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This paper is concerned with the stability problem for a class of uncertain impulsive stochastic genetic regulatory networks
(UISGRNS) with time-varying delays both in the leakage term and in the regulator function. By constructing a suitable Lyapunov-
Krasovskii functional which uses the information on the lower bound of the delay sufficiently, a delay-dependent stability criterion
is derived for the proposed UISGRNs model by using the free-weighting matrices method and convex combination technique. The
conditions obtained here are expressed in terms of LMIs whose feasibility can be checked easily by MATLAB LMI control toolbox.
In addition, three numerical examples are given to justify the obtained stability results.

1. Introduction

Genetic regulatory networks (GRNs) which govern many
essential functions of living cells have received much atten-
tion due to their extensive applications in many practical
systems, especially in the biology, engineering, and other
research fields [1-6]. That is why GRNs have become a hot
topic of research recently. Several computational models have
been applied to investigate the behaviours of GRNSs: Petri net
models [7-9], Bayesian network models [10-12], the Boolean
models [13-15], the differential equation models [16-18], and
so forth. In this paper, we will use differential equation
models to encode genetic regulatory networks. The rate of
change in concentration of a particular transcript is given by
an influence function of other RNA concentrations.

Time delay is an interesting feature of signal transmission
and becomes one of the main sources for causing divergence,
instability, and poor performances for networks stability.
So, it is important to consider the delay effects on the
dynamical behavior of GRNs. Up to now, in almost all
existing works on modeling GRNs [5, 19-21], time delay
is included in the regulator function to describe the exist-
ing time delays peculiar to transcription, translation, and

translocation processes in genetic networks. Chen and Aihara
[5] firstly proposed a delay differential equation model for
GRNs and studied its stability problem. In [19], Ren and Cao
studied the asymptotic and robust stability of GRNs with
time-varying delays. In [20], Zhang et al. investigated the
stability analysis for GRNs with random discrete delays and
distributed delays. Hu et al. [21] proposed a GRNs model
with hybrid regulatory mechanism and studied its stability
problem. Recently, Gopalsamy [22] put forward a neural
network model with the incorporation of time delays in the
leakage terms (i.e., negative feedback or decay terms which
widely appeared in the models of neural networks, population
dynamics, and GRNs). Along this line, a time delay will be
taken into consideration in the decay terms of our GRNs
model and we also call it “leakage delay.”

When modeling the GRNS, stochastic disturbance should
be taken into consideration since molecular noise plays
important roles in biological functions of GRNs in practice.
In [23, 24], the authors studied the model of GRNs with
stochastic disturbances. Moreover, impulsive effects are also
likely to exist in the genetic networks systems [25]. In
[26], Li and Sun researched the stability of GRNs under
impulsive control. On the other hand, it is well known that the
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stability of well-designed GRNs may often be destroyed by its
unavoidable uncertainty in practice. In [27, 28], the authors
investigated the stability for uncertain GRNs with interval
time-varying delays. In [29, 30], the authors researched the
stability problem of GRNs with stochastic disturbance and
parameter uncertainties, simultaneously. In [31], Sakthivel et
al. dealt with the asymptotic stability of delayed GRNs with
both stochastic disturbance and impulsive effects. However,
so far there has been very little published concerning the
stability problem for GRNs with leakage delay, impulsive
effects, stochastic disturbances, and parameter uncertainties,
simultaneously.

Motivated by the above discussion, the stability analysis
for UISGRNs with time-varying delays in the leakage term
requires further consideration. By constructing a suitable
Lyapunov-Krasovskii functional which uses the information
on the lower bound of all the delays, the derived conditions
are expressed in terms of LMIs whose feasibility can be
easily checked by using numerically efficient MATLAB LMI
control toolbox. It is believed that the result is meaningful and
useful for the design and applications of UISGRNS. Finally,
numerical examples are provided to show the usefulness of
the derived LMI-based stability conditions.

Notations. Throughout this paper, R" and R™" denote,
respectively, the n-dimensional Euclidean space and the set
of all n x n real matrices. The superscript T" denotes the
transposition and the notation X > Y (resp., X > Y),
where X and Y are symmetric matrices, and it means that
X -Y is positive semidefinite (resp., positive definite). Diag(-)
denotes the diagonal matrix, and col{-} means a column
vector. In symmetric block matrices, we use an asterisk ()
to represent a term that is induced by symmetry. Matrices, if
their dimensions are not explicitly stated, are assumed to be
compatible for algebraic operations.

2. Problem Formulation and Preliminaries

In this paper, we consider the following model:

dm; (t) = (- am; (t —d, (t))
+b(p(t=0 (1), p(t—0(t),...,
pa(t =0 (t))))dt

+ 13 (t,my (t = dy (1)), p; (t =0 () dw (£)
t#t,

i (1)

t=t,

(=qpi (t = dy (1)) + Lm; (£ = 7 (¢))) dt

1 (tmy (E =7 (1), p; (£ = d, (1)) dw (1),

t#t,

Arm; ()], = m; (1) —m; (t) = i (m
keZ,
dp; (t) =
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Ap; (Do, = i (t) = i (t) = T (i (1)) »

keZ', t=t, i=12,...,n

)

where m;(t), p;(t) are concentrations of mRNA and protein
of the ith node at time ¢, respectively, a; and ¢; are positive
real numbers that are the degradation rates of the mRNA and
protein, /; is a positive constant that represents the translation
rate, and b;(-) is the regulatory function of the ith gene. The
first term in the first and third equations of the right side of (1)
is called decay term and d;(t),7 = 1, 2, is called “leakage delay”
as discussed in the Introduction. The regulatory function is
of the form b,(p, (t), p,(£), ..., p,(t)) = Z] 1 b;(p;(t)), which
is called SUM logic [32]. The stochastic disturbance w(t) is
one-dimensional Brownian motion defined on a complete
probability space (Q, #, P) with a natural filtration % ., and
ni(t,m(t — ©(t)), p;(t — d,(t))) € R is the noise inten-
sity.

