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We provide amethod of approximation of approximate solutions of functional equations in the class of functions acting into a Riesz
space (algebra). The main aim of the paper is to provide a general theorem that can act as a tool applicable to a possibly wide class
of functional equations. The idea is based on the use of the Spectral Representation Theory for Riesz spaces. The main result will
be applied to prove the stability of an alternative Cauchy functional equation 𝐹(𝑥 + 𝑦) + 𝐹(𝑥) + 𝐹(𝑦) ̸= 0 ⇒ 𝐹(𝑥 + 𝑦) = 𝐹(𝑥) + 𝐹(𝑦)

in Riesz spaces, the Cauchy equation with squares 𝐹(𝑥 + 𝑦)2 = (𝐹(𝑥) + 𝐹(𝑦))2 in 𝑓-algebras, and the quadratic functional equation
𝐹(𝑥 + 𝑦) + 𝐹(𝑥 − 𝑦) = 2𝐹(𝑥) + 2𝐹(𝑦) in Riesz spaces.

1. Introduction

In this paper we deal with a method of treating approximate
solutions of functional equations in a class of functions
taking values in Riesz spaces (algebras). Some recent results
concerning stability of functional equations in ordered spaces
can be found in [1–7].

In view of the fact that the idea of applying the Spectral
Representation Theory (SRT for short) for Riesz spaces to
investigate approximate solutions of functional equations in
vector lattices has appeared fruitful for various functional
equations (cf. [2, 3, 5]) it seems to be valuable to formulate
a general theorem that could play a role of a tool hopefully
applicable to a wide class of functional equations. The main
purpose of this paper is to provide such a result (see
Section 3).

As it has already been mentioned, in the following we are
going to make use of the SRT for Riesz spaces that provides a
representation of vectors of a given Riesz space 𝐿 by extended
(admitting infinite values) real continuous functions on a
certain topological space𝑋which are finite on a dense subset
of 𝑋 (𝐶∞(𝑋)). The above means that a given Riesz space
𝐿 (under some additional assumptions) is Riesz isomorphic
with a Riesz subspace of 𝐶∞(𝑋). Unfortunately, it appears
that, in general, the whole of 𝐶∞(𝑋) is not necessarily a

Riesz space and that causes some difficulties. The second
inconvenience we have to defeat stems from the fact that
functions from 𝐶

∞
(𝑋)may attain infinite values.

Once the main results of the paper are achieved, we
show their benefits.We apply them to investigate approximate
solutions of three selected functional equations.The first two
of them have the common origin, but they exhibit different
stability behaviours (at least in the class of real-valued
functions). We show that an alternative Cauchy functional
equation

𝐹 (𝑥 + 𝑦) + 𝐹 (𝑥) + 𝐹 (𝑦) ̸= 0 ⇒ 𝐹 (𝑥 + 𝑦) = 𝐹 (𝑥) + 𝐹 (𝑦)

(1)

is stable in Riesz spaces (see Section 4). In Section 5 we prove
that the Cauchy equation with squares

𝐹(𝑥 + 𝑦)
2

= (𝐹 (𝑥) + 𝐹 (𝑦))
2 (2)

is stable in 𝑓-algebras; however unlike in the case of real-
valued functions it is not superstable. The third one is the
quadratic functional equation

𝐹 (𝑥 + 𝑦) + 𝐹 (𝑥 − 𝑦) = 2𝐹 (𝑥) + 2𝐹 (𝑦) . (3)

We prove its stability in Riesz spaces in Section 6.
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2. Preliminaries

Throughout the paper N, Z, R, and R
+
are used to denote

the sets of all positive integers, integers, real numbers, and
nonnegative real numbers, respectively.

For the reader’s convenience we quote basic definitions
and properties concerning Riesz spaces following [8].

We say that a partially ordered real linear space 𝐿 (we
denote the order in 𝐿 by ≤) is a Riesz space (vector lattice)
if sup{𝑥, 𝑦} exists for all 𝑥, 𝑦 ∈ 𝐿 (cf. [8, Definition 11.1]).
We define the absolute value of 𝑥 ∈ 𝐿 by the formula |𝑥| :=
sup{𝑥, −𝑥} ≥ 0. A Riesz space 𝐿 is called Archimedean if, for
each 𝑥 ∈ 𝐿, the inequality 𝑥 ≤ 0 holds whenever the set
{𝑛𝑥 : 𝑛 ∈ N} is bounded from above (cf. [8, Definition 22.1]).
We say that 𝐿 is a Riesz algebra if 𝐿 is a Riesz space equipped
with the common algebra multiplication satisfying 𝑥𝑦 ≥ 0

whenever 𝑥, 𝑦 ≥ 0. A Riesz algebra 𝐿 is termed an 𝑓-algebra,
whenever inf{𝑥, 𝑦} = 0 implies inf{𝑥𝑧, 𝑦} = inf{𝑧𝑥, 𝑦} = 0

for every 𝑧 ≥ 0.
A Riesz space 𝐿 is said to be Dedekind complete (𝜎-

complete) if any nonempty (at most countable) subset of
𝐿 which is bounded from above has a supremum (cf. [8,
Definition 1.1]).

In the following the notion of the relatively uniform
convergence will be used (cf. [8, Definition 39.1]). Let 𝐿 be a
Riesz space and let 𝑢 ∈ 𝐿

+
:= {𝑢 ∈ 𝐿 : 𝑢 ≥ 0}. A sequence

(𝑓
𝑛
)
𝑛∈N in 𝐿 is said to converge 𝑢-uniformly to an element

𝑓 ∈ 𝐿 whenever, for every 𝜀 > 0, there exists a positive
integer 𝑛

0
such that |𝑓 − 𝑓

𝑛
| ≤ 𝜀𝑢 holds for all 𝑛 ≥ 𝑛

0
. We say

that (𝑓
𝑛
)
𝑛∈N is relatively uniformly convergent if (𝑓

𝑛
)
𝑛∈N is 𝑢-

uniformly convergent with some 𝑢 ∈ 𝐿
+
. A sequence (𝑓

𝑛
)
𝑛∈N

in 𝐿 is called 𝑢-uniform Cauchy sequence whenever, for every
𝜀 > 0, there exists a positive integer 𝑛

1
such that |𝑓

𝑚
−𝑓
𝑛
| ≤ 𝜀𝑢

holds for all𝑚, 𝑛 ≥ 𝑛
1
.

In general the 𝑢-uniform limit of a sequence may depend
on the choice of 𝑢 ∈ 𝐿

+
and does not have to be unique.

However, if 𝐿 is Archimedean, the 𝑢-uniform limit, if it exists,
is unique. In this case the fact that (𝑓

𝑛
)
𝑛∈N converges 𝑢-

uniformly to 𝑓 will be denoted by lim𝑢
𝑛→∞

𝑓
𝑛
= 𝑓.

A Riesz space 𝐿 is called 𝑢-uniformly complete (with a
given 𝑢 ∈ 𝐿

+
) whenever every 𝑢-uniform Cauchy sequence

has a 𝑢-uniform limit.We say that 𝐿 is uniformly complete if it
is 𝑢-uniformly complete with every 𝑢 ∈ 𝐿

+
(cf. [8, Definition

39.3]).
There is a large class of spaces satisfying the above

conditions. In particular every Dedekind 𝜎-complete space
is Archimedean and uniformly complete.

The element 𝑒 ∈ 𝐿
+
is called a strong unit if for every 𝑙 ∈ 𝐿

there exists 𝛼 ∈ R such that |𝑙| ≤ 𝛼𝑒.
The element 𝑒 ∈ 𝐿

+
is called a weak unit if the band

generated by 𝑒 is thewhole of𝐿 (cf. [8,Definition 21.4]). Recall
that a Riesz subspace 𝑀 of 𝐿 is an ideal if it is solid, that is,
whenever it follows from 𝑓 ∈ 𝑀, 𝑔 ∈ 𝐿, and |𝑔| ≤ |𝑓| that
𝑔 ∈ 𝑀. An ideal𝑀 is termed a band in 𝐿, whenever a subset
of𝑀 has a supremum in 𝐿, that supremum is an element of
𝑀 (cf. [8, Definition 17.1]). If 𝐿 is Archimedean then 𝑒 ∈ 𝐿

+

is a weak unit if and only if {𝑒}⊥ = {0}, where {𝑒}⊥ stands for
the disjoint complement of 𝑒 (cf. [9, 353L]).

A linear mapping 𝜋 : 𝐿 → 𝑀 between Riesz spaces 𝐿
and𝑀 is called a Riesz homomorphism if

𝜋 (sup {V, 𝑤}) = sup {𝜋V, 𝜋𝑤} for V, 𝑤 ∈ 𝐿. (4)

Now we define the family 𝐶∞(𝑋) of extended (admitting
infinite values) real continuous functions on a given topolog-
ical space𝑋 that are finite-valued on a dense subset of𝑋 and
discuss their elementary properties.

