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The aim of this paper is to define the notions of ideal convergence, 𝐼-bounded for double sequences in setting of locally solid Riesz
spaces and study some results related to these notions. We also define the notion of 𝐼∗-convergence for double sequences in locally
solid Riesz spaces and establish its relationship with ideal convergence.

1. Introduction and Preliminaries

In 1951, Fast [1] and Steinhaus [2] introduced the concept of
statistical convergence for single sequences, independently.
Some basic and important properties of this concept were
studied by Buck [3], Šalát [4], Schoenberg [5], and Fridy
[6]. Later, the notion of statistical convergence for single
sequences was further defined in various spaces; see Çakalli
and Khan [7–9], Di Maio et al. [10, 11], Hazarika [12–14],
Maddox [15], Mohiuddine et al. [16–19], and so forth. Some
application of statistical summability methods is presented
in [20, 21]. In 2003, the notion of statistical convergence for
single sequences has been extended to double sequences by
Mursaleen and Edely [22]. Recently, the statistical conver-
gence and statistical Cauchy for double sequences have been
defined in the framework fuzzy and intuitionistic normed
spaces by Mohiuddine et al. [23] and Mursaleen and Mohi-
uddine [24], respectively, and established some interesting
results related to the concept of statistical convergence and
statistical Cauchy double sequences. Recently, it was defined
and studied by Mohiuddine et al. [25] in the setting of locally
solid Riesz spaces while for single sequences this concept was
first studied byAlbayrak and Pehlivan [26] (also see [27–29]).
An application of locally solid Riesz spaces in economics can
be found in [30].

The notion of ideal convergence for single sequences,
which is a generalization of the concept of statistical conver-
gence, was first defined and studied by Kostyrko et al. [31]. Let

us recall the notion of ideal convergence and related concepts
by Kostyrko et al. [31] as follows. Let N be a nonempty set.
Then a family of sets 𝐼 ⊆ 𝑃(N) (power set of N) is said to be
an ideal if 𝐼 is additive; that is, 𝐴, 𝐵 ∈ 𝐼 ⇒ 𝐴 ∪ 𝐵 ∈ 𝐼 and
𝐴 ∈ 𝐼, 𝐵 ⊆ 𝐴 ⇒ 𝐵 ∈ 𝐼. A family of sets 𝐼 ⊂ 𝑃(N) (power
sets ofN) is called an ideal if and only if, for each𝐴, 𝐵 ∈ 𝐼, we
have 𝐴 ∪ 𝐵 ∈ 𝐼 and, for each 𝐴 ∈ 𝐼 and each 𝐵 ⊂ 𝐴, we have
𝐵 ∈ 𝐼. A nonempty family of setsF ⊂ 𝑃(N) is a filter on N if
and only ifΦ ∉ F; for each𝐴, 𝐵 ∈ F, we have𝐴∩𝐵 ∈ F and
for each𝐴 ∈ F and each𝐴 ⊂ 𝐵, we have 𝐵 ∈ F. An ideal 𝐼 is
called nontrivial ideal if 𝐼 ̸=Φ and N ∉ 𝐼. Clearly 𝐼 ⊂ 𝑃(N) is
a nontrivial ideal if and only ifF = F(𝐼) = {N−𝐴 : 𝐴 ∈ 𝐼} is
a filter onN. A nontrivial ideal 𝐼 ⊂ 𝑃(N) is called admissible if
and only if {{𝑥} : 𝑥 ∈ N} ⊂ 𝐼. A nontrivial ideal 𝐼 is maximal
if there cannot exist any nontrivial ideal 𝐽 ̸= 𝐼 containing 𝐼 as
a subset.

We remark that if 𝐼 = 𝐼
𝑓
= {𝐴 ⊆ N : 𝐴 is a finite subset},

then the corresponding convergence coincides with the usual
convergence. Also, if 𝐼 = 𝐼

𝛿
= {𝐴 ⊆ N : 𝛿(𝐴) = 0}, then

the corresponding convergence coincides with the statistical
convergence (where 𝛿(𝐴) denotes the natural density of the
set 𝐴). In the above cases, both 𝐼

𝑓
and 𝐼

𝛿
are nontrivial

admissible ideals of N.
Kumar [32] defined the notions of 𝐼 and 𝐼∗-convergence

of double sequence and studied some properties of these
notions. Recently, Das et al. [33] introduced the concepts of
𝐼 and 𝐼

∗-convergence of double sequences in the setting of
metric space and established some relationship between these
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types of convergence. Quite recently, Mursaleen and Mohi-
uddine defined and studied the notion of 𝐼-convergence, 𝐼∗-
convergence, 𝐼-limit points, and 𝐼-cluster points for single
and double sequences, in [34, 35], respectively, in prob-
abilistic normed spaces. Şahiner et al. [36] and Gürdal
and Açik [37] introduced the notion of ideal convergence
and 𝐼-Cauchy sequence in 2-normed spaces, respectively.
Mursaleen and Alotaibi [38] introduced the notion of ideal
convergence in random 2-normed spaces and later on it was
extended by Mohiuddine et al. [39] from single to double
sequences. For more details on these concepts, one can be
referred to [40–52].

