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This paper is concerned with a prey-predator system with disease in the prey and two delays. Local stability of the positive
equilibrium of the system and existence of local Hopf bifurcation are investigated by choosing different combinations of the two
delays as bifurcation parameters. For further investigation, the direction and the stability of the Hopf bifurcation are determined
by using the normal form method and center manifold theorem. Finally, some numerical simulations are given to support the
theoretical analysis.

1. Introduction

The effect of disease in ecological system is an important
issue from mathematical as well as ecological point of view.
Therefore, the dynamics of epidemiologicalmodels have been
investigated bymany authors in recent years [1–6]. In [6], Jana
and Kar proposed and investigated the following predator-
prey system with disease in the prey:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝐾
) −

𝛼𝑆𝐼 (𝑡 − 𝜏)

𝑎 + 𝑆
−

𝛽𝑆𝑃

𝑏 + 𝑆
,

𝑑𝐼 (𝑡)

𝑑𝑡
=

𝛼𝑆𝐼 (𝑡 − 𝜏)

𝑎 + 𝑆
− 𝛾𝐼,

𝑑𝑃 (𝑡)

𝑑𝑡
=

𝑚𝛽𝑆𝑃

𝑏 + 𝑆
− 𝛿𝑃
2
− 𝜀𝑃,

(1)

where 𝑆(𝑡), 𝐼(𝑡) denote the population densities of the
susceptible prey and the infected prey at time 𝑡, respectively.
𝑃(𝑡) denotes the population of the predator at time 𝑡. The
susceptible prey grows logistically with the intrinsic growth
rate 𝑟 and the carrying capacity 𝐾. The conversion from
the susceptible prey to the infected prey is governed by
the response function 𝛼𝐼/(𝑎 + 𝑆). The consumption of the
susceptible prey by the predator is governed by the response
function 𝛽𝑃/(𝑏 + 𝑆). 𝛾 is the removal rate of the infected prey
biomass. 𝛿 is the intraspecific competition coefficient of the

predator. 𝜀 is the removal rate of the predator due to natural
death or harvesting. And the constant 𝜏 (𝜏 ≥ 0) is the time
delay due to susceptible prey which becomes the infected
prey. The predator-prey system with single delay has been
investigated by many researchers [7–11]. Jana and Kar [6]
studied the boundedness of the solutions and stability of the
positive equilibrium of system (1). Existence and properties
of the Hopf bifurcation were also investigated.

In recent years, there are also some papers on the
bifurcations of a prey-predator system with two or multiple
delays [12–16]. As is known to all, the consumption of the
susceptible prey by the predator throughout its past history
governs the present birth rate of the predator. Therefore, it is
reasonable to incorporate time delay due to the gestation of
the predator into system (1). Based on this consideration, we
consider the following system with two delays in this paper:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑟𝑆 (1 −

𝑆

𝐾
) −

𝛼𝑆𝐼 (𝑡 − 𝜏
1
)

𝑎 + 𝑆
−

𝛽𝑆𝑃

𝑏 + 𝑆
,

𝑑𝐼 (𝑡)

𝑑𝑡
=

𝛼𝑆𝐼 (𝑡 − 𝜏
1
)

𝑎 + 𝑆
− 𝛾𝐼,

𝑑𝑃 (𝑡)

𝑑𝑡
= 𝑃[

𝑚𝛽𝑆 (𝑡 − 𝜏
2
)

𝑏 + 𝑆 (𝑡 − 𝜏
2
)
− 𝛿𝑃 − 𝜀] ,

(2)
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where 𝜏
1
≥ 0 is the time delay due to susceptible prey which

becomes the infected prey and 𝜏
2
≥ 0 is the time delay due to

the gestation of the predator.
This paper is organized as follows. In Section 2, we

investigate local stability of the positive equilibrium and
existence of local Hopf bifurcation of system (2) with respect
to both delays. In Section 3, by using the normal formmethod
and center manifold theorem, the properties of the Hopf
bifurcation such as direction and stability are determined.
Some numerical simulations are given for the support of the
analytical findings in Section 4.

2. Local Stability and Hopf Bifurcation

According to the analysis in [6], system (2) has a unique
positive equilibrium 𝐸

∗
(𝑆
∗
, 𝐼
∗
, 𝑃
∗
) if 𝛼 > 𝛾, 𝑎𝑚𝛽𝛾/(𝑏 + (𝑎 −

𝑏)𝛾) > 𝜀 and (1 − 𝑆
∗
/𝐾) > 𝛽𝑃

∗
/(𝑏 + 𝑆

∗
), where 𝑆

∗
=

𝑎𝛾/(𝛼 − 𝛾), 𝐼∗ = (𝑟(1 − 𝑆
∗
/𝐾) − 𝛽𝑃

∗
/(𝑏 + 𝑆

∗
))(𝑎 + 𝑆

∗
)/𝛼,

𝑃
∗
= (𝑚𝛽𝑆

∗
− 𝜀(𝑏 + 𝑆

∗
))/(𝛿(𝑏 + 𝑆

∗
)).

Let ̄𝑆 = 𝑆 − 𝑆
∗, ̄𝐼 = 𝐼 − 𝐼

∗, �̄� = 𝑃 − 𝑃
∗. Dropping the bars

for convenience, system (2) becomes the following form:

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑎
1
𝑆 (𝑡) + 𝑎

2
𝑃 (𝑡) + 𝑏

1
𝐼 (𝑡 − 𝜏

1
) + 𝐹
1
,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝑎
3
𝑆 (𝑡) + 𝑎

4
𝐼 (𝑡) + 𝑏

2
𝐼 (𝑡 − 𝜏

1
) + 𝐹
2
,

𝑑𝑃 (𝑡)

𝑑𝑡
= 𝑎
5
𝑃 (𝑡) + 𝑐

1
𝑆 (𝑡 − 𝜏

2
) + 𝐹
3
,

(3)

where

𝑎
1
= −

𝑟𝑆
∗

𝐾
+

𝛼𝑆
∗
𝐼
∗

(𝑎 + 𝑆∗)
2
+

𝛽𝑆
∗
𝑃
∗

(𝑏 + 𝑆∗)
2
, 𝑎

2
= −

𝛽𝑆
∗

𝑏 + 𝑆∗
,

𝑎
3
=

𝑎𝛼𝐼
∗

(𝑎 + 𝑆∗)
2
, 𝑎

4
= −𝛾, 𝑎

5
= −𝛿𝑃

∗
,

𝑏
1
= −

𝛼𝑆
∗

𝑎 + 𝑆∗
, 𝑏

2
=

𝛼𝑆
∗

𝑎 + 𝑆∗
, 𝑐

1
=

𝑚𝑏𝛽𝑃
∗

(𝑏 + 𝑆∗)
2
,

(4)

𝐹
1
= 𝑎
21
𝑆
2
(𝑡) + 𝑎

22
𝑆 (𝑡) 𝐼 (𝑡 − 𝜏

1
) + 𝑎
23
𝑆 (𝑡) 𝑃 (𝑡) + 𝑎

31
𝑆
3
(𝑡)

+ 𝑠
32
𝑆
2
(𝑡) 𝐼 (𝑡 − 𝜏

1
) + 𝑎
33
𝑆
2
(𝑡) 𝑃 (𝑡) + ⋅ ⋅ ⋅ ,

𝐹
2
= 𝑏
21
𝑆
2
(𝑡) + 𝑏

22
𝑆 (𝑡) 𝐼 (𝑡 − 𝜏

1
) + 𝑏
31
𝑆
3
(𝑡)

+ 𝑏
32
𝑆
2
(𝑡) 𝐼 (𝑡 − 𝜏

1
) + ⋅ ⋅ ⋅ ,

𝐹
3
= 𝑐
21
𝑃
2
(𝑡) + 𝑐

22
𝑃 (𝑡) 𝑆 (𝑡 − 𝜏

2
) + 𝑐
23
𝑆
2
(𝑡 − 𝜏
2
)

