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A hybrid stability checking method is proposed to verify the establishment of synchronization between two hyperchaotic systems.
During the design stage of a synchronization scheme for chaotic fractional-order systems, a problem is sometimes encountered. In
order to ensure the stability of the error signal between two fractional-order systems, the arguments of all eigenvalues of the Jacobian
matrix of the erroneous system should be within a region defined inMatignon’s theorem. Sometimes, the arguments depend on the
state variables of the driving system, which makes it difficult to prove the stability. We propose a new and efficient hybrid method
to verify the stability in this situation.The passivity-based control scheme for synchronization of two hyperchaotic fractional-order
Chen-Lee systems is provided as an example. Theoretical analysis of the proposed method is validated by numerical simulation in
time domain and examined in frequency domain via electronic circuits.

1. Introduction

Nonlinear systems may exhibit dynamical chaotic behavior.
The study of chaos synchronization has received increasing
attention due to its predicted potentials in technological
applications in recent years. In 1983, Fujisaka and Yamada
[1] first described the synchronization of chaotic signals.
Some years later, Pecora and Carroll [2] synchronized two
identical chaotic systems with different initial conditions.
Subsequently, research activities of chaos synchronization
have grown continuously.

Fractional calculus has been studied in a speedy pace
during the recent years. It has been implemented in various
engineering fields such as control [3], modeling [4], thermal
engineering [5], and bioengineering [6].There aremainly two
ways to approximate a fractional-order system: in frequency
domain based onRiemann-Liouville definition orGrunwald-
Letnikov definition and in time domain based on Caputo
definition. In frequency domain, linear approximation may

be obtained with a given discrepancy over a frequency range
[7]. The discrepancy and frequency range must be care-
fully chosen; otherwise, huge error may occur between the
approximate and true results [8]. There are other frequency
domain methods using continued fraction expansions and
interpolation techniques [9], FIR filters [10], and so forth.
Regrettably, the time memory characteristic of fractional-
order systems is not considered. Meanwhile, the approxi-
mation in time domain outperforms the frequency domain
approximation.The improved P(EC)mEmethod based on the
Adams-Bashforth-Moulton algorithm [11] produces pretty
accurate results. The only drawback is its heavy computation
load. Recently, discrete fractional calculus [12] starts drawing
researchers’ attention. For example, various versions of frac-
tional discrete-time Logistic map have been proposed and
studied using different approaches, such as left Caputo dis-
crete delta difference [13], discontinuous dynamical systems
[14], and discrete-time Fourier transform [15]. Meanwhile,
other discrete fractional systems have also been developed
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[16]. Jarad et al. investigated the stability of discrete fractional
systems in detail using the Lyapunov direct method [17].
It is also interesting to develop applications such as chaos
synchronization in fractional discrete systems.

In 2004, Chen and Lee [18] developed a new chaotic
system based on the Euler equations for the motion of a
rigid body.This system describes the chaotic behavior for the
anticontrol of chaos in rigid-bodymotion.The system is then
called the Chen-Lee system [19]. Complete synchronization
[20], synchronization and antisynchronization [21], control-
ling chaos with multiple time-delays [22], electronic circuit
implementation [23, 24], fractional-order behavior [19, 25],
and so forth have been studied for this system recently. It is
believed that hyperchaotic systems are demanded by practical
engineering applications, such as secure communication.
The hyperchaotic Chen-Lee system and its hybrid projective
synchronization were proposed by Chen et al. [26]. Due
to more complex structure in the differential equations
of the hyperchaotic Chen-Lee system, the synchronization
was achieved under a complicate controller. Furthermore,
the hyperchaotic Chen-Lee system may exhibit even more
complex dynamical behavior in the fractional-order domain.
It is hence necessary to seek for a simple and effective
controller for those systems.