Now we recall the definition of locally solid Riesz spaces
and some related concepts as follows. Let 𝑋 be a real vector
space and let ≤ be a partial order on this space.𝑋 is said to be
an ordered vector space if it satisfies the following properties:

(1) if 𝑥, 𝑦 ∈ 𝑋 and 𝑦 ≤ 𝑥, then 𝑦 + 𝑧 ≤ 𝑥 + 𝑧 for each
𝑧 ∈ 𝑋;

(2) if 𝑥, 𝑦 ∈ 𝑋 and 𝑦 ≤ 𝑥, then 𝑎𝑦 ≤ 𝑎𝑥 for each 𝑎 ≥ 0.

If, in addition, 𝑋 is a lattice with respect to the partial
ordering, then 𝑋 is said to be a Riesz space (or a vector
lattice)(see [53]).

For an element 𝑥 of a Riesz space𝑋, the positive part of 𝑥
is defined by 𝑥+ = 𝑥 ∨ 𝜃 = sup{𝑥, 𝜃}, the negative part of 𝑥 by
𝑥
−

= (−𝑥) ∨ 𝜃, and the absolute value of 𝑥 by |𝑥| = 𝑥 ∨ (−𝑥),
where 𝜃 is the zero element of𝑋.

A subset 𝑆 of 𝑋 is said to be solid if 𝑦 ∈ 𝑆 and |𝑥| ≤ |𝑦|

implies 𝑥 ∈ 𝑆.
A topology 𝜏 on a real vector space 𝑋 that makes the

addition and scalar multiplication continuous is said to be a
linear topology, that is, when the mappings

(𝑥, 𝑦) → (𝑥 + 𝑦) (from (𝑋 × 𝑋, 𝜏 × 𝜏) → (𝑋, 𝜏)) ,

(𝜆, 𝑥) → (𝜆𝑥) (from (R × 𝑋, 𝜏


× 𝜏) → (𝑋, 𝜏))

(1)

are continuous, where 𝜏 is the usual topology on R. In this
case the pair (𝑋, 𝜏) is called a topological vector space.

Every linear topology 𝜏 on a vector space 𝑋 has a
base 𝑁 for the neighborhoods of 𝜃 satisfying the following
properties.

(1) Each 𝑌 ∈ 𝑁 is a balanced set; that is, 𝑎𝑥 ∈ 𝑌 holds for
all 𝑥 ∈ 𝑌 and every 𝑎 ∈ R with |𝑎| ≤ 1.

(2) Each 𝑌 ∈ 𝑁 is an absorbing set; that is, for every 𝑥 ∈

𝑋, there exists 𝑎 > 0 such that 𝑎𝑥 ∈ 𝑌.
(3) For each 𝑌 ∈ 𝑁 there exists some 𝐸 ∈ 𝑁with 𝐸+𝐸 ⊆

𝑌.

A linear topology 𝜏 on a Riesz space𝑋 is said to be locally
solid (see [54]) if 𝜏 has a base at zero consisting of solid sets. A
locally solid Riesz space (𝑋, 𝜏) is a Riesz space𝑋 equippedwith
a locally solid topology 𝜏. For more details on these concepts,
one can be referred to [55–57].

Throughout the paper, the symbol 𝑁sol will stand for a
base at zero consisting of solid sets and satisfying conditions
(1), (2), and (3) in a locally solid topology. Also we assume
that 𝐼
2
is a nontrivial admissible ideal of N × N.

2. Ideal Convergence of Double Sequences in
LSR-Spaces

Throughout the paper 𝑋 will denote the Hausdorff locally
solid Riesz space, which satisfies the first axiom of countabil-
ity. For our convenience, here and in what follows, we will
write an LSR-space instead of a locally solid Riesz space.