Given a topological space 𝑋, any continuous mapping 𝑓
of 𝑋 into 𝑅∞ := R ∪ {−∞} ∪ {+∞} with the usual topology,
such that the set

𝑅 (𝑓) = {𝑥 :
𝑓 (𝑥)

 < ∞} (5)

is dense in 𝑋, is called an extended (real-valued) contin-
uous function on 𝑋. The set of all extended (real-valued)
continuous functions on 𝑋 will be denoted by 𝐶∞(𝑋). We
consider the pointwise order in 𝐶

∞
(𝑋) and the pointwise

multiplication by scalars, where it is understood that 0 ⋅ ∞ =

0. For any 𝑓 ∈ 𝐶
∞
(𝑋), the set 𝑅(𝑓) is open and dense.

If 𝑓, 𝑔, ℎ ∈ 𝐶
∞
(𝑋) and ℎ(𝑥) = 𝑓(𝑥) + 𝑔(𝑥) holds for all

𝑥 ∈ 𝑅(𝑓) ∩ 𝑅(𝑔), then (by definition) ℎ is called the sum of
𝑓 and 𝑔 (notation ℎ = 𝑓 + 𝑔). Since the set 𝑅(𝑓) ∩ 𝑅(𝑔) is
dense, the function ℎ = 𝑓 + 𝑔 is uniquely defined if it exists.
It occurs that 𝐶∞(𝑋) is not necessarily closed with respect
to the operation of addition (cf. [8, p. 295]). Any subset of
𝐶
∞
(𝑋) closed under the operation of addition,multiplication

by scalars and the taking of finite infima and suprema, is
obviously a Riesz space with respect to pointwise ordering.
Accordingly, any subset of this kind is called a Riesz space of
extended real continuous functions on𝑋.

The difficulties with the addition disappear if 𝑋 is
extremally disconnected; that is, the closure of every open
set is open. Then 𝐶

∞
(𝑋) is a Riesz space (cf. [8, Theorem

47.2]) and even an 𝑓-algebra with the multiplicative identity
under the appropriate definition of the multiplication. Given
𝑓, 𝑔 ∈ 𝐶

∞
(𝑋), the set𝑅(𝑓)∩𝑅(𝑔) is open and dense.Thus the

functionwhich is equal to𝑓(𝑥)𝑔(𝑥) for every 𝑥 ∈ 𝑅(𝑓)∩𝑅(𝑔)
is finite-valued and continuous on 𝑅(𝑓) ∩ 𝑅(𝑔). Hence, this
function can uniquely be extended to an extended continuous
function on 𝑋 (cf. [8, Theorem 47.1]), and let, by definition,
this extended function be 𝑓𝑔.

Proposition 1 (cf. [3, Proposition 1]). If 𝑋 is an extremally
disconnected topological space then 𝐶

∞
(𝑋) is an 𝑓-algebra

with a multiplicative identity.

At the end of this section we briefly remind the notion
of the Hyers-Ulam stability originated by the well-known
problem posed by Ulam (cf. [10]) during his talk at the
University of Wisconsin in 1940 and the answer given by
Hyers (cf. [11]), which we quote below.

Let𝑋 and𝑌 beBanach spaces and let 𝜀 > 0.Then for every
𝑔 : 𝑋 → 𝑌 with sup

𝑥,𝑦∈𝑋
‖𝑔(𝑥 + 𝑦) − 𝑔(𝑥) − 𝑔(𝑦)‖ ≤ 𝜀 there

is a unique 𝑓 : 𝑋 → 𝑌 such that sup
𝑥∈𝑋

‖𝑔(𝑥) − 𝑓(𝑥)‖ ≤ 𝜀

and

𝑓 (𝑥 + 𝑦) = 𝑓 (𝑥) + 𝑓 (𝑦) for 𝑥, 𝑦 ∈ 𝑋. (6)
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To describe this result we used to say that the Cauchy
functional equation (6) is Hyers-Ulam stable in the class of
functions 𝑌𝑋. It is worth to mention here that, probably, the
first known result in this direction is due to Pólya and Szegö
(cf. [12]).

Next, the stability of functional equations has beenwidely
investigated and generalized in various directions by many
authors. For the extensive discussion concerning possible
definitions of the stability of functional equations and dif-
ferences between them we refer the interested reader to [13].
Examples of various recent results concerning the subject as
well as a list of numerous references connected with it can be
found in the survey paper [14].

3. Main Results

From now on let (𝐺, +) be a groupoid and 𝐿 a Riesz space (𝑓-
algebra) and let E : 𝐿

𝐺
→ 𝐿
𝐺
𝑘

; 𝑘 ∈ N. We will say that a
function 𝐹 : 𝐺 → 𝐿 is a solution of equation

E𝐹 = 0 (7)

if E𝐹(𝑥) = 0 for 𝑥 ∈ 𝐺𝑘. Given 𝑢 ∈ 𝐿
+
, any 𝐹 : 𝐺 → 𝐿 with

|E𝐹 (𝑥)| ≤ 𝑢 for 𝑥 ∈ 𝐺𝑘 (8)

will be called a 𝑢-solution of (7). 𝐹 will be termed an
approximate solution of (7) if it is a𝑢-solution of (7)with some
𝑢 ∈ 𝐿

+
. Finally, we will say that (7) is stable (or Hyers-Ulam

stable) if for any 𝑢 ∈ 𝐿
+
there is Δ(𝑢) ∈ 𝐿

+
such that for

each 𝑢-solution 𝐹 : 𝐺 → 𝐿 of (7) there exists a solution
𝐴 : 𝐺 → 𝐿 of (7) with

|𝐹 (𝑥) − 𝐴 (𝑥)| ≤ Δ (𝑢) for 𝑥 ∈ 𝐺. (9)

We will focus on a class of functional equations that
possess the following property.

Definition 2. We will say that (7) has the uniform R-
approximation property (URAP for short) if there exist H

𝑛
:

𝐿
𝐺
→ 𝐿
𝐺, (𝑛 ∈ N), 𝛿 : R → R, and real sequences 𝛼

𝑛
→ 0,

𝛽
𝑛
→ 0, 𝛾

𝑛
→ 𝛾 ∈ R, and 𝜌

𝑛
→ 0 such that if we take

R, with the ordinary order, as a realisation of 𝐿 then for any
𝜀 > 0 and any 𝜀-solution 𝑓 : 𝐺 → R of (7) the following
conditions hold:

(P1) |H
𝑛
𝑓(𝑥) −H

𝑚
𝑓(𝑥)| ≤ (𝛼

𝑛
+ 𝛽
𝑚
)𝛿(𝜀),

(P2) |H
𝑛
𝑓(𝑥) − 𝑓(𝑥)| ≤ 𝛾

𝑛
𝛿(𝜀),

(P3) |EH
𝑛
𝑓(𝑥)| ≤ 𝜌

𝑛
𝛿(𝜀),

for 𝑥 ∈ 𝐺, 𝑥 ∈ 𝐺𝑘, and𝑚, 𝑛 ∈ N.

The URAP is closely related to the Hyers-Ulam stability
of (7) in the class of real-valued functions, where the role of
the operators H

𝑛
, (𝑛 ∈ N), is played by the so called Hyers

operators (cf. [10, 11]). The term uniform in the name of the
property refers to the fact that the right-hand sides of (P1)–
(P3) do not depend on 𝑓. It is evident that URAP implies the
Hyers-Ulam stability. As it will be shown below, inmany cases
the converse is also true.

Lemma 3. Let (𝐺, +) be a groupoid. Assume that (7) is Hyers-
Ulam stable in the class of real-valued functions defined on 𝐺
and that there exist 𝜇

𝑛
, 𝑒
𝑛
→ ∞ and 𝜂

𝑛
: 𝐺 → 𝐺, (𝑛 ∈ N),

such that for any solution 𝑎 : 𝐺 → R of (7)

𝑎 ∘ 𝜂
𝑛
= 𝜇
𝑛
𝑎 for 𝑛 ∈ N (10)

and for any 𝜀-solution 𝑓 : 𝐺 → R of (7)

1

𝑒
𝑛

E𝑓 = E
1

𝜇
𝑛

𝑓 for 𝑛 ∈ N. (11)

Then (7) possesses the URAP.

Proof. Let 𝑓 : 𝐺 → R be an 𝜀-solution of (7). We define
H
𝑛
𝑓(𝑥) := 𝑓(𝜂

𝑛
(𝑥))/𝜇

𝑛
for 𝑥 ∈ 𝐺, 𝑛 ∈ N. By the Hyers-Ulam

stability of (7) there exist a solution 𝑎 : 𝐺 → R of (7) and
𝛿(𝜀) ∈ R with

𝑓 (𝑥) − 𝑎 (𝑥)
 ≤ 𝛿 (𝜀) for 𝑥 ∈ 𝐺. (12)

Applying (12) for 𝜂
𝑛
(𝑥) in place of 𝑥 and taking into account

(10) we obtain
𝑓 (𝜂𝑛 (𝑥)) − 𝜇𝑛𝑎 (𝑥)

 ≤ 𝛿 (𝜀) for 𝑥 ∈ 𝐺, 𝑛 ∈ N. (13)

Dividing the above inequality by 𝜇
𝑛
, side by side, we have

H𝑛𝑓 (𝑥) − 𝑎 (𝑥)
 ≤

1

𝜇
𝑛

𝛿 (𝜀) for 𝑥 ∈ 𝐺, 𝑛 ∈ N (14)

on account of the definition ofH
𝑛
. By (14) and (12) we have

(P2) with 𝛾
𝑛
:= 1 + (1/𝜇

𝑛
).

If we rewrite (14) for given 𝑛 ∈ N and 𝑚 ∈ N and then
add the resulting inequalities, side by side, we obtain (P1) with
𝛼
𝑛
= 1/𝜇

𝑛
and 𝛽

𝑚
= 1/𝜇

𝑚
.

