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The multilinear Fourier multipliers and their commutators with Sobolev regularity are studied. The purpose of this paper is to
establish that these operators are bounded on certain product Morrey spaces L¥ k(R™). Based on the boundedness of these operators

from L (w,) x -+

1. Introduction

Recently some authors have taken so much interest in the text
of multilinear Fourier multipliers with Sobolev regularity.
To state some interesting results, we recall some necessary
notations and definitions. Let 0 € L™ (R™"); the multilinear
Fourier multiplier operator T, is defined by

Ta (f) (x) = JRmn exp (27Tix (El L Em)) W

X0 (& n&,) fL(E) - Fou (E,) dE
for allf = (fireer frn) € S(R™Y™, where dE = di, ---dE,,

and f is the Fourier transform of f. It is well known that [1]
the boundedness of T,,, from L' (R")x- - -x L’ (R") to LP (R")
holds if o € C°*(R™" \ {0}) satisfying the condition

[ogo (©)] < C,le™ )

for all multi-indice || < s withs > 2mn+ 1andall 1 <
P> Pr>e-s Py < 0OwWith 1/p; + -+ + 1/p,, = 1/p. Grafakos
and Torres [2] improved the multiplier theorem of Coifman
and Meyer to the indices 1/m < p < 1 by the multilinear

Calderén-Zygmund operator theory in the case of s > mn+1.

x LP"(w,,) to LP([T}, P /j), we obtained that they are also bounded from L?*(w,) x ---
LPK(TT, @PP), with 0 < k < 1,1 < p; < 00,1/p=1/p, +-

X LP*"’k(wm) to

--+l/pm,andwj EApj,j: 1,...,m.

An important progress in this topic was given by Tomita. Let
D € S(R™) satisfy

<

Mz

N | =

k=1

& < 2} ;

)z—lgm) -1 (3)

supp @ C {(81,...,6,”) :

Yo (2.

lez

for all (&,...,&,) € R™\ {0}.
Set
£)o(ZE

9 (8155 8n) = @ (G- 28,.),

ST R,

lenl

12
x |6(£1,...,€m)|2d£> .

Tomita [3] proved that if

slggllazllwsmmn> < 0o, )
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for some s € (mn/2, 00), then T, is bounded from L”*(R") x

x LPn(R") to LP(R") provided that 1 < p, p;,..., p,, <
oo and 1/p = Y, 1/p;. Grafakos and Si in [4] obtained
that T, maps from LP*(R") x --- x LP»(R") to LP(R"), if
o satisfies (5) and 1/m < p < 1. Miyachi and Tomita
[5] considered the problem to find minimal smoothness
condition for multilinear Fourier multiplier. Let

"01 | WSLSm (R™™)

= (], @ e € EIPE) *

where (§,) := (1 + |£k|2)1/2. Miyachi and Tomita [5] proved
that if

Slle.lg||0'l|wsl,sz(R2n) < 00, (7)

for each s; € (n/2,n], then T, is bounded from L#*(R") x
LP2(R") to LP(R") provided that 1 < p;, p, < oo, and
p > 2/3with 1/p = 2,2(21 1/p,. Moreover, they also gave
minimal smoothness condition for which T, is bounded from
HPY(R") x HP2(R") to LP(R").
Let mn/2 < s < mn, mnfs < py,...,p,, <oco,and 1/p, +
--+1/p,, = 1/p. Fujita and Tomita [6] proved the following
inequality:

m
IToCfi s okl < CT M Ay ®
k=1

s @) € Ap () X
o/(mny» Where and in what follows v; = [T lw]‘f/ P
L1 et aIp [7] obtained the endpoint cases. Hu and Lin [8]
also obtained this result from another approach. Replacing
WS by W*, Bui and Duong [9] and Li and Sun [10]
proved that if @ = (wp,...,®,) € A s/omm),..p,,s/mm)
then (8) also holds. Jiao [11] gave a generalization of the
above inequality with the class A3, which generalizes the
class Ay introduced by Lerner et al. [12]. Fujita and Tomita
showed a counterexample to answer the question whether the
inequality (8) holds under the conditions @ = (w,,...,w,,) €

A(pls/(mn) _____ Dos/ () and ||01||Ws/m,...,s/m(Rmn) < Q.

We still recall the weighted Morrey spaces which were
introduced by Komori and Shirai [13]. A weight w is a
nonnegative, locally integrable function on R". Let 1 < p <
00; a weight function w is said to belong to the class A ,, if
there is a constant C such that for any cube Q,

’ p-1
<|_é| JQw (x) dx> (6 JQ w(x)'? dx) <C, (9

and w belongs to the class A, if there is a constant C such
that, for any cube Q,

é JQw (x)dx < Cirelgw (x). (10)

We denote A A

P>1 pr
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Definition 1 (See [13]). Let1 < p < 00,let 0 < k¥ < 1, and let
w be a weight function on R". The weighted Morrey space is
defined by

LP" (w) = {f eLb - 11 oy < OO}’ (1)

where

1/p
||f||LP”‘(w) = sup( < J |f (x)|Pw (x) dx) . (12)
Q Q

1
w(Q)
Our main results can be stated as follows.

