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We mainly investigate the generalized nonlinear Schrödinger-Maxwell-Bloch system which governs the propagation of optical
solitons in nonlinear erbium-doped fibers with higher-order effects.We deduce Lax pair, analyzemodulation instability conditions,
construct the Darboux transformation, and derive the Akhmediev breathers, Ma-breathers, bound solitons, and two-breather
solutions for this system. Considering the influences of higher-order effects, propagation properties of those solitons are discussed.

1. Introduction

In recent years, optical solitons have attracted many
researchers for their potential applications in optical fiber
transmission systems [1–3]. Based on the balance of the
self-phase modulation and group velocity dispersion, the
propagation of optical solitons in the picosecond regime is
usually governed by the nonlinear Schrödinger [4] equation
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𝑞 = 0, (1)
where 𝑞 denotes the slowly varying complex envelope of
the wave. When considering propagation characters of the
ultrashort pulses, (1) cannot describe the corresponding
physical mechanism due to the absences of the fourth-order
dispersion, higher-order nonlinearities, and self-steepening
effects.Owing to the above three factors, the dynamic features
of the ultrashort pulses can be depicted by the following
generalized nonlinear Schrödinger equation (GNLS) [5, 6]:
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(2)

where 𝜏 is a small dimensionless real parameter, and it is
usually positive. In addition, (2) can also govern the nonlinear

spin excitations in one-dimensional isotropic biquadratic
Heisenberg ferromagnetic spin with the octupole-dipole
interaction [7, 8].

In real optic fibers, the attenuation usually exists, in this
context, erbium-doped fibers can minimize the attenuation
[9]. The mathematical description of solitons propagating in
erbium-doped fibers is the nonlinear Schrödinger-Maxwell-
Bloch (NLS-MB) equations [10, 11]:
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𝑞) + 2𝑝, (3a)

𝑝
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where subscripts 𝑧 and 𝑡 denote the partial derivatives with
respect to the longitudinal distance and retarded time. 𝜔 is
the frequency, the asterisk denotes the complex conjugate,
𝑝 = V
1
V∗
2
, and 𝜂 = |V

2
|
2

− |V
1
|
2 with V

1
and V
2
representing the

wave functions in a two-level system [12, 13]. Many research
achievements about system (3a), (3b), and (3c) have been
obtained [14–16].

However, when taking the effects such as the fourth-order
dispersion, higher-order nonlinearities, and self-steepening
effects into account, the propagation of optical solitons in
fibers doped with two-level resonant impurities like erbium
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Figure 1: The parameters adopted here are 𝜅
𝑠
= 2.3, 𝑞

𝑐
= 1, 𝜅

𝑐
= 3, 𝜔 = 1, and 𝜏 = 0.

is usually described by the following generalized nonlinear
Schrödinger-Maxwell-Bloch (GNLS-MB) system [9]:
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To our knowledge, investigations on system (4a), (4b), and
(4c) have not been reported, and the aim of this paper is
mainly to investigate the modulation instability conditions,
generate the breather and bound solutions, and discuss the
dynamic behaviors of those solutions for system (4a), (4b),
and (4c).

The outline of this paper will be as follows: in Section 2,
we will derive Lax pair and analyze themodulation instability
conditions for system (4a), (4b), and (4c). In Section 3,
by using the Darboux transformation, we will construct

two types of one-breather solutions: Akhmediev breathers
and Ma breathers on the nonzero continuous wave (cw)
background. In Section 4, we will discuss analytically the
interactions between neighboring bound solitons and two-
breather solutions for system (4a), (4b), and (4c). Finally, our
conclusions will be addressed in Section 5.