+ 𝑐
31
𝑃 (𝑡) 𝑆

2
(𝑡 − 𝜏
2
) + 𝑐
32
𝑆
3
(𝑡 − 𝜏
2
) + ⋅ ⋅ ⋅ ,

(5)

with

𝑎
21

= −
𝑟

𝐾
+

𝑎𝛼𝐼
∗

(𝑎 + 𝑆∗)
3
+

𝑏𝛽𝑃
∗

(𝑏 + 𝑆∗)
3
, 𝑎

22
= −

𝑎𝛼

(𝑎 + 𝑆∗)
3
,

𝑎
23

= −
𝑏𝛽

(𝑏 + 𝑆∗)
2
, 𝑎

31
= −

𝑎𝛼𝐼
∗

(𝑎 + 𝑆∗)
4
−

𝑏𝛽𝑃
∗

(𝑏 + 𝑆∗)
4
,

𝑎
32

=
𝑎𝛼

(𝑎 + 𝑆∗)
3
, 𝑎

33
=

𝑏𝛽

(𝑏 + 𝑆∗)
3
,

𝑏
21

= −
𝑎𝛼𝐼
∗

(𝑎 + 𝑆∗)
3
, 𝑏

22
=

𝑎𝛼

(𝑎 + 𝑆∗)
2
,

𝑏
31

= −
𝑎𝛼𝐼
∗

(𝑎 + 𝑆∗)
4
, 𝑏

32
= −

𝑎𝛼

(𝑎 + 𝑆∗)
4
,

𝑐
21

= −𝛿, 𝑐
22

=
𝑚𝑏𝛽

(𝑏 + 𝑆∗)
2
, 𝑐

23
= −

𝑚𝑏𝛽𝑃
∗

(𝑏 + 𝑆∗)
3
,

𝑐
31

= −
𝑚𝑏𝛽

(𝑏 + 𝑆∗)
3
, 𝑐

32
=

𝑚𝑏𝛽𝑃
∗

(𝑏 + 𝑆∗)
4
.

(6)

The linearized system of (3) is

𝑑𝑆 (𝑡)

𝑑𝑡
= 𝑎
1
𝑆 (𝑡) + 𝑎

2
𝑃 (𝑡) + 𝑏

1
𝐼 (𝑡 − 𝜏

1
) ,

𝑑𝐼 (𝑡)

𝑑𝑡
= 𝑎
3
𝑆 (𝑡) + 𝑎

4
𝐼 (𝑡) + 𝑏

2
𝐼 (𝑡 − 𝜏

1
) ,

𝑑𝑃 (𝑡)

𝑑𝑡
= 𝑎
5
𝑃 (𝑡) + 𝑐

1
𝑆 (𝑡 − 𝜏

2
) .

(7)

Thus, we can get that the characteristic equation of system (7)
is

𝜆
3
+ 𝑚
2
𝜆
2
+ 𝑚
1
𝜆 + 𝑚

0
+ (𝑛
2
𝜆
2
+ 𝑛
1
𝜆 + 𝑛
0
) 𝑒
−𝜆𝜏
1

+ (𝑝
1
𝜆 + 𝑝
0
) 𝑒
−𝜆𝜏
2 + 𝑞
0
𝑒
−𝜆(𝜏
1
+𝜏
2
)
= 0,

(8)

where

𝑚
0
= −𝑎
1
𝑎
4
𝑎
5
, 𝑚

1
= 𝑎
1
𝑎
4
+ 𝑎
1
𝑎
5
+ 𝑎
4
𝑎
5
,

𝑚
2
= − (𝑎

1
+ 𝑎
4
+ 𝑎
5
) , 𝑛

0
= 𝑎
5
(𝑎
1
𝑏
2
− 𝑎
3
𝑏
1
) ,

𝑛
1
= (𝑎
1
+ 𝑎
5
) 𝑏
2
− 𝑎
3
𝑏
1
, 𝑛

2
= −𝑏
2
,

𝑝
0
= 𝑎
2
𝑎
4
𝑐
1
, 𝑝

1
= −𝑎
2
𝑐
1
, 𝑞

0
= 𝑎
2
𝑏
2
𝑐
1
.

(9)

Case 1 (𝜏
1
= 𝜏
2
= 0). Equation (8) becomes

𝜆
3
+ 𝑚
12
𝜆
2
+ 𝑚
11
𝜆 + 𝑚

10
= 0, (10)

where

𝑚
12

= 𝑚
2
+ 𝑛
2
, 𝑚

11
= 𝑚
1
+ 𝑛
1
+ 𝑝
1
,

𝑚
10

= 𝑚
0
+ 𝑛
0
+ 𝑝
0
+ 𝑞
0
,

𝐴
10

= 𝐴
0
+ 𝐵
0
+ 𝐶
0
+ 𝐷
0
+ 𝐸
0
+ 𝐹
0
.

(11)

It follows from the Routh-Hurwitz criteria that all roots
of (10) have negative real parts if the following condition
holds: (𝐻

11
): 𝑚
12

> 0 and 𝑚
12
𝑚
11

> 𝑚
10
. Then, the

positive equilibrium of system (2) without delay is locally
asymptotically stable.
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Case 2 (𝜏
1
> 0, 𝜏
2
= 0). On substituting 𝜏

2
= 0, (8) becomes

𝜆
3
+ 𝑚
22
𝜆
2
+ 𝑚
21
𝜆 + 𝑚

20
+ (𝑛
22
𝜆
2
+ 𝑛
21
𝜆 + 𝑛
20
) 𝑒
−𝜆𝜏
1 = 0,

(12)

where

𝑚
22

= 𝑚
2
, 𝑚

21
= 𝑚
1
+ 𝑝
1
, 𝑚

20
= 𝑚
0
+ 𝑝
0
,

𝑛
22

= 𝑛
2
, 𝑛

21
= 𝑛
1
, 𝑛

20
= 𝑛
0
+ 𝑞
0
.

(13)

Let 𝜆 = 𝑖𝜔
1
(𝜔
1
> 0) be a root of (12). Then, we have

𝑛
21
𝜔
1
sin𝜔
1
𝜏
1
+ (𝑛
20

− 𝑛
22
𝜔
2

1
) cos𝜔

1
𝜏
1
= 𝑚
22
𝜔
2

1
− 𝑚
20
,

𝑛
21
𝜔
1
cos𝜔
1
𝜏
1
− (𝑛
20

− 𝑛
22
𝜔
2

1
) sin𝜔

1
𝜏
1
= 𝜔
3

1
− 𝑚
21
𝜔
1
,

(14)

which implies that

𝜔
6

1
+ 𝑔
22
𝜔
4

1
+ 𝑔
21
𝜔
2

1
+ 𝑔
20

= 0, (15)

where

𝑔
20

= 𝑚
2

20
− 𝑛
2

20
,

𝑔
21

= 𝑚
2

21
− 𝑛
2

21
− 2𝑚
20
𝑚
22

+ 2𝑛
20
𝑛
22
,

𝑔
22

= 𝑚
2

22
− 𝑛
2

22
− 2𝑚
21
.

(16)

Denote 𝜔2
1
= V
1
; then (15) becomes

V3
1
+ 𝑔
22
V2
1
+ 𝑔
21
V
1
+ 𝑔
20

= 0. (17)

Let

𝑓
1
(V
1
) = V3
1
+ 𝑔
22
V2
1
+ 𝑔
21
V
1
+ 𝑔
20
. (18)

In [17], Song et al. obtained the following results on the
distribution of roots of (17).

Lemma 1. For (17),

(1) if 𝑔
20

< 0, then (17) has at least one positive root;

(2) if 𝑔
20

≥ 0 and 𝑔
2

22
− 3𝑔
21

≤ 0, then (17) has no positive
roots;

(3) if 𝑔
20

≥ 0 and 𝑔
2

22
− 3𝑔
21

< 0, then (17) has positive
root if and only if V∗

1
= (−𝑔

20
+ √𝑔2
22

+ 3𝑔
21
)/3 > 0

and 𝑓
1
(V∗
1
) ≤ 0.

(𝐻
21
) Suppose that (17) has at least one positive root.