The notion of convergence for double sequence was first
introduced by Pringsheim [58] as follows. We say that a
double sequence 𝑥 = (𝑥

𝑗,𝑘
)
𝑗,𝑘∈N of reals is convergent to 𝐿

in Pringsheim’s sense (briefly, 𝑃-convergent) provided that
given 𝜖 > 0 there exists a positive integer𝑁 such that |𝑥

𝑗,𝑘
−

𝐿| < 𝜖 whenever 𝑗, 𝑘 ≥ 𝑁.
Let 𝐾 ⊂ N × N and 𝐾(𝑚, 𝑛) denotes the number

of (𝑖, 𝑗) in 𝐾 such that 𝑖 ≤ 𝑚 and 𝑗 ≤ 𝑛 (see
[22]). Then the lower natural density of 𝐾 is defined by
𝛿
2
(𝐾) = lim inf

𝑚,𝑛→∞
(|𝐾(𝑚, 𝑛)|/𝑚𝑛). In this case, the

sequence (𝐾(𝑚, 𝑛)/𝑚𝑛)has a limit in Pringsheim’s sense; then
we say that 𝐾 has a double natural density and is defined by
𝑃 − lim

𝑚,𝑛→∞
(|𝐾(𝑚, 𝑛)|/𝑚𝑛) = 𝛿

2
(𝐾).

In the recent past, Mohiuddine et al. [25] introduced
the notion of statistical convergence of double sequences in
LSR-space as follows. Let (𝑋, 𝜏) be a LSR-space. A double
sequence (𝑥

𝑘,𝑙
) of points in 𝑋 is said to be 𝑆

2
(𝜏)-convergent

to an element 𝑥
0
if for each 𝜏-neighborhood 𝑉 of zero

𝛿
2
({(𝑘, 𝑙) ∈ N × N : 𝑥

𝑘,𝑙
− 𝑥
0
∉ 𝑉}) = 0. (2)

Now we introduce the notions of 𝐼
2
(𝜏)-convergence and

𝐼
2
(𝜏)-bounded double sequences in LSR-spaces.

Definition 1. Let (𝑋, 𝜏) be a LSR-space. A double sequence
(𝑥
𝑘,𝑙
) of points in 𝑋 is said to be 𝐼

2
(𝜏)-convergent to an

element 𝑥
0
of𝑋 if for each 𝜏-neighborhood 𝑉 of zero

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∉ 𝑉} ∈ 𝐼

2
. (3)

That is,

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∈ 𝑉} ∈ F. (4)

In this case, one writes 𝐼
2
(𝜏)-lim

𝑘,𝑙→∞
𝑥
𝑘,𝑙
= 𝑥
0
or (𝑥
𝑘,𝑙
)
𝐼
2
(𝜏)

→

𝑥
0
.

Definition 2. Let (𝑋, 𝜏) be a LSR-space. Then, a double
sequence (𝑥

𝑘,𝑙
) of points in𝑋 is said to be 𝐼

2
(𝜏)-bounded in𝑋

if, for each 𝜏-neighborhood 𝑉 of zero, there is some 𝑎 > 0,

{(𝑘, 𝑙) ∈ N × N : 𝑎𝑥
𝑘,𝑙
∉ 𝑉} ∈ 𝐼

2
. (5)

Definition 3. Let (𝑋, 𝜏) be a LSR-space. One says that a double
sequence 𝑥 = (𝑥

𝑘,𝑙
) is 𝐼
2
(𝜏)-Cauchy in 𝑋 if, for each 𝜏-

neighborhood 𝑉 of zero, there exist 𝑝, 𝑞 ∈ N such that, for
all 𝑘,𝑚 ≥ 𝑝 and 𝑙, 𝑛 ≥ 𝑞,

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
𝑚,𝑛

∉ 𝑉} ∈ 𝐼
2
. (6)

Definition 4. Let (𝑋, 𝜏) be a LSR-space. Then, a double
sequence 𝑥 = (𝑥

𝑘,𝑙
) in 𝑋 is said to be 𝐼∗

2
(𝜏)-convergent to

𝑥
0
if there is a set 𝐾 = {(𝑘, 𝑙)} ⊆ N × N, 𝑘, 𝑙 = 1, 2, . . ., with

𝐾 ∈ 𝐹 such that lim
𝑘,𝑙
𝑥
𝑘,𝑙
= 𝑥
0
. In this case, one writes 𝐼∗

2
(𝜏)-

lim
𝑘,𝑙
𝑥
𝑘,𝑙
= 𝑥
0
.



Abstract and Applied Analysis 3

Theorem 5. Let (𝑋, 𝜏) be a LSR-space. Every 𝐼
2
(𝜏)-convergent

sequence in𝑋 has only one limit.

Proof. Suppose that 𝑥 = (𝑥
𝑘,𝑙
) is a double sequence in𝑋 such

that 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑥
𝑘,𝑙

= 𝑥
0
and 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑥
𝑘,𝑙

= 𝑦
0
. Let 𝑉 be

any 𝜏-neighborhood of zero. Also for each 𝜏-neighborhood
𝑉 of zero there is a set 𝑌 ∈ 𝑁sol such that 𝑌 ⊆ 𝑉. Let 𝑊 in
𝑁sol be such that𝑊 +𝑊 ⊆ 𝑌. We define the sets 𝐴

1
and 𝐴

2

as follows:
𝐴
1
= {(𝑘, 𝑙) ∈ N × N : 𝑥

𝑘,𝑙
− 𝑥
0
∈ 𝑊} ,

𝐴
2
= {(𝑘, 𝑙) ∈ N × N : 𝑥

𝑘,𝑙
− 𝑦
0
∈ 𝑊} .