Since 𝑓 is an 𝜀-solution of (7) then using (8) for 𝜂
𝑛
(𝑥) :=

(𝜂
𝑛
(𝑥
1
), . . . , 𝜂

𝑛
(𝑥
𝑘
)) in place of 𝑥 we have

E𝑓 (𝜂𝑛 (𝑥))
 ≤ 𝜀 for 𝑥 ∈ 𝐺𝑘, 𝑛 ∈ N. (15)

Dividing the above inequality by 𝑒
𝑛
and taking into account

(11), in view of the definition ofH
𝑛
, we arrive at

EH𝑛𝑓 (𝑥)
 ≤

1

𝑒
𝑛

𝜀 for 𝑥 ∈ 𝐺𝑘, 𝑛 ∈ N, (16)

which means that (P3) holds with 𝜌
𝑛
= 𝜀/𝑒

𝑛
𝛿(𝜀) provided

that 𝛿(𝜀) ̸= 0. The case 𝛿(𝜀) = 0means that 𝑓 satisfies (7) and,
therefore, (P3) holds with any nonnegative 𝜌

𝑛
.

Remark 4. Let us observe that all the assumptions of
Lemma 3 are fulfilled if we assume that (7) is Hyers-Ulam
stable in the class of real-valued functions and that there exists
𝜆
𝑛
→ ∞ such that any solution 𝑎 : 𝐺 → R of (7) is (𝜆

𝑛
, 𝛼)-

homogeneous with some 𝛼 > 0; that is,

𝑎 (𝜆
𝑛
𝑥) = 𝜆

𝛼

𝑛
𝑎 (𝑥) for 𝑥 ∈ 𝐺, 𝑛 ∈ N, (17)

and E is (𝜆−𝛼
𝑛
, 𝛽)-homogeneous with some 𝛽 > 0; that is,

E (𝜆
−𝛼

𝑛
𝑓) = 𝜆

−𝛼𝛽

𝑛
E𝑓 for 𝑛 ∈ N, 𝑓 ∈ R

𝐺
. (18)



4 Abstract and Applied Analysis

In particular, any functional equation which is Hyers-
Ulam stable in the class of real-valued functions, whose
solution form additive functions, has the URAP.

Corollary 5. Let 𝑓 : 𝐺 → R map a groupoid (𝐺, +) into R.
Assume that there exist an additive function 𝑎 : 𝐺 → R and
a real number 𝛼 ≥ 0 such that

𝑓 (𝑥) − 𝑎 (𝑥)
 ≤ 𝛼 for 𝑥 ∈ 𝐺. (19)

Let H
𝑛
𝑓(𝑥) := (1/𝑛)𝑓(𝑛𝑥) for 𝑥 ∈ 𝐺 and 𝑛 ∈ N. Then (P1)–

(P3) hold with 𝛼
𝑛
= 𝛽
𝑛
= 1/𝑛, 𝛾

𝑛
= 1 + 1/𝑛, 𝜌

𝑛
= 3/𝑛, for

𝑛 ∈ N and 𝛿 = 𝛼.

Proof. Routine.

Let ⟨𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
⟩ stand for the substructure of𝐺 gener-

ated by 𝑥
1
, . . . , 𝑥

𝑘
∈ 𝐺 and let Δ ∈ 𝐿. We will consider the

following hypotheses:

(H1) there exist a topological space 𝑋 and a Riesz (𝑓-
algebra) isomorphism 𝜋 : 𝐿 → �̂� ⊂ 𝐶

∞
(𝑋),

(H2) 𝜋 and E commute; that is, 𝜋(E𝐹(𝑥)) = E(𝜋𝐹)(𝑥) for
any 𝐹 ∈ 𝐿

𝐺 and 𝑥 ∈ 𝐺𝑘,
(H3) 𝜋 andH

𝑛
commute; that is,𝜋(H

𝑛
𝐹(𝑥)) = (H

𝑛
𝜋𝐹)(𝑥)

for any 𝐹 ∈ 𝐿
𝐺, 𝑥 ∈ 𝐺, 𝑛 ∈ N,

(H4) for each 𝑥 = (𝑥
1
, 𝑥
2
, . . . 𝑥
𝑘
) ∈ 𝐺
𝑘 there exists an open

and dense subset 𝑤
𝑥
of𝑋 such that

𝑤
𝑥
⊂ 𝑅 (𝜋𝐹 (𝑧)) for 𝑧 ∈ ⟨𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
⟩ (20)

(H5) for each 𝑥 ∈ 𝐺𝑘, if lim
𝑛→∞

ΔH
𝑛
𝐹(𝑥) exists, then

lim
𝑛→∞

Δ
EH
𝑛
𝐹 (𝑥) = E ( lim

𝑛→∞

Δ
H
𝑛
𝐹) (𝑥) . (21)

Let us note that the SRT for Riesz spaces provides results
which guarantee (H1). Various classical spectral representa-
tion theorems offer effective constructions of a topological
space 𝑋 as well as a space of representatives �̂� and a Riesz
isomorphism 𝜋, depending on the properties of a given Riesz
space 𝐿 (cf., e.g., [8, Ch.7]).

It is easy to see that if E andH
𝑛
are defined with the use

of the ordinary Riesz space (algebra) operations, that is, linear
operations or lattice operations, then (H2), (H3), and (H5) are
automatically satisfied.

Now we are going to prove a lemma that provides some
properties of a function 𝐹 : 𝐺 → 𝐿 that yield (H4) (for 𝑘 =
2). Assume that (H1) holds and that we are given mappings
𝐵 : 𝐿 → 𝐿, 𝐶 : 𝐿×𝐿 → 𝐿,𝐷 : 𝐿×𝐿×𝐿 → 𝐿 and open and
dense subsets 𝑅

𝐶
, 𝑅
𝐷
of𝑋 such that

𝑅 (𝜋𝐵 (V)) ⊂ 𝑅 (𝜋V)

𝑅 (𝜋V) ∩ 𝑅 (𝜋𝑤) ∩ 𝑅
𝐶
⊂ 𝑅 (𝜋𝐶 (V, 𝑤))

𝑅 (𝜋V) ∩ 𝑅 (𝜋𝑤) ∩ 𝑅 (𝜋𝑡) ∩ 𝑅
𝐷
⊂ 𝑅 (𝜋𝐷 (V, 𝑤, 𝑡))

for V, 𝑤, 𝑡 ∈ 𝐿.

(22)

For fixed 𝑥 ∈ 𝐺 we consider the following hypotheses.

(L1) (𝐺, +) is an Abelian group and

𝐵 (𝐹 (𝑦)) ≤ 𝐶 (𝐹 (𝑦 + 𝑧) , 𝐹 (𝑧)) for 𝑦, 𝑧 ∈ ⟨𝑥⟩ , (23)

(L2) (𝐺, +) is an Abelian semigroup and

𝐵 (𝐹 (𝑦 + 𝑧)) ≤ 𝐶 (𝐹 (𝑦) , 𝐹 (𝑧)) for 𝑦, 𝑧 ∈ ⟨𝑥⟩ , (24)

(L3) (𝐺, +) is an Abelian group and

𝐵 (𝐹 (𝑦 + 𝑧)) ≤ 𝐷 (𝐹 (𝑦) , 𝐹 (𝑧) , 𝐹 (𝑦 − 𝑧)) for 𝑦, 𝑧 ∈ ⟨𝑥⟩ .
(25)

Lemma 6. Let 𝐹 : 𝐺 → 𝐿map a groupoid (𝐺, +) into a Riesz
space 𝐿 and let (H1) hold. If for any 𝑥 ∈ 𝐺 at least one of the
hypotheses (L1), (L2), and (L3) holds then (H4) (for 𝑘 = 2) is
fulfilled.

Proof. Assume, at first, that (L1) holds. For fixed 𝑥 ∈ 𝐺 we
define

𝑤
𝑥
:= 𝑅 (𝜋𝐹 (𝑥)) ∩ 𝑅 (𝜋𝐹 (0)) ∩ 𝑅

𝐶
. (26)

By (23) and (H1), for every 𝑦, 𝑧 ∈ ⟨𝑥⟩, we have

𝜋𝐵 (𝐹 (𝑦)) ≤ 𝜋𝐶 (𝐹 (𝑦 + 𝑧) , 𝐹 (𝑧)) , (27)

which means that

𝑅 (𝜋𝐶 (𝐹 (𝑦 + 𝑧) , 𝐹 (𝑧))) ⊂ 𝑅 (𝜋𝐵 (𝐹 (𝑦))) . (28)

Therefore, by (22), we see that

𝑅 (𝜋𝐹 (𝑦 + 𝑧)) ∩ 𝑅 (𝜋𝐹 (𝑧)) ∩ 𝑅
𝐶
⊂ 𝑅 (𝜋𝐹 (𝑦))

for 𝑦, 𝑧 ∈ ⟨𝑥⟩ .
(29)

Replacing 𝑦 by −𝑥 and 𝑧 by 𝑥 in (29) we observe that 𝑤
𝑥
⊂

𝑅(𝜋𝐹(−𝑥)). Now, suppose that 𝑤
𝑥
⊂ 𝑅(𝜋𝐹(𝑛𝑥)) for given

𝑛 ∈ N and apply (29) with 𝑦 and 𝑧 replaced by (𝑛 + 1)𝑥 and
−𝑥, respectively, in order to obtain 𝑤