Without loss of generality, we assume that (17) has three
positive roots, which are denoted by V

11
, V
12
, and V

13
. Then (15)

has three positive roots 𝜔
1𝑘

= √V
1𝑘
, 𝑘 = 1, 2, 3. For every fixed

𝜔
1𝑘
, one can get

sin (𝜔
1𝑘
𝜏
1
) = (𝑛

22
𝜔
5

1𝑘
+ (𝑚
22
𝑛
21

− 𝑚
21
𝑛
22

− 𝑛
20
) 𝜔
3

1𝑘

+ (𝑚
21
𝑛
20

− 𝑚
20
𝑛
21
) 𝜔
1𝑘
)

× (𝑛
2

22
𝜔
4

1𝑘
+ (𝑛
2

21
− 2𝑛
20
𝑛
22
) 𝜔
2

1𝑘
+ 𝑛
2

20
)
−1

≜ 𝑇
2𝑠
(𝜔
1𝑘
) ,

cos (𝜔
1𝑘
𝜏
1
) = ((𝑛

21
− 𝑚
22
𝑛
22
) 𝜔
4

1𝑘

+ (𝑚
20
𝑛
22

+ 𝑚
22
𝑛
20

− 𝑚
21
𝑛
21
)

×𝜔
2

1𝑘
− 𝑚
20
𝑛
20
)

× (𝑛
2

22
𝜔
4

1𝑘
+ (𝑛
2

21
− 2𝑛
20
𝑛
22
) 𝜔
2

1𝑘
+ 𝑛
2

20
)
−1

≜ 𝑇
2𝑐
(𝜔
1𝑘
) .

(19)

Thus,

𝜏
(𝑗)

1𝑘

=

{{{

{{{

{

1

𝜔
1𝑘

(arccos (𝑇
2𝑐
(𝜔
1𝑘
)) + 2𝑗𝜋) , 𝑇

2𝑠
(𝜔
1𝑘
) ≥ 0,

1

𝜔
1𝑘

(2𝜋 − arccos (𝑇
2𝑐
(𝜔
1𝑘
)) + 2𝑗𝜋) , 𝑇

2𝑠
(𝜔
1𝑘
) < 0,

(20)

with 𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . ..
Let

𝜏
10

= min {𝜏
(0)

1𝑘
} , 𝑘 = 1, 2, 3,

𝜔
10

= 𝜔
1𝑘
0

.

(21)

Differentiating both sides of (12) with respect to 𝜏
1
we can get

[
𝑑𝜆

𝑑𝜏
1

]

−1

= −
3𝜆
2
+ 2𝑚
22
𝜆 + 𝑚

21

𝜆 (𝜆3 + 𝑚
22
𝜆2 + 𝑚

21
𝜆 + 𝑚

20
)

+
2𝑛
22
𝜆 + 𝑛
21

𝜆 (𝑛
22
𝜆2 + 𝑛

21
𝜆 + 𝑛
20
)
−

𝜏
1

𝜆
.

(22)

Thus, we have

Re [ 𝑑𝜆

𝑑𝜏
1

]

−1

𝜏=𝜏
10

=
𝑓


1
(V
1∗
)

𝑛2
22
𝜔4
10

+ (𝑛2
21

− 2𝑛
20
𝑛
22
) 𝜔2
10

+ 𝑛2
20

, (23)

where V
1∗

= 𝜔
2

10
. Obviously, if the condition (𝐻

22
) : 𝑓


1
(V
1∗
) ̸= 0

holds, then Re [𝑑𝜆/𝑑𝜏
1
]
−1

𝜏
1
=𝜏
10

̸= 0. By the Hopf bifurcation
theorem in [18], we have the following results.

Theorem 2. Suppose that conditions (𝐻
21
)-(𝐻
22
) hold. The

positive equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑃
∗
) of system (2) is asymptot-

ically stable for 𝜏
1
∈ [0, 𝜏

10
) and system (2) undergoes a Hopf

bifurcation at 𝐸∗(𝑆∗, 𝐼∗, 𝑃∗) when 𝜏
1
= 𝜏
10
.
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Case 3 (𝜏
2
> 0, 𝜏

1
= 0). Substitute 𝜏

1
= 0 into (8), then (8)

becomes

𝜆
3
+ 𝑚
32
𝜆
2
+ 𝑚
31
𝜆 + 𝑚

30
+ (𝑝
31
𝜆 + 𝑝
30
) 𝑒
−𝜆𝜏
2 = 0, (24)

where
𝑚
32

= 𝑚
2
+ 𝑛
2
, 𝑚

31
= 𝑚
1
+ 𝑛
1
,

𝑚
30

= 𝑚
0
+ 𝑛
0
, 𝑝

31
= 𝑝
1
,

𝑝
30

= 𝑝
0
+ 𝑞
0
.

(25)

Let 𝜆 = 𝑖𝜔
2
(𝜔
2
> 0) be a root of (24). Then, we get

𝑝
31
𝜔
2
sin𝜔
2
𝜏
2
+ 𝑝
30
cos𝜔
2
𝜏
2
= 𝑚
32
𝜔
2

2
− 𝑚
30
,

𝑝
31
𝜔
2
cos𝜔
2
𝜏
2
− 𝑝
30
sin𝜔
2
𝜏
2
= 𝜔
3

2
− 𝑚
31
𝜔
2
,

(26)

which follows that

𝜆
6

2
+ 𝑔
32
𝜆
4

2
+ 𝑔
31
𝜆
2
+ 𝑔
30

= 0, (27)

where
𝑔
32

= 𝑚
2

32
− 2𝑚
31
, 𝑔

31
= 𝑚
2

31
− 2𝑚
30
𝑚
32

− 𝑝
2

31
,

𝑔
30

= 𝑚
2

30
− 𝑝
2

30
.

(28)

Denote 𝜔2
2
= V
2
; then (27) becomes

V3
2
+ 𝑔
32
V2
2
+ 𝑔
31
V
2
+ 𝑔
30

= 0. (29)

Let

𝑓
2
(V
2
) = V3
2
+ 𝑔
32
V2
2
+ 𝑔
31
V
2
+ 𝑔
30

= 0. (30)

Similarly as in Case 2, we suppose that (𝐻
31
), (29) has at

least one positive root. Without loss of generality, we assume
that it has three positive roots and we denote them by V

21
,

V
22
, and V

23
, respectively. Then (27) has three positive roots

𝜔
2𝑘

= √V
2𝑘
, 𝑘 = 1, 2, 3. For every fixed 𝜔

2𝑘
,

sin (𝜔
2𝑘
𝜏
2
)

=
(𝑚
32
𝑝
31

− 𝑝
30
) 𝜔
3

2𝑘
+ (𝑚
31
𝑝
30

− 𝑚
30
𝑝
31
) 𝜔
2𝑘

𝑝2
31
𝜔2
2𝑘

+ 𝑝2
30

≜ 𝑇
3𝑠
(𝜔
2𝑘
) ,

(31)

cos (𝜔
2𝑘
𝜏
2
)

=
𝑝
31
𝜔
4

2𝑘
+ (𝑚
32
𝑝
30

− 𝑚
31
𝑝
31
) 𝜔
2

2𝑘
− 𝑚
30
𝑝
30

𝑝2
31
𝜔2
2𝑘

+ 𝑝2
30

≜ 𝑇
3𝑐
(𝜔
2𝑘
) .

(32)

Thus,

𝜏
(𝑗)

2𝑘

=

{{{

{{{

{

1

𝜔
2𝑘

(arccos (𝑇
3𝑐
(𝜔
2𝑘
)) + 2𝑗𝜋) , 𝑇

3𝑠
(𝜔
2𝑘
) ≥ 0,

1

𝜔
2𝑘

(2𝜋 − arccos (𝑇
3𝑐
(𝜔
2𝑘
)) + 2𝑗𝜋) , 𝑇

3𝑠
(𝜔
2𝑘
) < 0,

(33)

with 𝑘 = 1, 2, 3; 𝑗 = 0, 1, 2, . . ..

Let

𝜏
20

= min {𝜏
(0)

2𝑘
} , 𝑘 = 1, 2, 3,

𝜔
20

= 𝜔
2𝑘
0

.

(34)

Differentiating (24) regarding 𝜏
2
, we get

[
𝑑𝜆

𝑑𝜏
2

]

−1

=
3𝜆
2
+ 2𝑚
32
𝜆 + 𝑚

31

𝜆 (𝜆3 + 𝑚
32
𝜆2 + 𝑚

31
𝜆 + 𝑚

30
)

+
𝑝
31

𝜆 (𝑝
31
𝜆 + 𝑝
30
)
−

𝜏
2

𝜆
.