(7)

Since 𝐼
2
(𝜏)-lim𝑥

𝑘,𝑙
= 𝑥
0
and 𝐼

2
(𝜏)-lim𝑥

𝑘,𝑙
= 𝑦
0
, we get

𝐴
1
, 𝐴
2
∈ F. Now, let 𝐴 = 𝐴

1
∩ 𝐴
2
. Then we have

𝑥
0
− 𝑦
0
= 𝑥
0
− 𝑥
𝑘,𝑙
+ 𝑥
𝑘,𝑙
− 𝑦
0
∈ 𝑊 +𝑊 ⊆ 𝑌 ⊆ 𝑉. (8)

As we know, intersection of all 𝜏-neighborhoods 𝑉 of zero is
the singleton set {𝜃} because (𝑋, 𝜏) is Hausdorff. Hence 𝑥

0
−

𝑦
0
= 0; that is, 𝑥

0
= 𝑦
0
.

Theorem 6. Let (𝑋, 𝜏) be a LSR-space and let (𝑥
𝑘,𝑙
) and (𝑦

𝑘,𝑙
)

be two double sequences of points in 𝑋. Then,
(i) if 𝐼

2
(𝜏)-lim

𝑘,𝑙
𝑥
𝑘,𝑙

= 𝑥
0
and 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑦
𝑘,𝑙

= 𝑦
0
, then

𝐼
2
(𝜏)-lim

𝑘,𝑙
(𝑥
𝑘,𝑙
+ 𝑦
𝑘,𝑙
) = 𝑥
0
+ 𝑦
0
;

(ii) if 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑥
𝑘,𝑙
= 𝑥
0
, then 𝐼

2
(𝜏)-lim

𝑘,𝑙
𝑎𝑥
𝑘,𝑙
= 𝑎𝑥
0
for

𝑎 ∈ R.

Proof. Assume that 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑥
𝑘,𝑙
= 𝑥
0
and 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑦
𝑘,𝑙
=

𝑦
0
. Suppose that 𝑉 is an arbitrary 𝜏-neighborhood of zero.

Then there exists 𝑌 ∈ 𝑁sol such that 𝑌 ⊆ 𝑉. Let 𝑊 ∈ 𝑁sol
such that𝑊+𝑊 ⊆ 𝑌. Thus, we can write

𝐵
1
= {(𝑘, 𝑙) ∈ N × N : 𝑥

𝑘,𝑙
− 𝑥
0
∈ 𝑊} ,

𝐵
2
= {(𝑘, 𝑙) ∈ N × N : 𝑦

𝑘,𝑙
− 𝑦
0
∈ 𝑊} .

(9)

Then we have 𝐵
1
, 𝐵
2
∈ F.

Let 𝐵 = 𝐵
1
∩ 𝐵
2
. Hence we have 𝐵 ∈ F and

(𝑥
𝑘,𝑙
+ 𝑦
𝑘,𝑙
) − (𝑥

0
+ 𝑦
0
) = (𝑥

𝑘,𝑙
− 𝑥
0
)

+ (𝑦
𝑘,𝑙
− 𝑦
0
) ∈ 𝑊 +𝑊 ⊆ 𝑌 ⊆ 𝑉.

(10)

Therefore

{(𝑘, 𝑙) ∈ N × N : (𝑥
𝑘,𝑙
+ 𝑦
𝑘,𝑙
) − (𝑥

0
+ 𝑦
0
) ∈ 𝑉} ∈ F. (11)

Since 𝑉 is arbitrary, we have 𝐼
2
(𝜏)-lim(𝑥

𝑘,𝑙
+ 𝑦
𝑘,𝑙
) = 𝑥
0
+ 𝑦
0
.

(ii) Suppose that 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑥
𝑘,𝑙

= 𝑥
0
and also suppose

that 𝑉 is an arbitrary 𝜏-neighborhood of zero. Then there
exists 𝑌 ∈ 𝑁sol such that 𝑌 ⊆ 𝑉, so we have

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∈ 𝑌} ∈ F. (12)

Since 𝑌 is balanced, 𝑎(𝑥
𝑘,𝑙
−𝑥
0
) ∈ 𝑌 holds for all 𝑥

𝑘,𝑙
−𝑥
0
∈ 𝑌

and for every 𝑎 ∈ R with |𝑎| ≤ 1. Therefore

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∈ 𝑌}

⊆ {(𝑘, 𝑙) ∈ N × N : 𝑎𝑥
𝑘,𝑙
− 𝑎𝑥
0
∈ 𝑌}

⊆ {(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∈ 𝑉} .