𝑥
⊂ 𝑅(𝜋𝐹((𝑛 + 1)𝑥)). By

induction we arrive at

𝑤
𝑥
⊂ 𝑅 (𝜋𝐹 (𝑛𝑥)) for 𝑛 ∈ N. (30)

On the other hand, using (29) with −𝑛𝑥 in place of 𝑦 and 𝑛𝑥
in place of 𝑧, we receive 𝑤

𝑥
∩ 𝑅(𝜋𝐹(𝑛𝑥)) ⊂ 𝑅(𝜋𝐹(−𝑛𝑥)). This

along with (30) yields

𝑤
𝑥
⊂ 𝑅 (𝜋𝐹 (𝑧)) for 𝑧 ∈ ⟨𝑥⟩ . (31)

For arbitrary 𝑥
1
, 𝑥
2
∈ 𝐺 we define 𝑤

𝑥1 ,𝑥2
:= 𝑤
𝑥1
∩ 𝑤
𝑥2
, where

𝑤
𝑥1

and 𝑤
𝑥2

are given by (26). By (31) 𝑤
𝑥1

⊂ 𝑅(𝜋𝐹(𝑦)) for
𝑦 ∈ ⟨𝑥

1
⟩ and 𝑤

𝑥2
⊂ 𝑅(𝜋𝐹(𝑦)) for 𝑦 ∈ ⟨𝑥

2
⟩. Let us consider

𝑦 ∈ ⟨𝑥
1
⟩ and 𝑧 ∈ ⟨𝑥

2
⟩. Using (29) with 𝑦 and 𝑧 replaced by

𝑦+𝑧 and −𝑧, respectively, we observe that𝑤
𝑥1 ,𝑥2

⊂ 𝑅(𝜋𝐹(𝑦+

𝑧)), which completes the proof of (20).
Now we assume that (L2) holds. Let 𝑥 ∈ 𝐺 and let

𝑤
𝑥
:= 𝑅 (𝜋𝐹 (𝑥)) ∩ 𝑅

𝐶
. (32)
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Similarly as in case (L1) one can observe that (H1), (24), and
(22) yield

𝑅 (𝜋𝐹 (𝑦)) ∩ 𝑅 (𝜋𝐹 (𝑧)) ∩ 𝑅
𝐶
⊂ 𝑅 (𝜋𝐹 (𝑦 + 𝑧))

for 𝑦, 𝑧 ∈ ⟨𝑥⟩ .
(33)

By the definition 𝑤
𝑥

⊂ 𝑅(𝜋𝐹(𝑥)). Suppose that 𝑤
𝑥

⊂

𝑅(𝜋𝐹(𝑛𝑥)) for given 𝑛 ∈ N and apply (33) with 𝑦 and 𝑧

replaced by 𝑛𝑥 and 𝑥, respectively, in order to obtain 𝑤
𝑥
⊂

𝑅(𝜋𝐹((𝑛 + 1)𝑥)). By induction we receive

𝑤
𝑥
⊂ 𝑅 (𝜋𝐹 (𝑛𝑥)) for 𝑛 ∈ N; (34)

thus (31) holds.
Fix arbitrary 𝑥

1
, 𝑥
2
∈ 𝐺 and define 𝑤

𝑥1 ,𝑥2
:= 𝑤
𝑥1
∩ 𝑤
𝑥2
,

where 𝑤
𝑥1
and 𝑤

𝑥2
are given by (32). By (31) 𝑤

𝑥1
⊂ 𝑅(𝜋𝐹(𝑦))

for𝑦 ∈ ⟨𝑥
1
⟩ and𝑤

𝑥2
⊂ 𝑅(𝜋𝐹(𝑦)) for𝑦 ∈ ⟨𝑥

2
⟩. Let us consider

𝑦 ∈ ⟨𝑥
1
⟩, 𝑧 ∈ ⟨𝑥

2
⟩. Using (33) for 𝑦 and 𝑧, we observe that

𝑤
𝑥1 ,𝑥2

⊂ 𝑅(𝜋𝐹(𝑦 + 𝑧)). This completes the proof of (20).
Finally, assume that (L3) holds. Let 𝑥 ∈ 𝐺 and let

𝑤
𝑥
:= 𝑅 (𝜋𝐹 (𝑥)) ∩ 𝑅 (𝜋𝐹 (−𝑥)) ∩ 𝑅 (𝜋𝐹 (0)) ∩ 𝑅

𝐷
. (35)

Observe that due to (H1), (25), and (22) we have

𝑅 (𝜋𝐹 (𝑦)) ∩ 𝑅 (𝜋𝐹 (𝑧)) ∩ 𝑅 (𝜋𝐹 (𝑦 − 𝑧)) ∩ 𝑅
𝐷

⊂ 𝑅 (𝜋𝐹 (𝑦 + 𝑧)) for 𝑦, 𝑧 ∈ ⟨𝑥⟩ .
(36)

By the definition 𝑤
𝑥
⊂ 𝑅(𝜋𝐹(𝑥)) ∩ 𝑅(𝜋𝐹(0)). Let 𝑛 ∈ N,

suppose that 𝑤
𝑥
⊂ 𝑅(𝜋𝐹(𝑘𝑥)) for 𝑘 ∈ {0, . . . , 𝑛}, and apply

(36) with 𝑦 and 𝑧 replaced by 𝑛𝑥 and 𝑥, respectively, in order
to obtain 𝑤

𝑥
⊂ 𝑅(𝜋𝐹((𝑛 + 1)𝑥)). By induction we obtain

𝑤
𝑥
⊂ 𝑅 (𝜋𝐹 (𝑛𝑥)) for 𝑛 ∈ N. (37)

Exchanging 𝑥 with −𝑥 and repeating the lines of the proof of
(37) we conclude that 𝑤

𝑥
⊂ 𝑅(𝜋𝐹(−𝑛𝑥)) for 𝑛 ∈ N, which

together with (37) results with (31).
Fix arbitrary 𝑥

1
, 𝑥
2
∈ 𝐺 and define 𝑤

𝑥1 ,𝑥2
:= 𝑤
𝑥1
∩ 𝑤
𝑥2
∩

𝑅(𝜋𝐹(𝑥
1
− 𝑥
2
)), where 𝑤

𝑥1
and 𝑤

𝑥2
are given by (35). By (31)

𝑤
𝑥1 ,𝑥2

⊂ 𝑅(𝜋𝐹(𝑦)) for 𝑦 ∈ ⟨𝑥
1
⟩ and 𝑤

𝑥1 ,𝑥2
⊂ 𝑅(𝜋𝐹(𝑦)) for

𝑦 ∈ ⟨𝑥
2
⟩. We will prove that 𝑤

𝑥1 ,𝑥2
⊂ 𝑅(𝜋𝐹(𝑘𝑥

1
+ 𝑙𝑥
2
)) for

𝑘, 𝑙 ∈ Z. It is evident that 𝑤
𝑥1 ,𝑥2

⊂ 𝑅(𝜋𝐹(𝑥
1
+ 𝑥
2
)). Let 𝑘 ∈ N

and suppose that𝑤
𝑥1 ,𝑥2

⊂ 𝑅(𝜋𝐹(𝑚𝑥
1
+𝑥
2
)) for𝑚 ∈ {0, . . . , 𝑘}.

Applying (36) with 𝑦 and 𝑧 replaced by 𝑚𝑥
1
+ 𝑥
2
and 𝑥

1
,

respectively, we observe that 𝑤
𝑥1 ,𝑥2

⊂ 𝑅(𝜋𝐹((𝑚 + 1)𝑥
1
+ 𝑥
2
)).

Thus, by induction

𝑤
𝑥1 ,𝑥2

⊂ 𝑅 (𝜋𝐹 (𝑘𝑥
1
+ 𝑥
2
)) for 𝑘 ∈ N. (38)

To observe that (38) holds also for negative integers it is
enough to apply (36) with 𝑥

2
and −𝑘𝑥

1
in place of 𝑦 and 𝑧,

respectively, and take into account (38). Thus,

𝑤
𝑥1 ,𝑥2

⊂ 𝑅 (𝜋𝐹 (𝑘𝑥
1
+ 𝑥
2
)) for 𝑘 ∈ Z. (39)

Now, let 𝑘 ∈ Z be fixed and assume that, for given 𝑙 ∈ N, it is
𝑤
𝑥1 ,𝑥2

⊂ 𝑅(𝜋𝐹(𝑘𝑥
1
+ 𝑚𝑥
2
)) for 𝑚 ∈ {0, . . . , 𝑙}. Then by (36)

with 𝑦 and 𝑧 replaced by 𝑘𝑥
1
+ 𝑙𝑥
2
and 𝑥

2
, respectively, we

obtain 𝑤
𝑥1 ,𝑥2

⊂ 𝑅(𝜋𝐹(𝑘𝑥
1
+ (𝑙 + 1)𝑥

2
)). By induction,

𝑤
𝑥1 ,𝑥2

⊂ 𝑅 (𝜋𝐹 (𝑘𝑥
1
+ 𝑙𝑥
2
)) for 𝑘 ∈ Z, 𝑙 ∈ N. (40)

If 𝑙 is a negative integer, we use (36) with 𝑦 and 𝑧 replaced by
𝑘𝑥
1
and 𝑙𝑥

2
, respectively, together with (40) to complete the

proof of (20).