The function b;(p;(t)) is a monotonic function of the Hill
form as follows:

b (£, )

_(wip)”
ij— . \H,
L+(p; 0 /B;) "

if transcription factor j is an activator @)

- 1 of gene i,
1

L N
"1+ (py0)/8;)"

if transcription factor j is an repressor

of gene i,

where H; is the Hill coefficient, §; is a positive constant, and

«;; is the dimensionless transcriptional rate of transcription
factor j to gene i, which is a bounded constant. Therefore, (1)
can be rewritten into the following form:

dm; (t) = <—aimi (t—d, @)

* qu i (py -0 ) +u,.>dt

+1; (t,m; (t—d, (1)), pi (t — 0 (1)) dw (t),
t#ty,
i (t)

t:tk,

Am; (B)],, = m; (t) —m; (t) = Ji (m
keZz*,
dp; (1) = (=p; (t = dy (1) + Lim; (¢ — 7 (t))) dt
+ 1 (tm; (£ =7 (), p; (t = dy (1)) deo (8),
t#t,



Abstract and Applied Analysis

Ap; (D,cy, = i (t) = pi () = T (i (t)) -

keZ', t=t, i=12,...,n

(3)

where h;(x) = (x/B;)™ /(1+(x/B))™), u; = ;v is defined
as a basal rate, and I is the set of all the j which is a repressor
of gene i. The matrix W = (v;;) € R™" of the genetic network
is defined as follows:

o>

if transcription factor j is an activator of gene i,
0,

if there is no link from node j to node i,

— aij S

Lif transcription factor j is a repressor of gene i.

(4)

Rewriting system (3) into compact matrix form, we
obtain

dm(t) = (~Am(t —d, () + Wh(p(t — o (1)) + u)dt
+nt,mE-d, @), pt-o@®))dw(t),
t#t,
Am Oy, = m(t) —m () = T (m (1)),
kez', t=t,

dp (t) = (=Cp (t = d, (t)) + Lm (¢ — 7 (1)) dt
+n(tm(t—7(),p(t-d, (1)) dw(t),

t#t,,
Ap )y, = P (8) — P (8) = Tk (P (8)),
ke Z+, t =1,

)
where A = diag(a,,a,,...,a,), u = col{u;,u,,...,u,},C =
diag(c;, 6y, -..5¢,), L = diag(l},1L,,...,1,), m(t) = col{m,(t),
my(t),...,m,(0)}, p(t) = col{p,(t), p,(t),..., p, ()}, h(p(t))

= col{h (py (1)), hy(p, (1)), ..., B, (p, ()}, and #n(t,x,y) =
col{n, (t, x, ¥), 1, (£, %, ¥), . .., 1, (t, x, Y)}.

Let (m",p*) be a nonnegative equilibrium point of
the system (5). In the following, we will always shift the
equilibrium point (m”, p*) to the origin by letting x(t) =
m(t) —m”, y(t) = p(t) — p*. Hence, system (5) can be trans-
formed into the following form:

dx (t) = (~Ax(t —d, (1)) + Wf (y (t -0 (t)))) dt
+n(tx(t-d, @), yt-o())dw®),

t?étk:

3
Ax ()=, = x () = x (t) = Ji (x (£)),
keZ', t=t,
dy (t) = (-Cy (t - d, (1)) + Lx (t = 7 (1)) dt
+(tx(t-1(®),y(t—d, (1)) dw(t),
t#t,
Ay Oy, = ¥ () =y (1) = T (7 (1)) »
kez', t=t,
(6)
where x(t —d, (t)) = col{x,(t—d,(t)), x,(t —d,(t)),..., x,(t -

d; ()} € R, y(t - dy(t)) = col{y,(t - d, (1)), y,(t - d,(t)),

syt = dy ()} € RY, f(y(t) = col{f,(y, (1), f,(»,(1)),
—o> Fu(ru())} € R”, the function f;(y;(#)) = h;(y;(t) + pj) -
hj(p;-‘), and obviously £;(0) = 0.