(13)

Thus, we have

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∈ 𝑉} ∈ F (14)

for each 𝜏-neighborhood 𝑉 of zero. Now let |𝑎| > 1 and [|𝑎|]
be the smallest integer greater than or equal to |𝑎|.Then there
exists𝑊 ∈ 𝑁sol such that [|𝑎|]𝑊 ⊆ 𝑌. From our assumption
that 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑥
𝑘,𝑙
= 𝑥
0
, we obtain that

𝐾 = {(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∈ 𝑊} ∈ F. (15)

Therefore
𝑎𝑥𝑘,𝑙 − 𝑎𝑥0

 = |𝑎|
𝑥𝑘,𝑙 − 𝑥0



≤ [|𝑎|]
𝑥𝑘,𝑙 − 𝑥0

 ∈ [|𝑎|]𝑊 ⊆ 𝑌 ⊆ 𝑉.

(16)

Since 𝑌 is solid, 𝑎𝑥
𝑘
−𝑎𝑥
0
∈ 𝑌. It follows that 𝑎𝑥

𝑘,𝑙
−𝑎𝑥
0
∈ 𝑉.

Thus,

{(𝑘, 𝑙) ∈ N × N : 𝑎𝑥
𝑘,𝑙
− 𝑎𝑥
0
∈ 𝑉} ∈ F, (17)

for each 𝜏-neighborhood 𝑉 of zero. We conclude that 𝐼
2
(𝜏)-

lim
𝑘,𝑙
𝑎𝑥
𝑘,𝑙
= 𝑎𝑥
0
.

Theorem 7. Let (𝑋, 𝜏) be a LSR-space. If a double sequence
(𝑥
𝑘,𝑙
) in X is 𝐼

2
(𝜏)-convergent, then it is 𝐼

2
(𝜏)-bounded.

Proof. Assume that 𝐼
2
(𝜏)-lim

𝑘,𝑙→∞
𝑥
𝑘,𝑙
= 𝑥
0
. Suppose 𝑉 is an

arbitrary 𝜏-neighborhood of zero.Then, there exists 𝑌 ∈ 𝑁sol
such that 𝑌 ⊆ 𝑉. Let𝑊 ∈ 𝑁sol such that𝑊 +𝑊 ⊆ 𝑌. Using
our assumption, we obtain that

𝐴 = {(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∉ 𝑊} ∈ 𝐼

2
. (18)

Since𝑊 is absorbing, there exists 𝑎 > 0 such that 𝑎𝑥
0
∈ 𝑊.

Let 𝑏 be such that |𝑏| ≤ 1 and 𝑏 ≤ 𝑎. Since 𝑊 is solid and
|𝑏𝑥
0
| ≤ |𝑎𝑥

0
|, we have 𝑏𝑥

0
∈ 𝑊. Also, since 𝑊 is balanced,

𝑥
𝑘,𝑙
− 𝑥
0
∈ 𝑊 implies 𝑏(𝑥

𝑘,𝑙
− 𝑥
0
) ∈ 𝑊. Then we have

𝑏𝑥
𝑘,𝑙
= 𝑏 (𝑥

𝑘,𝑙
− 𝑥
0
) + 𝑏𝑥

0
∈ 𝑊

+𝑊 ⊆ 𝑉, for each 𝑘, 𝑙 ∈ N − 𝐴.

(19)

Thus

{(𝑘, 𝑙) ∈ N × N : 𝑏𝑥
𝑘,𝑙
∉ 𝑊} ∈ 𝐼

2
. (20)

Hence (𝑥
𝑘,𝑙
) is 𝐼
2
(𝜏)-bounded.

Theorem8. Let (𝑋, 𝜏) be a LSR-space and let (𝑥
𝑘,𝑙
), (𝑦
𝑘,𝑙
), and

(𝑧
𝑘,𝑙
) be three double sequences of points in X such that

(i) 𝑥
𝑘,𝑙
≤ 𝑦
𝑘,𝑙
≤ 𝑧
𝑘,𝑙
, for all 𝑘, 𝑙 ∈ N,

(ii) 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑥
𝑘,𝑙
= 𝑥
0
= 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑧
𝑘,𝑙
.

Then 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑦
𝑘,𝑙
= 𝑥
0
.

Proof. Suppose that the given conditions (i) and (ii) hold for
the double sequences (𝑥

𝑘,𝑙
), (𝑦
𝑘,𝑙
), and (𝑧

𝑘,𝑙
). Suppose 𝑉 is an

arbitrary 𝜏-neighborhood of zero.Then, there exists 𝑌 ∈ 𝑁sol



4 Abstract and Applied Analysis

such that 𝑌 ⊆ 𝑉. Let 𝑊 ∈ 𝑁sol such that 𝑊 + 𝑊 ⊆ 𝑌. It
follows from (ii) that 𝑃,𝑄 ∈ 𝐹, where

𝑃 = {(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∈ 𝑊} ,

𝑄 = {(𝑘, 𝑙) ∈ N × N : 𝑧
𝑘,𝑙
− 𝑥
0
∈ 𝑊} .