2. Lax Pair and Modulation Instability for
System (4a), (4b), and (4c)

Employing the Ablowitz-Kaup-Newell-Segur formalism [17],
we can derive the Lax pair for system (4a), (4b), and (4c) as

Ψ
𝑡
= 𝑈Ψ, (5a)

Ψ
𝑧
= 𝑉Ψ, (5b)

where Ψ = (𝜓
1
, 𝜓
2
)
𝑇 (𝑇 denotes the transpose of a matrix)

and the matrices 𝑈 and 𝑉 have the form
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1
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0
, (6a)
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Figure 2: The parameters adopted here are 𝜅
𝑠
= 2.3, 𝑞

𝑐
= 1, 𝜅

𝑐
= 3, 𝜔 = 1, and 𝜏 = 0.1.

with 𝜆 as a spectral parameter,

𝑈
1
= (

1 0

0 −1
) , 𝑈

0
= (

0 𝑞

−𝑞
∗

0
) , 𝑉

4
= 8𝑖𝜏𝑈

1
,

𝑉
2
= (

−2𝑖 − 4𝑖𝜏
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

−4𝑖𝜏𝑞
𝑡

−4𝑖𝜏𝑞
∗

𝑡
2𝑖 + 4𝑖𝜏

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2
) , 𝑉

3
= −8𝜏𝑈

0
,

𝑉
1
= (

2𝜏𝑞
∗

𝑞
𝑡
− 2𝜏𝑞𝑞

∗

𝑡
2𝑞 + 4𝜏

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

𝑞 + 2𝜏𝑞
𝑡𝑡

−2𝑞
∗

− 4𝜏
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

𝑞
∗

− 2𝜏𝑞
∗

𝑡𝑡
−2𝜏𝑞
∗

𝑞
𝑡
+ 2𝜏𝑞𝑞

∗

𝑡

) ,

𝑉
0
= (

𝑎
11

𝑎
12

𝑎
21

−𝑎
11

) , 𝑉
−1

= 𝑖 (
𝜂 −𝑝

−𝑝
∗

−𝜂
) ,

𝑎
11
= 𝑖

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

+ 3𝑖
󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

4

− 𝑖𝜏
󵄨󵄨󵄨󵄨𝑞𝑡
󵄨󵄨󵄨󵄨

2

+ 𝑖𝜏𝑞
∗

𝑞
𝑡𝑡
+ 𝑖𝜏𝑞𝑞

∗

𝑡𝑡
,

𝑎
12
= 𝑖𝑞
𝑡
+ 6𝑖𝜏

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

𝑞
𝑡
+ 𝑖𝜏𝑞
𝑡𝑡𝑡
,

𝑎
21
= 𝑖𝑞
∗

𝑡
+ 6𝑖𝜏

󵄨󵄨󵄨󵄨𝑞
󵄨󵄨󵄨󵄨

2

𝑞
∗

𝑡
+ 𝑖𝜏𝑞
∗

𝑡𝑡𝑡
.

(7)

Through symbolic computations, one can verify that system
(4a), (4b), and (4c) can be concluded through the zero
curvature equation 𝑈

𝑧
− 𝑉
𝑡
+ 𝑈𝑉 − 𝑉𝑈 = 0.

Modulational instability (MI), which results from the
interplay between nonlinearity and dispersive effects, refers

to a parametric process in which a continuous or quasi-
continuous wave undergoes a modulation of its amplitude
or phase in the presence of weak perturbations [18–20]. The
MI has some applications in condensate physics, plasma
physics, hydrodynamics, nonlinear optics, and some other
branches of physics [18]. Now by introducing the steady-
state cw solutions for system (4a), (4b), and (4c) as 𝑞 =

𝑞
0
exp 2𝑖(𝜅 + 𝑞

2

0
+ 3𝑞
4

0
𝜏)𝑧, 𝑝 = 𝑖𝜅𝑞

0
exp 2𝑖(𝑘 + 𝑞

2
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+ 3𝑞
4

0
𝜏)𝑧,

𝜂 = 𝜔𝜅, here, with 𝑝
0
being the input power, we will discuss

the modulation instability process for system (4a), (4b), and
(4c).

We examine the MI process of the steady-state solutions
by introducing the following perturbed solutions:

𝑞 = (𝑞
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1
) exp 2𝑖 (𝜅 + 𝑞

2
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+ 3𝑞
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0
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𝜂 = 𝜔𝜅 + 𝐵, (8c)

where𝐴
1
,𝐴
2
, and𝐵 areweak perturbationswith the assumed

general expressions being𝐴
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Ω𝑡), where 𝑢
1
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1
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2
, V
2
, and 𝑏 are real amplitudes of those

perturbations, Ω denotes the real frequency of modulation
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Figure 3: The parameters adopted here are 𝜅
𝑠
= 1.3, 𝑞

