝛽(𝑥) < 𝑝

∗
(𝑥) for any 𝑥 ∈ Ω,

then the imbedding from𝑊

1,𝑝(⋅)
(Ω) to 𝐿𝛽(⋅)(Ω) is compact and

continuous.

Let 𝛽 ∈ 𝐶+(Ω), 𝜇 ∈ 𝑆(Ω), and 𝜇(𝑥) > 0 for a.e. 𝑥 ∈ Ω.
Define

𝐿

𝛽(⋅)

𝜇(⋅)
(Ω) = {𝑢 | 𝑢 ∈ 𝑆 (Ω) , ∫

Ω

𝜇 (𝑥) |𝑢(𝑥)|

𝛽(𝑥)
𝑑𝑥 < ∞} ,

(20)

with the norm
|𝑢|

𝐿
𝛽(⋅)

𝜇(⋅)
(Ω)

= |𝑢|(𝛽(⋅),𝜇(⋅))

= inf {𝜆 > 0 | ∫

Ω

𝜇 (𝑥)

















𝑢(𝑥)

𝜆

















𝛽(𝑥)

𝑑𝑥 ≤ 1} ;

(21)

then 𝐿𝛽(⋅)
𝜇(⋅)
(Ω) is a Banach space.
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Proposition 6 (see [12]). Assume that the boundary of Ω
possesses the cone property and 1 < 𝑝 ∈ 𝐶(Ω). Suppose that
𝜇 ∈ 𝐿

𝑟(⋅)
(Ω), 𝜇(𝑥) > 0 for a.e. 𝑥 ∈ Ω, 𝑟 ∈ 𝐶(Ω), and 𝑟− > 1. If

𝛽 ∈ 𝐶+(Ω) and

1 ≤ 𝛽 (𝑥) <

𝑟 (𝑥) − 1

𝑟 (𝑥)

𝑝

∗
(𝑥) , ∀𝑥 ∈ Ω; (22)

then the embedding𝑊1,𝑝(⋅)
(Ω) → 𝐿

𝛽(⋅)

𝜇(⋅)
(Ω) is compact.

Denote𝑋 = 𝑊

1,𝑝(⋅)
(Ω) × 𝑊

1,𝑞(⋅)
(Ω). The norm ‖ ⋅ ‖ on𝑋

is defined by

‖(𝑢, V)‖ = max {‖𝑢‖𝑝(⋅), ‖V‖𝑞(⋅)} . (23)

For any (𝑢, V) and (𝜑, 𝜓) in𝑋, let

Φ1 (𝑢) = ∫

Ω

1

𝑝 (𝑥)

(|∇𝑢|

𝑝(𝑥)
𝑑𝑥 + 𝜆|𝑢|

𝑝(𝑥)
) 𝑑𝑥,

Φ2 (V) = ∫

Ω

1

𝑞 (𝑥)

(|∇V|𝑞(𝑥)𝑑𝑥 + 𝜆|V|𝑞(𝑥)) 𝑑𝑥,

Φ (𝑢, V) = Φ1 (𝑢) + Φ2 (V) ,

Ψ (𝑢, V) = ∫

Ω

𝐹 (𝑥, 𝑢, V) 𝑑𝑥.

(24)

Then

Φ


(𝑢, V) (𝜑, 𝜓) = 𝐷1Φ (𝑢, V) (𝜑) + 𝐷2Φ (𝑢, V) (𝜓) ,

Ψ


(𝑢, V) (𝜑, 𝜓) = 𝐷1Ψ (𝑢, V) (𝜑) + 𝐷2Ψ (𝑢, V) (𝜓) ,

(25)

where

𝐷1Φ (𝑢, V) (𝜑) = ∫

Ω

|∇𝑢|

𝑝(𝑥)−2
∇𝑢∇𝜑𝑑𝑥 + ∫

Ω

𝜆|𝑢|

𝑝(𝑥)−2
𝑢𝜑𝑑𝑥

= Φ



1
(𝑢) (𝜑) ,

𝐷2Φ (𝑢, V) (𝜓) = ∫

Ω

|∇V|𝑞(𝑥)−2∇V∇𝜓𝑑𝑥 + ∫
Ω

𝜆|V|𝑞(𝑥)−2V𝜓𝑑𝑥

= Φ



2
(V) (𝜓) ,

𝐷1Ψ (𝑢, V) (𝜑) = ∫

Ω

𝜕

𝜕𝑢

𝐹 (𝑥, 𝑢, V) 𝜑 𝑑𝑥,

𝐷2Ψ (𝑢, V) (𝜓) = ∫

Ω

𝜕

𝜕V
𝐹 (𝑥, 𝑢, V) 𝜓 𝑑𝑥.

(26)

The integral functional associated with the problem (P) is

𝐽 (𝑢, V) = Φ (𝑢, V) − Ψ (𝑢, V) . (27)

Without loss of generality, we may assume that
𝐺(𝑥, 0, 0) = 0, ∀𝑥 ∈ Ω. Obviously, We have

𝐺 (𝑥, 𝑢, V) = ∫

1

0

[𝑢𝜕2𝐺 (𝑥, 𝑡𝑢, 𝑡V) + V𝜕3𝐺 (𝑥, 𝑡𝑢, 𝑡V)] 𝑑𝑡,

∀𝑥 ∈ Ω,

(28)

where 𝜕𝑗 denotes the partial derivative of𝐺with respect to its
𝑗th variable; then the condition (A0) holds

|𝐺 (𝑥, 𝑢, V)| ≤ 𝑐 (|𝑢|

𝛼(𝑥)
+ |V|𝛽(𝑥) + 1) , ∀𝑥 ∈ Ω. (29)

From Propositions 2 and 6 and condition (A0), it is easy
to see that 𝐽 ∈ 𝐶1

(𝑋,R) and satisfies

𝐽


(𝑢, V) (𝜑, 𝜓) = 𝐷1𝐽 (𝑢, V) (𝜑) + 𝐷2𝐽 (𝑢, V) (𝜓) , (30)

where

𝐷1𝐽 (𝑢, V) (𝜑) = 𝐷1Φ (𝑢, V) (𝜑) − 𝐷1Ψ (𝑢, V) (𝜑) ,

𝐷2𝐽 (𝑢, V) (𝜓) = 𝐷2Φ (𝑢, V) (𝜓) − 𝐷2Ψ (𝑢, V) (𝜓) .
(31)

We say (𝑢, V) ∈ 𝑋 is a critical point of 𝐽 if

𝐽


(𝑢, V) (𝜑, 𝜓) = 0, ∀ (𝜑, 𝜓) ∈ 𝑋.