(21)

Also from the given condition (i), we have

𝑥
𝑘,𝑙
− 𝑥
0
≤ 𝑦
𝑘,𝑙
− 𝑥
0
≤ 𝑧
𝑘,𝑙
− 𝑥
0

⇒
𝑦𝑘,𝑙 − 𝑥0

 ≤
𝑥𝑘,𝑙 − 𝑥0



+
𝑧𝑘,𝑙 − 𝑥0

 ∈ 𝑊 +𝑊 ⊆ 𝑌.

(22)

Since 𝑌 is solid, we have 𝑦
𝑘,𝑙
− 𝑥
0
∈ 𝑌 ⊆ 𝑉. Thus,

{(𝑘, 𝑙) ∈ N × N : 𝑦
𝑘,𝑙
− 𝑥
0
∈ 𝑉} ∈ F, (23)

for each 𝜏-neighborhood 𝑉 of zero. Thus 𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑦
𝑘,𝑙

=

𝑥
0
.

Theorem 9. Let (𝑋, 𝜏) be a LSR-space. A double sequence
(𝑥
𝑘,𝑙
) is 𝐼
2
(𝜏)-convergent to 𝑥

0
in X if and only if for each 𝜏-

neighborhood 𝑉 of zero there exists a subsequence (𝑥
𝑘

(𝑟),𝑙

(𝑠)
)

of (𝑥
𝑘,𝑙
) such that lim

𝑟,𝑠→∞
𝑥
𝑘

(𝑟),𝑙

(𝑠)
= 𝑥
0
and

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
𝑘

(𝑟),𝑙

(𝑠)
∉ 𝑉} ∈ 𝐼

2
. (24)

Proof. Suppose that 𝐼
2
(𝜏)-lim

𝑘,𝑙→∞
𝑥
𝑘,𝑙

= 𝑥
0
. Also, suppose

that 𝑉 is an arbitrary 𝜏-neighborhood of zero. Let {𝑉
𝑖
} be a

sequence of nested base of 𝜏-neighborhoods of zero. For each
𝑖 ∈ N, put

𝐸
(𝑖)

= {(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∉ 𝑉
𝑖
} . (25)

Then,𝐸(𝑖+1) ⊂ 𝐸
(𝑖) and𝐸(𝑖) ∈ 𝐹. Let𝑚(1) and 𝑛(1) be such that

𝑟 > 𝑚(1) and 𝑠 > 𝑛(1), respectively.Then𝐸(1) ̸= 𝜙. For 𝑟, 𝑠 ∈ N

such that 𝑚(1) ≤ 𝑟 < 𝑚(2) and 𝑛(1) ≤ 𝑠 < 𝑛(2), choose
𝑘


(𝑟), 𝑙


(𝑠) ∈ 𝐸
(𝑖); that is,𝑥

𝑘

(𝑟),𝑙

(𝑠)
−𝑥
0
∈ 𝑉
1
. In general, choose

𝑚(𝑝 + 1) > 𝑚(𝑝) and 𝑛(𝑝 + 1) > 𝑛(𝑝) such that 𝑟 > 𝑚(𝑝 + 1)

and 𝑠 > 𝑛(𝑝 + 1) hold. Then 𝐸
(𝑝+1)

̸= 𝜙. Therefore for all 𝑟, 𝑠
which satisfy 𝑚(𝑝) ≤ 𝑟 < 𝑚(𝑝 + 1) and 𝑛(𝑝) ≤ 𝑠 < 𝑛(𝑝 + 1),
choose 𝑘(𝑟), 𝑙(𝑠) ∈ 𝐸

(𝑝); that is, 𝑥
𝑘

(𝑟),𝑙

(𝑠)
− 𝑥
0
∈ 𝑉
𝑝
. Hence,

it follows that lim
𝑟,𝑠
𝑥
𝑘

(𝑟),𝑙

(𝑠)
= 𝑥
0
.

Since 𝑉 is an arbitrary 𝜏-neighborhood of zero, there
exists 𝑌 ∈ 𝑁sol such that 𝑌 ⊆ 𝑉. Let 𝑊 ∈ 𝑁sol such that
𝑊+𝑊 ⊆ 𝑌. Now

𝑥
𝑘,𝑙
− 𝑥
𝑘

(𝑟),𝑙

(𝑠)
= 𝑥
𝑘,𝑙
− 𝑥
0
+ 𝑥
𝑘

(𝑟),𝑙

(𝑠)

− 𝑥
0
∈ 𝑊 +𝑊 ⊆ 𝑌 ⊆ 𝑉.