(35)

Then, we can get

Re [ 𝑑𝜆

𝑑𝜏
2

]

−1

𝜏=𝜏
20

=
𝑓


2
(V
2∗
)

𝑝2
31
𝜔2
20

+ 𝑝2
30

, (36)

where V
2∗

= 𝜔
2

20
.Therefore, if the condition (𝐻

32
):𝑓
2
(V
2∗
) ̸= 0

holds, then Re [𝑑𝜆/𝑑𝜏
2
]
−1

𝜏
2
=𝜏
20

̸= 0. Thus, by the Hopf bifurca-
tion theorem in [18], we have the following results.

Theorem 3. Suppose that conditions (𝐻
31
)-(𝐻
32
) hold. The

positive equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑃
∗
) of system (2) is asymptot-

ically stable for 𝜏
1
∈ [0, 𝜏

20
) and system (2) undergoes a Hopf

bifurcation at 𝐸∗(𝑆∗, 𝐼∗, 𝑃∗) when 𝜏
2
= 𝜏
20
.

Case 4 (𝜏
1
= 𝜏
2
= 𝜏 > 0). Let 𝜏

1
= 𝜏
2
= 𝜏; then (8) becomes

𝜆
3
+ 𝑚
42
𝜆
2
+ 𝑚
41
𝜆 + 𝑚

40
+ (𝑛
42
𝜆
2
+ 𝑛
41
𝜆 + 𝑛
40
) 𝑒
−𝜆𝜏

+ 𝑞
40
𝑒
−2𝜆𝜏

= 0,

(37)

where
𝑚
42

= 𝑚
2
, 𝑚

41
= 𝑚
1
, 𝑚

40
= 𝑚
0
, 𝑛

42
= 𝑛
2
,

𝑛
41

= 𝑛
1
+ 𝑝
1
, 𝑛

40
= 𝑛
0
+ 𝑝
0
, 𝑞

40
= 𝑞
0
.

(38)

Multiplying (37) by 𝑒
𝜆𝜏, then (37) becomes

𝑛
42
𝜆
2
+ 𝑛
41
𝜆 + 𝑛
40

+ (𝜆
3
+ 𝑚
42
𝜆
2
+ 𝑚
41
𝜆 + 𝑚

40
) 𝑒
𝜆𝜏

+ 𝑞
40
𝑒
−𝜆𝜏

= 0.

(39)

Let 𝜆 = 𝑖𝜔(𝜔 > 0) be the root of (39); then we can get

(𝑚
40

+ 𝑞
40

− 𝑚
42
𝜔
2
) cos 𝜏𝜔 + (𝜔

3
− 𝑚
41
𝜔) sin 𝜏𝜔

= 𝑛
32
𝜔
2
− 𝑛
40
,

(𝑚
40

− 𝑞
40

− 𝑚
42
𝜔
2
) sin 𝜏𝜔 − (𝜔

3
− 𝑚
41
𝜔) cos 𝜏𝜔

= −𝑛
41
𝜔,

(40)

which follows that

sin (𝜏𝜔) =
𝑔
5
𝜔
5
+ 𝑔
3
𝜔
3
+ 𝑔
1
𝜔

𝜔6 + ℎ
4
𝜔4 + ℎ

2
𝜔2 + ℎ

0

≜ 𝑇
4𝑠
(𝜔) ,

cos (𝜏𝜔) =
𝑔
4
𝜔
4
+ 𝑔
2
𝜔
2
+ 𝑔
0

𝜔6 + ℎ
4
𝜔4 + ℎ

2
𝜔2 + ℎ

0

≜ 𝑇
4𝑐
(𝜔) ,

(41)
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where

𝑔
0
= 𝑛
40
𝑞
40

− 𝑚
40
𝑛
40
,

𝑔
1
= 𝑚
41
𝑛
40

− 𝑚
40
𝑛
41

− 𝑛
41
𝑞
40
,

𝑔
2
= 𝑚
40
𝑛
42

− 𝑚
41
𝑛
41

+ 𝑚
42
𝑛
40

− 𝑛
42
𝑞
40
,

𝑔
3
= 𝑚
42
𝑛
41

− 𝑚
41
𝑛
42

− 𝑛
40
,

𝑔
4
= 𝑛
41

− 𝑚
42
𝑛
42
, 𝑔

5
= 𝑛
42
, ℎ

0
= 𝑚
2

40
− 𝑞
2

40
,

ℎ
2
= 𝑚
2

41
− 2𝑚
40
𝑚
42
, ℎ

4
= 𝑚
2

42
− 2𝑚
41
.

(42)

Then, we can obtain

𝜔
12

+ 𝑔
45
𝜔
10

+ 𝑔
44
𝜔
8
+ 𝑔
43
𝜔
6
+ 𝑔
42
𝜔
4
+ 𝑔
41
𝜔
2
+ 𝑔
40

= 0,

(43)

where

𝑔
40

= ℎ
2

0
− 𝑔
2

0
, 𝑔

41
= 2ℎ
0
ℎ
2
− 2𝑔
0
𝑔
2
− 𝑔
2

1
,

𝑔
42

= ℎ
2

2
+ 2ℎ
0
ℎ
4
− 𝑔
2

2
− 2𝑔
0
𝑔
4
− 2𝑔
1
𝑔
3
,

𝑔
43

= 2ℎ
0
+ 2ℎ
2
ℎ
4
− 𝑔
2

3
− 2𝑔
1
𝑔
5
− 2𝑔
2
𝑔
4
,

𝑔
44

= ℎ
2

4
+ 2ℎ
2
− 𝑔
2

4
− 2𝑔
3
𝑔
5
, 𝑔

45
= 2ℎ
4
− 𝑔
2

5
.

(44)

Let 𝜔2 = V
3
; then (43) becomes

V6
3
+ 𝑔
45
V5
3
+ 𝑔
44
V4
3
+ 𝑔
43
V3
3
+ 𝑔
42
V2
3
+ 𝑔
41
V
3
+ 𝑔
40

= 0. (45)

If we know all the coefficients of system (2), then we can
get all the coefficients of (45) and then all the roots of (45)
can be obtained by Matlab. Therefore, we give the following
assumption.

Suppose that (𝐻
41
): (45) has at least one positive root.

Without loss of generality, we assume that (45) has
six positive roots, which are denoted by V

31
, V
32
, . . . , V

36
,

respectively. Then, (43) has six positive roots 𝜔
𝑘

= √V
3𝑘
,

𝑘 = 1, 2, . . . , 6. For every 𝜔
𝑘
,

𝜏
(𝑗)

𝑘

=

{{{

{{{

{

1

𝜔
𝑘

(arccos (𝑇
4𝑐
(𝜔
𝑘
)) + 2𝑗𝜋) , 𝑇

4𝑠
(𝜔
𝑘
) ≥ 0,

1

𝜔
𝑘

(2𝜋 − arccos (𝑇
4𝑐
(𝜔
𝑘
)) + 2𝑗𝜋) , 𝑇

4𝑠
(𝜔
𝑘
) < 0,

(46)

with 𝑘 = 1, 2, 3, . . . , 6; 𝑗 = 0, 1, 2, . . ..
Let

𝜏
0
= min {𝜏

(0)

𝑘
} , 𝑘 = 1, 2, . . . , 6,

𝜔
0
= 𝜔
𝑘
0

.

(47)

Next, taking the derivative of 𝜆 with respect to 𝜏 in (39), we
have

[
𝑑𝜆

𝑑𝜏
]

−1

= (2𝑛
42
𝜆 + 𝑛
41

+ (3𝜆
2
+ 2𝑚
42
𝜆 + 𝑚

41
) 𝑒
𝜆𝜏
)

× (𝑞
40
𝜆𝑒
−𝜆𝜏

− (𝜆
4
+ 𝑚
42
𝜆
3
+ 𝑚
41
𝜆
2

+ 𝑚
40
𝜆) 𝑒
𝜆𝜏
)
−1

−
𝜏

𝜆
.