𝑐
= 1, 𝜅

𝑐
= 3, 𝜔 = 1, and 𝜏 = 0.1.

perturbations, and 𝐾 is the real disturbance wave number.
Inserting (8a), (8b), and (8c) into (4b) and (4c), we can obtain
the linearized equations of 𝑢

1
, V
1
, 𝑢
2
, V
2
, and 𝑏, so 𝑢

2
, V
2
, and

𝑏 can be solved as follows:
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, (9a)
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=
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0
V
1
+ 2V
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0
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. (9c)

Substituting (8a), (8b), (9a), and (9b) into (4a) and (4b),
collecting the linear terms, we can derive two linear homo-
geneous equations for the perturbed unknown functions 𝑢

1

and V
1
:

(4𝑞
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𝑢
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1
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𝑦
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𝑦
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𝑦
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2

0
+ 4𝜔
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𝑦
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) .

(11)

Equations (10a) and (10b) have nontrivial solutions if and
only if the following determinant formed by the coefficients
matrix vanishes, that is,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(4𝑞
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−Ω
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𝑦
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= 0. (12)

Equation (12) leads to the dispersion relation of 𝐾 and Ω

which determines the modulation instability process of the
steady-state cw solution as

𝐾 =

4𝜅𝜔Ω +
󵄨󵄨󵄨󵄨Ω𝑦1

󵄨󵄨󵄨󵄨
√Ω2 − 4𝑞

2

0

Ω2 − 4𝑞
2

0
− 4𝜔2

. (13)

From (13), one can conclude that ifΩ2 − 4𝑞2
0
< 0, the value of

𝐾 will be complex; then the modulation instability will take
place with | Im𝐾| as the instability growth rate. SoΩ2 − 4𝑞2

0
<

0 is the condition of the modulation instability for system
(4a), (4b), and (4c).
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Figure 4: The parameters adopted here are 𝑡
0
= 3, 𝜔 = 3, and 𝜏 = 0.

3. One-Breather Solutions for System (4a),
(4b), and (4c)

Based on Lax pair (5a) and (5b), we can construct the
following Darboux transformation for system (4a), (4b), and
(4c) as

𝑞
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Considering the nonzero continuous wave background, we
can take 𝑞 = 𝑞

𝑐
exp 𝑖(𝜅

𝑐
𝑧 + 𝜔
𝑐
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𝑐
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𝑐
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𝑐
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𝑐
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𝑐
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𝑐
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𝑐
, and 𝜔

𝑐
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all real parameters. System (4a), (4b), and (4c) requires the
following nonlinear dispersion relation:

𝑝
𝑐
= −

1

2
(2𝑞
2

𝑐
− 𝜅
𝑐
− 𝜔
2

𝑐
+ 6𝑞
4

𝑐
𝜏 − 12𝑞

2

𝑐
𝜔
2

𝑐
𝜏 + 𝜔
4

𝑐
𝜏) , (16a)

𝜂
𝑐
= −

1

4
(2𝜔 − 𝜔

𝑐
)

× (2𝑞
2

𝑐
− 𝜅
𝑐
− 𝜔
2

𝑐
+ 6𝑞
4

𝑐
𝜏 − 12𝑞

2

𝑐
𝜔
2

𝑐
𝜏 + 𝜔
4

𝑐
𝜏) .

(16b)
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Figure 5: The parameters adopted here are 𝑡
0
= 10, 𝜔 = 3, and 𝜏 = 0.

By the method of separation of variables and the superposi-
tion principle, we can arrive at

𝜙
1
= (𝑐
1
exp 𝜃
1
+ 𝑐
2
exp 𝜃
2
) exp 𝑖 (𝜅

𝑐
𝑧 + 𝜔
𝑐
𝑡) , (17a)

𝜙
2
= 𝑐
3
exp 𝜃
1
+ 𝑐
4
exp 𝜃
2
, (17b)

where

𝜃
1
=
𝑡

2
[−𝑖𝜔
𝑐
+ √−𝜔2

𝑐
− 4𝑞2
𝑐
− 4𝜆
2

1
− 4𝜆
1
𝜔
𝑐
]