Nowwe are in a position to formulate and prove themain
theorem of the paper.

Theorem 7. Let (𝐺, +) be a groupoid, let 𝐿 be an Archimedean
Riesz space, and let (7) possess the URAP. Assume that, for
given 𝑢 ∈ 𝐿

+
, 𝐹 : 𝐺 → 𝐿 is a 𝑢-solution of (7) and

that hypotheses (H1)–(H5) hold. Let Δ(𝑢) ∈ 𝐿 be such that
𝜋Δ(𝑢)(𝑠) ≥ 𝛿(𝜋𝑢(𝑠)) for 𝑠 ∈ 𝑅(𝜋Δ(𝑢)) and assume that 𝐿 is
Δ(𝑢)-uniformly complete.Then there exists a solution𝐴 : 𝐺 →

𝐿 of (7) such that

|𝐹 (𝑥) − 𝐴 (𝑥)| ≤ 𝛾Δ (𝑢) for 𝑥 ∈ 𝐺. (41)

Moreover, the solution of (7) satisfying (41) is unique provided
that it is unique in the case where we considerR as a realisation
of 𝐿.

Proof. The proof runs in three steps.

Step 1. Assume that 𝐹 : 𝐺 → 𝐿 is a 𝑢-solution of (7). We
will prove that, for every 𝑥 ∈ 𝐺, the sequence (H

𝑛
𝐹(𝑥))
𝑛∈N is

Δ(𝑢)-uniformly convergent.
Fix 𝑥 ∈ 𝐺. By (H4) there exists an open and dense subset

𝑤
𝑥
of𝑋 with

𝑤
𝑥
⊂ 𝑅 (𝜋𝐹 (𝑧)) for 𝑧 ∈ ⟨𝑥⟩ . (42)

Let 𝑊
𝑥
:= 𝑤
𝑥
∩ 𝑅(𝜋𝑢) ∩ 𝑅(𝜋Δ(𝑢)). By (H1) and (H2) for

arbitrarily fixed 𝑠 ∈ 𝑊
𝑥
and 𝑥 ∈ ⟨𝑥⟩𝑘 we have

|E (𝜋𝐹 (⋅) (𝑠)) (𝑥)| ≤ 𝜋𝑢 (𝑠) , (43)

where 𝜋𝐹(⋅)(𝑠) stands for the function mapping 𝐺 into R∞

given by 𝜋𝐹(𝑥)(𝑠) := 𝜋(𝐹(𝑥))(𝑠) for 𝑥 ∈ 𝐺. This means that
𝜋𝐹(⋅)(𝑠)|

⟨𝑥⟩
is a real-valued𝜋𝑢(𝑠)-solution of (7) on ⟨𝑥⟩. Since

(7) has the URAP, by (P1),

H𝑛𝜋𝐹 (⋅) (𝑠) (𝑥) −H
𝑚
𝜋𝐹 (⋅) (𝑠) (𝑥)

 ≤ (𝛼𝑛 + 𝛽𝑚) 𝛿 (𝜋𝑢 (𝑠)) ,

for 𝑛,𝑚 ∈ N,

(44)

with some 𝛼
𝑛
→ 0 and 𝛽

𝑚
→ 0. Similarly, by (P2) we obtain

H𝑛𝜋𝐹 (⋅) (𝑠) (𝑥) − 𝜋𝐹 (𝑥) (𝑠)
 ≤ 𝛾𝑛𝛿 (𝜋𝑢 (𝑠)) , for 𝑛 ∈ N

(45)

with some 𝛾
𝑛
→ 𝛾. According to (H3) and the definition of

Δ the above inequalities imply

𝜋H𝑛𝐹 (𝑥) (𝑠) − 𝜋H𝑚𝐹 (𝑥) (𝑠)


≤ (𝛼
𝑛
+ 𝛽
𝑚
) 𝜋Δ (𝑢) (𝑠) , for 𝑛,𝑚 ∈ N,

𝜋H𝑛𝐹 (𝑥) (𝑠) − 𝜋𝐹 (𝑥) (𝑠)


≤ 𝛾
𝑛
𝜋Δ (𝑢) (𝑠) , for 𝑛 ∈ N,

(46)



6 Abstract and Applied Analysis

respectively. Since 𝑠 ∈ 𝑊
𝑥
is arbitrary,𝑊

𝑥
is open and dense

in𝑋; moreover all the functions in the above inequalities (as
functions of variable 𝑠) are continuous; we obtain

𝜋H𝑛𝐹 (𝑥) − 𝜋H𝑚𝐹 (𝑥)
 ≤ (𝛼𝑛 + 𝛽𝑚) 𝜋Δ (𝑢) ,

for 𝑛,𝑚 ∈ N,

𝜋H𝑛𝐹 (𝑥) − 𝜋𝐹 (𝑥)
 ≤ 𝛾𝑛𝜋Δ (𝑢) , for 𝑛 ∈ N.

(47)

Due to the fact that 𝜋 is a Riesz homomorphism, the above
inequalities result in
H𝑛𝐹 (𝑥) −H

𝑚
𝐹 (𝑥)

 ≤ (𝛼𝑛 + 𝛽𝑚) Δ (𝑢) , for 𝑛,𝑚 ∈ N,

(48)
H𝑛𝐹 (𝑥) − 𝐹 (𝑥)

 ≤ 𝛾𝑛Δ (𝑢) , for 𝑛 ∈ N, (49)

respectively. Inequality (48) means that (H
𝑛
𝐹(𝑥))
𝑛∈N is a

Δ(𝑢)-uniform Cauchy sequence in a Δ(𝑢)-uniformly com-
plete Riesz space and, therefore, relatively uniformly conver-
gent. This, due to the fact that 𝑥 ∈ 𝐺 was arbitrarily fixed,
proves that 𝐴 : 𝐺 → 𝐿 given by

𝐴 (𝑥) := lim
𝑛→∞

Δ(𝑢)
H
𝑛
𝐹 (𝑥) , for 𝑥 ∈ 𝐺 (50)

is well defined.
Letting 𝑛 → ∞ in (49) we obtain (41) as 𝐿 is

Archimedean.

Step 2. We will prove that 𝐴 is a solution of (7). Let 𝑥 =

(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) ∈ 𝐺
𝑘. By (H4) there exists an open and dense

subset 𝑤
𝑥
of 𝑋 with (20). Let𝑊

𝑥
:= 𝑤
𝑥
∩ 𝑅(𝜋𝑢) ∩ 𝑅(𝜋Δ(𝑢)).

By (H1) and (H2) for arbitrarily fixed 𝑠 ∈ 𝑊
𝑥
and 𝑦 ∈

⟨𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
⟩
𝑘 we have

E𝜋𝐹 (⋅) (𝑠) (𝑦)
 ≤ 𝜋𝑢 (𝑠) (51)

which means that 𝜋𝐹(⋅)(𝑠)|
⟨𝑥1 ,𝑥2 ,...,𝑥𝑘⟩

is a real-valued 𝜋𝑢(𝑠)-
solution of (7) on ⟨𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
⟩. Since (7) has the URAP, by

(P3),
EH𝑛𝜋𝐹 (⋅) (𝑠) (𝑥)

 ≤ 𝜌𝑛𝛿 (𝜋𝑢 (𝑠)) for 𝑛 ∈ N (52)

with some 𝜌
𝑛
→ 0 and consequently, taking into account the

definition of Δ, (H2), and (H3), we have
𝜋EH𝑛𝐹 (𝑥) (𝑠)

 ≤ 𝜌𝑛𝜋Δ (𝑢) (𝑠) for 𝑛 ∈ N. (53)

Since the last inequality is valid for any 𝑠 from the open and
dense subset 𝑊

𝑥
of 𝑋 and all the functions in the above

inequality are continuous, we obtain
𝜋EH𝑛𝐹 (𝑥)

 ≤ 𝜌𝑛𝜋Δ (𝑢) for 𝑛 ∈ N. (54)

Finally, taking into account the fact that 𝜋 is a Riesz homo-
morphism, we arrive at

EH𝑛𝐹 (𝑥)
 ≤ 𝜌𝑛Δ (𝑢) for 𝑛 ∈ N. (55)

Letting 𝑛 → ∞ and taking into account the definition of 𝐴,
(H5) and the fact that 𝐿 is Archimedean, we haveE𝐴(𝑥) = 0

which proves that 𝐴 satisfies (7) as 𝑥 ∈ 𝐺
𝑘 was chosen

arbitrarily.