(26)

Also 𝐼
2
(𝜏)-lim

𝑘,𝑙→∞
𝑥
𝑘,𝑙

= 𝑥
0
and lim

𝑟→∞
𝑥
𝑘

(𝑟),𝑙

(𝑠)

= 𝑥
0

imply that

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
𝑘

(𝑟),𝑙

(𝑠)
∉ 𝑉} ∈ 𝐼

2
. (27)

Next suppose for an arbitrary 𝜏-neighborhood 𝑉 of zero
that there exists a subsequence (𝑥

𝑘

(𝑟),𝑙

(𝑠)
) of (𝑥

𝑘,𝑙
) such that

lim
𝑟,𝑠→∞

𝑥
𝑘

(𝑟),𝑙

(𝑠)
= 𝑥
0
and

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
𝑘

(𝑟),𝑙

(𝑠)
∉ 𝑉} ∈ 𝐼

2
. (28)

Since 𝑉 is any 𝜏-neighborhood of zero, we choose𝑊 ∈ 𝑁sol
such that𝑊+𝑊 ⊆ 𝑉. Then we have

𝑥
𝑘,𝑙
− 𝑥
0
= 𝑥
𝑘,𝑙
− 𝑥
𝑘

(𝑟),𝑙

(𝑠)

+ 𝑥
𝑘

(𝑟),𝑙

(𝑠)
− 𝑥
0
∈ 𝑊 +𝑊 ⊆ 𝑉.

(29)

That is,

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∉ 𝑉}

⊆ {(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
𝑘

(𝑟)

∉ 𝑊}

∪ {(𝑟, 𝑠) ∈ N × N : 𝑥
𝑘

(𝑟),𝑙

(𝑠)
− 𝑥
0
∉ 𝑊} .

(30)

Therefore

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∉ 𝑉} ∈ 𝐼

2
. (31)

Theorem 10. If lim
𝑘,𝑙→∞

𝑥
𝑘,𝑙

= 𝑥
0
and 𝐼
2
(𝜏)-lim

𝑘,𝑙→∞
𝑦
𝑘,𝑙

=

0, then 𝐼
2
(𝜏)-lim

𝑘,𝑙→∞
(𝑥
𝑘,𝑙
+ 𝑦
𝑘,𝑙
) = lim

𝑘,𝑙→∞
𝑥
𝑘,𝑙
.

Proof. Let 𝑉 be any 𝜏-neighborhood of 0. Then there exists
𝑌 ∈ 𝑁sol such that𝑌 ⊆ 𝑉. Let𝑊 ∈ 𝑁sol such that𝑊+𝑊 ⊆ 𝑌.
Since lim

𝑘,𝑙→∞
𝑥
𝑘,𝑙
= 𝑥
0
, then there exist integers 𝑛

0
, 𝑚
0
such

that 𝑘 ≥ 𝑛
0
, 𝑙 ≥ 𝑚

0
implies that 𝑥

𝑘,𝑙
− 𝑥
0
∈ 𝑊. Hence

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∉ 𝑊} ⊆ N × N − {(𝑛

0
, 𝑚
0
)} . (32)

By the assumption 𝐼
2
(𝜏)-lim

𝑘,𝑙→∞
𝑦
𝑘,𝑙

= 0, {(𝑘, 𝑙) ∈ N × N :

𝑦
𝑘,𝑙
∉ 𝑊} ∈ 𝐼

2
. Thus

{(𝑘, 𝑙) ∈ N × N : (𝑥
𝑘,𝑙
− 𝑥
0
) + 𝑦
𝑘,𝑙
∉ 𝑉}

⊆ {(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∉ 𝑊}

∪ {(𝑘, 𝑙) ∈ N × N : 𝑦
𝑘,𝑙
∉ 𝑊} .

(33)

That is,

{(𝑘, 𝑙) ∈ N × N : (𝑥
𝑘,𝑙
− 𝑥
0
) + 𝑦
𝑘,𝑙
∉ 𝑉} ∈ 𝐼

2
. (34)

This implies that 𝐼
2
(𝜏)-lim

𝑘,𝑙→∞
(𝑥
𝑘,𝑙
+ 𝑦
𝑘,𝑙
) = lim

𝑘,𝑙→∞
𝑥
𝑘,𝑙
.

Theorem 11. Let (𝑋, 𝜏) be a LSR-space and let 𝑥 = (𝑥
𝑘,𝑙
) be

a double sequence in𝑋. If there is a 𝐼
2
(𝜏)-convergent sequence

𝑦 = (𝑦
𝑘,𝑙
) in 𝑋 such that {(𝑘, 𝑙) ∈ N × N : 𝑦

𝑘,𝑙
̸= 𝑥
𝑘,𝑙
∉ 𝑉} ∈ 𝐼

2

then 𝑥 is also 𝐼
2
(𝜏)-convergent.