Due to the fact that h; is a monotonically increasing
function with saturation, from the relationship of f(-) and
h(-), we know that, for any y; € R,

f: ()

Vi < T <o

where y; and «; are known constant scalars.
Taking parameter uncertainties into the GRNs model (6),

we consider the following UISGRNs model:

i:1:23--~:n1 (7)

dx (t) = (~(A+ AA) x (t—d, (1)) + (W + AW)
xf(y(t-o(t)))dt
+ntx(t-d, @), yt-o())dw(t),

titk)
Ax(Oli=y, = x (8) = x (8) = T (2 (&) »
ke Z+, =1,

dy(t) = (- (C+AC) y(t—d, (1))
+(L+AL) x(t-7(t)))dt

+n(tx(t-1(t),y(t-d, (1)) dw(t),

t#t,
Ay Oy, =y ()~ y (t) = T (v (1))
keZ', t=t,
Xo=x0)=¢O), y,=yO) =y@®), V0el-20],

(8)

where y/(-) and ¢(-) are the initial function which are contin-
uously differentiable on [—¢, 0] with ¢ = max{h,, hy, hg, hg}.
We extend () on 0 € [-2¢,0] to satisfy [loll, = lloll,, with
loll, = supge_eqllo@ll lloll,e = supge(_ze o lle(@ll, where
e={y. o}



Moreover, the noise intensity # satisfies

" (txt-7(®),y(t-dy (®))
xn(txt—7(),y(t-d, (1))

<x'(t-T@) T x(t-7(1))

)

+y' (t—dy (D)2, 2,9, (t—d (1)),

where ¥, and X, are constant matrices with appropriate
dimensions.

In order to obtain our main theorem, the following
assumptions and lemmas for the system (8) are always made
throughout this paper.

Assumption 1. The parametric uncertainties AA(¢), AW (¢),
AC(t), and AL(t) satisfy

AA(t) = G,F, (1) H,

AW (t) = G,F, (t) H,,
(10)
AC (1) = G,F, (1) H,

AL(t) = G,F, (t) H),

where G,, G,, H,, H,,, H,, and H, are some given constant
matrices with appropriate dimensions and F(t) satisfies
FI(t)F(t) < I,i=1,2,foranyt > 0.

Assumption 2. d,(t),d,(t), T(t), and o(t) are the time-varying
delays satistying

0<h <d (t)<h,,  0<d,(t)<d, <oo,

0<hy;<o(t)<hy, 0<o(t)<o<o00,

0<hs<d,(t) <hg, 0<d,(t)<d, < oo,

(11)
0<h, <t(t) <h,, 0<7(t) <1< 00,
h12 = hz - h17 h34 = h4 - ha’
h56 = hs - hS’ h78 = hs - h7-

Lemma 3 (Schur complement, see [30]). For a given matrix

Q(x) S(x)
(sT x) R(x)) >0 12)

where
Q) =Q"(x), R(x)=R"(x), 13)

and a vector function w(x) : [0,r] — R" such that the
intergrals concerned as well defined, then the following holds:

(i) Q(x) > 0, R(x) = ST(x)Q(x) ' S(x) > 0,
(ii) R(x) > 0, Q(x) — S(x)R(x) 'S8T (x) > 0.
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Lemma 4 (see [33]). For any constant symmetric matrix M >
0, scalar y > 0,

UOY @ (s) ds]TM UOY @(s) ds] <y Ly @" (s) M@ (s) ds.
(14)

Lemma 5 (see [29]). For any vectors a,b € R" and any
positive matrix Y satisfying:

+2a'b<a’Ya+b Y 'b. (15)

3. Main Result

In this section, mean square stability result for model (8) is
summarized in the following theorem.

Theorem 6. If (7), (9), and Assumptions 1 and 2 hold, there
existu=20,A>0,p, >0,p, >0, x;,, € 0,1, k=0,1,...,7+
2,andi = 1,...,n,m € Z", such that the impulsive operator
J.n () satisfies J;,,, (x;(t,,)) = =XimXi(t,,). The system (8) is stable
in the mean square if there exist real matrices P, > 0, P, > 0,
Q>0(=12...,16,2Z >0(=1,2...,8),V, >0, and
V, > 0, diagonal matricesY; > 0 (i = 1,2,...,6), and any
matrices Nyy, Ny, Nay, Nog, Myy, Mg, Myy, My, My, My,
S11 S12> Sa15 S35 S315 S50 Evys Enas By Eny, Esy, and Esy to
satisfy the following ten linear matrix inequalities:

P, +V, < pl, (16)

P +V, <pl, 7)
¢ = *: _h;li\jzzzq <0, (18)
¢ = *: _h;;i\]gz <0, (19)
¢s = f f;;ﬁi <0, (20)
o= [7 ) <o &
¢s = f _;;f:GSZZ; <0, (22)
¢ = i _’25:682; <0, (23)
¢; = f —IZszs <0, (24)
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where

(¢ T,X T,Y WN, hM, hsS, h,E; ]
£ X 0 0 o 0 o0
AR S 0 0 0
E=-|x 0 0 -mz, 0 0 o0 |,
41 0 0 0 -mzy 0 0
x 0 0 0 0 hZ; 0
[+ 0 0 0 0o 0 -hZ,|

o= (2 %)