(32)

The dual space of 𝑋 will be denoted by 𝑋∗; then for any
𝐻 ∈ 𝑋

∗, there exists 𝑓 ∈ (𝑊

1,𝑝(⋅)
(Ω))

∗, 𝑔 ∈ (𝑊

1,𝑞(⋅)
(Ω))

∗

such that 𝐻(𝑢, V) = 𝑓(𝑢) + 𝑔(V). We denote ‖ ⋅ ‖∗, ‖ ⋅ ‖∗,𝑝(⋅),
and ‖ ⋅ ‖∗,𝑞(⋅) to be the norms of 𝑋

∗
, (𝑊

1,𝑝(⋅)
(Ω))

∗, and
(𝑊

1,𝑞(⋅)
(Ω))

∗, respectively. It is well known,

‖𝐻‖∗ =








𝑓







∗,𝑝(⋅)
+









𝑔







∗,𝑞(⋅)
, (33)

and𝑋∗
= (𝑊

1,𝑝(⋅)
(Ω))

∗
× (𝑊

1,𝑞(⋅)
(Ω))

∗. Therefore











𝐽


(𝑢, V)









∗
=









𝐷1𝐽(𝑢, V)






∗,𝑝(⋅)
+









𝐷2𝐽(𝑢, V)






∗,𝑞(⋅)
. (34)

Proposition 7. (i) If 𝐺 satisfies

𝐺 (𝑥, 𝑠, 𝑡) ≥

1

𝜃1

𝑠𝐺𝑠 (𝑥, 𝑠, 𝑡) +
1

𝜃2

𝑡𝐺𝑡 (𝑥, 𝑠, 𝑡) ≥ 0

𝑓𝑜𝑟 𝑥 ∈ Ω, |𝑠|

𝜃1
+ |𝑡|

𝜃2
≥ 2𝑀,

(35)

then 𝐺(𝑥, 𝑠, 𝑡) ≤ 𝑐1[(|𝑠|
𝜃1
+ |𝑡|

𝜃2
) + 1], ∀(𝑥, 𝑠, 𝑡) ∈ Ω ×R ×R.

(ii) If 𝐺 satisfies

0 < 𝐺 (𝑥, 𝑠, 𝑡) ≤

1

𝜃1

𝑠𝐺𝑠 (𝑥, 𝑠, 𝑡) +
1

𝜃2

𝑡𝐺𝑡 (𝑥, 𝑠, 𝑡)

𝑓𝑜𝑟 𝑥 ∈ Ω, |𝑠|

𝜃1
+ |𝑡|

𝜃2
≥ 2𝑀,

(36)

then 𝐺(𝑥, 𝑠, V) ≥ 𝑐2[(|𝑠|
𝜃1
+ |𝑡|

𝜃2
) − 1], ∀(𝑥, 𝑠, 𝑡) ∈ Ω ×R ×R.

Proof. (i) Similar to the proof of [15], we omit it here.

3. Properties of Operators

In this section, we will discuss the properties of 𝑝(𝑥)-
Laplacian and Nemytsky operator.

From Propositions 2 and 6, we can easily see that Φ ∈

𝐶

1
(𝑋,R).
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Proposition 8 (see [25]). (i) Φ is a convex functional;
(ii) Φ is strictly monotone; that is, for any (𝑢1, V1),

(𝑢2, V2) ∈ 𝑋 with (𝑢1, V1) ̸= (𝑢2, V2), we have

(Φ


(𝑢1, V1) − Φ


(𝑢2, V2)) (𝑢1 − 𝑢2, V1 − V2) > 0; (37)

(iii) Φ is amapping of type (S+); that is, if (𝑢𝑛, V𝑛) ⇀ (𝑢, V)
in𝑋 and

lim
𝑛→∞

[Φ


(𝑢𝑛, V𝑛) − Φ


(𝑢, V)] (𝑢𝑛 − 𝑢, V𝑛 − V) ≤ 0, (38)

then (𝑢𝑛, V𝑛) → (𝑢, V) in𝑋;
(iv) Φ

: 𝑋 → 𝑋

∗ is a bounded homeomorphism.

Theorem 9. If the assumption (A0) is satisfied, then Ψ ∈

𝐶

1
(𝑋,R). Moreover,Ψ andΨ are weakly-strongly continuous;

that is, (𝑢𝑛, V𝑛) ⇀ (𝑢, V) in𝑋 impliesΨ(𝑢𝑛, V𝑛) → Ψ(𝑢, V) and
Ψ


(𝑢𝑛, V𝑛) → Ψ


(𝑢, V) in𝑋∗.

Proof. Suppose {(𝑢𝑛, V𝑛)} is a weak convergent sequence in𝑋.
From Proposition 6, we can conclude that {(𝑢𝑛, V𝑛)} is strong
convergent in 𝐿𝛾(⋅) × 𝐿𝜇(⋅), where 𝛾, 𝜇 ∈ 𝐶(Ω) and satisfies

1 ≤ 𝛾 (𝑥) <

𝑟 (𝑥) − 1

𝑟 (𝑥)

𝑝

∗
(𝑥) ,

1 ≤ 𝜇 (𝑥) <

𝑟 (𝑥) − 1

𝑟 (𝑥)

𝑞

∗
(𝑥) ,

∀𝑥 ∈ Ω.

(39)

From Proposition 2, we can see that Ψ is weakly-strongly
continuous, and Ψ

(𝑢𝑛, V𝑛) → Ψ


(𝑢, V) in𝑋∗.

Since 𝑋 is a separable and reflexive Banach space, there
are {𝑒𝑗} ⊂ 𝑋 and {𝑒∗

𝑗
} ⊂ 𝑋

∗ such that

𝑋 = span {𝑒𝑗, 𝑗 = 1, 2, . . .} ,

𝑋

∗
= span𝑤

∗

{𝑒

∗

𝑗
, 𝑗 = 1, 2, . . .} ,

⟨𝑒

∗

𝑖
, 𝑒𝑗⟩ = {

1, 𝑖 = 𝑗,

0, 𝑖 ̸= 𝑗.

(40)

For convenience, we write

𝑋𝑗 = span {𝑒𝑗} , 𝑌𝑘 =

𝑘

⨁

𝑗=1

𝑋𝑗, 𝑍𝑘 =

∞

⨁

𝑗=1

𝑋𝑗.