Proof. Suppose that {(𝑘, 𝑙) ∈ N × N : 𝑦
𝑘,𝑙

̸= 𝑥
𝑘,𝑙
∉ 𝑉} ∈ 𝐼

2
and

𝐼
2
(𝜏)-lim

𝑘,𝑙
𝑦
𝑘,𝑙
= 𝑥
0
.Then for an arbitrary 𝜏-neighborhood𝑉

of zero, we have

{(𝑘, 𝑙) ∈ N × N : 𝑦
𝑘,𝑙
− 𝑥
0
∉ 𝑉} ∈ 𝐼

2
. (35)

Now,

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∉ 𝑉}

⊆ {(𝑘, 𝑙) ∈ N × N : 𝑦
𝑘,𝑙

̸= 𝑥
𝑘,𝑙
∉ 𝑉}

∪ {(𝑘, 𝑙) ∈ N × N : 𝑦
𝑘,𝑙
− 𝑥
0
∉ 𝑉} .

(36)



Abstract and Applied Analysis 5

Therefore, we have

{(𝑘, 𝑙) ∈ N × N : 𝑥
𝑘,𝑙
− 𝑥
0
∉ 𝑉} ∈ 𝐼

2
. (37)

Theorem 12. Let (𝑋, 𝜏) be a LSR-space. If a double sequence
𝑥 = (𝑥

𝑘,𝑙
) is 𝐼∗
2
(𝜏)-convergent to 𝑥

0
, then it is 𝐼

2
(𝜏)-convergent

to 𝑥
0
.

Proof. Suppose that 𝐼∗
2
(𝜏)-lim

𝑘
𝑥
𝑘,𝑙
= 𝑥
0
. Let𝑉 be an arbitrary

𝜏-neighborhood 𝑉 of zero. Since 𝐼∗
2
(𝜏)-lim

𝑘,𝑙
𝑥
𝑘,𝑙

= 𝑥
0
, there

is a set 𝐾 = {(𝑘, 𝑙)} ⊆ N × N, (𝑘, 𝑙 ∈ N) with 𝐾 ∈ 𝐹 such that
𝑘 ≥ 𝑛, 𝑙 ≥ 𝑚 and (𝑘, 𝑙) ∈ 𝐾 implies 𝑥

𝑘,𝑙
− 𝑥
0
∈ 𝑉. Then

𝐾
1
= {(𝑘, 𝑙) ∈ N × N : 𝑥

𝑘,𝑙
− 𝑥
0
∉ 𝑉}

⊆ N × N − {(𝑘
𝑛+1

, 𝑙
𝑚+1

) , (𝑘
𝑛+2

, 𝑙
𝑚+2

) , . . .} .

(38)

Therefore

𝐾
1
∈ 𝐼
2
. (39)

Hence 𝑥 is 𝐼
2
(𝜏)-convergent to 𝑥

0
.

Theorem 13. The sequential method 𝐼
2
(𝜏) is regular.

Proof of the theorem is straightforward, so it is omitted.
From Theorem 12, we can easily obtain the following

useful result.

Theorem 14. The sequential method 𝐼
2
(𝜏) is subsequential.
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[7] H. Çakalli, “Lacunary statistical convergence in topological
groups,” Indian Journal of Pure and Applied Mathematics, vol.
26, no. 2, pp. 113–119, 1995.
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2
, I)-

convergence and regularly (I
2
, I)-Cauchy double sequences

of fuzzy numbers,” International Journal of Analysis, vol. 2013,
Article ID 749684, 7 pages, 2013.

[42] B. Hazarika and S. A. Mohiuddine, “Ideal convergence of
random variables,” Journal of Function Spaces and Applications,
vol. 2013, Article ID 148249, 7 pages, 2013.

[43] B. K. Lahiri and P. Das, “𝐼 and 𝐼
∗-convergence in topological

spaces,” Mathematica Bohemica, vol. 130, no. 2, pp. 153–160,
2005.

[44] H. I. Miller, “A measure theoretical subsequence characteriza-
tion of statistical convergence,” Transactions of the American
Mathematical Society, vol. 347, no. 5, pp. 1811–1819, 1995.

[45] M. Mursaleen, S. A. Mohiuddine, and O. H. H. Edely, “On the
ideal convergence of double sequences in intuitionistic fuzzy
normed spaces,” Computers & Mathematics with Applications,
vol. 59, no. 2, pp. 603–611, 2010.

[46] F. Nuray andW.H. Ruckle, “Generalized statistical convergence
and convergence free spaces,” Journal of Mathematical Analysis
and Applications, vol. 245, no. 2, pp. 513–527, 2000.
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