[¢11 P10 Noy —Nay ¢5 By Esp S+ My ¢rg My ]
* ¢y Ny =N3p ¢y5 Eyy —Ezp My + 81, 9 My,
® ¥ ¢33 0 0 0 0 0 0 0
* x % -Q, 0 0 0 0 0 0
- * * * * ¢ss 00 b5 0 0
¢y = * * * * * s O 0 0 0 ’
* % * * % * —Q16 0 0 0
* * * * * * * ‘/58,8 0 0
* * % % * * * * (/)9’9 0
L * * * * % * * * * (/510’10_
[—May b2 Sz =Ss1 bis 0 ¢yp7 O 0 07
-M;, br1n Sy =Sz $rs O 0 ¢35 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
_ 0 0 0 0 0 ¢s56 O 0 ¢s519 0
10 = 0 0 0 0 0 0 0 0 0o of’
0 0 0 0 0 0 0 0 0 0
0 ¢gp O 0 0 ¢g6 O 0 0 0
0 0 0 0 0 0 ¢g1; O 0 0
L O 0 0 0 0 0 0 0 0 04
[-Qg O 0 0 0 0 0 0 0 0 7
* Py 0 0 0 ¢ O 0 0 20
* * 1313 0 0 0 0 0 0 0
* * * —Qp, 0 0 0 0 0 0
b1y = * * * * P50 Py, O 0 0
11 * * * * * e O 0 0 0 >
* * * * * * (/517’17 0 0 0
* * * * * * * ‘/)18,18 0 0
% % % % % % % * (/519,19 0
L * * * * * * * * * 004

T
]im (X (tm)) = (]lm (xl (tm)) L ’]nm ('xn (tm))) > ¢1,1 = QS + QIS + 2Z\]ll + 2Ell - TY6Z>
¢, =-PA-PGFH,-TV;A-TV,GF\H, - Ny;; + Nj; + Nj3 - Ny + Epp,

¢15 = —Ey + B3 — By, $19 = —Myy + Mz — My, G112 = =S11 + 831 = S5
1
4’1,15 = §Y6 (T+2%), (/)1)17 =-Tv,w -1Tv,G,F,H, + PbW + P,G,F|H,,

T
by = - (1-d,)Q; =2N;, = 2N,, +2M;, + Pz Z - TY,Z, $y5 = —Ejp + E5p — Ey,

$r0 = =My, + My, — My, $r12 = =S12+ 83— S $y15 = -V,A-V,G,F H,,

1
$r1s = EY2 (T+%), P33 =Q + Q- Q5 P55 =—(1-7)Qu3 + p,ZsZy — TY;Z,
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(/)5’8 =-TV,L-TV,G,F,H, + P,L + P,G,F,H,, (/)5’16 =V,L+V,G,F,H,
1
$s.10 = EYS (T+%), Pe6 = Quz + Qi — Qus» Pgs = Q; +Qpy —TY,Z,

1
¢g1, = -P,C- B,G,FH +TV,C+TV,G,F,H,, $s,16 = EYI (T+3),

$o9 =~ (1-0) Qs+ p 2%, — TY3Z, b7 = %Y3 (T+2), Pr010 = Qs —Q; + Qg
P12 =~ (1-dy) Qo + p, 2325 - TY,Z, ¢1216 = -V1C - VIG,F,H,,
Pr220 = %sz (T+3%), P1315 = Qo — Qu + Qs P1515 = Qua = Y5 + Qy,
¢1517 = VoaW + V,G FiH,, Pr616 = Qs = Y1 + Quo $r717=-(1-0)Q - Y5,
P15.18 :_(l_dl)QZ_YZ’ bro00 =~ (1-1) Q5 - Y5, $20,20 = _(l_dz)Qw_sz
X=mZ +h,Z,+h,Z; + h,3 Zg, Y =hyZs+hyZy+hsZs + hse Zo,
T, =[0 —~A-G,F,H, 0 0 0 0 0 0 0 0],

T,=[000000W+GFH, 00 0],
Ty =[0 00 L+G,F,H, 0000 0 0],

Ty, =[0 -C~G,H,H, 00 000 00 0],

T T
T, = [Tn Tu] > T, = [T21 Tzz] >

N, =[NS N, 000000000000000000]
1~ 11 12 >

~

N,=[Nj;, N, 000000000000000000O0],
N3:[N3TlN;FZOOOOOOOOOOOOOOOOOO]T,
sl=[slTls{zoooooooooooooooooo]T,
szz[s;sfzoooooooooooooooooo]T,
53:[551S3T2000000000000000000]T,
M1=[M1T1MITZOOOOOOOOOOOOOOOOOO]T,
M2=[M2TlMZTZOOOOOOOOOOOOOOOOOO]T,
M3=[M3TlMZZOOOOOOOOOOOOOOOOOO]T,
E1=[E1T1EITZOOOOOOOOOOOOOOOOOO]T,

_ [T T T
E,=[El, E5,000000000000000000],

E_ETET T
3—[31 32000000000000000000],

T =diag (y1, ¥ -+ V) » T = diag (o), 05, - - ., 1,,) -
(26)
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Proof. We consider the following Lyapunov functional can-
didate for system (8):

V(tsxp 1) = Vi (%0 31) + Vo (6% 1) + Vs (6% 94) 5
(27)

where

n Yi
Vi (6%, 9,) = 2) Vy, L (fi (s) = yis) ds
i=1

(28)
+ 22"21 J (f: (s) = y;s) ds,

Va (6% 3) = xT () P (8) + yT (8) Pyy (8)
t-h,
+ J;_d o xl () Qqx(s)ds
«| ST Quf (e ds
—
+ J;_h x () Qsx (s)ds
J x! (s)Qux (s)ds
t—hy
+ Jt y () Qsy (s)ds