(41)
Definition 10. One says that 𝐽 satisfies (PS) condition in𝑋, if
any sequence {(𝑢𝑛, V𝑛)} ⊂ 𝑋 such that {𝐽(𝑢𝑛, V𝑛)} is bounded
and ‖𝐽


(𝑢𝑛, V𝑛)‖∗ → 0, as 𝑛 → ∞, has a convergent

subsequence.

One assumes 𝐺 satisfies the following condition:
(B) there exist functions 𝜃1, 𝜃2 ∈ 𝐶

1
(Ω) satisfying 𝑝(𝑥) <

𝜃1(𝑥) < 𝑝

∗
(𝑥), 𝑞(𝑥) < 𝜃2(𝑥) < 𝑞

∗
(𝑥) onΩ and

0 ≤ 𝐺 (𝑥, 𝑠, 𝑡) ≤

𝑠

𝜃1

𝜕

𝜕𝑠

𝐺 (𝑥, 𝑠, 𝑡) +

𝑡

𝜃2

𝜕

𝜕𝑡

𝐺 (𝑥, 𝑠, 𝑡) ,

∀𝑥 ∈ Ω, |𝑠|

𝜃1
+ |𝑡|

𝜃2
≥ 2𝑀.

(42)

Lemma 11. If (𝜆 ≥ 1) is large enough, (A0) and (B) are
satisfied; then 𝐽 satisfies (PS) condition on 𝑋.

Proof. It follows from (B) that

𝐹 (𝑥, 𝑠, 𝑡) ≤

1

𝜃1

𝑠𝐹𝑠 (𝑥, 𝑠, 𝑡) +
1

𝜃2

𝑡𝐹𝑡 (𝑥, 𝑠, 𝑡) + 𝑐1𝑎 (𝑥) ,

∀ (𝑥, 𝑠, 𝑡) ∈ Ω ×R
2
.

(43)

Denote

𝑙1 = min
𝑥∈Ω

(

1

𝑝 (𝑥)

−

1

𝜃1 (𝑥)

) ,

𝑙2 = min
𝑥∈Ω

(

1

𝑞 (𝑥)

−

1

𝜃2 (𝑥)

) .

(44)

It is easy to see that 𝑙1, 𝑙2 > 0.
Let {(𝑢𝑛, V𝑛)} be a (PS) sequence. By computation,

𝑐 +(









𝑢𝑛







𝑝(⋅)
+









V𝑛






𝑞(⋅)
)

≥ 𝐽 (𝑢𝑛, V𝑛) − 𝐽

(𝑢𝑛, V𝑛) (

1

𝜃1 (𝑥)

𝑢𝑛,
1

𝜃2 (𝑥)

V𝑛)

= ∫

Ω

1

𝑝 (𝑥)

(









∇𝑢𝑛









𝑝(𝑥)
+ 𝜆









𝑢𝑛









𝑝(𝑥)
) 𝑑𝑥

+ ∫

Ω

1

𝑞 (𝑥)

(









∇V𝑛








𝑞(𝑥)
+ 𝜆









V𝑛








𝑞(𝑥)
) 𝑑𝑥

− ∫

Ω

𝐹 (𝑥, 𝑢𝑛, V𝑛) 𝑑𝑥

− ∫

Ω

1

𝜃1 (𝑥)

(









∇𝑢𝑛









𝑝(𝑥)
+ 𝜆









𝑢𝑛









𝑝(𝑥)
) 𝑑𝑥

+ ∫

Ω

1

𝜃1 (𝑥)

𝑢𝑛𝐹𝑢 (𝑥, 𝑢𝑛, V𝑛) 𝑑𝑥

+ ∫

Ω

1

𝜃

2
1
(𝑥)

𝑢𝑛









∇𝑢𝑛









𝑝(𝑥)−2
∇𝑢𝑛∇𝜃1 (𝑥) 𝑑𝑥

− ∫

Ω

1

𝜃2 (𝑥)

(









∇V𝑛








𝑞(𝑥)
+ 𝜆









V𝑛








𝑞(𝑥)
) 𝑑𝑥

+ ∫

Ω

1

𝜃2 (𝑥)

V𝑛𝐹V (𝑥, 𝑢𝑛, V𝑛) 𝑑𝑥

+ ∫

Ω

1

𝜃

2
2
(𝑥)

V𝑛








∇V𝑛








𝑞(𝑥)−2
∇V𝑛∇𝜃2 (𝑥) 𝑑𝑥
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≥ ∫

Ω

(

1

𝑝 (𝑥)

−

1

𝜃1 (𝑥)

) (









∇𝑢𝑛









𝑝(𝑥)
+ 𝜆









𝑢𝑛









𝑝(𝑥)
) 𝑑𝑥

+ ∫

Ω

(

1

𝑞 (𝑥)

−

1

𝜃2 (𝑥)

) (









∇V𝑛








𝑝(𝑥)
+ 𝜆









V𝑛








𝑝(𝑥)
) 𝑑𝑥

− ∫

Ω









∇𝜃1 (𝑥)








𝜃

2
1
(𝑥)









𝑢𝑛

















∇𝑢𝑛









𝑝(𝑥)−1
𝑑𝑥

− ∫

Ω









∇𝜃2 (𝑥)








𝜃

2
2
(𝑥)









V𝑛
















∇V𝑛








𝑞(𝑥)−1
𝑑𝑥 − 𝑐2

≥ 𝑙1 ∫

Ω

(









∇𝑢𝑛









𝑝(𝑥)
+ 𝜆









𝑢𝑛









𝑝(𝑥)
) 𝑑𝑥

+ 𝑙2 ∫

Ω

(









∇V𝑛








𝑝(𝑥)
+ 𝜆









V𝑛








𝑝(𝑥)
) 𝑑𝑥

− ∫

Ω









∇𝜃1 (𝑥)








𝜃

2
1
(𝑥)









𝑢𝑛

















∇𝑢𝑛









𝑝(𝑥)−1
𝑑𝑥

− ∫

Ω









∇𝜃2 (𝑥)








𝜃

2
2
(𝑥)









V𝑛
















∇V𝑛








𝑞(𝑥)−1
𝑑𝑥 − 𝑐2.