+
𝑧

2
[−𝑖𝜅
𝑐
+ √−𝜅2

𝑐
+ 4𝑎2 − 4𝑏2 − 4𝑖𝑎𝜅

𝑐
] ,

𝜃
2
=
𝑡

2
[−𝑖𝜔
𝑐
− √−𝜔2

𝑐
− 4𝑞2
𝑐
− 4𝜆
2

1
− 4𝜆
1
𝜔
𝑐
]

+
𝑧

2
[−𝑖𝜅
𝑐
− √−𝜅2

𝑐
+ 4𝑎2 − 4𝑏2 − 4𝑖𝑎𝜅

𝑐
] ,

(18)

with

𝑎 = 2𝑖𝜆
2

1
(−1 + 4𝜆

2

1
𝜏)

− 𝑖𝑞
2

𝑐
(−1 + 4𝜆

2

1
𝜏 − 4𝜆

1
𝜔
𝑐
𝜏 + 3𝜔

2

𝑐
𝜏)

+ 3𝑖𝑞
4

𝑐
𝜏 +

𝑖𝜂
𝑐

𝜆
1
+ 𝜔

,

𝑏 = 𝑞
𝑐
(4𝜆
1
𝑞
2

𝑐
𝜏 + 2𝜆

1
− 𝜔
𝑐
− 4𝜆
2

1
𝜔
𝑐
𝜏 − 2𝜆

1
𝜔
2

𝑐
𝜏

+ 𝜔
3

𝑐
𝜏 − 8𝜆

3

1
𝜏 − 6𝑞

2

𝑐
𝜔
𝑐
𝜏) +

𝑝
𝑐

𝜆
1
+ 𝜔

,

(19)



Abstract and Applied Analysis 7

−1

1
z

0

6

q

1
t

−1

(a)

0

2

p

t

−1

−1

1
z

(b)

−1

1
z

0

1

𝜂

1t

−1

(c)

Figure 6: The parameters adopted here are 𝑡
0
= 3, 𝜔 = 3, and 𝜏 = 5.

and 𝑐
1
, 𝑐
2
, 𝑐
3
, and 𝑐

4
are complex constants satisfied as

𝑐
3
=

1

𝑞
𝑐

[𝑖𝜔
𝑐
+ 𝑖𝜆
1
+
1

2

× (−𝑖𝜔
𝑐
+ √−𝜔2

𝑐
− 4𝑞2
𝑐
− 4𝜆
2

1
− 4𝜆
1
𝜔
𝑐
)] 𝑐
1
,

= (𝐿 + 𝑖𝑀) 𝑐
1
,

𝑐
2

=
𝑞
𝑐

(1/2) (−𝑖𝜔
𝑐
+ √−𝜔2

𝑐
− 4𝑞2
𝑐
− 4𝜆
2

1
− 4𝜆
1
𝜔
𝑐
) + 𝑖𝜔

𝑐
+ 𝑖𝜆
1

𝑐
4

= (𝐿 + 𝑖𝑀) 𝑐
4
.

(20)

Suppose that

𝜆
1
=
1

2
(𝐴
𝑠
+ 𝑖𝜅
𝑠
) , 𝑐

4
= 𝑐
1
,

𝜁
1
+ 𝑖𝜂
1
= √−𝜔2

𝑐
− 4𝑞2
𝑐
− 4𝜆
2

1
− 4𝜆
1
𝜔
𝑐
,

𝜁
2
+ 𝑖𝜂
2
= √−𝜅2

𝑐
+ 4𝑎2 − 4𝑏2 − 4𝑖𝑎𝜅

𝑐
,

(21)

with 𝐴
𝑠
, 𝜅
𝑠
, 𝜁
1
, 𝜂
1
, 𝜁
2
, and 𝜂

2
being real numbers. Now,

substituting (17a) and (17b) into (14a), (14b), and (14c), we can
obtain the solutions for system (4a), (4b), and (4c) as

𝑞 =
𝐺
1

𝐹
1

exp 𝑖 (𝜅
𝑐
𝑧 + 𝜔
𝑐
𝑡) , (22a)

𝑝 =
𝐺
2

𝐹
2

exp 𝑖 (𝜅
𝑐
𝑧 + 𝜔
𝑐
𝑡) , (22b)

𝜂 =
𝐺
3

𝐹
2

, (22c)
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Figure 7: The parameters adopted here are 𝜆
1
= 𝑖, 𝜆