(48)

Then we have

Re [𝑑𝜆
𝑑𝜏

]

−1

𝜏=𝜏
0

=
𝑃
𝑅
𝑄
𝑅
+ 𝑃
𝐼
𝑄
𝐼

𝑄2
𝑅
+ 𝑄2
𝐼

, (49)

where

𝑃
𝑅
= (𝑚
41

− 3𝜔
2

0
) cos 𝜏

0
𝜔
0
− 2𝑚
42
𝜔
0
sin 𝜏
0
𝜔
0
+ 𝑛
41
,

𝑃
𝐼
= (𝑚
41

− 3𝜔
2

0
) sin 𝜏

0
𝜔
0
+ 2𝑚
42
𝜔
0
cos 𝜏
0
𝜔
0
+ 2𝑛
42
𝜔
0
,

𝑄
𝑅
= (𝑚

41
𝜔
2

0
− 𝜔
4

0
) cos 𝜏

0
𝜔
0

− (𝑚
42
𝜔
3

0
− 𝑚
40
𝜔
0
− 𝑞
40
𝜔
0
) sin 𝜏

0
𝜔
0
,

𝑄
𝐼
= (𝑚

41
𝜔
2

0
− 𝜔
4

0
) sin 𝜏

0
𝜔
0

+ (𝑚
42
𝜔
3

0
− 𝑚
40
𝜔
0
+ 𝑞
40
𝜔
0
) cos 𝜏

0
𝜔
0
.

(50)

Obviously, if condition (𝐻
42
): 𝑃
𝑅
𝑄
𝑅

+ 𝑃
𝐼
𝑄
𝐼

̸= 0 holds,
then Re [𝑑𝜆/𝑑𝜏]−1

𝜏=𝜏
0

̸= 0. Thus, by the discussion above and
the Hopf bifurcation theorem in [18], we have the following
results.

Theorem 4. Suppose that conditions (𝐻
41
)-(𝐻
42
) hold. The

positive equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑃
∗
) of system (2) is asymptot-

ically stable for 𝜏
1
∈ [0, 𝜏

0
) and system (2) undergoes a Hopf

bifurcation at 𝐸∗(𝑆∗, 𝐼∗, 𝑃∗) when 𝜏 = 𝜏
0
.

Case 5 (𝜏
2
> 0 and 𝜏

1
∈ (0, 𝜏

10
)). Let 𝜆 = 𝑖𝜔

∗

2
(𝜔
∗

2
) be the root

of (8). Then, we get

𝑀
51
sin 𝜏
2
𝜔
∗

2
+ 𝑀
52
cos 𝜏
2
𝜔
∗

2
= 𝑁
51
,

𝑀
51
cos 𝜏
2
𝜔
∗

2
− 𝑀
52
sin 𝜏
2
𝜔
∗

2
= 𝑁
52
,

(51)

where

𝑀
51

= 𝑝
1
𝜔
∗

2
− 𝑞
0
sin 𝜏
1
𝜔
∗

2
, 𝑁

52
= 𝑝
0
+ 𝑞
0
cos 𝜏
1
𝜔
∗

2
,

(52)

𝑁
51

= 𝑚
2
(𝜔
∗

2
)
2

− 𝑚
0
− (𝑛
0
− 𝑛
2
(𝜔
∗

2
)
2

) cos 𝜏
1
𝜔
∗

2

− 𝑛
1
𝜔
∗

2
sin 𝜏
1
𝜔
∗

2
,

(53)

𝑁
52

= (𝜔
∗

2
)
3

− 𝑚
1
𝜔
∗

2
+ (𝑛
0
− 𝑛
2
(𝜔
∗

2
)
2

) sin 𝜏
1
𝜔
∗

2

− 𝑛
1
𝜔
∗

2
cos 𝜏
1
𝜔
∗

2
.

(54)
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Figure 1: 𝐸∗ is asymptotically stable when 𝜏
1
= 0.45 < 0.5148 = 𝜏

10
.

Then, we can have

𝑔
51

(𝜔
∗

2
) + 2𝑔

52
(𝜔
∗

2
) cos 𝜏

1
𝜔
∗

2
+ 2𝑔
53

(𝜔
∗

2
) sin 𝜏

1
𝜔
∗

2
= 0,

(55)

where

𝑔
51

(𝜔
∗

2
) = (𝜔

∗

2
)
6

+ (𝑚
2

2
+ 𝑛
2

2
− 2𝑚
1
) (𝜔
∗

2
)
4

+ (𝑚
2

1
+ 𝑛
2

1
− 𝑝
2

1
− 2𝑚
0
𝑚
2
− 2𝑛
0
𝑛
2
) (𝜔
∗

2
)
2

+ 𝑚
2

0
+ 𝑛
2

0
− 𝑝
2

0
− 𝑞
2

0
, 𝑔
52

(𝜔
∗

2
)

= (𝑚
2
𝑛
2
− 𝑛
1
) (𝜔
∗

2
)
4

+ (𝑚
1
𝑛
1
− 𝑚
0
𝑛
2
− 𝑚
2
𝑛
0
) (𝜔
∗

2
)
2

+ 𝑚
0
𝑛
0
− 𝑝
0
𝑞
0
, 𝑔
53

(𝜔
∗

2
)

= −𝑛
2
(𝜔
∗

2
)
5

+ (𝑛
0
− 𝑚
2
𝑛
1
+ 𝑚
1
𝑛
2
) (𝜔
∗

2
)
3

+ (𝑚
0
𝑛
1
− 𝑚
1
𝑛
0
+ 𝑝
1
𝑞
0
) 𝜔
∗

2
.

(56)

We suppose that (𝐻
51
), (55) has at least finite posi-

tive roots. And we denote the positive roots of (55) by
𝜔
∗

21
, 𝜔
∗

22
, . . . , 𝜔

∗

2𝑘
. Then, for every fixed 𝜔

∗

2𝑖
(𝑖 = 1, 2, . . . , 𝑘),

sin (𝜏
2
𝜔
∗

2𝑖
) =

𝑀
51
𝑁
51

− 𝑀
52
𝑁
52

𝑀2
51

+ 𝑀2
52

𝜔∗
2
=𝜔
∗

2𝑖

≜ 𝑇
5𝑠
(𝜔
∗

2𝑖
) ,

cos (𝜏
2
𝜔
∗

2𝑖
) =

𝑀
51
𝑁
52

+ 𝑀
52
𝑁
51

𝑀2
51

+ 𝑀2
52

𝜔∗
2
=𝜔
∗

2𝑖

≜ 𝑇
5𝑐
(𝜔
∗

2𝑖
) .

(57)

Thus,

𝜏
∗(𝑗)

2𝑖

=

{{{

{{{

{

1

𝜔∗
2𝑖

(arccos (𝑇
5𝑐
(𝜔
∗

2𝑖
)) + 2𝑗𝜋) , 𝑇

5𝑠
(𝜔
𝑘
) ≥ 0,

1

𝜔∗
2𝑖

(2𝜋 − arccos (𝑇
5𝑐
(𝜔
∗

2𝑖
)) + 2𝑗𝜋) , 𝑇

5𝑠
(𝜔
𝑘
) < 0,

(58)

with 𝑖 = 1, 2, . . . , 𝑘; 𝑗 = 0, 1, 2, . . ..
Let 𝜏∗
20

= min{𝜏∗(0)
2𝑖

| 𝑖 = 1, 2, . . . , 𝑘}. When 𝜏
2
= 𝜏
∗

20
, (8)

has a pair of purely imaginary roots ±𝑖𝜔
2∗

for 𝜏
1
∈ (0, 𝜏

10
).

Next, in order to give the main results with respect to 𝜏
2
>

0, 𝜏
1

∈ (0, 𝜏
10
), we give the following assumption: (𝐻

52
):

Re [𝑑𝜆/𝑑𝜏
2
]
−1

𝜏=𝜏
∗

20

̸= 0.
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Figure 2: 𝐸∗ is unstable when 𝜏
1
= 0.575 > 0.5148 = 𝜏

10
.

Through the analysis above and the Hopf bifurcation
theorem in [18], we have the following results.

Theorem 5. If conditions (𝐻
51
)-(𝐻
52
) hold and 𝜏

1
∈ (0, 𝜏

10
),

then the positive equilibrium 𝐸
∗
(𝑆
∗
, 𝐼
∗
, 𝑃
∗
) of system (2) is

asymptotically stable for 𝜏
2
∈ [0, 𝜏

∗

20
) and system (2) undergoes

a Hopf bifurcation at 𝐸∗(𝑆∗, 𝐼∗, 𝑃∗) when 𝜏
2
= 𝜏
∗

20
.