(45)

From Young inequality, we have









∇𝜃1 (𝑥)








𝜃

2
1
(𝑥)









𝑢𝑛

















∇𝑢𝑛









𝑝(𝑥)−1

≤ 𝐶1

1

𝑝 (𝑥)

(

1

𝜀1









𝑢𝑛









)

𝑝(𝑥)

+ 𝐶1

𝑝 (𝑥) − 1

𝑝 (𝑥)

(𝜀1









∇𝑢𝑛









𝑝(𝑥)−1
)

𝑝(𝑥)/(𝑝(𝑥)−1)

= 𝐶1

1

𝑝 (𝑥)

1

𝜀

𝑝(𝑥)

1









𝑢𝑛









𝑝(𝑥)

+ 𝐶1

𝑝 (𝑥) − 1

𝑝 (𝑥)

𝜀

𝑝(𝑥)/(𝑝(𝑥)−1)

1









∇𝑢𝑛









𝑝(𝑥)
.

(46)

Similarly, we have









∇𝜃2 (𝑥)








𝜃

2
2
(𝑥)









V𝑛
















∇V𝑛








𝑞(𝑥)−1

≤ 𝐶2

1

𝑞 (𝑥)

1

𝜀

𝑞(𝑥)

1









V𝑛








𝑞(𝑥)

+ 𝐶2

𝑞 (𝑥) − 1

𝑞 (𝑥)

𝜀

𝑞(𝑥)/(𝑞(𝑥)−1)

1









∇V𝑛








𝑞(𝑥)
.

(47)

Assume 𝜀1 is a small enough positive constant and 𝜆 ≥ 1

is large enough; we have

𝑐 +(









𝑢𝑛







𝑝(⋅)
+









V𝑛






𝑞(⋅)
)

≥ 𝐽 (𝑢𝑛, V𝑛) − 𝐽

(𝑢𝑛, V𝑛) (

1

𝜃1 (𝑥)

𝑢𝑛,
1

𝜃2 (𝑥)

V𝑛)

≥

2𝑙1

3

∫

Ω

(









∇𝑢𝑛









𝑝(𝑥)
+ 𝜆









𝑢𝑛









𝑝(𝑥)
) 𝑑𝑥

+

2𝑙2

3

∫

Ω

(









∇V𝑛








𝑝(𝑥)
+ 𝜆









V𝑛








𝑝(𝑥)
) 𝑑𝑥 − 𝐶.

(48)

Thus {‖𝑢𝑛‖𝑝(⋅)
} and {‖V𝑛‖𝑞(⋅)} are bounded. Therefore

{(𝑢𝑛, V𝑛)} has a weak convergent subsequence (which we still
denote by {(𝑢𝑛, V𝑛)}) such that (𝑢𝑛, V𝑛) ⇀ (𝑢, V) as 𝑛 → +∞.
According to Theorem 9, we have Ψ

(𝑢𝑛, V𝑛) → Ψ


(𝑢, V) as

𝑛 → +∞. Since 𝐽(𝑢𝑛, V𝑛) = Φ


(𝑢𝑛, V𝑛) − Ψ


(𝑢𝑛, V𝑛) → 0 as

𝑛 → +∞, we haveΦ
(𝑢𝑛, V𝑛) → Ψ


(𝑢, V) as 𝑛 → +∞. Since

Φ

 is a homeomorphism, we have that {(𝑢𝑛, V𝑛)} is strong
convergent in𝑋.

4. Existence and Multiplicity of Solutions

In this section, using the critical point theory, we will discuss
the existence andmultiple existence of constant sign solutions
of problem (P).

Definition 12. One calls (𝑢, V) ∈ 𝑋 is a weak solution of (P) if

∫

Ω

|∇𝑢|

𝑝(𝑥)−2
∇𝑢 ⋅ ∇𝜑𝑑𝑥 + ∫

Ω

𝜆|𝑢|

𝑝(𝑥)−2
𝑢 ⋅ 𝜑 𝑑𝑥

= ∫

Ω

𝐹𝑢 (𝑥, 𝑢, V) 𝜑 𝑑𝑥, ∀𝜑 ∈ 𝑊

1,𝑝(⋅)
(Ω) ,

∫

Ω

|∇V|𝑞(𝑥)−2∇V ⋅ ∇𝜓 𝑑𝑥 + ∫
Ω

𝜆|V|𝑞(𝑥)−2V ⋅ 𝜓 𝑑𝑥

= ∫

Ω

𝐹V (𝑥, 𝑢, V) 𝜓 𝑑𝑥, ∀𝜓 ∈ 𝑊

1,𝑞(⋅)
(Ω) .

(49)

It is easy to see that the critical point of 𝐽 is a solution of
(P).

Denote 𝐺

+
(𝑥, 𝑢, V) = 𝐺(𝑥, 𝑆(𝑢), 𝑆(V)), 𝐹+

(𝑥, 𝑢, V) =

𝐹(𝑥, 𝑆(𝑢), 𝑆(V)), where 𝑆(𝑡) = max{0, 𝑡}. For any (𝑢, V) ∈ 𝑋,
we say (𝑢, V) belong to the first, the second, the third, or the
fourth quadrant of 𝑋, if 𝑢 ≥ 0 and V ≥ 0, 𝑢 ≤ 0 and V ≥ 0,
𝑢 ≤ 0 and V ≤ 0, and 𝑢 ≥ 0 and V ≤ 0, respectively.

Definition 13. (i) One calls that 𝐹 satisfies sub-(𝑝(𝑥), 𝑞(𝑥))
growth condition near the origin in the first quadrant of𝑋, if
it satisfies the following.

(A1)

𝐹 (𝑥, 𝑠, 𝑡) ≥ 𝜎 (|𝑠|

𝜖1(𝑥)
+ |𝑡|

𝜖2(𝑥)
) ,

∀ (𝑥, 𝑠, 𝑡) ∈ Ω0 × (0, 𝛿) × (0, 𝛿) ,

(50)

where 1 ≤ 𝜖1(𝑥) < 𝑝(𝑥), 1 ≤ 𝜖2(𝑥) < 𝑞(𝑥) onΩ0.
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(ii) One calls that 𝐹 satisfies super-(𝑝(𝑥), 𝑞(𝑥)) growth
condition near the infinity in the first quadrant of 𝑋, if it
satisfies

(A2) 0 < 𝐺𝑖(𝑥, 𝑠, 𝑡) ≤ (1/𝜃1)𝑠𝐺𝑠(𝑥, 𝑠, 𝑡) +

(1/𝜃2)𝑡𝐺𝑡(𝑥, 𝑠, 𝑡) for 𝑥 ∈ Ω and |𝑠|

𝜃1
+ |𝑡|

𝜃2
≥ 2𝑀 > 0

with 𝑠, 𝑡 > 0.