() Qsf (y(s)ds

t
+ J yT () Qyy(s)ds
t

t
+L FT(x(5)) Quaf (x (5)) dis

7
oor
+ J x () Qusx (s)ds
t—h,
t=hy
+J x" (5) Quex (s)ds,
t—hg
(29)
0 [t
Vi (t xp ) = J J %" (s) Z,% (s)ds df
—h, Jt+6
hy
+ J X (s) Zy% (s)dsdO
h,
0 [t
+ J y (s)Z5y(s)dsdo
hy Jt+6
y (s) Z,y(s)dsdo
+6
t (30)

0 [t
J y (s)Zsy (s)dsdo
hs Jt+6

hy ot
J y (s)Zéy(s)dsdB

~
+
i5a)

-

J

i
N

i

J

i

0
J T (s) Z,% (s) ds d6
h, Jt+6

J .Le X" (5) Zgx (s) ds df.

Then, by Itd’s differential formula, taking the derivative of
V(t) along the trajectories of the system (8), we can obtain
the following stochastic differential [29]:

dv (t) = FV () dt
+2x" (O P (tx(t—d, (1), y(t-o(t) (L)

+2y" Py (tx(t-1(1), y(t-d, (1)),
where & is the diffusion operator and

FV (t’ xt’yt) =FV; (t’ Xt))’t)
(32)
+ FV, (txp y) + FVs (x 1) s

with

FVi(bxey) =2[f (@) =y O]
xV, [-Cy(t—d, (t)) + Lx (t — T (1))
-G,F,H_y (t

+G,E,H)x (t — 7 (1))]

d, (1))



+tr[n’ (Lt -T(1), y(t-dy (1))

xVin (tx (¢ -7 (1), y(t-d, (1)) ]

+2[f (x®)-x" @7

xV, [-Ax (t—d, (1)) + Wf (y (t — o (1))

-G, FH,x(t-d, (1))
+GFH,f (y(t-o0(t)]

+te[n Lyt -o®),y(t-d, @)

xVyrp (6 y (t= o (1), y (t—d, (1)) ],

FV, (t, x4, 1;)
<2x (t) P, [-Ax (t —d, (1))
+Wf (y(t -0 (1)
-G, FH,x(t-d; (1))
+G FH, f (y(t-o®)]
+tr[n (Ly(t—o®),y(t-d, 1))
xP(ty(t-o(t),y(t-d (1)) ]
+2y" (1)) Py [-Cy (t —d, ()
+Lx(t—7(t))
-G,F,H.y(t—d, (1))
+ G EHx (t -1 (1))]
wte[n (Ly(E-T1 @),y (t-dy (1))
<Py (ty (t=T (1)), y (t—dy (1)) ]
+x" (t-h)Qx(t-h)
~(1-d)x" (t-d, (1) Qux (t—d, (1)
+ T () Qf (x(9)
~(1-d) f (e -dy 1))
xQ,f (y(t-d, (®)))
+x7 (1) Qsx (t) — x" (t = hy) Qsx (£ - hy)
+x" (t-h)Qux(t —hy)
—x"(t - hy) Qux (t - h,)
+ " (t — hs) Qsx (t — hs)

~(1-0)y t-a®))Qsy(t-0o(®))
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+ Ty ®)Qsf (y (1)

~(1-0) f(y' t-ot))

xQsf (y (=0 (1))

— YT (t-hy) Quy (t—hy)

+y Q@)+ y' (£~ hs)Qsy (t—hy)
— ¥ (t=hy) Qgy (t—hy)

+ " (t=hs) Qoy (t —hs)

~(1-dy) " (t-dy () Qoy (t - dy (1)
+ T (y ) Quf (y ®)

—(1-dy) f1 (y (t - dy (1))

xQof (y(t-dy (1))

+¥'Quy ® - y" (t=hs)Quy (¢~ hs)
+ " (t=hs) Quy (¢ — hs)

— " (t = he) Quuy (t — he)

+x7 (t—h,) Qux (t —h,)

(1 -1)x (t-T (1) Qusx (t T (1))

+ T (0)Quaf (x (1)

~(1-1) f (et -7 (2)

X Quuf (x(t =7 (1)) +x" () Qusx (£)
—x"(t - h,)Qusx (t — hy)

+x7 (t - hy) Quex (t — hy)

—x"(t - hg) Quex (t - hg)

FV5 (t, x4 y;)

= hx" () Z,% (8)
- Lthl %7 (s) Z,% (s) ds
+hypx! (8) Z,y% (t)
- f_: £ (5) Z,% (s) ds
+ 3T (6) Z3 (1)

t
- Lh 3 (s) Zy 3 (s)ds
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+hyy" (1) 2,9 (1)

t-h,
- j 3 (s) Zyy (s)ds

+hsy" (8) Zsy (1)

- j 37 (s) Zsy (s)ds
t-hs

+he v (1) Zey (1)

t—hy
_ L @ Zgp ) ds

e

+ 5" () Z,p (t)

Jf T .
- - Y (s)Z,y(s)ds
+hog 3" (s) Zgy (s)

t-h,
—I . 3T (t) Zgy (t) ds.
t=hg

(33)