3. Stability of Bifurcating Periodic Solutions

In the previous section, it is shown that system (2) undergoes
a Hopf bifurcation for different combinations of 𝜏

1
and 𝜏

2

under certain conditions. In this section, the properties of
Hopf bifurcation such as direction and stability are inves-
tigated with respect to 𝜏

2
for 𝜏
1

∈ (0, 𝜏
10
) by using the

normal form method and center manifold theorem in [18].
Throughout this section, we assume that 𝜏∗

10
< 𝜏
∗

20
where

𝜏
∗

10
∈ (0, 𝜏

10
).

For convenience, let 𝜏
2

= 𝜇 + 𝜏
∗

20
, so that 𝜇 = 0 is the

Hopf bifurcation value of system (2). Let 𝑢
1
(𝑡) = 𝑆(𝑡) − 𝑆

∗,
𝑢
2
(𝑡) = 𝐼(𝑡) − 𝐼

∗, 𝑢
3
(𝑡) = 𝑃(𝑡) − 𝑃

∗ and rescale the time delay
𝑡 → (𝑡/𝜏

2
); then system (2) can be rewritten as

�̇� (𝑡) = 𝐿
𝜇
𝑢
𝑡
+ 𝐹 (𝜇, 𝑢

𝑡
) , (59)

where

𝐿
𝜇
𝜙 = (𝜏

∗

20
+ 𝜇)(𝐴


𝜙 (0) + 𝐵


𝜙(−

𝜏
∗

10

𝜏∗
20

) + 𝐶

𝜙 (−1)) ,

𝐹 (𝜇, 𝜙) = (𝜏
∗

20
+ 𝜇) (𝐹

1
, 𝐹
2
, 𝐹
3
)
𝑇

,

(60)

with

𝜙 (𝜃) = (𝜙
1
(𝜃) , 𝜙

2
(𝜃) , 𝜙

3
(𝜃))
𝑇

∈ 𝐶 ([−1, 0] , 𝑅
3
) ,

𝐴

= (

𝑎
1

0 𝑎
2

𝑎
3

𝑎
4

0

0 0 𝑎
5

) , 𝐵

= (

0 𝑏
1

0

0 𝑏
2

0

0 0 0

) ,

𝐶

= (

0 0 0

0 0 0

𝑐
1

0 0

) ,

𝐹
1
= 𝑎
21
𝜙
2

1
(0) + 𝑎

22
𝜙
1
(0) 𝜙
2
(−

𝜏
∗

10

𝜏∗
20

)

+ 𝑎
23
𝜙
1
(0) 𝜙
3
(0) + 𝑎

31
𝜙
3

1
(0)

+ 𝑎
32
𝜙
2

1
(0) 𝜙
2
(−

𝜏
∗

10

𝜏∗
20

) + 𝑎
33
𝜙
2

1
(0) 𝜙
3
(0) + ⋅ ⋅ ⋅ ,

𝐹
2
= 𝑏
21
𝜙
2

1
(0) + 𝑏

22
𝜙
1
(0) 𝜙
2
(−

𝜏
∗

10

𝜏∗
20

)
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Figure 3: 𝐸∗ is asymptotically stable when 𝜏
2
= 1.275 < 1.8829 = 𝜏

20
.

+ 𝑏
31
𝜙
3

1
(0) + 𝑏

32
𝜙
2

1
(0) 𝜙
2
(−

𝜏
∗

10

𝜏∗
20

) + ⋅ ⋅ ⋅ ,

𝐹
3
= 𝑐
21
𝜙
2

3
(0) + 𝑐

22
𝜙
1
(−1) 𝜙

3
(0) + 𝑐

23
𝜙
2

1
(−1)

+ 𝑐
31
𝜙
2

1
(−1) 𝜙

3
(0) + 𝑐

32
𝜙
3

1
(−1) + ⋅ ⋅ ⋅ .

(61)

Therefore, according to the Riesz representation theorem,
there exists a 3 × 3 matrix function 𝜂(𝜃, 𝜇) : [−1, 0] → 𝑅

3

whose elements are of bounded variation such that

𝐿
𝜇
𝜙 = ∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜙 ∈ 𝐶 ([−1, 0] , 𝑅
3
) . (62)

In fact, we choose

𝜂 (𝜃, 𝜇) =

{{{{{{{{{

{{{{{{{{{

{

(𝜏
∗

20
+ 𝜇) (𝐴


+ 𝐵

+ 𝐶

) , 𝜃 = 0,

(𝜏
∗

20
+ 𝜇) (𝐵


+ 𝐶

) , 𝜃 ∈ [−

𝜏
∗

10

𝜏∗
20

, 0) ,

(𝜏
∗

20
+ 𝜇)𝐶


, 𝜃 ∈ (−1, −

𝜏
∗

10

𝜏∗
20

) ,

0, 𝜃 = −1.

(63)

For 𝜙 ∈ 𝐶([−1, 0], 𝑅
3
), we define

𝐴 (𝜇) 𝜙 =

{{{{

{{{{

{

𝑑𝜙 (𝜃)

𝑑𝜃
, −1 ≤ 𝜃 < 0,

∫

0

−1

𝑑𝜂 (𝜃, 𝜇) 𝜙 (𝜃) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 = {
0, −1 ≤ 𝜃 < 0,

𝐹 (𝜇, 𝜙) , 𝜃 = 0.

(64)

Then system (59) can be transformed into the following ope-
rator equation:

�̇� (𝑡) = 𝐴 (𝜇) 𝑢
𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (65)

where 𝑢
𝑡
= 𝑢(𝑡 + 𝜃) = (𝑢

1
(𝑡 + 𝜃), 𝑢

2
(𝑡 + 𝜃), 𝑢

3
(𝑡 + 𝜃)) for

𝜃 ∈ [−1, 0].
For 𝜑 ∈ 𝐶

1
([0, 1], (𝑅

3
)
∗

), where (𝑅
3
)
∗ is the 3-dimen-

sional space of row vectors, we define the adjoint operator𝐴∗
of 𝐴:

𝐴
∗
(𝜑) =

{{{{

{{{{

{

−
𝑑𝜑 (𝑠)

𝑑𝑠
, 0 < 𝑠 ≤ 1,

∫

0

−1

𝑑𝜂
𝑇
(𝑠, 0) 𝜑 (−𝑠) , 𝑠 = 0,

(66)
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Figure 4: 𝐸∗ is unstable when 𝜏
2
= 2.25 > 1.8829 = 𝜏

20
.

and a bilinear inner product

⟨𝜑 (𝑠) , 𝜙 (𝜃)⟩ = �̄� (0) 𝜙 (0)

− ∫

0

𝜃=−1

∫

𝜃

𝜉=0

�̄� (𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(67)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
Then 𝐴(0) and 𝐴

∗
(0) are adjoint operators. From the

discussion above, we know that ±𝑖𝜔
2∗
𝜏
∗

20
are eigenvalues of

𝐴(0) and they are also eigenvalues of 𝐴∗(0).
Let 𝑞(𝜃) = (1, 𝑞

2
, 𝑞
3
)
𝑇
𝑒
𝑖𝜔
2∗
𝜏
∗

20
𝜃 be the eigenvectors of 𝐴(0)

corresponding to the eigenvalue +𝑖𝜔
2∗
𝜏
∗

20
and 𝑞

∗
(𝑠) = 𝐷(1,

𝑞
∗

2
, 𝑞
∗

3
)𝑒
𝑖𝜔
2∗
𝜏
∗

20𝑠 the eigenvectors of𝐴∗(0) corresponding to the
eigenvalue −𝑖𝜔

2∗
𝜏
∗

20
.

It is not difficult to verify that

𝑞
2
=

𝑐
1
𝑒
−𝑖𝜔
2∗
𝜏
∗

20

𝑖𝜔
2∗

− 𝑎
5

, 𝑞
3
=

𝑎
3

𝑖𝜔
2∗

− 𝑎
4
− 𝑏
2
𝑒−𝑖𝜔2∗𝜏

∗

20

,

𝑞
∗

2
= −

𝑏
1
𝑒
𝑖𝜔
2∗
𝜏
∗

20

𝑖𝜔
2∗

+ 𝑎
4
+ 𝑏
2
𝑒𝑖𝜔2∗𝜏

∗

20

, 𝑞
∗

3
= −

𝑎
2

𝑖𝜔
2∗

+ 𝑎
5

.