2
= 4𝑖, 𝑞

𝑐
= 3, 𝜔

𝑐
= 2, 𝜅

𝑐
= 1, 𝜔 = 0.5, and 𝜏 = 0.1.

where

𝐺
1
= 𝑞
𝑐
− 2𝑖 (𝜆

1
− 𝜆
∗

1
) [𝑒
𝜃
1 + 𝑒
𝜃
2 (𝐿 + 𝑖𝑀)]

× [𝑒
𝜃
∗

2 + 𝑒
𝜃
∗

1 (𝐿 − 𝑖𝑀)] ,

𝐹
1
= 𝑒
𝜃
∗

1 [2𝐿𝑒
𝜃
2 + (1 + 𝐿

2

+𝑀
2

) 𝑒
𝜃
1]

+ 𝑒
𝜃
∗

2 [2𝐿𝑒
𝜃
1 + (1 + 𝐿

2

+𝑀
2

) 𝑒
𝜃
2] ,

𝐺
2
= 𝑖𝑝
𝑐
[𝜇
2

+ 𝜎
2

1
𝜎
∗2

2
(𝜆
1
− 𝜆
∗

1
)
2

]

+ 2𝜂
0
𝜎
1
𝜎
∗

2
(𝜆
1
− 𝜆
∗

1
) 𝜇,

𝐹
2
= (𝜆
1
+ 𝜔) (𝜆

∗

1
+ 𝜔)

× [4𝐿 cosh (𝜃
1
+ 𝜃
∗

2
) +2 (𝐿

2

+𝑀
2

+ 1) cosh (𝜃
1
+ 𝜃
∗

1
)] ,

𝐺
3
= 𝑖𝑝
𝑐
(𝜆
1
− 𝜆
∗

1
) [𝜎
∗

1
𝜎
2
𝜇 + 𝜎
1
𝜎
∗

2
𝜇
∗

]

+ 𝜂
𝑐
[(𝜆
1
+ 𝜔) (𝜆

∗

1
+ 𝜔) (𝜎

1
𝜎
∗

1
+ 𝜎
2
𝜎
∗

2
)
2

+ 2𝜎
1
𝜎
∗

1
𝜎
2
𝜎
∗

2
(𝜆
1
− 𝜆
∗

1
)
2

] ,

(23)

with

𝜎
1
= 𝑒
𝜃
1 + 𝑒
𝜃
2 (𝐿 + 𝑖𝑀) , 𝜎

2
= 𝑒
𝜃
2 + 𝑒
𝜃
1 (𝐿 + 𝑖𝑀) ,

𝜇 = 𝜎
1
𝜎
∗

1
(𝜆
1
+ 𝜔) + 𝜎

2
𝜎
∗

2
(𝜆
∗

1
+ 𝜔) .

(24)

Now, we mainly discuss soliton solutions from three
different cases.

Case 1. In the case of 𝑞
𝑐
= 0, that is to say, the initial seeds for

(4a), (4b), and (4c) are 𝑞
𝑐
= 0, 𝑝

𝑐
= 0, and 𝜂

𝑐
= 1, solutions

(22a), (22b), and (22c) reduce to one-soliton solutions.

Case 2. In the case of 𝑞
𝑐

̸= 0, 𝐴
𝑠
= 𝜔
𝑐
= 0, and 𝜅

2

𝑠
> 4𝑞
2

𝑐
,

symbolic computation results in the following:

𝜁
1
= √−4𝑞2

𝑐
+ 𝜅2
𝑠
, 𝜂

1
= 0,

𝜁
2
=

𝜁
1
ℎ
1

4𝜔2 + 𝜅2
𝑠

, 𝜂
2
=

𝜁
1
ℎ
2

4𝜔2 + 𝜅2
𝑠

,

(25)
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Figure 8: The parameters adopted here are 𝜆
1
= 𝑖, 𝜆

2
= 2𝑖, 𝑞

𝑐
= 3, 𝜔

𝑐
= 2, 𝜅

𝑐
= 1, 𝜔 = 0.5, and 𝜏 = 0.1.

with

ℎ
1
= 2𝑞
2

𝑐
− 𝜅
𝑐
+ 𝜅
2

𝑠
+ 6𝜏𝑞

4

𝑐
+ 2𝜏𝑞

2

𝑐
𝜅
2

𝑠
+ 𝜏𝜅
4

𝑠
,

ℎ
2
= −2𝜔𝜅

𝑠
− 4𝜔𝜏𝜅

𝑠
𝑞
2

𝑐
− 2𝜔𝜏𝜅

3

𝑠
.