By Newton-Leibnitz formula, we have that

2¢" (t) N, [x (t)—x(t—hy) - J':_h X (s) ds] =0,

t-h,
26T (1) N, [x(t “h)-x(t—-d, ®) - L_d S5O ds] -0,
t—d, ()

2¢" (t) N, [x(t—d1 (t))—x(t—hz)—J J'C(S)d5:| =0,

_hz
t

26T (1) M, [y(t)—y(t—o(t))—L )'/(s)ds] -0,

—o(t)
. o ) thy )
26 (M, |y(t—hy)—y(t-0(1)) J , y(s)ds| =0,

t—o(

t—o(t)

26" () M; [;V(t—cf(f))—)’(t—hzx)—i h

y(s) ds] =0,

4

t
27 (1) S, [y(t) —y(t-d, (1) - J v (s) ds] =0,
t=d,(t)

t—hy

23T(t)82 [y(t—hs)—y(t—dz 1) - L t)y(s)ds] =0,

2

- t=dy (1)
2e () S5 [)’ (t=dy (1) =y (t —hg) - J;ih y(s) ds] =0,

2¢" (1) E, [x(t) —x(t-1() - J: %(s) ds] =0,

—1(t)

~h,
2¢e7 (1) E, |:x(t—h7)—x(t—‘[(t))—r 5c(s)dsj| =0,
t—1(t)

t-h,
267 (1) E, [x(t—hs)—x(t—h7)—J. x(s)ds] =0,

t—hg

(34)
where

e(t) = [& (1), 6, (1), &5 (1), &, (O]
g ) =[x"®),x"(t-d, 1), x" (t-hy),
X (t-hy),x" (t-7 ()],
& (t) =[x (t=hy),x" (t=hg),y" (),
yit-o®),y" (t-hy)], (35)
(1) = [y (t-hy),y" (t-dy ), ¥ (t-hs),
y (t-he), [T )],
e =[f"().f (y-o),f (x—d, (®),
fra-r@), fM (y-d, )]

By using Lemmas 4 and 5, we have

t

-2¢" (H) N, J % (s)ds

t—h,

<he ()N, Z'NTe (1)
t
+ J %' (s) Z,% (s) ds,
t-h,

t—h,

— 26" () N, J x(s)ds

t_dl(t)

< (dy (1)~ hy) €" () N, Z5 NS e (t)
t—hy
+ J %' (s) Z,% (s) ds,
t—d,(t)

t—d, (1)

— 2T ()N, J i (s)ds

t—h,

< (hy—d, (1)) €' (t) N3Z, N e(t)

td, (1)
+ J %7 (s) Z,% (s) ds,
t-h,

2¢T Lo
- 2¢ (t)MIJ y(s)ds
t—h,
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T 15 ,T t—7(t)
<hse (H)M,Z; M, e(t) 0T ) E, J () ds
t—hg

t T .
' Jt_hsy ()23 (9, < (hg—7(8) € (1) Es 2 Ele (¢)

t—hy t=7(t)
_2eT () M, J J(s)ds + J T (s) Zy (s) ds.
t-o(t) t—hg
< (0(t)~ hy) " (1) M, Z; ' MTe (1) (36)
t—h, It follows from (7) that
T Z . d ,
! L,@ ¥ D2y (s)ds 0=fTyO)Vf(r®) - fT(y )Y, f (y(®)
t—o(t)
_2eT () M, j J(s)ds <=y ORIy ) +y O, (T+3) f (1)
! T
< (h4 s (t)) ST (t) M3ZZIMZ£ (t) - f (}’ (t)) Ylf (y (t)) >
to) 0= fT (y(t=d, 1)) Y,f (y(t-d, (1))
Y Z,y (s)ds,
S REACEARE (- dy O) Yof (3 (- dy (1)
~ 26" (1) S, Jt ¥ (s)ds <—y"(t-d, ) TY,Zy (t - d, ()
t—hy
. +y (t=dy )Y, (T+2) f (y(t-dy (1))
< hse (t)S,Z5 S (t) ,
, -f (y(-d, )Y, f(y(t-d, ®)),
T .
. Jh y ()23 () ds, 0= 1 (y(t-a ) Yaf (y (-0 ()
t—hs _ 4T _ _
2 (), J 5 (5)ds [ E-c®)Y:f(yt-o)
T <" (t - () TY,Zy (t -0 (1))
T 1T
(@ 0=k (05,25,e(0) Y (-0 W)Y (T+3) £ (y(t -0 (1)
t—hs
| S @zg@as ~fTyE-o)Yaf (y -0 ),
t=d, (t) (37)

0=f"(y(t-dy®))Ysf (v (t -y (1))

t=d,(t)
2" ®)S 3 (s)ds
’ Jt—hs — Ty (t=dy @) Yaf (v (t - dy ()))

< (he = d, (1)) e (t) S3Zgls3T£ (t) < —yT (t—d, () TY,Zy (t - d, (1))
+ J::Z(t) 97 (s) Zey (s) ds, ) (t=dy )Y, (T+2) f (y(t - dy (1))
t ~ Ty (E-d, )Yy f (y(t-d, (1)),
T .
—2 (OE J x0) ds 0=fT(yt-7®))Ysf (y(t—7(1)))
< hye' (t)E,Z; E{e(t) ~ Ty E=T@))Ysf (vt -7 )

< -y (t—T (@) TYZy (-7 (t)