The concept of passive control theory [27] has been a
focus for the control of chaos and chaos synchronization.
A simple state-feedback controller has been built based on
the passivity to stabilize the Lorenz equation [28] and Rabi-
novich system [29]. Chaos synchronization in the unified
chaotic system, the Rikitake attractor, and the hyperchaotic
complex Chen system with unknown parameters has been
achieved using the passive control technique [30–32]. Pas-
sivity synchronization has been implemented to fractional-
order hyperchaotic Liu’s systems [33] by using inequality
relation through absolute maximum bound of its system
variable. Unfortunately, it is not always that the stability can
be determined by upper bounds of system variables. This
happens to the case when we apply passivity theory to the
hyperchaotic Chen-Lee system. Hence, we proved the control
scheme based on the proposed stability checking procedure
without using any bound of system’s variable.

In this paper, the synchronization between two hyper-
chaotic Chen-Lee systems with different initial conditions
was established via the passive control technique first. The
influence of the controller parameters was discussed for
enhancing the efficiency of synchronization. Next, the pro-
posed controller was also applied to fractional-order hyper-
chaotic Chen-Lee systems. Synchronization was ensured
based on the stability theorem by Matignon [34]. An effi-
cient and easy strategy was proposed to find the range
of eigenvalues when the Jacobian matrix involves system
states. Finally, numerical simulation and the corresponding
electronic circuits were included to show the feasibility and
effectiveness of the proposed methods.

2. Preliminaries

Matignon’s theoremand the passivity theorywere reviewed in
this section. The former was used for analyzing the stability

of fractional differential equations and the latter for designing
the synchronization scheme between two systems.

2.1. The Matignon Theorem. Consider an error dynamical
system 𝑒(𝑥, 𝑦, 𝑡), where 𝑥(𝑡) and 𝑦(𝑡) are the driving and
response systems and 𝐽

0
(𝑥) the Jacobian matrix which con-

tains 𝑥(𝑡), and 𝑞 is the fractional order of the systems.

Theorem 1 (see [34]). The trivial solution of the system 𝑒(𝑥, 𝑦,

𝑡) is asymptotically stable if and only if

󵄨
󵄨
󵄨
󵄨
arg (𝜆)󵄨󵄨󵄨

󵄨
>

𝑞𝜋

2

(1)

is satisfied for all eigenvalues 𝜆 of Jacobian matrix 𝐽
0
of system

𝑒(𝑥, 𝑦, 𝑡) evaluated at the origin.

Corollary 2. The response system is asymptotically synchro-
nized with the driving system if and only if | arg(𝜆)| > 𝑞𝜋/2 is
satisfied for all eigenvalues 𝜆(𝑥, 𝑡) of 𝐽

0
(𝑥) for any possible 𝑥(𝑡).

2.2. Review of the Passivity Theory. Consider the following
nonlinear system [27]:

𝑥̇ = 𝑓 (𝑥) + 𝑔 (𝑥) 𝑢,

𝑦 = ℎ (𝑥) ,

(2)

where the state variable 𝑥 ∈ R𝑚, the input 𝑢 ∈ R𝑚, and the
output 𝑦 ∈ R𝑚. 𝑓(𝑥) and 𝑔(𝑥) are the smooth vector fields
and 𝑓(0) = 0. ℎ(𝑥) is a smooth mapping. The system (2) is
passive if the conditions below are all satisfied.

(1) 𝑓(𝑥) and 𝑔(𝑥) exist.
(2) For all 𝑡 ≥ 0, there is a real constant 𝛽 such that the

inequality holds

∫

𝑡

0

𝑢
𝑇
(𝜏) 𝑦 (𝜏) 𝑑𝜏 ≥ 𝛽 (3)

or there are a real constant 𝛽 and a constant 𝜌 > 0 such that

∫

𝑡

0

𝑢
𝑇
(𝜏) 𝑦 (𝜏) 𝑑𝜏 + 𝛽 ≥ ∫

𝑡

0

𝜌𝑦
𝑇
(𝜏) 𝑦 (𝜏) 𝑑𝜏. (4)

If a system is passive, a suitable controller can stabilize
asymptotically the equilibrium point 𝑥 = 0 of system (2).