Step 3.Wewill prove the uniqueness of𝐴 satisfying (41) under
the assumption that in the class of real-valued functions a
solution of (7) which approximates𝐹 is uniquely determined.
Contrary, suppose that two solutions 𝐴

1
, 𝐴
2
: 𝐺 → 𝐿 of (7)

satisfy
𝐹 (𝑥) − 𝐴 𝑖 (𝑥)

 ≤ 𝛾Δ (𝑢) for 𝑥 ∈ 𝐺, 𝑖 ∈ {1, 2} . (56)

Fix 𝑥 ∈ 𝐺. By (H4) there exists an open and dense subset 𝑤
𝑥

of𝑋 such that

𝑤
𝑥
⊂ 𝑅 (𝜋𝐹 (𝑧)) for 𝑧 ∈ ⟨𝑥⟩ . (57)

Let𝑊
𝑥
:= 𝑤
𝑥
∩𝑅(𝜋𝑢)∩𝑅(𝜋Δ(𝑢)). According to (H1) and (H2),

the above means that, for arbitrarily fixed 𝑠 ∈ 𝑊
𝑥
, function

𝜋𝐹(⋅)(𝑠)|
⟨𝑥⟩

is a real-valued 𝜋𝑢(𝑠)-solution of (7) on ⟨𝑥⟩. On
the other hand, by (56),
𝜋𝐹 (𝑦) (𝑠) − 𝜋𝐴 𝑖 (𝑦) (𝑠)

 ≤ 𝛾𝜋Δ (𝑢) (𝑠) for 𝑦 ∈ ⟨𝑥⟩ (58)

as 𝜋 is a Riesz homomorphism. This along with (H2) means
that 𝜋𝐴

𝑖
(⋅)(𝑠)|

⟨𝑥⟩
, (𝑖 ∈ {1, 2}) are real-valued solutions of

(7) that approximate 𝜋𝐹(⋅)(𝑠)|
⟨𝑥⟩

on ⟨𝑥⟩. Hence 𝜋𝐴
1
(𝑥)(𝑠) =

𝜋𝐴
2
(𝑥)(𝑠). But then 𝜋𝐴

1
(𝑥) = 𝜋𝐴

2
(𝑥) as 𝑠 ∈ 𝑊

𝑥
was

chosen arbitrarily, 𝑊
𝑥
is open and dense in 𝑋, and 𝜋𝐴

1
(𝑥)

and 𝜋𝐴
2
(𝑥) are continuous. Since 𝜋 is injective we infer that

𝐴
1
(𝑥) = 𝐴

2
(𝑥). This completes the proof, as 𝑥 ∈ 𝐺 was

arbitrarily fixed.

Remark 8. Theorem 7 remains valid for more involved func-
tional equations, for instance, alternative (conditional) func-
tional equations

(E
1
∨E
2
) 𝐹 = 0 (59)

for E
1
,E
2
: 𝐿
𝐺
→ 𝐿
𝐺
𝑘

. By (59) we mean that 𝐹 : 𝐺 → 𝐿

satisfies (59) if

E
1
𝐹 (𝑥) = 0 or E

2
𝐹 (𝑥) = 0 for 𝑥 ∈ 𝐺𝑘. (60)

Given 𝑢
1
, 𝑢
2
∈ 𝐿
+
, any 𝐹 : 𝐺 → 𝐿 is a (𝑢

1
, 𝑢
2
)-near solution

of (59) if
E1𝐹 (𝑥)

 ≤ 𝑢1 or E2𝐹 (𝑥)
 ≤ 𝑢2 for 𝑥 ∈ 𝐺𝑘. (61)

We assume that both operators E
1
and E

2
satisfy (H2) and

(H5). Since, in fact, 𝛿 is now two-place function, we assume
that Δ(𝑢

1
, 𝑢
2
) satisfies 𝜋Δ(𝑢

1
, 𝑢
2
)(𝑠) ≥ 𝛿(𝜋𝑢

1
(𝑠), 𝜋𝑢

2
(𝑠))

for 𝑠 ∈ 𝑅(𝜋Δ(𝑢
1
, 𝑢
2
)). Moreover, defining open and dense

subsets of𝑋 we replace any occurrence of 𝑅(𝜋𝑢) by 𝑅(𝜋𝑢
1
) ∩

𝑅(𝜋𝑢
2
).

Remark 9. Similarly, instead of an alternative in (59) onemay
consider a conjunction, which is useful to investigate systems
of functional equations.

Remark 10. Observe thatTheorem 7 remains valid if one con-
siders a slightlymore general definition of theURAP.Namely,
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one can allow sequences 𝛼
𝑛
, 𝛽
𝑛
, 𝛾
𝑛
, 𝜌
𝑛
to be dependent on 𝑥.

Now we assume the convergence of 𝛼
𝑛
(𝑥), 𝛽

𝑛
(𝑥), 𝜌
𝑛
(𝑥) to 0

and 𝛾
𝑛
(𝑥) to 𝛾(𝑥) at each point 𝑥 ∈ 𝐺. Moreover, one can

consider different deltas on the right-hand sides of (P1)–(P3).

Remark 11. Let us note that one can replace condition (P3) in
Definition 2 of the URAP with the following one:

(P3) the sequence

𝜉
𝑛
:= sup
𝑥∈𝐺
𝑘

EH𝑛𝑓 (𝑥)
 (62)

is convergent to 0.

Then, accordingly, Step 2 of the proof of Theorem 7, that
is, the proof that 𝐴 defined by (50) satisfies (7), should be
replaced by the following reasoning.

Let𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
) ∈ 𝐺
𝑘. By (H4) there exists an open

and dense subset 𝑤
𝑥
of𝑋 with (20). Let𝑊

𝑥
:= 𝑤
𝑥
∩ 𝑅(𝜋𝑢) ∩

𝑅(𝜋Δ(𝑢)) ∩ 𝑅(𝜋E𝐴(𝑥)). By the definition of 𝐴 (50) and (H5)
we have

lim
𝑛→∞

Δ
EH
𝑛
𝐹 (𝑥) = E𝐴 (𝑥) . (63)

Let 𝑠 ∈ 𝑊
𝑥
be fixed. Then,

lim
𝑛→∞

𝜋EH
𝑛
𝐹 (𝑥) (𝑠) = 𝜋E𝐴 (𝑥) (𝑠) . (64)

On the other hand, by (H1) and (H2), for any 𝑦 ∈

⟨𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑘
⟩
𝑘, we have

E𝜋𝐹 (⋅) (𝑠) (𝑦)
 ≤ 𝜋𝑢 (𝑠) (65)

which means that 𝜋𝐹(⋅)(𝑠)|
⟨𝑥1 ,𝑥2 ,...,𝑥𝑘⟩

is a real-valued 𝜋𝑢(𝑠)-
solution of (7) on ⟨𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
⟩. Since (7) has the URAP,

then (P3), (H2), and (H3) yield

lim
𝑛→∞

𝜋EH
𝑛
𝐹 (𝑥) (𝑠) = lim

𝑛→∞
EH
𝑛
𝜋𝐹 (⋅) (𝑠) (𝑥) = 0. (66)

Taking into account (64), we have

𝜋E𝐴 (𝑥) (𝑠) = 0. (67)

Since the last equality is valid for any 𝑠 from the open and
dense subset 𝑊

𝑥
of 𝑋 and all the functions in the above

inequality are continuous, we obtain

𝜋E𝐴 (𝑥) = 0. (68)

Consequently, we infer that

E𝐴 (𝑥) = 0 (69)

as 𝜋 is a Riesz isomorphism. This, due to the fact that 𝑥 ∈ 𝐺𝑘
was chosen arbitrarily, completes the proof that𝐴 satisfies (7).

4. Approximate Solutions of
an Alternative Cauchy Equation

In this section we deal with approximate solutions of an
alternative Cauchy functional equation

𝐹 (𝑥 + 𝑦) + 𝐹 (𝑥) + 𝐹 (𝑦) ̸= 0 ⇒ 𝐹 (𝑥 + 𝑦) = 𝐹 (𝑥) + 𝐹 (𝑦) .

(70)

This equation belongs to the class of conditional Cauchy
equations with the condition dependent on the unknown
function. The general solution of (70) is described in [15,
Theorem 8]. Stability of this equation, in the class of functions
mapping anAbelian semigroup into a Banach space, has been
investigated in [16] and in a more general setting in [17]. For
the readers convenience we quote the main result of [16] as it
will be used in the sequel.

Theorem 12 (cf. [16, Theorem 1]). Let (𝐺, +) be an Abelian
semigroup and let (𝐸, ‖ ⋅ ‖) be a Banach space. If, for some
𝜀
1
, 𝜀
2
≥ 0 and all 𝑥, 𝑦 ∈ 𝐺, a function 𝑓 : 𝐺 → 𝐸 satisfies
𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥) + 𝑓 (𝑦)



> 𝜀
1
⇒

𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)
 ≤ 𝜀2,

(71)

then there exists a unique additive function 𝑎 : 𝐺 → 𝐸 such
that

𝑓 (𝑥) − 𝑎 (𝑥)
 ≤ max {𝜀

1
, 𝜀
2
} (72)

for all 𝑥 ∈ 𝐺.

The natural question arises if a similar result holds true
in ordered spaces. One can rewrite all the sentences of
Theorem 12 for functions mapping an Abelian semigroup 𝐺
into a Riesz space 𝐿, replacing the norm by the absolute value
in 𝐿. The main goal of this section is to applyTheorem 7 with
the purpose to give an affirmative answer to this question.

We will use one of the most general spectral representa-
tion theorems, namely, the Johnson-Kist Spectral Represen-
tationTheorem which we quote here.

Theorem 13 (Johnson-Kist representation theorem) (cf. [8,
Theorem 44.4]). Let 𝐿 be an Archimedean Riesz space. There
exists a Riesz space �̂� of extended real continuous functions and
a Riesz isomorphism of 𝐿 onto �̂�.

Themain theorem of this section reads as follows.