" Jt ' (s) Z;% (s)ds,
t-h, +y -1 Y (T+3) f(y(t-1@1)

t-h,
S OR | vod - TO) Yof (- (),
< (r(t)-hy) e (t)E,Z5 ' Eye (t) 0= f7 (x(0) Yof (x (1) = f (x(£) Y f (x (1))
t-hy < —x (1) TYEx (£) + x (1) Yo (T + ) f (x (1))
+ J %7 (s) Zgx (s) ds,
t

~(0) = T @) Yof (x (1)).
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Next, it follows from (9) and (27) that

[ (ty(t-o@®).x(t-d, 1))
(P V)t y(t—o (), x(t-d, (1)) ]
< e (P V) [ (L y (t =0 (1), x (t—d, (1))
<y (t,y(t-o@®),x(t-d (1))]
<yl (t-a@)p Iyt -0 )
t—d, (1),
tr[n" (6 y(t-dy (6), x(t - T (1))
x(P+ Vo) (ty(t—d, (®),x(t -7 (1) ]
< Amax (P + V1) [0 (6,7 (£ = dy (8) % (¢ = 7 (£)))
xn(ty(t-dy (), x(t-7(t))]

<x"(t—1(t) pZiTyx (t— T (t))

+x' (t—d, (1) Plzzzzx(

+ )’T (t—d, (1)) szgzw (t=d,(1).
(38)

Add both sides of (34) and (38) to both sides of (32) and
apply (36)-(37); one can obtain that

FV (t,x, ) <€ () Ye(t), (39)

where Y = ¢+ T, XT, + T,YT, +h N, Z'N] + hy M, Z;* M| +
hs$,Z;'ST +h,E, 27 EL + 0, with © = (d,(t)~h,)N,Z;' N} +
(hy — d,()N;Z,'NT + (dy(t) — hs)$,Z5'Sh + (hg —
dy(1))85 25 ST +(a(t)~hy )M, 2, MY +(hy—0(t))M; Z, MI +
(T(t) = hy)Ey Zg E) + (hg — T(t))Es Zg 'E; .

Noting Assumption 2, ® can be seen as the convex
combination of N,Z;'NJ and N; Z;' NT ond, (t), M, Z,;' M2
and M;Z,"M> on o(t), S,Z;'Sh and $;Z;'ST on d,(t), and
E,Z3'E} and E;Z;'EX on 1(t). Therefore, Y < 0 holds if

A+h,N,Z,'NJ <0,
—1A,T
A+h,N,Z,'NT <0,
A+ hyM,Z,' M, <0,
A+ hyyM;Z,' M} <0,
A+ hseS8,75'S) < 0,
A+ hs8;,25'Sh < 0,
-1 T
A+ hyyE, 73 EX <0,

A+ hygE;Z5 Ex <0,

1

where

:l{¢+TXT +T,YT, + N, Z{'N]
4 (41)

+ WM, Z3 MY +hs8,Z5'S] + h,E, Z; E] )

By Schur complements, (40) is equivalent to ¢; < 0,i =
1,2,3,...,8, respectively. Then

V (t,x, ) <O. (42)

On the other hand, from (27) and Theorem 6 conditions,
we note that

n yi(t)
Viltosoy) =20 [ (h© -y ds
-1
x;(ty)
+ 22)» J (f: (s) —y;s)ds

= 2ZA

(fi (5) = yis) ds

1 J{l X;k}}’;(tk

X ()
+22)LJ'1X t (fi () —yss)ds @

n

i(t)
<2Z)L Jy (fi (s) — y;5) ds

n

x; ()
+ zzAi L (fi(s) —y:s)ds

i=1
=V (t}; Xt )’t) .

Moreover, it is obvious that V) (¢, x;, ¥,) = V,(t, xp y1),
Vit X ) = Vit x;, y,). Hence, we get V(f;, x;, y,) <
V(t;, x> ¥,). By Lyapunov-Krasovskii stability theorem, the
equilibrium point of (8) is stable in the mean square. The
proof is completed. O

Remark 7. For the UISGRNs (8) without stochastic distur-
bances, leakage delay, and impulsive effects, it reduces to the
model of [27]. And when the model of (8) without impulsive,
itreduces to the model of [30]. In addition, it is easy to see that
the main theorem obtained above covers the sparse results
available in the literature in the concern of only one or two of
the complex dynamics generally being involved with GRNSs,
leakage delays, parameter uncertainties, impulsive effects,
and stochastic disturbances.