If the system (2) has the relative degree {1, . . . , 1} at 𝑥 =

0 (𝐿
𝑔
ℎ(0) is nonsingular) and the distribution spanned by

the vector field 𝑔
1
(𝑥), . . . , 𝑔

𝑚
(𝑥) is involutive, then it can be

represented in the generalized form

𝑧̇ = 𝑓
0 (
𝑧) + 𝑝 (𝑧, 𝑦) 𝑦,

̇𝑦 = 𝑏 (𝑧, 𝑦) + 𝑘 (𝑧, 𝑦) 𝑢,

(5)

where 𝑘(𝑧, 𝑦) is nonsingular ∀(𝑧, 𝑦). By designing a suitable
controller 𝑢, the system (5) may be passive. Thus, the system
(5) can be asymptotically stabilized to the equilibrium point
by applying the controller 𝑢. If the system (5) describes an
error dynamical system, then the synchronization between
two systems is achieved.
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Theorem 3. The system (5) is asymptotically stabilized to the
equilibrium point by applying the controller as follows:

𝑢 = 𝑘
−1
(𝑧, 𝑦) [−𝑏

𝑇
(𝑧, 𝑦) −

𝜕

𝜕𝑧

𝑊 (𝑧) 𝑝 (𝑧, 𝑦) − 𝛼𝑦 + ]] ,

(6)

where𝑊(𝑧) is the Lyapunov function of𝑓
0
(𝑧) and𝑊(0) = 0, 𝛼

is a positive real constant, and ] is an external signal connected
to the reference input.

3. Chaos Synchronization of Hyperchaotic
Chen-Lee Systems

Chen et al. [26] introduced the hyperchaotic Chen-Lee
system:

𝑥̇
1
= − 𝑥

2
𝑥
3
+ 𝑎𝑥
1
,

𝑥̇
2
= 𝑥
1
𝑥
3
+ 𝑏𝑥
2
,

𝑥̇
3
=

1

3

𝑥
1
𝑥
2
+ 𝑐𝑥
3
+ 0.2𝑥

4
,

𝑥̇
4
= 0.5𝑥

2
𝑥
3
+ 0.05𝑥

4
+ 𝑑𝑥
1
,

(7)

where 𝑎 = 5, 𝑏 = −10, 𝑐 = −3.8, and 𝑑 are system parameters.
Hyperchaotic behaviors have been observed when 0 ≤ 𝑑 ≤

1.3 excluding 𝑑 = 0.8 and 𝑑 = 1.1. For the synchronization
purpose, consider that the system (7) is the driving system
and the response system is defined as

̇𝑦
1
= − 𝑦

2
𝑦
3
+ 𝑎𝑦
1
+ 𝑢
1
,

̇𝑦
2
= 𝑦
1
𝑦
3
+ 𝑏𝑦
2
,

̇𝑦
3
=

1

3

𝑦
1
𝑦
2
+ 𝑐𝑦
3
+ 0.2𝑦

4
+ 𝑢
2
,

̇𝑦
4
= 0.5𝑦

2
𝑦
3
+ 0.05𝑦

4
+ 𝑑𝑦
1
+ 𝑢
3
,

(8)