(26)

Substituting (25) into (17a) and (17b), we can reduce solutions
(22a), (22b), and (22c) to the breathers displayed in Figures 1
and 2.

From Figure 1, we can observe that the main features of
propagations of those breathers- are periodic in the space
coordinate and aperiodic in the time coordinate, so the
solitons shown in Figure 1 are Akhmediev breathers [21–23].
In addition, we can observe that Figures 1(a) and 1(c) depict
bright breathers, and Figure 1(b) shows the dark one.

Comparing Figure 2 with Figure 1, one can see that in
Figure 2, under the influence of the increasing values of the
parameter 𝜏, the number of peaks on the same space interval
is increasingwhen 𝜏 goes up from0 to 0.1. So,we can conclude

that the parameter 𝜏 controls the period of the Akhmediev
breathers.

Case 3. In the case of 𝑞
𝑐

̸= 0, 𝐴
𝑠
= 𝜔
𝑐
= 0, and 𝜅

2

𝑠
< 4𝑞
2

𝑐
,

through direct computation, one can obtain the following:

𝜁
1
= 0, 𝜂

1
= √4𝑞2

𝑐
− 𝜅2
𝑠
,

𝜁
2
= 𝜂
1

ℎ
1
𝜅
𝑠
− 2ℎ
2
𝜔

4𝜔2 + 𝜅2
𝑠

, 𝜂
2
= 𝜂
1

2ℎ
1
𝜔 + ℎ
2
𝜅
𝑠

4𝜔2 + 𝜅2
𝑠

.

(27)

Substituting (27) into (17a) and (17b), solutions (22a), (22b),
and (22c) become other breathers as displayed in Figure 3.

From Figure 3, one can observe that those breathers are
periodic in the time coordinate and aperiodic in the space
coordinate; that is, those are Ma-breather solitons [24–27],
and for functions 𝑞 and 𝜂, the solutions are bright solitons
while for function 𝑝 the solution is the dark one. In addition,
one can find that the separations between adjacent peaks
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Figure 9: The parameters adopted here are 𝜆
1
= 5𝑖, 𝜆

2
= 4𝑖, 𝑞

𝑐
= 3, 𝜔

𝑐
= 2, 𝜅

𝑐
= 1, 𝜔 = 0.5, and 𝜏 = 0.1.

in Figure 3 gradually increase as 𝜅
𝑠
→ 2𝑞

𝑐
and eventually

reduce into the rogue waves, the properties of which have
been discussed in [28–31].

4. Dynamic Features of Two-Soliton Solutions
for System (4a), (4b), and (4c)

In this section, wewill construct two-soliton solutions for sys-
tem (4a), (4b), and (4c). Taking the same seeds in Section 2,
that is, 𝑞 = 𝑞

𝑐
exp 𝑖(𝜅

𝑐
𝑧+𝜔
𝑐
𝑡), 𝑝 = 𝑖𝑝

𝑐
exp 𝑖(𝜅

𝑐
𝑧+𝜔
𝑐
𝑡), 𝜂 = 𝜂

𝑐
,

and iterating the DT twice, one can obtain

(
𝜓
1

𝜓
2

) = [𝜆
2
(
1 0

0 1
) − 𝐻Λ𝐻

−1

] (
𝜑
1

𝜑
2

) , (28)

where

Λ = (
𝜆
1

0

0 𝜆
∗

1

) , 𝐻 = (
𝜙
1

𝜙
∗

2

𝜙
2
−𝜙
∗

1

) ,

𝜑
1
= 𝑑
1
𝑒
𝜃
3 + 𝑑
2
𝑒
−𝜃
4 , 𝜑

2
= 𝑑
3
𝑒
𝜃
3 + 𝑑
4
𝑒
−𝜃
4 ,

(29)
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with

𝜃
3
=
𝑡

2
[−𝑖𝜔
𝑐
+ √−𝜔2

𝑐
− 4𝑞2
𝑐
− 4𝜆
2

2
− 4𝜆
2
𝜔
𝑐
]