(68)

From (67), we can get

�̄� = [1 + 𝑞
2

̄𝑞
∗

2
+ 𝑞
3

̄𝑞
∗

3
+ 𝑏
11
𝜏
∗

10
𝑒
−𝑖𝜔
∗

1
𝜏
∗

10

+ 𝜏
∗

2
𝑒
−𝑖𝜔
∗

1
𝜏
2∗ ( ̄𝑞
∗

2
(𝑐
21

+ 𝑐
22
𝑞
2
)

+ ̄𝑞
∗

3
(𝑐
32
𝑞
2
+ 𝑐
33
𝑞
3
)) ]
−1

,

(69)

such that ⟨𝑞∗, 𝑞⟩ = 1, ⟨𝑞∗, ̄𝑞⟩ = 0.
In the remainder of this section, we obtain the coefficients

used to determine the properties of the periodic solution by
the algorithms given in [18] and using a computation process
similar to that in [11]:

𝑔
20

= 2𝜏
∗

20
�̄� [𝑎
21

+ 𝑎
22
𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

) + 𝑎
23
𝑞
(3)

(0)

+ ̄𝑞
∗

2
(𝑏
21

+ 𝑏
22
𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

))

+ ̄𝑞
∗

3
(𝑐
21
(𝑞
(3)

(0))
2

+ 𝑐
22
𝑞
(1)

(−1) 𝑞
(3)

(0)

+ 𝑐
23
(𝑞
(1)

(−1))
2

) ] ,
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Figure 5: 𝐸∗ is asymptotically stable when 𝜏 = 0.25 < 0.3652 = 𝜏
0
.

𝑔
11

= 𝜏
∗

20
�̄� [2𝑎

21
+ 𝑎
22

( ̄𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

) + 𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

))

+ 𝑎
23

(𝑞
(3)

(0) + ̄𝑞
(3)

(0))

+ ̄𝑞
∗

2
(2𝑏
21

+ 𝑏
22

( ̄𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

)

+𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

)))

+ ̄𝑞
∗

3
(2𝑐
21
𝑞
(3)

(0) ̄𝑞
(3)

(0)

+ 𝑐
22

(𝑞
(3)

(0) ̄𝑞
(1)

(−1) + ̄𝑞
(3)

(0) 𝑞
(1)

(−1))

+ 2𝑐
23
𝑞
(1)

(−1) ̄𝑞
(1)

(−1)) ] ,

𝑔
02

= 2𝜏
∗

20
�̄� [𝑎
21

+ 𝑎
22

̄𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

) + 𝑎
23

̄𝑞
(3)

(0)

+ ̄𝑞
∗

2
(𝑏
21

+ 𝑏
22

̄𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

))

+ ̄𝑞
∗

3
(𝑐
21
( ̄𝑞
(3)

(0))
2

+ 𝑐
22

̄𝑞
(1)

(−1) ̄𝑞
(3)

(0)

+𝑐
23
( ̄𝑞
(1)

(−1))
2

) ] ,

𝑔
21

= 2𝜏
∗

20
�̄� [𝑎
21

(2𝑊
(1)

11
(0) + 𝑊

(1)

20
(0))

+ 𝑎
22

(𝑊
(1)

11
(0) 𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

) +
1

2
𝑊
(1)

20
(0) ̄𝑞
(2)

× (−
𝜏
∗

10

𝜏∗
20

) + 𝑊
(2)

11
(−

𝜏
∗

10

𝜏∗
20

)

+
1

2
𝑊
(2)

20
(−

𝜏
∗

10

𝜏∗
20

))

+ 𝑎
23

(𝑊
(1)

11
(0) 𝑞
(3)

(0) +
1

2
𝑊
(1)

20
(0) ̄𝑞
(3)

(0)

+𝑊
(3)

11
(0) +

1

2
𝑊
(3)

20
(0))

+ 3𝑎
31

+ 𝑎
32

( ̄𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

) + 2𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

))
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Figure 6: 𝐸∗ is unstable when 𝜏 = 0.45 > 0.3652 = 𝜏
0
.

+ 𝑎
33

( ̄𝑞
(3)

(0) + 2𝑞
(3)

(0))

+ ̄𝑞
∗

2
(𝑏
21

(2𝑊
(1)

11
(0) + 𝑊

(1)

20
(0))

+ 𝑏
22

(𝑊
(1)

11
(0) 𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

) +
1

2
𝑊
(1)

20
(0) ̄𝑞
(2)

× (−
𝜏
∗

10

𝜏∗
20

) + 𝑊
(2)

11
(−

𝜏
∗

10

𝜏∗
20

)

+
1

2
𝑊
(2)

20
(−

𝜏
∗

10

𝜏∗
20

))

+ 3𝑏
31

+ 𝑏
32

×( ̄𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

) + 2𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

)))

+ ̄𝑞
∗

3
(𝑐
21

(2𝑊
(3)

11
(0) 𝑞
(3)

(0) + 𝑊
(3)

20
(0) ̄𝑞
(3)

(0))

+ 𝑐
22

(𝑊
(1)

11
(−1) 𝑞

(3)
(0) +

1

2
𝑊
(1)

20
(−1)

× ̄𝑞
(3)

(0) + 𝑊
(3)

11
(0) 𝑞
(1)

(−1)

+
1

2
𝑊
(3)

20
(0) ̄𝑞
(1)

(−1))

+ 𝑐
23

(2𝑊
(1)

11
(−1) + 𝑊

(1)

20
(−1))

+ 𝑐
31

((𝑞
(1)

(−1))
2

̄𝑞
(3)

(0) + 2𝑞
(1)

(−1)

× 𝑞
(3)

(0) ̄𝑞
(1)

(−1) )

+ 3𝑐
32
(𝑞
(1)

(−1))
2

̄𝑞
(1)

(−1) ) ] ,

(70)
with

𝑊
20

(𝜃) =
𝑖𝑔
20
𝑞 (0)

𝜔
2∗
𝜏∗
20

𝑒
𝑖𝜔
2∗
𝜏
∗

20
𝜃
+

𝑖 ̄𝑔
02

̄𝑞 (0)

3𝜔
2∗
𝜏∗
20

𝑒
−𝑖𝜔
2∗
𝜏
∗

20
𝜃

+ 𝐸
1
𝑒
2𝑖𝜔
2∗
𝜏
∗

20
𝜃
,

𝑊
11

(𝜃) = −
𝑖𝑔
11
𝑞 (0)

𝜔
2∗
𝜏∗
20

𝑒
𝑖𝜔
2∗
𝜏
∗

20
𝜃
+

𝑖 ̄𝑔
11

̄𝑞 (0)

𝜔
2∗
𝜏∗
20

𝑒
−𝑖𝜔
2∗
𝜏
∗

20
𝜃
+ 𝐸
2
,

(71)
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Figure 7: 𝐸∗ is asymptotically stable when 𝜏
2
= 0.75 < 1.0782 = 𝜏

∗

20
and 𝜏

1
= 0.15 ∈ (0, 𝜏

10
).

where 𝐸
1
and 𝐸

2
can be computed as the following equations,

respectively:

(

2𝑖𝜔
2∗

− 𝑎
1

−𝑏
1
𝑒
−2𝑖𝜔
2∗
𝜏
∗

20 −𝑎
2

−𝑎
3

2𝑖𝜔
2∗

− 𝑎
4
− 𝑏
2
𝑒
−2𝑖𝜔
2∗
𝜏
∗

20 0

−𝑐
1
𝑒
−2𝑖𝜔
2∗
𝜏
∗

20 0 2𝑖𝜔
2∗

− 𝑎
5

) 𝐸
1

= 2(

𝐸
(1)

1

𝐸
(2)

1

𝐸
(3)

1

),

(

𝑎
1

𝑏
1

𝑎
2

𝑎
3

𝑎
4
+ 𝑏
2

0

𝑐
1

0 𝑎
5

)𝐸
2
= −(

𝐸
(1)