where 𝑢
1
, 𝑢
2
, and 𝑢

3
are the controllers to be designed. Let

𝑒
1
= 𝑦
1
−𝑥
1
, 𝑒
2
= 𝑦
2
−𝑥
2
, 𝑒
3
= 𝑦
3
−𝑥
3
, and 𝑒

4
= 𝑦
4
−𝑥
4
. The

error dynamical system is then expressed by

̇𝑒
1
= 𝑎𝑒
1
− 𝑒
2
𝑒
3
− 𝑒
2
𝑥
3
− 𝑒
3
𝑥
2
+ 𝑢
1
,

̇𝑒
2
= 𝑏𝑒
2
+ 𝑒
1
𝑒
3
+ 𝑒
1
𝑥
3
+ 𝑒
3
𝑥
1
,

̇𝑒
3
= 𝑐𝑒
3
+

1

3

(𝑒
1
𝑒
2
+ 𝑒
1
𝑥
2
+ 𝑒
2
𝑥
1
) + 0.2𝑒

4
+ 𝑢
2
,

̇𝑒
4
= 0.5 (𝑒

2
𝑒
3
+ 𝑒
2
𝑥
3
+ 𝑒
3
𝑥
2
) + 0.05𝑒

4
+ 𝑑𝑒
1
+ 𝑢
3
.

(9)

By choosing 𝑢
2
= −(4/3)𝑒

2
𝑥
1
− 0.2𝑒

4
and 𝑢

3
= −0.5(𝑦

2
𝑦
3
−

𝑥
2
𝑥
3
) − 𝜎𝑒

4
, where 𝜎 ≥ 0.05, the system (9) can be rewritten

as
̇𝑒
1
= 𝑎𝑒
1
− 𝑒
2
𝑒
3
− 𝑒
2
𝑥
3
− 𝑒
3
𝑥
2
+ 𝑢
1
,

̇𝑒
2
= 𝑏𝑒
2
+ 𝑒
1
𝑒
3
+ 𝑒
1
𝑥
3
+ 𝑒
3
𝑥
1
,

̇𝑒
3
= 𝑐𝑒
3
+

1

3

(𝑒
1
𝑒
2
+ 𝑒
1
𝑥
2
− 𝑒
2
𝑥
1
) ,

̇𝑒
4
= (0.05 − 𝜎) 𝑒

4
+ 𝑑𝑒
1
.

(10)

The aim is to design the controller 𝑢
1
for stabilizing

the system (10) at the origin asymptotically. Therefore, the
driving and the response systems are synchronized globally
asymptotically.

Let 𝑧
1
= 𝑒
2
, 𝑧
2
= 𝑒
3
, 𝑧
3
= 𝑒
4
, and 𝑦 = 𝑒

1
. The system (10)

can be rewritten as

𝑧̇
1
= 𝑏𝑧
1
+ 𝑥
1
𝑧
2
+ (𝑧
2
+ 𝑥
3
) 𝑦,

𝑧̇
2
= 𝑐𝑧
2
− 𝑥
1
𝑧
1
+

1

3

(𝑧
1
+ 𝑥
2
) 𝑦,

𝑧̇
3
= (0.05 − 𝜎) 𝑧3

+ 𝑑𝑦,

̇𝑦 = 𝑎𝑦 − 𝑧
1
𝑧
2
− 𝑧
1
𝑥
3
− 𝑧
2
𝑥
2
+ 𝑢
1
.

(11)

It is in the form of (5), where

𝑓
0
(𝑧) =

[

[

𝑏𝑧
1
+ 𝑥
1
𝑧
2

𝑐𝑧
2
− 𝑥
1
𝑧
1

0.05 − 𝜎

]

]

, 𝑝 (𝑥, 𝑦) =
[

[

[

𝑧
2
+ 𝑥
3

1

3

(𝑧
1
+ 𝑥
2
)

𝑑

]

]

]

,

𝑏 (𝑧, 𝑦) = 𝑎𝑦 − 𝑧
1
𝑧
2
− 𝑧
1
𝑥
3
− 𝑧
2
𝑥
2
, 𝑘 (𝑧, 𝑦) = 1.