Theorem 2. Let o be a multiplier satisfying

||01|W51 »»»»» sm (RM) < 00, (13)

fors,,...,s,, € (n/2,n] and let T, be the operator defined by
(1) and 0 < x < 1. Set t;= n/sj. Iij € (tj,oo) and the weight
w; € A, , (R") for1 < j < mandp € [1,00) such that

j pjlt;
1/p=1/p; +---+1/p,, then

”Ta(fl"' . ’fm)”LP"(v ) = CH“fJ”LPJ (w (14)

where vy, = [} w f/p’.

Given a multilinear Fourier multiplier operator T,; and

b= (by,...,b,) € BMO(R")", we define the commutators
T,s (f ) to be
aZb( )(x) Z [ Ta]j(fl""’fm)(x)’ (15)
with
(b5, T), (frre s fon) () = b (O T, (fireeosfpeeor fin) @
=Ty (fireesbjfjpeeor fon) ().
(16)
Theorem 3. Let o be a multiplier satisfying
01 gy < 001 %)

fors,,...,s,, € (n/2,n] and let T, be the operator defined by
(1) and 0 < k < 1. Set t;= n/sj. Iij € (tj,oo) and the weight
w; € Apj/tj(lR")forl < j <mand p € [1,00) such that

.-+ 1/p,,, then for any by, ..., b, € BMO(R"),

1/p=1/p, +
ITyss Frveos Fullnns
- m (18)
= C"b”BMO’" g "fj“LP/""(R”,wj)’

7 Pl
where |bllgpom = H;":l I b;llpri0 and v = H;" 1@ 7.
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Because the regularity condition IIGIIIWS(RW) < o0 is
following corollaries.

Corollary 4. Let o be a multiplier satisfying

|lal| WS (R™™) < 00, (19)

for's € (mn/2,mn] and let T be the operator defined by (1)
and 0 < k < 1. Set r = mn/s. Iij € (mn/s,00) and the

weight w; € Apj/r(lR”)forl < j<mand p € [1,00) such that
1/p=1/p, +---+1/p,, then

"Ta(fh creo fm)"LP”‘(va,) < Cl_!“fj“LPj’”(wj)’ (20)
j=

m  P/Pp;
w

where v =[], j

Corollary 5. Let o be a multiplier satisfying

Jlon] ) (21)

for's € (mn/2,mn] and let T be the operator defined by (1)
and 0 < x < 1. Set r = mn/s. Iij € (mn/s,00) and the
weight w; € Apj/r(R”)forl < j<mand p € [1,00) such that
1/p=1/p, +++-+1/p,, then, foranyb,,...,b, € BMO(R"),

m
Toss(Sir--o> fudllireo < CAliom [T Wil
(22)

and vg = H]mzlwl?/pj.

where [bllgyor = [T, 1551 ;

BMO
Remark 6. For m = 1 and w € Ap, we also extend
Hoérmander’s theorem [14] to the weighted Morrey spaces.
2. Some Notations and Lemmas

We begin with the definitions of Hardy-Littlewood maximal
function,

1
= — d N
M (x) supio JQ |f (n)|dy (23)

and of the sharp maximal function,

1 — cupinf_L
M ()0 = supin e | 17 () =eldy. Gy

For § > 0, we also define the following maximal functions
My(f) = M(fI)"° and Mi(f) = MM(fI)'°. The
following classical result belongs to Fefferman and Stein [15].

Lemma?7. Let 0 < p,0 < 00, and w € A,. Then there exists

some constant C,, , 5, such that

1M (N oy < Cn,p,&w“Mg(f )“LP(w)' 25)

Similarly, we have the responding lemma on weighted
Morrey spaces as a consequent result.

Lemma8. Let0 <k < 1,0 < p,§ < 00, andw € A,. Then

there exists some constant C,, , s , such that

[Ms(Dllioriwy < Copoo MaN pory: 26)

FOfJ? = (fis-- s fh1r; > 0,i =1,...,m,and set ¥ =
(r)5...,1,,), we define

. m . 1/r;
(D@ =l [( [ 15Ga) - e

Qdxj=1

This maximal function is the generalization of .# which is
introduced by Lerner et al. [12], we refer to [11] for some
properties of it. The following lemma is the special example
of [11, Theorem 2.1].

Lemma 9. Let p;,..., p,,, p € (0,00), 7; € (0, p;), and w; €
Apj/,jforl <j<mandl/p, +---+1/p, = 1/p. Then we
have

ey = My 09

and if at least one r; = p;, then

Dy =L Wiy 09

where vz = lezla)f/pl.