2

𝐸
(2)

2

𝐸
(3)

2

),

(72)

with

𝐸
(1)

1
= 𝑎
21

+ 𝑎
22
𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

) + 𝑎
23
𝑞
(3)

(0) ,

𝐸
(2)

1
= 𝑏
21

+ 𝑏
22
𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

) ,

𝐸
(3)

1
= 𝑐
21
(𝑞
(3)

(0))
2

+ 𝑐
22
𝑞
(1)

(−1) 𝑞
(3)

(0) + 𝑐
23
(𝑞
(1)

(−1))
2

,

𝐸
(1)

2
= 2𝑎
21

+ 𝑎
22

( ̄𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

) + 𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

))

+ 𝑎
23

(𝑞
(3)

(0) + ̄𝑞
(3)

(0)) ,

𝐸
(2)

2
= 2𝑏
21

+ 𝑏
22

( ̄𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

) + 𝑞
(2)

(−
𝜏
∗

10

𝜏∗
20

)) ,

𝐸
(3)

2
= 2𝑐
21
𝑞
(3)

(0) ̄𝑞
(3)

(0)

+ 𝑐
22

(𝑞
(3)

(0) ̄𝑞
(1)

(−1) + ̄𝑞
(3)

(0) 𝑞
(1)

(−1))

+ 2𝑐
23
𝑞
(1)

(−1) ̄𝑞
(1)

(−1) .

(73)

Therefore, we can calculate the following values:

𝐶
1
(0) =

𝑖

2𝜔
2∗
𝜏∗
20

(𝑔
11
𝑔
20

− 2
𝑔11


2

−

𝑔02

2

3
) +

𝑔
21

2
,

𝜇
2
= −

Re {𝐶
1
(0)}

Re {𝜆 (𝜏∗
20
)}

,
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Figure 8: 𝐸∗ is unstable when 𝜏
2
= 1.35 > 1.0782 = 𝜏

∗

20
and 𝜏

1
= 0.15 ∈ (0, 𝜏

10
).

𝛽
2
= 2Re {𝐶

1
(0)} ,

𝑇
2
= −

Im {𝐶
1
(0)} + 𝜇

2
Im {𝜆


(𝜏
∗

20
)}

𝜔
2∗
𝜏∗
20

.

(74)

Based on the discussion above, we can obtain the follow-
ing results.

Theorem 6. For system (2),

(i) 𝜇
2
determines the direction of the Hopf bifurcation. If

𝜇
2
> 0 (𝜇

2
< 0), then the Hopf bifurcation is super-

critical (subcritical).
(ii) 𝛽
2
determines the stability of the bifurcating periodic

solutions. If 𝛽
2

< 0 (𝛽
2

> 0), then the bifurcating
periodic solutions are stable (unstable).

(iii) 𝑇
2
determines the period of the bifurcating periodic

solutions. If 𝑇
2

> 0 (𝑇
2

< 0), then the period of the
bifurcating periodic solutions increases (decreases).

4. Numerical Example

In this section, we give a numerical example to support the
theoretical results in Sections 2 and 3. We use the same

coefficients which are used by Jana and Kar in [6]. They are
as follows: 𝑎 = 5.1, 𝑏 = 3.995, 𝑚 = 0.8, 𝑟 = 1.1, 𝐾 = 8.8,
𝛼 = 1.25, 𝛽 = 1.3, 𝛾 = 0.39, 𝛿 = 0.29, and 𝜀 = 0.15. Thus, we
get the following particular case of system (2):

𝑑𝑆 (𝑡)

𝑑𝑡
= 1.1𝑆 (1 −

𝑆

8.8
) −

1.25𝑆𝐼 (𝑡 − 𝜏
1
)

5.1 + 𝑆
−

1.3𝑆𝑃

3.995 + 𝑆
,

𝑑𝐼 (𝑡)

𝑑𝑡
=

1.25𝑆𝐼 (𝑡 − 𝜏
1
)

5.1 + 𝑆
− 0.39𝐼,

𝑑𝑃 (𝑡)

𝑑𝑡
= 𝑃[

1.04𝑆 (𝑡 − 𝜏
2
)

3.995 + 𝑆 (𝑡 − 𝜏
2
)
− 0.29𝑃 − 0.15] ,

(75)

which has a positive equilibrium 𝐸
∗
(2.3128, 3.8339, 0.7977).

For 𝜏
1

> 0, 𝜏
2

= 0. We get 𝜔
10

= 0.4149 < 0,
𝜏
10

= 0.5148. Further, we have 𝑓


1
(V
1∗
) = 0.1022 > 0.

Thus, conditions (𝐻
21
) and (𝐻

22
) hold. FromTheorem 2, the

positive equilibrium𝐸
∗ is asymptotically stable when 𝜏

1
< 𝜏
10

as illustrated by Figure 1. When 𝜏
1
passes through the critical

value 𝜏
10
, the positive equilibrium 𝐸

∗ loses its stability and
a Hopf bifurcation occurs and a family of periodic solutions
bifurcate from the positive equilibrium 𝐸

∗, which can be
shown as in Figure 2. Similarly, we have 𝜔

20
= 0.6010, 𝜏

20
=

1.8829 for 𝜏
1
= 0, 𝜏

2
> 0. The corresponding waveforms and

the phase plots are shown in Figures 3 and 4.
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For 𝜏
1

= 𝜏
2

= 𝜏 > 0, we can obtain 𝜔
0

= 2.0030 and
then we get 𝜏

0
= 0.3652. From Theorem 4, we know that

when 𝜏 increases from zero to the critical value 𝜏
0
the positive

equilibrium 𝐸
∗ is asymptotically stable; then it will lose its

stability and a Hopf bifurcation occurs once 𝜏 > 𝜏
0
. These

properties can be shown as in Figures 5 and 6.
For 𝜏
2

> 0 and 𝜏
1

= 0.15 ∈ (0, 𝜏
10
), we can obtain

𝜔
2∗

= 2.1105, 𝜏∗
20

= 1.0782. By Theorem 5, the positive
equilibrium𝐸

∗ is asymptotically stable when 𝜏
2
∈ [0, 𝜏

∗

20
) and

𝐸
∗ is unstable when 𝜏

2
> 𝜏
∗

20
and a Hopf bifurcation occurs,

which can be illustrated by Figures 7 and 8. In addition, by
complex computations, we obtain𝐶

1
(0) = −2.2071+1.6159𝑖,

and further we have 𝜇
2
= 6.8522 > 0, 𝛽

2
= −4.4142 < 0,

𝑇
2

= −3.7367 < 0. By Theorem 6, we know that the Hopf
bifurcation with respect to 𝜏

2
with 𝜏

1
= 0.15 ∈ (0, 𝜏

10
)

is supercritical; the bifurcating periodic solutions are stable
and decrease. From the viewpoint of ecology, if the periodic
solutions bifurcating from the Hopf bifurcation are stable,
the species in a prey-predator system may coexist in an
oscillatory mode. Therefore, we can conclude that the three
species in system (75) can coexist in an oscillatory mode,
since the bifurcating periodic solutions are stable.

5. Conclusion

In this present paper a prey-predator system with disease in
the prey and two delays is considered. Based on the system
proposed in [6], we further incorporate the time delay due
to the gestation of the predator. The main purpose of this
paper is to investigate the effects of the two delays on the
system.We have shown that the two delays play a complicated
role in the system. By choosing the possible combinations of
the two delays as bifurcation parameters, sufficient conditions
for local stability and existence of local Hopf bifurcation are
obtained. When the time delay is below the corresponding
critical value, we get that the system is local stable. Otherwise,
a local Hopf bifurcation occurs at the positive equilibrium.
We also find that the delay due to the susceptible prey
becoming the infected prey is more marked compared with
the delay due to the gestation of the predator, because the
critical value of 𝜏

1
is much smaller than that of 𝜏

2
when

we only consider one of the two delays, which can be seen
from the numerical simulations. Further, the properties of
the bifurcated periodic solutions such as the direction and
the stability are determined. And a numerical example is also
given to support the theoretical results. From the numerical
simulations we can see that the species in the system consid-
ered in this paper can coexist under some certain conditions.
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