(12)

Because 𝑏 < 0, 𝑐 < 0, and 𝜎 ≥ 0.05,

𝑑

𝑑𝑡

𝑊 (𝑧) = [𝑧
1
, 𝑧
2
, 𝑧
3
]
[

[

𝑏𝑧
1
+ 𝑥
1
𝑧
2

𝑐𝑧
2
− 𝑥
1
𝑧
1

(0.05 − 𝜎) 𝑧3

]

]

≤ 0. (13)

According toTheorem 3, the system (10) is stabilized asymp-
totically at the origin if we choose the controller 𝑢

1
as

𝑢
1
=

2

3

𝑒
3
𝑥
2
−

1

3

𝑒
2
𝑒
3
− 𝑑𝑒
4
− (𝑎 + 𝛼) 𝑒1

+ ]. (14)

This means that the driving system (7) and the response
system (8) can be synchronized globally asymptotically via
the designed controller.

If the ordinary differential operators in (7) are replaced
by fractional differential ones, we have the fractional-order
hyperchaotic Chen-Lee system as shown as follows:

𝐷
𝑞
𝑥
1
= − 𝑥

2
𝑥
3
+ 𝑎𝑥
1
,

𝐷
𝑞
𝑥
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= 𝑥
1
𝑥
3
+ 𝑏𝑥
2
,

𝐷
𝑞
𝑥
3
=
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3
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1
𝑥
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3
+ 0.2𝑥

4
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𝐷
𝑞
𝑥
4
= 0.5𝑥

2
𝑥
3
+ 0.05𝑥

4
+ 𝑑𝑥
1
.

(15)

By taking (15) as the driving system and letting

𝐷
𝑞
𝑦
1
= − 𝑦

2
𝑦
3
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1
+ 𝑢
1
,
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4
+ 𝑢
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𝐷
𝑞
𝑦
4
= 0.5𝑦

2
𝑦
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+ 0.05𝑦
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+ 𝑑𝑦
1
+ 𝑢
3

(16)
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Figure 1: Schematic diagram of the synchronization system.
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Figure 2: Electronic circuits of (a) the driving system and (b) the response system.

be the response system and supposing that the external
source input ] = 0, the synchronization error between
two fractional-order hyperchaotic Chen-Lee systems with
identical order is then expressed as

𝐷
𝑞
𝑒
1
= − 𝛼𝑒

1
−

4

3

𝑒
2
𝑒
3
− 𝑒
2
𝑥
3
−

1

3

𝑒
3
𝑥
2
− 𝑑𝑒
4
,

𝐷
𝑞
𝑒
2
= 𝑏𝑒
2
+ 𝑒
1
𝑒
3
+ 𝑒
1
𝑥
3
+ 𝑒
3
𝑥
1
,

𝐷
𝑞
𝑒
3
= 𝑐𝑒
3
+

1

3

(𝑒
1
𝑒
2
+ 𝑒
1
𝑥
2
− 𝑒
2
𝑥
1
) ,

𝐷
𝑞
𝑒
4
= (0.05 − 𝜎) 𝑒

4
+ 𝑑𝑒
1
,

(17)

where 𝑞 ∈ [0.98, 1) is the fractional order. It has not
been determined yet whether the passivity theory above can
directly be applied to the synchronization for the fractional
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counterpart or not.The stability of (17) can be determined by
the following theorem.

Theorem 4. System (17) is globally asymptotically stable at the
origin if | arg(𝜆(𝑡))| > 𝑞𝜋/2 is satisfied for all 𝜆(𝑡) in
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Figure 5: Time histories of the synchronization errors (10) between systems (7) and (8) with 𝜎 = 0.5.
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Obviously, the eigenvalues depend on the system states
of (15). However, it is difficult to determine the stability by
just considering the bounds of the system states. In order
to examine the stability, we apply Theorem 1. The procedure
is described in the following. Time histories of the system
states are first numerically evaluated for a sufficient long
time, so that they can reflect the dynamical behavior of the
chaotic fractional-order system. Next, the eigenvalues 𝜆(𝑡)

are evaluated for each set of the system states. The minimum
values of | arg(𝜆(𝑡))| are then collected at every time step. If all
min | arg(𝜆(𝑡))| > 𝑞𝜋/2, it implies that system (17) is stabilized
at the origin. This completes the proof.