Theorem 14. Let (𝐺, +) be an Abelian semigroup and let 𝐿 be
an Archimedean Riesz space. Assume that, for given 𝑢

1
, 𝑢
2
∈

𝐿
+
, 𝐿 is sup{𝑢

1
, 𝑢
2
}-uniformly complete. If, for every 𝑥, 𝑦 ∈ 𝐺,

a function 𝐹 : 𝐺 → 𝐿 satisfies
𝐹 (𝑥 + 𝑦) + 𝐹 (𝑥) + 𝐹 (𝑦)

 ≤ 𝑢1 or
𝐹 (𝑥 + 𝑦) − 𝐹 (𝑥) − 𝐹 (𝑦)

 ≤ 𝑢2,

(73)

then there exists a unique additive function 𝐴 : 𝐺 → 𝐿 such
that

|𝐹 (𝑥) − 𝐴 (𝑥)| ≤ sup {𝑢
1
, 𝑢
2
} for 𝑥 ∈ 𝐺. (74)
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Proof. By the Johnson-Kist Spectral RepresentationTheorem
there exist a topological space 𝑋 and a Riesz isomorphism
𝜋 : 𝐿 → �̂� ⊂ 𝐶

∞
(𝑋); hence (H1) is satisfied. (H2) and

(H5) hold because (70) has the form (59) with E
1
𝐹(𝑥, 𝑦) :=

𝐹(𝑥+𝑦)+𝐹(𝑥)+𝐹(𝑦) andE
2
𝐹(𝑥, 𝑦) := 𝐹(𝑥+𝑦)−𝐹(𝑥)−𝐹(𝑦),

for 𝑥, 𝑦 ∈ 𝐺. If 𝐹 satisfies (73) then
𝐹 (𝑥 + 𝑦)

 ≤
𝐹 (𝑥) + 𝐹 (𝑦)

 + sup {𝑢
1
, 𝑢
2
} for 𝑥, 𝑦 ∈ 𝐺

(75)

and, therefore, (L2) holds with 𝐵(V) := |V|, 𝐶(V, 𝑤) := |V +
𝑤| + sup{𝑢

1
, 𝑢
2
} for V, 𝑤 ∈ 𝐿 and 𝑅

𝐶
:= 𝑅(𝜋 sup{𝑢

1
, 𝑢
2
}).

Thus, by Lemma 6, we have (H4). It is clear that H
𝑛

:

𝐿
𝐺

→ 𝐿
𝐺 given by H

𝑛
𝐹(𝑥) := (1/𝑛)𝐹(𝑛𝑥), for 𝑥 ∈ 𝐺,

𝑛 ∈ N, satisfies (H3). Moreover, by Theorem 12 applied for
𝐸 = R and Lemma 3, one can easily verify that (59) possesses
URAP with 𝛼

𝑛
= 𝛽
𝑛
= 1/𝑛, 𝛾

𝑛
= 1 + 1/𝑛, 𝜌

𝑛
= 3/𝑛

for 𝑛 ∈ N and 𝛿(𝜀
1
, 𝜀
2
) = sup{𝜀

1
, 𝜀
2
}. Putting Δ(𝑢

1
, 𝑢
2
) =

sup{𝑢
1
, 𝑢
2
}we have 𝜋Δ(𝑢

1
, 𝑢
2
) = sup{𝜋𝑢

1
, 𝜋𝑢
2
}whichmeans

that 𝜋Δ(𝑢
1
, 𝑢
2
)(𝑠) = sup{𝜋𝑢

1
(𝑠), 𝜋𝑢

2
(𝑠)} = 𝛿(𝜋𝑢

1
(𝑠), 𝜋𝑢

2
(𝑠))

for 𝑠 ∈ 𝑅(𝜋Δ(𝑢
1
, 𝑢
2
)).

Now all the assertions ofTheorem 14 follow directly from
Theorem 7.

It is easy to observe that the constant of approximation in
Theorem 14 is the best possible one.

In view of Theorem 12 and the meaning of the approxi-
mate solution of an alternative functional equation (70), that
is condition (71) one may expect the following implication:

𝐹 (𝑥 + 𝑦) + 𝐹 (𝑥) + 𝐹 (𝑦)


> 𝑢
1
⇒

𝐹 (𝑥 + 𝑦) − 𝐹 (𝑥) − 𝐹 (𝑦)
 ≤ 𝑢2,

(76)

for 𝑥, 𝑦 ∈ 𝐺, inTheorem 14 instead of condition (73), with the
commonmeaning of 𝑎 < 𝑏 as 𝑎 ≤ 𝑏 and 𝑎 ̸= 𝑏. Of course, if the
order in a Riesz space 𝐿 is linear then conditions (73) and (76)
coincide. However, as it will be shown in the example below,
in general, assumption (73) cannot be replaced by (76).

Example 15. Let 𝐿 be the Archimedean Riesz space of all real
functions of real variablewith the pointwise order and let𝑢

1
∈

𝐿 be given by

𝑢
1
(𝑠) := {

1, if 𝑠 = 0
0, if 𝑠 ̸= 0

for 𝑠 ∈ R. (77)

Then 𝐿 is 𝑢
1
-uniformly complete. We define 𝐹 : R → 𝐿 by

𝐹 (𝑥) (𝑠) := {
𝑥, if 𝑠 = 𝑥
0, if 𝑠 ̸= 𝑥

for 𝑥, 𝑠 ∈ R. (78)

Then 𝐹 is not additive and satisfies (76) with 𝑢
1
defined above

and 𝑢
2
≡ 0. On the other hand, 𝐹 cannot be approximated by

any additive function. Suppose, for contradiction, that there
exists an additive mapping 𝐴 : R → 𝐿 satisfying (74). Let
us fix 𝑥 ∈ R. For 𝑠 ̸= 0 inequality (74) results with 𝐹(𝑥)(𝑠) =
𝐴(𝑥)(𝑠) according to the definition of 𝑢

1
. Directly from the

definition of 𝐹 we have 𝐹(𝑥)(0) = 0. Then by (74) and the
additivity of 𝐴 we obtain 𝐴(𝑥)(0) = 0. Eventually, we infer
that 𝐹 and 𝐴 coincide and, therefore, 𝐹 is additive. We have
obtained a contradiction.

Let us point out that the assumption that the Riesz space 𝐿
is Archimedean is necessary in order to have the uniqueness
of an existing additive function 𝐴 in Theorem 14, which can
be observed in the following simple example.

Example 16. Let us consider the lexicographically ordered
plane𝐿 = R2.𝐿 is then (1, 0)-uniformly complete Riesz space.
Moreover function 𝐹 : R → R2 given by 𝐹(𝑥) = (𝑥, 0)

satisfies inequality (73) with 𝑢
1
= (1, 0) and 𝑢

2
= (0, 0). On

the other hand inequality (74) holds true with any additive
mapping 𝐴

𝛼
: R → R2, (𝛼 ∈ R), of the form 𝐴

𝛼
(𝑥) =

(𝑥, 𝛼𝑥).

5. Approximate Solutions of
the Cauchy Equation with Squares

Equation (70) has stemmed from

𝑓(𝑥 + 𝑦)
2

= (𝑓 (𝑥) + 𝑓 (𝑦))
2

, (79)

with a real function 𝑓, and next has been investigated in the
form

𝑓 (𝑥 + 𝑦)
 =

𝑓 (𝑥) + 𝑓 (𝑦)
 , (80)

which admits further generalisations from the real case
to more general structures. Affirmative results concerning
stability of (80) are contained in [18] for real-valued functions
and, for the class of functions taking values in Riesz spaces,
in [5]. There are also known results concerning the stability
of the generalized equation (80) for functions acting into a
normed space, called Fischer-Muszély functional equation:

𝑓 (𝑥 + 𝑦)
 =

𝑓 (𝑥) + 𝑓 (𝑦)
 for 𝑥, 𝑦 ∈ 𝐺. (81)

It occurs that, despite the fact that on the assumption that
the norm is strictly convex (81) is equivalent to the Cauchy
functional equation (cf. [19]), even if we considerR2 with the
Euclidean norm as a target space of 𝑓, (81) fails to be stable in
the Hyers-Ulam sense (cf. [18]). However, if we consider the
stability of (81) in the class of surjective functions, then the
answer is positive (cf. [20]).

Finally, concerning (79) in the class of complex functions
we have the following stability result.

Theorem 17 (cf. [16, Theorem 2]). Let (𝐺, +) be an Abelian
semigroup. If for a given 𝜀 ≥ 0 a function 𝑓 : 𝐺 → C satisfies


𝑓(𝑥 + 𝑦)

2

− (𝑓 (𝑥) + 𝑓 (𝑦))
2
≤ 𝜀 for 𝑥, 𝑦 ∈ 𝐺, (82)

then there exists a unique additive function 𝑎 : 𝐺 → C such
that

𝑓 (𝑥) − 𝑎 (𝑥)
 ≤

√𝜀 for 𝑥 ∈ 𝐺. (83)

Remark 18. In fact, for complex functions, (79) occurs to be
superstable in the sense of Baker which was proved in [21]
and, with the use of Theorem 5, in [22].
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The main aim of this section is to apply Theorem 7 in
order to prove that in the class of functions taking values
in an 𝑓-algebra equation (79) is stable; however it is not
superstable. Our main stability result reads as follows.