Remark. (i) Similarly, we can give the definitions of 𝐹

satisfying sub-(𝑝(𝑥), 𝑞(𝑥)) growth condition near the origin,
super-(𝑝(𝑥), 𝑞(𝑥)) growth condition near the origin or near
the infinity in the second, the third, and the fourth quadrant
of𝑋, respectively.

(ii) We say 𝐹 satisfies sub-(𝑝(𝑥), 𝑞(𝑥)) growth condition
near the origin, super-(𝑝(𝑥), 𝑞(𝑥)) growth condition near the
infinity in𝑋, if 𝐹 satisfies corresponding growth condition in
every quadrant of𝑋.

(iii) We say 𝐹 satisfies some growth condition in local, if
it satisfies some growth condition in a quadrant.

We will discuss the existence of solutions in the following
three cases:

Case (I): 𝐹 satisfies sub-(𝑝(𝑥), 𝑞(𝑥)) growth condition
near the origin in local;
Case (II): 𝐹 satisfies super-(𝑝(𝑥), 𝑞(𝑥)) growth condi-
tion near the infinity in local;
Case (III): 𝐹 satisfies sub-(𝑝(𝑥), 𝑞(𝑥)) growth condi-
tion near the origin and super-(𝑝(𝑥), 𝑞(𝑥)) growth
condition near the infinity in local.

4.1. Case (I). We assume

(S) 𝐹 satisfies 𝐹𝑠(𝑥, 𝑠, 𝑡) = 𝐹𝑡(𝑥, 𝑠, 𝑡) = 0, ∀𝑥 ∈ Ω, ∀𝑠, 𝑡 ∈
R with 𝑠𝑡 = 0.

Theorem 14. If 𝜆 > 0 is large enough and 𝐹 satisfies (A0),
(S), and sub-(𝑝(𝑥), 𝑞(𝑥)) growth condition near the origin in
the first quadrant of 𝑋, then the problem (P) has a nontrivial
constant sign solution in the first quadrant of 𝑋.

Proof. It is easy to check that𝐺+
(𝑥, 𝑠, 𝑡) ∈ 𝐶

1
(Ω×R2

,R), and

𝐹

+

𝑢
(𝑥, 𝑢, V) = 𝐹𝑢 (𝑥, 𝑆 (𝑢) , 𝑆 (V)) ,

𝐹

+

V (𝑥, 𝑢, V) = 𝐹V (𝑥, 𝑆 (𝑢) , 𝑆 (V)) .
(51)

Let us consider the following auxiliary problem:

− div (|∇𝑢|𝑝(𝑥)−2∇𝑢) + 𝜆|𝑢|𝑝(𝑥)−2𝑢 = 𝐹

+

𝑢
(𝑥, 𝑢, V) in Ω,

− div (|∇V|𝑞(𝑥)−2∇V) + 𝜆|V|𝑞(𝑥)−2V = 𝐹

+

V (𝑥, 𝑢, V) in Ω,

𝜕𝑢

𝜕𝛾

= 0 =

𝜕V
𝜕𝛾

on 𝜕Ω.

(P+)

The corresponding functional is

𝐽

+
(𝑢, V) = Φ (𝑢, V) − Ψ+

(𝑢, V) , ∀ (𝑢, V) ∈ 𝑋, (52)

where

Ψ

+
(𝑢, V) = ∫

Ω

𝐹

+
(𝑥, 𝑢, V) 𝑑𝑥

= ∫

Ω

𝐹 (𝑥, 𝑆 (𝑢) , 𝑆 (V)) 𝑑𝑥, ∀ (𝑢, V) ∈ 𝑋.
(53)

We divide Ω into several disjoint subsets Ω1, . . . , Ω𝑛0

which satisfy

min
𝑥∈Ω𝑗

𝑝

∗
(𝑥)

𝑟

0
(𝑥)

> max
𝑥∈Ω𝑗

𝛼 (𝑥) > max
𝑥∈Ω𝑗

𝑝 (𝑥) , 𝑗 = 1, . . . , 𝑛0,

min
𝑥∈Ω𝑗

𝑞

∗
(𝑥)

𝑟

0
(𝑥)

> max
𝑥∈Ω𝑗

𝛽 (𝑥) > max
𝑥∈Ω𝑗

𝑞 (𝑥) , 𝑗 = 1, . . . , 𝑛0.

(54)

In the following, we denote

𝑓

−

𝑗
= min

𝑥∈Ω𝑗

𝑓 (𝑥) , 𝑓

+

𝑗
= max

𝑥∈Ω𝑗

𝑓 (𝑥)

𝑗 = 1, . . . , 𝑛0, ∀𝑓 ∈ 𝐶 (Ω) ,

ΦΩ𝑗
(𝑢, V) = ∫

Ω𝑗

1

𝑝 (𝑥)

(|∇𝑢|

𝑝(𝑥)
+ 𝜆|𝑢|

𝑝(𝑥)
) 𝑑𝑥

+ ∫

Ω𝑗

1

𝑞 (𝑥)

(|∇V|𝑞(𝑥) + 𝜆|V|𝑞(𝑥)) 𝑑𝑥,

∀ (𝑢, V) ∈ 𝑋.

(55)

Suppose ‖(𝑢, V)‖ = 𝛿 is small enough. By (A0) and
Proposition 6, we have

𝐽

+
(𝑢, V) =

𝑛0

∑

𝑗=1

{ΦΩ𝑗
(𝑢, V) − ∫

Ω𝑗

𝐹

+
(𝑥, 𝑢, V) 𝑑𝑥}

≥

𝑛0

∑

𝑗=1

{ΦΩ𝑗
(𝑢, V)

− ∫

Ω𝑗

𝑎 (𝑥) [ (|𝑢| + |V|)

+𝐶 (|𝑢|

𝛼
+

𝑗
+ |V|𝛽

+

𝑗
)] 𝑑𝑥}

≥

𝑛0

∑

𝑗=1

{ΦΩ𝑗
(𝑢, V) − ∫

Ω𝑗
𝑎 (𝑥) (|𝑢| + |V|) 𝑑𝑥

−𝐶 (‖𝑢‖

𝛼
+

𝑗
+ ‖V‖𝛽

+

𝑗
) } .