+
𝑧

2
[−𝑖𝜅
𝑐
+ √−𝜅2

𝑐
+ 4𝑎󸀠2 − 4𝑏󸀠2 − 4𝑖𝑎󸀠𝜅

𝑐
] ,

𝜃
4
=
𝑡

2
[−𝑖𝜔
𝑐
− √−𝜔2

𝑐
− 4𝑞2
𝑐
− 4𝜆
2

2
− 4𝜆
2
𝜔
𝑐
]

+
𝑧

2
[−𝑖𝜅
𝑐
− √−𝜅2

𝑐
+ 4𝑎󸀠2 − 4𝑏󸀠2 − 4𝑖𝑎󸀠𝜅

𝑐
] ,

𝑎
󸀠

= 2𝑖𝜆
2

2
(−1 + 4𝜆

2

2
𝜏) − 𝑖𝑞

2

𝑐

× (−1 + 4𝜆
2

2
𝜏 − 4𝜆

2
𝜔
𝑐
𝜏 + 3𝜔

2

𝑐
𝜏) + 3𝑖𝑞

4

𝑐
𝜏

+
𝑖𝜂
𝑐

𝜆
2
+ 𝜔

,

𝑏
󸀠

= 𝑞
𝑐
(4𝜆
2
𝑞
2

𝑐
𝜏 + 2𝜆

2
− 𝜔
𝑐
− 4𝜆
2

2
𝜔
𝑐
𝜏

− 2𝜆
2
𝜔
2

𝑐
𝜏 + 𝜔
3

𝑐
𝜏 − 8𝜆

3

2
𝜏 − 6𝑞

2

𝑐
𝜔
𝑐
𝜏)

+
𝑝
𝑐

𝜆
2
+ 𝜔

,

(30)

𝜆
2
is another eigenvalue for Lax pair (5a) and (5b), and 𝑑

1
, 𝑑
2
,

𝑑
3
, and 𝑑

4
are complex constants satisfied as

𝑑
3
=

1

𝑞
𝑐

[𝑖𝜔
𝑐
+ 𝑖𝜆
2
+
1

2

× (−𝑖𝜔
𝑐
+ √−𝜔2

𝑐
− 4𝑞2
𝑐
− 4𝜆
2

2
− 4𝜆
2
𝜔
𝑐
) ] 𝑑
1
,

𝑑
2

=
𝑞
𝑐

(1/2) (−𝑖𝜔
𝑐
+ √−𝜔2

𝑐
− 4𝑞2
𝑐
− 4𝜆
2

2
− 4𝜆
2
𝜔
𝑐
) + 𝑖𝜔

𝑐
+ 𝑖𝜆
2

× 𝑑
4
.

(31)

Thus, one can derive the expressions of two-soliton
solutions for system (4a), (4b), and (4c) as

𝑞
(2)

= 𝑞
󸀠

− 2𝑖
(𝜆
2
− 𝜆
∗

2
) 𝜓
1
𝜓
∗

2

󵄨󵄨󵄨󵄨𝜓1
󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜓2

󵄨󵄨󵄨󵄨

2
, (32a)

𝑝
(2)

=
𝑝
󸀠

𝜒
󸀠2

1

𝜒
󸀠

2
(
󵄨󵄨󵄨󵄨𝜓1

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜓2

󵄨󵄨󵄨󵄨

2

)
2
−
𝑝
󸀠∗

(𝜆
2
− 𝜆
∗

2
) 𝜓
2

1
𝜓
∗2

2

𝜒
󸀠

2
(
󵄨󵄨󵄨󵄨𝜓1

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜓2

󵄨󵄨󵄨󵄨

2

)
2

+
2𝜂
󸀠

𝜒
󸀠

1
(𝜆
2
− 𝜆
∗

2
) 𝜓
1
𝜓
∗

2

𝜒
󸀠

2
(
󵄨󵄨󵄨󵄨𝜓1

󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨𝜓2

󵄨󵄨󵄨󵄨

2

)
2

,

(32b)

𝜂
(2)

= 𝜂
󸀠

(1 +
2 (𝜆
2
− 𝜆
∗

2
)
󵄨󵄨󵄨󵄨𝜓1

󵄨󵄨󵄨󵄨

2󵄨󵄨󵄨󵄨𝜓2
󵄨󵄨󵄨󵄨

2

𝜒
󸀠

2
(
󵄨󵄨󵄨󵄨𝜓1

󵄨󵄨󵄨󵄨

2

+
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(32c)

with
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(33)

Now, we will analyze (32a), (32b), and (32c) under two
different cases.