Theorem 19. Let (𝐺, +) be an Abelian semigroup and let 𝐿 be
an Archimedean 𝑓-algebra with a multiplicative identity 𝑒 ∈

𝐿
+
. Assume that 𝐿 is 𝑢-uniformly complete for given 𝑢 ∈ 𝐿

+
. If

a function 𝐹 : 𝐺 → 𝐿 satisfies


𝐹(𝑥 + 𝑦)

2

− (𝐹 (𝑥) + 𝐹 (𝑦))
2
≤ 𝑢
2 for 𝑥, 𝑦 ∈ 𝐺, (84)

then there exists a unique additive function 𝐴 : 𝐺 → 𝐿 such
that

|𝐹 (𝑥) − 𝐴 (𝑥)| ≤ 𝑢 for 𝑥 ∈ 𝐺. (85)

In the proof of Theorem 19 we are going to use Proposi-
tion 2 from [3], which is quoted below.This proposition is due
to the Ogasawara-Maeda Spectral Representation Theorem
for Archimedean Riesz spaces with a weak unit (cf. [8,
Theorem 50.1]). The multiplicative identity is a weak order
unit (cf. [9, Proposition 353P]) and the topological space—
the domain of the Ogasawara-Maeda representatives—
appears to be extremally disconnected; hence, according to
Proposition 1, 𝐶∞(𝑋) is an 𝑓-algebra.

Proposition 20 (cf. [3, Proposition 2]). Let 𝐿 be an
Archimedean 𝑓-algebra with a multiplicative identity 𝑒 ∈ 𝐿

+
.

Then there exist a topological space𝑋 and an𝑓-subalgebra �̂� of
the 𝑓-algebra𝐶∞(𝑋) and an 𝑓-algebra isomorphism of 𝐿 onto
�̂�.

Proof of Theorem 19. By Proposition 20 there exist a topolog-
ical space 𝑋 and an 𝑓-algebra isomorphism 𝜋 : 𝐿 → �̂� ⊂

𝐶
∞
(𝑋); hence (H1) is satisfied. Equation (79) has the form

(7) withE𝐹(𝑥, 𝑦) := 𝐹(𝑥 + 𝑦)2−(𝐹(𝑥) + 𝐹(𝑦))2, for 𝑥, 𝑦 ∈ 𝐺;
thus (H2) and (H5) hold. By (84) we have


𝐹(𝑥 + 𝑦)

2
≤

(𝐹 (𝑥) + 𝐹 (𝑦))

2
+ 𝑢
2 for 𝑥, 𝑦 ∈ 𝐺 (86)

and, therefore, (L2) holds with 𝐵(V) = |V2|, 𝐶(V, 𝑤) := |(V +
𝑤)
2
| + 𝑢
2 for V, 𝑤 ∈ 𝐿 and 𝑅

𝐶
:= 𝑅(𝜋𝑢

2
). Thus, by Lemma 6

we have (H4). It is evident that H
𝑛
: 𝐿
𝐺

→ 𝐿
𝐺 given by

H
𝑛
𝐹(𝑥) := (1/𝑛)𝐹(𝑛𝑥) for 𝑥 ∈ 𝐺, 𝑛 ∈ N satisfies (H3).

Moreover, by Theorem 17 and Lemma 3 (79) possesses the
URAP with 𝛼

𝑛
= 𝛽
𝑛
= 1/𝑛, 𝛾

𝑛
= 1 + 1/𝑛, and 𝜌

𝑛
= 3/𝑛

for 𝑛 ∈ N and 𝛿(𝜀2) = 𝜀. For Δ(𝑢2) = 𝑢 we have 𝜋Δ(𝑢2) = 𝜋𝑢
and consequently 𝜋Δ(𝑢2)(𝑠) = 𝜋𝑢(𝑠) = 𝛿((𝜋𝑢(𝑠))

2
) for 𝑠 ∈

𝑅(𝜋Δ(𝑢
2
)).

Having appliedTheorem 7 we finish the proof.

Theorem 19 states that in 𝑓-algebras the Cauchy equation
with squares (79) is stable in the Hyers-Ulam sense. Accord-
ing to Remark 18 one can ask if (79) is superstable in the sense
of Baker. But it appears that this is not the case.

Example 21. Let 𝐵[−1, 1] be the Archimedean 𝑓-algebra
of all bounded real functions on the interval [−1, 1] with

a multiplicative identity 𝑒 ≡ 1, the pointwise order, pointwise
addition, and multiplication. Let 𝑢 ∈ 𝐵[−1, 1] be given by

𝑢 (𝑠) := {
√3 |𝑠| , if 𝑠 ∈ [−1, 0]
0, if 𝑠 ∈ (0, 1] .

(87)

Then𝐵[−1, 1] is𝑢-uniformly complete and𝐹 : R → 𝐵[−1, 1]

given by

𝐹 (𝑥) (𝑠) := {
𝑠, if 𝑠 ∈ [−1, 0]
𝑠𝑥, if 𝑠 ∈ (0, 1]

for 𝑥 ∈ R (88)

is, clearly, neither bounded nor additive. Moreover, one can
easily check that 𝐹 and 𝑢 satisfy (84).

6. Approximate Solutions of
the Quadratic Functional Equation

In this section we deal with approximate solutions of the
quadratic functional equation

𝐹 (𝑥 + 𝑦) + 𝐹 (𝑥 − 𝑦) = 2𝐹 (𝑥) + 2𝐹 (𝑦) . (89)

Stability of this equation, in the class of functionsmapping an
Abelian group into a Banach space, has been investigated in
[23] (cf., e.g., [24–26]).

Theorem 22 (cf. [23]). Let (𝐺, +) be an Abelian group and let
(𝐸, ‖ ⋅ ‖) be a Banach space. If a function 𝑓 : 𝐺 → 𝐸 satisfies
the inequality

𝑓 (𝑥 + 𝑦) + 𝑓 (𝑥 − 𝑦) − 2𝑓 (𝑥) − 2𝑓 (𝑦)
 < 𝜀 (90)

for some 𝜀 ≥ 0 and all 𝑥, 𝑦 ∈ 𝐺 then there exists a unique
quadratic function 𝑞 : 𝐺 → 𝐸 such that

𝑓 (𝑥) − 𝑞 (𝑥)
 ≤

1

2
𝜀 (91)

for all 𝑥 ∈ 𝐺.

Themain aimof this section is to show that a similar result
holds true in the class of Riesz space-valued mappings.

Theorem 23. Let (𝐺, +) be an Abelian group and let 𝐿 be an
Archimedean 𝑢-uniformly complete Riesz space, with some 𝑢 ∈
𝐿
+
. If, for every 𝑥, 𝑦 ∈ 𝐺, a function 𝐹 : 𝐺 → 𝐿 satisfies

𝐹 (𝑥 + 𝑦) + 𝐹 (𝑥 − 𝑦) − 2𝐹 (𝑥) − 2𝐹 (𝑦)
 ≤ 𝑢, (92)

then there exists a unique quadratic function 𝑄 : 𝐺 → 𝐿 such
that

|𝐹 (𝑥) − 𝑄 (𝑥)| ≤
1

2
𝑢 for 𝑥 ∈ 𝐺. (93)

Proof. By the Johnson-Kist Spectral RepresentationTheorem
there exist a topological space 𝑋 and a Riesz isomorphism
𝜋 : 𝐿 → �̂� ⊂ 𝐶

∞
(𝑋); hence (H1) is satisfied. Equation (89)
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has the form (7) withE𝐹(𝑥, 𝑦) := 𝐹(𝑥+𝑦)+𝐹(𝑥−𝑦)−2𝐹(𝑥)−
2𝐹(𝑦); hence (H2) and (H5) hold. If 𝐹 satisfies (92) then

𝐹 (𝑥 + 𝑦)
 ≤

𝐹 (𝑥 − 𝑦) − 2𝐹 (𝑥) − 2𝐹 (𝑦)
 + 𝑢

for 𝑥, 𝑦 ∈ 𝐺
(94)

and therefore (L3) holds with 𝐵(V) := |V|, 𝐷(𝑡, V, 𝑤) := |𝑡 −

2V − 2𝑤| + 𝑢 for 𝑡, V, 𝑤 ∈ 𝐿 and 𝑅
𝐷
:= 𝑅(𝜋𝑢). Consequently

Lemma 6 guaranties (H4). It is clear that H
𝑛
: 𝐿
𝐺

→ 𝐿
𝐺

given byH
𝑛
𝐹(𝑥) := 𝐹(2

𝑛
𝑥)/4
𝑛 for𝑥 ∈ 𝐺, 𝑛 ∈ N satisfies (H3).

Moreover, by Theorem 22 applied for 𝐸 = R one can easily
verify that (89) possesses URAP with (H

𝑛
𝐹(𝑥))
𝑛∈N defined

above and 𝛼
𝑛
= 𝛽
𝑛
= 1/4

𝑛, 𝛾
𝑛
= 1 + 1/4

𝑛, 𝛿
𝑛
= 3/4

𝑛 for
𝑛 ∈ N, 𝛿(𝜀) = 𝜀/2. Putting Δ(𝑢) = 𝑢/2 we have 𝜋Δ(𝑢)(𝑠) =
(𝜋𝑢(𝑠))/2 = 𝛿(𝜋𝑢(𝑠)) for 𝑠 ∈ 𝑅(𝜋Δ(𝑢)).

ApplyingTheorem 7 we finish the proof.
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[12] G. Pólya and G. Szegö, Aufgaben Und Lehrsätze Aus Der
Analysis I, Julius Springer, Berlin, Germany, 1925.
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