(56)
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Note that 𝛼+
𝑗
> 𝑝

+

𝑗
and 𝛽+

𝑗
> 𝑞

+

𝑗
. When ‖(𝑢, V)‖ = 𝛿 is

small enough, it follows from Proposition 3 that

𝐽

+
(𝑢, V) ≥

𝑛0

∑

𝑗=1

{

1

2

ΦΩ𝑗
(𝑢, V) − ∫

Ω𝑗

𝑎 (𝑥) (|𝑢| + |V|) 𝑑𝑥}

≥

1

2

Φ (𝑢, V) − ∫
Ω

𝑎 (𝑥) (|𝑢| + |V|) 𝑑𝑥

≥

1

2𝑝

+
‖𝑢‖

𝑝
+

𝑝(⋅)
+

1

2𝑞

+
‖V‖𝑞

+

𝑞(⋅)
+

𝜆 − 1

2𝑝

+
|𝑢|

𝑝
+

𝑝(⋅)

+

𝜆 − 1

2𝑞

+
|𝑢|

𝑞
+

𝑞(⋅)
− ∫

Ω

𝑎 (𝑥) (|𝑢| + |V|) 𝑑𝑥.

(57)

Obviously,

∫

Ω

|𝑎| (|𝑢| + |V|) 𝑑𝑥 ≤ (|𝑎|𝑝0(⋅)|𝑢|𝑝(⋅) + |𝑎|𝑞0(⋅)|V|𝑞(⋅))

≤ (|𝑎|𝑝0(⋅) + |𝑎|𝑞0(⋅)) (|𝑢|𝑝(⋅) + |V|𝑞(⋅))

=: 𝐶∗ (|𝑢|𝑝(⋅) + |V|𝑞(⋅)) .
(58)

Noting that ‖(𝑢, V)‖ = max{‖𝑢‖𝑝(⋅), ‖V‖𝑞(⋅)} = 𝛿, without
loss of generality, we may assume that ‖𝑢‖𝑝(⋅) = 𝛿.

Assume 𝐶∗|𝑢|𝑝 ≤ (1/4𝑝

+
)‖𝑢‖

𝑝
+

𝑝(⋅)
. Obviously

1

2𝑝

+
‖𝑢‖

𝑝
+

𝑝(⋅)
− 𝐶∗|𝑢|𝑝 ≥

1

4𝑝

+
‖𝑢‖

𝑝
+

𝑝(⋅)
. (59)

Assume 𝐶∗|𝑢|𝑝(⋅) > (1/4𝑝

+
)‖𝑢‖

𝑝
+

𝑝(⋅)
= (1/4𝑝

+
)𝛿

𝑝
+

. When
𝜆 is large enough, then we have

𝜆 − 1

2𝑝

+
|𝑢|

𝑝
+

𝑝(⋅)
≥

𝜆 − 1

2𝑝

+
(

1

4𝑝

+
𝐶∗

𝛿

𝑝
+

)

𝑝
+

≥ 4𝐶∗𝛿 ≥ 4𝐶∗|𝑢|𝑝(⋅).

(60)

Thus, when 𝜆 is large enough, we have

1

2𝑝

+
‖𝑢‖

𝑝
+

𝑝(⋅)
+

𝜆 − 1

2𝑝

+
|𝑢|

𝑝
+

𝑝(⋅)
− 𝐶∗|𝑢|𝑝 ≥

1

4𝑝

+
‖𝑢‖

𝑝
+

𝑝(⋅)
=

1

4𝑝

+
𝛿

𝑝
+

.

(61)

Assume𝐶∗|V|𝑞(⋅) ≤ (1/8𝑝

+
)‖𝑢‖

𝑝
+

𝑝(⋅)
= (1/8𝑝

+
)𝛿

𝑝
+

.We have

1

2𝑝

+
‖𝑢‖

𝑝
+

𝑝(⋅)
+

1

2𝑞

+
‖V‖𝑞

+

𝑞(⋅)
+

𝜆 − 1

2𝑝

+
|𝑢|

𝑝
+

𝑝(⋅)
+

𝜆 − 1

2𝑞

+
|𝑢|

𝑞
+

𝑞(⋅)

− 𝐶∗ (|𝑢|𝑝 + |V|𝑞)

≥

1

4𝑝

+
𝛿

𝑝
+

− 𝐶∗|V|𝑞(⋅) ≥
1

8𝑝

+
𝛿

𝑝
+

.

(62)

Assume 𝐶∗|V|𝑞(⋅) ≥ (1/8𝑝

+
)‖𝑢‖

𝑝
+

𝑝(⋅)
= (1/8𝑝

+
)𝛿

𝑝
+

. Similar
to the above discussion, when 𝜆 is large enough, we have

1

2𝑝

+
‖𝑢‖

𝑝
+

𝑝(⋅)
+

1

2𝑞

+
‖V‖𝑞

+

𝑞(⋅)
+

𝜆 − 1

2𝑝

+
|𝑢|

𝑝
+

𝑝(⋅)
+

𝜆 − 1

2𝑞

+
|𝑢|

𝑞
+

𝑞(⋅)

− 𝐶∗ (|𝑢|𝑝 + |V|𝑞)

≥

1

4𝑞

+
‖𝑢‖

𝑝
+

𝑝(⋅)
.

(63)

Therefore, when 𝜆 is large enough, we have

𝐽

+
(𝑢, V) ≥ max{ 1

4𝑝

+
‖𝑢‖

𝑝
+

𝑝(⋅)
,

1

4𝑞

+
‖V‖𝑞

+

𝑞(⋅)
} > 𝐶 > 0,

when ‖(𝑢, V)‖ = 𝛿.