4. Electronic Circuits

An electronic circuit was constructed for implementing
the proposed scheme. Figure 1 showed the synchronization
system, which consisted of a driving system, a response
system, and three controllers. The systems (7) and (8) were
normalized by a factor of 10. The controller parameter 𝜎 was
set to 5. The corresponding electronic circuits of the systems
and controllers were presented in Figures 2 and 3.

The above circuit can be converted to a fractional-order
one by simply replacing the capacitors on the feedback path
of the integrators by chain fractance [35]. Chain fractance is
constructed of a group of resistors in parallel with a capacitor
in series.

To approximately realize the fractional-order operator
with 𝑞 = 0.98, the corresponding transfer function [7] with
discrepancy of 0.5 dB between the actual and approximated
signals over the frequency bandwidth𝜔max = 100 for a corner
frequency 𝑝

𝑇
= 0.01 was

𝐻(𝑠) ≈

1.2234𝑠
2
+ 1463.2𝑠 + 4893.2

(𝑠 + 0.0106) (𝑠 + 3.7716) (𝑠 + 1341.4)

. (21)

It can be realized by a chain fractance of order 3
(Figure 4). Its transfer function was described by

𝐻(𝑠) = (𝑅
𝑎
//

1
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1

𝑠𝐶
𝑏

) + (𝑅
𝑐
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1
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𝑐

) . (22)

The values of the resistors and capacitors of the chain
fractance were then determined by solving the equations

(𝑅
𝑎
𝐶
𝑎
)
−1

= 0.0106,

(𝑅
𝑏
𝐶
𝑏
)
−1
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𝑐
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𝑐
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= 1341.4,
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= 1463.2,
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𝑎
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𝑅
𝑏
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𝑏
𝑅
𝑐
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(23)

which gave 𝑅
𝑎
= 91.17MΩ, 𝑅

𝑏
= 32.046 kΩ, 𝑅

𝑐
= 101.12Ω,

𝐶
𝑎
= 1.0656 𝜇F, 𝐶

𝑏
= 8.5245 𝜇F, and 𝐶

𝑐
= 7.596 𝜇F.

5. Numerical Results

In this section, the Runge-Kutta method of order 4 was used
to solve the differential equations in the systems (7) and (8),
while the improved method [11] based on Caputo derivative
was implemented to approximate the fractional differential
equations in (15) and (16) with time step size Δt = 0.001 s.The
control scheme took place at 100 s in all cases.

5.1. Synchronization in Integer-Order Systems. First of all, the
value of d was chosen to be 𝑑 = 1.3, with the fact that the
Lyapunov exponents of the system (7) were 𝜆

1
= 0.677,

𝜆
2

= 0.107, 𝜆
3

= 0, and 𝜆
4

= −13.412 𝜆
4
= –13.412.

Two positive Lyapunov exponents indicated the system (7) is
hyperchaotic [26]. Next, the control parameters were chosen
to be 𝜎 = 0.5, 𝛼 = 1.5, and ] = 0. The initial conditions for
the driving and response systems were chosen as [2, 3, 2, 2]𝑇

and [4, −6, −6, −3]
𝑇, respectively. Figure 5 showed the time

histories of the synchronization errors between the two
systems (7) and (8). The response system was synchronized
with the driving system in 5.9 s. The synchronization time
was shortened by setting 𝜎 = 5. The results in Figure 6
showed that synchronization was well achieved within 1.1 s.
In addition, Figure 7 represented the influence of 𝜎 on the
synchronization time. It was noticed that the performance of
synchronization was improved by increasing 𝜎 from a small
value up to 𝜎 = 5. If 𝜎 > 5, the synchronization time only
slightly decreasedwith increasing𝜎, though the influencewas
quite unnoticeable.