4.1. Interaction Characters of Bound Solitons. In this section,
we will investigate the interaction between neighboring
solitons for system (4a), (4b), and (4c). Taking 𝑞

𝑐
= 0, 𝑝

𝑐
= 0,

𝜂
𝑐
= 1 and iterating the DT twice, one can generate two-

soliton solutions with two spectral parameters 𝜆
1
= 𝜗
1
+ 𝑖󰜚
1

and 𝜆
2
= 𝜗
2
−𝑖󰜚
2
for system (4a), (4b), and (4c). Assuming the

input launching pulses as 𝑞(0, 𝑡) = sech(𝑡 − 𝑡
0
) + sech(𝑡 + 𝑡

0
),

here 𝑡
0
denotes the soliton separation. Supposing that 𝜗

1
=

𝜗
2
= 0, we can derive that

󰜚
1,2

= 1 +
2𝑡
0

sinh (2𝑡
0
)
± sech 𝑡

0
. (34)

Under the circumstances 𝑡
0
= 3 and 𝜏 = 0, that is, the higher-

order dispersive effects are absent, the two-soliton solutions
can turn into bound solitons under suitable parameters
chosen as shown in Figure 4. We can observe that main
features are that the mutual attractions and repulsions repeat
periodically when the bound solitons propagate, and this
phenomenon may be harmful for optical soliton communi-
cation [32–34].

In fact we can suppress the periodical mutual attractions
and repulsions through increasing the initial pulse separa-
tion, that is, the value of 𝑡

0
. As portrayed in Figure 5, when

𝑡
0

= 10, one can find that the mutual attractions and
repulsions between two bound solitons disappear, and the
two solitons propagate in parallel without any effect on each
other even if the propagation distance grows long enough.
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Figure 6 depicts the effects of the higher-order dispersive
terms on the propagations of the solitons. As the pictures
show, the periods of the bound solitons can be suppressed
when 𝜏 decreases.

Sowe can conclude that the higher-order dispersive terms
can control the propagation periods of the bound soliton.

4.2. Interaction Characters of Two-Breather Solutions. In this
section, we will construct two-breather solutions for system
(4a), (4b), and (4c). Taking 𝑞

𝑐
̸= 0, 𝑝
𝑐

̸= 0, 𝜂
𝑐

̸= 0, 𝜔
𝑐
= 0 and

iterating the DT twice, one can get two-breather solutions for
system (4a), (4b), and (4c). When |𝜆

1
| < |𝑞

𝑐
| and |𝜆

2
| >

|𝑞
𝑐
|, the Akhmediev breathers and Ma-breathers can coexist

as portrayed in Figure 7. Main features of the interaction
between two breathers in Figure 7 are that they interact
perpendicularly and the shapes, amplitudes, and pulse widths
of the two breathers all remain invariant, so the interactions
are elastic.

When |𝜆
1
| < |𝑞

𝑐
| and |𝜆

2
| < |𝑞

𝑐
|, the two-breather

solutions that evolve from twoMa-breathers come into being
as portrayed in Figure 8. And the interactions between these
two-breathers in Figure 8 are also elastic.

When |𝜆
1
| > |𝑞

𝑐
| and |𝜆

2
| > |𝑞

𝑐
|, the two-breather

solutions that evolve from two Akhmediev-breathers take
place as depicted in Figure 9. And the interactions between
these two-breathers in Figure 9 are also elastic.

5. Conclusions

Our main attention has been focused on system (4a), (4b),
and (4c) which describes the propagation of optical soli-
tons in nonlinear erbium-doped fibers with higher-order
effects. Lax pair and modulation instability conditions for
this system have been investigated. Two types of breathers
(Akhmediev breathers and Ma-breathers), bound soliton
solutions, and two-breather solutions have been constructed
by Darboux transformation. Propagation properties of those
solitons under the influences of higher-order effects have
been discussed.
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