(64)

It is easy to see that 𝐽+ is weak lower semicontinuous.
Therefore, 𝐽+(𝑢, V) can archive its infimum at some point
(𝑢∗, V∗). Obviously, (𝑢

−

∗
, V−

∗
) := (𝑆(−𝑢∗), 𝑆(−V∗)) ∈ 𝑋. Taking

(𝑢

−

∗
, V−

∗
) as a test function for (P+), it is easy to see that

(𝑢

−

∗
, V−

∗
) = (0, 0). Thus (𝑢∗, V∗) is nonnegative, and then it is a

constant sign solution of (P).
Note that (50) is satisfied. Without loss of generality, we

may assume that

max
𝑥∈Ω0

𝜖1 (𝑥) < min
𝑥∈Ω0

𝑝 (𝑥) , max
𝑥∈Ω0

𝜖2 (𝑥) < min
𝑥∈Ω0

𝑞 (𝑥) . (65)

Take 𝑢0, V0 ∈ 𝐶
2

0
(Ω0) which are nontrivial nonnegative. It

is easy to see that

𝐽

+
(𝑡𝑢0, 𝑡V0) = Φ (𝑡𝑢0, 𝑡V0) − Ψ

+
(𝑡𝑢0, 𝑡V0)

≤ Φ (𝑡𝑢0, 𝑡V0) − 𝜎∫
Ω

(









𝑡𝑢0









𝜖1(𝑥)
+









𝑡V0








𝜖2(𝑥)
) 𝑑𝑥

< 0 as 𝑡 → 0

+
.

(66)

Thus 𝐽(𝑢, V) has at least one nontrivial critical point
(𝑢∗, V∗) in the first quadrant of 𝑋 with 𝐽(𝑢∗, V∗) < 0.
Thus, (𝑢∗, V∗) is a nontrivial constant sign solution of (P).
According to condition (S), it is easy to see that 𝑢∗ and V∗
are all nontrivial.

Theorem 15. If 𝜆 > 0 is large enough and 𝐹 satisfies (A0),
(S), and sub-(𝑝(𝑥), 𝑞(𝑥)) growth condition near the origin in
𝑋, then problem (P) has at least four nontrivial constant sign
solutions.

Proof. (i) Similar to the proof of Theorem 14, we can see that
(P) has a nontrivial constant sign (𝑢𝑖, V𝑖) in the 𝑖th quadrant of
𝑋, such that 𝐽(𝑢𝑖, V𝑖) < 0, 𝑖 = 1, 2, 3, 4. According to condition
(S), 𝑢𝑖 and V𝑖 are both nontrivial. Thus (P) has at least four
constant sign solutions.

4.2. Case (II)

Theorem 16. If 𝜆 > 0 is large enough and 𝐹 satisfies (A0), (S),
and the super-(𝑝(𝑥), 𝑞(𝑥)) growth condition near the infinity
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in the first quadrant of 𝑋, then (P) has a nontrivial constant
sign solution in the first quadrant of 𝑋.

Proof. It is easy to check that 𝐺+
(𝑥, 𝑠, 𝑡) ∈ 𝐶

1
(Ω ×R2

,R) and

𝐹

+

𝑢
(𝑥, 𝑢, V) = 𝐹𝑢 (𝑥, 𝑆 (𝑢) , 𝑆 (V)) ,

𝐹

+

V (𝑥, 𝑢, V) = 𝐹V (𝑥, 𝑆 (𝑢) , 𝑆 (V)) .
(67)

Let us consider the auxiliary problem (P+).
The corresponding functional is

𝐽

+
(𝑢, V) = Φ (𝑢, V) − Ψ+

(𝑢, V) , ∀ (𝑢, V) ∈ 𝑋, (68)

where

Ψ

+
(𝑢, V) = ∫

Ω

𝐹

+
(𝑥, 𝑢, V) 𝑑𝑥 = ∫

Ω

𝐹 (𝑥, 𝑆 (𝑢) , 𝑆 (V)) 𝑑𝑥,

∀ (𝑢, V) ∈ 𝑋.
(69)

We will prove that 𝐽+ satisfies the conditions of Mountain
Pass Lemma.

It is easy to see that 𝐺+ satisfies

0 ≤ 𝐺

+
(𝑥, 𝑠, 𝑡) ≤

1

𝜃1

𝑠𝐺

+

𝑠
(𝑥, 𝑠, 𝑡) +

1

𝜃2

𝑡𝐺

+

𝑡
(𝑥, 𝑠, 𝑡) + 𝑀∗

(70)

for 𝑥 ∈ Ω and |𝑠|𝜃1 + |𝑡|𝜃2 ≥ 2𝑀 > 0, where

𝑀∗ = max
𝑥∈Ω

max
|𝑠|
𝜃1+|𝑡|

𝜃2≤2𝑀

[|𝐺 (𝑥, 𝑠, 𝑡)| +









𝑠𝐺𝑠 (𝑥, 𝑠, 𝑡)








+









𝑡𝐺𝑡 (𝑥, 𝑠, 𝑡)








] .

(71)

From Lemma 11, we can see that 𝐽+(𝑢, V) satisfies (PS)
condition in𝑋.

From (29) and Proposition 7, we have

𝐺

+
(𝑥, 𝑢, V) ≥ 𝑐1 [(|𝑢|

𝜃1
+ |V|𝜃2) − 1] ,

∀ (𝑥, 𝑢, V) ∈ Ω × [1, +∞) × [1, +∞) .

(72)

In the following, we denote

𝑓

−

𝑗
= min

𝑥∈Ω𝑗

𝑓 (𝑥) , 𝑓

+

𝑗
= max

𝑥∈Ω𝑗

𝑓 (𝑥) ,

𝑗 = 1, . . . , 𝑛0, ∀𝑓 ∈ 𝐶 (Ω) ,

ΦΩ𝑗
(𝑢, V) = ∫

Ω𝑗

1

𝑝 (𝑥)

(|∇𝑢|

𝑝(𝑥)
+ 𝜆|𝑢|

𝑝(𝑥)
) 𝑑𝑥

+ ∫

Ω𝑗

1

𝑞 (𝑥)

(|∇V|𝑞(𝑥) + 𝜆|V|𝑞(𝑥)) 𝑑𝑥,

∀ (𝑢, V) ∈ 𝑋.

(73)

Without loss of generality, we may assume that

𝜃

+

1,𝑗
< min

𝑥∈Ω𝑗

𝑝

∗
(𝑥)

𝑟

0
(𝑥)

, 𝜃

+

2,𝑗
< min

𝑥∈Ω𝑗

𝑞

∗
(𝑥)

𝑟

0
(𝑥)

. (74)

Similar to the proof of Theorem 14, when 𝜆 > 0 is large
enough, we can get

𝐽

+
(𝑢, V) ≥

𝑛0

∑

𝑗=1

1

4

ΦΩ𝑗
(𝑢, V) ≥ max{ 1

4𝑝

+
‖𝑢‖

𝑝
+

𝑝(⋅)
,

1

4𝑞

+
‖V‖𝑞

+

𝑞(⋅)
}

> 𝐶 > 0, when ‖(𝑢, V)‖ = 𝛿.