5.2. Synchronization in Fractional-Order Systems. The order
of the systems was chosen to be 𝑞 = 0.98.The phase diagrams
of the system (15) were plotted in Figure 8(a). A four-scroll
attractor was found in the 𝑥-𝑦 plot, which made the system
(15) exhibit more complicated dynamical behavior than the
system (7). The stability of the error dynamical system (17)
was examined by Theorem 4. When 𝛼 = 5 and 𝜎 = 5,
the time history of min | arg(𝜆(𝑡))|was plotted in Figure 9(a).
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Figure 8: Phase diagrams of the hyperchaotic systems: (a) numerical solution in time domain; (b) circuit simulation in frequency domain.
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Obviously min | arg(𝜆(𝑡))| reached zero at some 𝑡. According
to Theorem 1, this implied that the synchronization may not
be achieved. All values of min | arg(𝜆(𝑡))| were completely
greater than 0.98𝜋/2 until 𝛼 increased to 155, as depicted
in Figure 9(b). Under this condition, the response system
(16) was synchronized successfully with the driving system
(15). The time histories of the error system (17) were plotted
in Figure 10. After the synchronization scheme took place
at 𝑡 = 100 s, the error signal was asymptotically stabilized
at the origin, meaning that the synchronization was well
achieved.

5.3. Circuit Simulations. The simulation was done on
Multisim package. The initial conditions were set to

[0.2, 0.3, 0.2, 0.2]
𝑇 and [0.4, −0.6, −0.6, −0.3]𝑇 for the integer-

order driving and response systems, respectively.The outputs
of the circuit simulation were depicted in Figure 11. The
driving and response systems developed differently during
the time period 0 < 𝑡 < 100 s. The response system was
synchronized with the driving system after activating the
controller at 𝑡 = 100 s. It meant that the synchronization
circuit with integer order was built successfully.

For simulating systems with fractional order, the capac-
itors were replaced by chain fractance. The value of the
resistor 𝑅

𝑎+𝛼
= 15.385 kΩ in Figure 3(a) was changed

to 650Ω for 𝛼 = 155. The numerical circuit-simulated
phase diagrams of the hyperchaotic Chen-Lee system with
order 𝑞 = 0.98 were depicted in Figure 8(b). The output
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Figure 11: Time histories of the circuit outputs of the driving system
(red) and the response system (blue) with integer order.

trajectories of the circuit simulationwere plotted in Figure 12.
It was clear that the response system was well synchronized
with the driving system after 100 s. Both circuit simulations
were in good agreement with their corresponding numerical
results.

6. Conclusions

A novel and efficient strategy was proposed to examine the
stability of the error dynamical systems with fractional order.
The chaos synchronization between two hyperchaotic Chen-
Lee systems with fractional order was achieved via feedback
passive control technique. The passive controller was first
designed for the integer-order system. The control scheme
was proved based on the stability theorem for fractional
calculus. Numerical simulation was given to validate the
proposed approaches. Chain fractance was designed for
approximating the fractional order 𝑞 = 0.98 and the
electronic circuits were simulated to verify the scheme. It
is discovered that the synchronization scheme designed for
integer-order systems may not directly be valid for systems
with fractional order. Fortunately, the scheme may become
effective by just simply changing a single parameter.

8

4

0

−4

−8

8

4

0

−4

−8

0 25 50 75 100 125 150 175 200

t (s)

0 25 50 75 100 125 150 175 200

t (s)

0 25 50 75 100 125 150 175 200

t (s)

0 25 50 75 100 125 150 175 200

t (s)

6

3

0

−3

−6

14

7

0

−7

−14

x
1
,y

1
x
2
,y

2
x
3
,y

3
x
4
,y

4

Figure 12: Time histories of the circuit outputs of the driving system
(red) and the response system (blue) with fractional order.
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