We give a couple of corollaries below in order to show
further that our main result is general enough to cover two
cases that have not been investigated in the literature. Hence,
they are new and significant. Firstly, for model (6) or the
UISGRNSs (8) without parameter uncertainties (i.e., AA(t) =
AW(t) = AC(t) = AL(t) = 0), we have the following
corollary.
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Corollary 8. If (7), (9), and Assumption 1 hold, there exist
u=20A>0p >0p >0, €01,k =01,..,
r+2i=1,...,n,m € Z", such that the impulsive operator
In () satisfies J;,,, (x;(t,,)) = = XimXi(t,,). The system (6) is stable
in the mean square if there exist real matrices P, > 0, P, > 0,
Q >0(G =12..,16,2 >0( =1,2,...,8), V| >0,
and V, > 0, diagonal matricesY; > 0 (i = 1,2,...,6), and
any matrices Nyj, Ny, Nayp, Noy, My, My, Myy, My, My,
My, S11 S120 So1s S22 S31> S50 Evys Evps By, By, Esy, and
E;,, to satisfy conditions (16)-(25) replaced accordingly by the
following:

$1,=-PA-TV,A= Ny + Npp + N3 = Ny + By,

$117 = -TV,W + P W, $y15 = VLA,
¢ss = -TViL + P,L, $s.16 = V1L,
$g12 = -P,C+TV,C, $1216 = —V1C,

¢15,17:V2VV’
T1=[O—AOOOOOOOOOOOOOOWOOO]T,
T,=[0 00 L0OO0O0DO0O0O0DO-C00000GO0O 0]

(44)

In the second case, we suppose that there are no stochastic
disturbances in the UISGRNs model (8). Hence, model (8)
can be reduced to

xt)=-(A+AA)x(t-d, (1))
+(W+AW) f (y(t-0 (1))
Ax (t) iy, = x () = % (1) = T (x ()
kez', t=t,
y(t)=—(C+AC) y(t—d, (t)) + (L + AL) x (t - 7 (1))

Ay () ey, = v (t) =y (1) = T (v (1))

t=t, keZ,
xg=x0)=9(0), y=y0) =y (O,
VO € [-w,0].

(45)

Then we have the following new result.

Corollary 9. If (7) and Assumptions 1 and 2 hold, there
exist p =2 0, A 2 0, x;,, € [0,1], k = 0,1,...,7 + 2,
i=1,....,n,m € Z%, such that the impulsive operator ], (-)
satisfies Ji, (x;(t,,) = —XimX;i(t,,). The system (45) is stable
if there exist real matrices P, > 0, P, > 0,Q; > 0 (i =
1,2,..,16), Z, > 0 (i = 1,2,...,8), V; > 0, and V, > 0,
diagonal matrices Y; > 0 (i = 1,2,...,6), and any matrices

1

Nll’ N12’ N21’ NZZ’ Mll’ MIZ’ MZI’ M22’ M31’ M32’ Sll’ 812’

Abstract and Applied Analysis

So1s S22 S31> 320 Evys Evps By, By, Esy, and Es,, to satisfy
conditions (18)-(25) replaced accordingly by the following:

$2p =

$s5=—(1-1)Q;3 ~TY;Z,

$og9=—(1-0)Q5 - TY,Z,

¢12,12 = (1 - dz) Qo —TY,Z.

- (1-d,)Q, = 2N, - 2N,, + 2M3,,

(46)

4. Numerical Examples

In this section, we present three numerical examples so as to
illustrate the usefulness of our results derived in this paper.

Example 1. Let us firstly consider the system (8) with param-
eters as follows:

C:[l 0]’ A 1.1 O]’

01 0 11
0.8 0 0.8 0
L‘[o 0.8]’ W‘[o 0.8]’
0.1667 0
2= 2= [ 0 0.1067]’ (47)
10
I={, ;> Gi=02xI G =02xI,

H, =H, = H_=H, = 0.02 * I,

F, =05%1, F, =061

For convenience, we assume that x;,, = 1/3,d,(t) = 0.1 +
0.05sin(t), o(t) = 0.2 + 0.03 cos(t), d, () = 0.3 + 0.01 cos(t),
7(t) = 0.4 + 0.05 cos(t), and f, (x) = £,(x) = 1/(1 + x2); then
we can obtain

h, =005  hy,=0.15  h;=0.17,
h,=023,  h;=029,  hg=03l,
h, =035 hg =045, 48)
d =05 d,=06  1=07,
10
0 =08, z_[o 1], T =0.

Using MATLAB LMI control toolbox and by solving the
LMIs (16) in Theorem 6, we can obtain the feasible solutions.
Due to space limitations, we do not list them here. We find
that the delayed UISGRNS (8) are stable in the mean square
which is shown in Figure 1.

Example 2. Consider the system (6) with the parameters that
are the same as in Example 1 other than

H,=H, =H,=H=0. (49)

We can find feasible solutions for the LMIs in Corollary
8, so the impulsive stochastic GRNs (6) are stable in the mean
square which can be shown in Figure 2.
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FIGURE 1: Trajectories of x(¢) and y(t) of the genetic network (8) with randomly chosen initial values.
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FIGURE 2: Trajectories of x(t) and y(t) of the genetic network (6) with randomly chosen initial values.

Example 3. When the parameters in (45) are the same as in
Example 1 in addition to

n=0. (50)
It is easy to see that the uncertain impulsive GRNSs (45) are

stable in the mean square by checking Corollary 9 conditions.
Figure 3 shows that the result is valid.

5. Conclusions

In this paper, we have investigated the stability problem for a
new UISGRNs model with the introduction of leakage delay.
By employing the Lyapunov stability theory, free-weighting
matrix, and convex combination technique combining with
stochastic stability approach and the LMI framework, we have

obtained a sufficient condition to justify the stability of the
proposed UISGRNs model. The obtained stability condition
is expressed in terms of LMIs which can be easily solved by the
efficient MATALB LMI toolbox. Finally, numerical examples
have been provided to illustrate the usefulness of the derived
stability results.
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