(75)

For fixed (𝑢0, V0) ∈ 𝑋 with 𝑢0, V0 ≥ 1 and 𝑡 > 1, we have

𝐽

+
(𝑡𝑢0, 𝑡V0) = Φ (𝑡𝑢0, 𝑡V0) − ∫

Ω

𝐹

+
(𝑥, 𝑡𝑢0, 𝑡V0) 𝑑𝑥

≤ Φ (𝑡𝑢0, 𝑡V0)

− ∫

Ω

|𝑎 (𝑥)| (𝑡

𝜃1 






𝑢0









𝜃1
+ 𝑡

𝜃2 






𝑢0









𝜃2
) 𝑑𝑥 + 𝑐

≤

𝑛0

∑

𝑗=1

{Φ𝑗 (𝑡𝑢0, 𝑡V0)

−∫

Ω𝑗

|𝑎 (𝑥)| (𝑡

𝜃1 






𝑢0









𝜃1
+ 𝑡

𝜃2 






V0








𝜃2
) 𝑑𝑥}

+ 𝑐.

(76)

Since 𝑝+
𝑗
< 𝜃

−

1,𝑗
and 𝑞+

𝑗
< 𝜃

−

2,𝑗
on Ω𝑗, 𝐽

+
(𝑡𝑢0, 𝑡V0) → −∞

as 𝑡 → +∞. Obviously, 𝐽+(0, 0) = 0; then 𝐽

+ satisfies the
conditions of Mountain Pass Lemma (see [42, 43]). So, we
can conclude that 𝐽+(𝑢, V) has at least one nontrivial critical
point (𝑢∗, V∗) with 𝐽(𝑢∗, V∗) > 0. Obviously, (𝑢−

∗
, V−

∗
) :=

(𝑆(−𝑢∗), 𝑆(−V∗)) ∈ 𝑋. Taking (𝑢

−

∗
, V−

∗
) as a test function,

it is easy to see that (𝑢−
∗
, V−

∗
) = (0, 0). Thus (𝑢∗, V∗) is

nontrivial nonnegative; then it is a constant sign solution of
(P). According to condition (S), it is easy to see that 𝑢∗ and
V∗ are both nontrivial and satisfy 𝐽(𝑢∗, V∗) > 0.

Theorem 17. If 𝜆 > 0 is large enough and 𝐹 satisfies (A0), (S),
and the super-(𝑝(𝑥), 𝑞(𝑥)) growth condition near infinity in𝑋,
then (P) has four nontrivial constant sign solutions.

Proof. As 𝐹 satisfies the super-(𝑝(𝑥), 𝑞(𝑥)) growth condition
in𝑋, then 𝐹 satisfies the super-(𝑝(𝑥), 𝑞(𝑥)) growth condition
in every quadrant of 𝑋. By Theorem 16, we can see that (P)
has a solution (𝑢𝑖, V𝑖) in the 𝑖th quadrant of 𝑋 and satisfies
𝐽(𝑢𝑖, V𝑖) > 0 and 𝑢𝑖 and V𝑖 (𝑖 = 1, 2, 3, 4) are both nontrivial.

4.3. Case (III)

Theorem 18. If 𝜆 > 0 is large enough and 𝐹 satisfies (A0),
(S), sub-(𝑝(𝑥), 𝑞(𝑥)) growth condition near the origin, and
super-(𝑝(𝑥), 𝑞(𝑥)) growth condition near the infinity in the
first quadrant of 𝑋, then (P) has two nontrivial constant sign
solutions in the first quadrant of𝑋.

Proof. Similar to the proof of Theorem 16, we can get the
existence of solution (𝑢1, V1) in the first quadrant in𝑋, which
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satisfies 𝐽(𝑢1, V1) > 0, and 𝑢1 and V1 both are nontrivial. By
Theorem 14, (P) has the second solution (𝑢∗

1
, V∗

1
) in the first

quadrant in 𝑋, which satisfies 𝐽(𝑢∗
1
, V∗

1
) < 0, and 𝑢∗

1
and V∗

1

both are nontrivial. Therefore, (P) has at least two constant
sign solutions.

Note. Let

𝐹 (𝑥, 𝑢, V) = {

|𝑢|

𝛼1(𝑥)
|V|𝛽1(𝑥), 𝑢 > 0, V > 0

|𝑢|

𝛼2(𝑥)
|V|𝛽2(𝑥), rest,

(77)

where 𝛼1, 𝛼2, 𝛽1, 𝛽2 ∈ 𝐶+(Ω) and satisfy

𝑝 (𝑥) < 𝛼1 (𝑥) , 𝑞 (𝑥) < 𝛽1 (𝑥) ,

𝛼1 (𝑥)

𝑝

∗
(𝑥)

+

𝛽1 (𝑥)

𝑞

∗
(𝑥)

< 1,

(78)

𝛼2(𝑥) − 𝑝(𝑥) and 𝛽2(𝑥) − 𝑞(𝑥) are all changed sign functions,
and

𝛼2 (𝑥)

𝑝

∗
(𝑥)

+

𝛽2 (𝑥)

𝑞

∗
(𝑥)

< 1; (79)

then we can see that the functional 𝐽+ satisfies (PS) condition
and (P) has a nontrivial constant sign solution, but 𝐽 does
not satisfy the Ambrosetti-Rabinowitz condition, and it is not
coercive.

Theorem 19. If 𝜆 > 0 is large enough and 𝐹 satisfies (A0), (S),
sub-(𝑝(𝑥), 𝑞(𝑥)) growth condition near the origin, and super-
(𝑝(𝑥), 𝑞(𝑥)) growth condition near the infinity in 𝑋, then (P)
has eight nontrivial constant sign solutions in 𝑋.

Proof. Similar to the proof of Theorem 18, we can see that
(P) has nontrivial solutions (𝑢𝑖, V𝑖) and (𝑢

∗

𝑖
, V∗

𝑖
) in the 𝑖th

quadrant in 𝑋, which satisfy 𝐽(𝑢𝑖, V𝑖) > 0 and 𝐽(𝑢∗
𝑖
, V∗

𝑖
) < 0,

and 𝑢𝑖, V𝑖, 𝑢
∗

𝑖
and V∗

𝑖
are all nontrivial. Thus (P) has at least

eight nontrivial constant sign solutions.
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