Lemmal0. Letk € (0,1), p;,...
and w; € Apr,
Then we have

>Pm,P € (0) OO)) rj € (0’p[))
forl < j<mandl/p, +---+1/p, =1/p.

m
D = Ty G0

Proof. From [11], there exists some g € (0, 1) such that

o[ (Y ]
ﬂ;(f)(x)sCH{Mﬁ@((%) >(x)} ,
j=1 @

(31)



where M is the weighted centered maximal operator. Then
by the Holder inequality and [13, Theorem 3.1], we get

q> } 1/(‘117]')

(RAGHIED) H.

<cC lﬂMﬁ_ ( 11"
A\ e

LPk(vg)

N - Cqgn o Yap)
1",
<C ME —_
< g 1 v5,< Vg .
L | ij,k(%)
(32)
) q~ 11/@pj)
i ([222T)
< v
j=1 Yo LYk (y)
. q1/(ap;)
< cﬁ <|fj|P/“’j> j
j=1 To LYK (y5)
m
< CH”fj”LPf’k(wv)'
j=1 !
O

Lemma 11 (See [6]). Let 1 < py,...,p,, < 00 and 1/p =
1/p, + -+ 1/p,,. Suppose that ¢ € L™ (R™") satisfies

||Ulllws1 ..... sm (R < 0. (33)

Then T, is bounded from LF*(R") x - - - x LP»(R") to LF(R").

Forq;,...,q,, € (0,00) and s,,...,s,, € R, the weighted
Lebesgue space of mixed type L(’h""’q'")(w(sl)___,sm)) is defined
by the norm

) “R - “R (JR IF ()| (x,)" dx1>‘”/‘h

q3/9, 1/
X <x2>52dx2 } Tt <xm>smd'xm ]

(34)

Lemma 12 (See [6]). Letr > 0,2 < g;j < 00, and s; 2 0 for
1 < j < m. Then there exists a constant C > 0 such that

< C”Fllwsl/ql ----- sm/dm > (35)
Ixml <rh

By the reverse Holder inequality, we have the following
lemma.
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Lemma13. Assume that@d € H;":IAP]_, with1 < py,..., p,, <
0o. Letn/2 < s; < m; then there exist constants 1 < € <
min{pj,sj/(sj - 1),25j/n} such that w; € Apj/ej.

The following lemma is the key to our main results.

« _»

Lemma 14. Let “o” be a multplier satisfying
||Ulllw(sl ,,,,, sm)(Rn) < 00, (36)

fors,,...,s,, € (n/2,n] and let T, be the operator defined by
. If1 < pj < oo, t; = nfs; and 0 < & < r/m, where
1r=1/rj++1/r,, r =€t; and 1 <ej<min{pj,sj/(sj—

1),2s;/n}. Then for allf € LP1 R") X oo x LPm(R") with r; <
pj<ooforl<j<m,

ME(T, (£)) () < Ct; (F) (), (37)
where? = (ry,...,1,,).

Proof. By Lemma 13,1 < tie; <2 then rj/m < 1. Fix a point
x and a cube Q such that x € Q. It suffices to prove that

1 o s \1/9 }
(@JJT"(J()(Z)_CQ' dz) < Cl; (f)(x), (38)

for some constant ¢;. We decompose f;
fixg forallj=1,...

(100 =TT 07 ()

j=

= Z al ()’1)"

_ 40 00 - 0 _
= fj+f;" with f; =
,mand Q" = 4/nQ. Then

—

S Om)

TG XA 0w for On).
J=1 K ocmef
(39)
where 5 = {ay,...,q, : there is at least one «; #0}. Then
we can write
Ta(f)(z)zTa(fo)(z)'l' Z TO’( lt)tl“'fror‘zm)(z)
Ky s, €F
=1+1I.
(40)
Applying Kolmogorov’s inequality to I, we have
1/8
IR
= C“TG ('fo) L(Qdx/IQl)
" Lo @D
H( @i | o)
< C‘%? (f) (x) >

since T, is bounded from L™ x --- x L' to L" by Lemma 11.
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Taking Let
Q= Z Ta(ffcl'“f:lm)(x)’ (42)
Loy €T .
Bt W (%25 y15 s V) = 61 (X = Y1 X = )
we claim that, for any z €Q, . 5 (z . ) (44)
1 (5% 1 (™ - - see s = V).
T, (2 £) @) = T, (7 fr) ()] e >
Ap s, €I (43)
< Clt; (f) (). At first we consider the case ) = --- = «,,
|To (F7 ) @) =Ty (7 £)) ()]
m
S @ -T, G @[ < Y [ Wz 1S () 7
lez lez JR™\(Q") j=1
< W (%25 Y1505 Vm (y.)dy
IEZZkZO LZ,MQ*\M)M Wi (%23 102 23| gf] (v;)dy
0 m , 1/r; (45)
]
< ZZH(L 15 O] dyj)
k=0lezj=1 \72"Q
N e 1,
X(J <J (J Wi (%2 y1 s V)| ldyl) ) dym>
@ 1QI\2FQY) \J(@F1QM)\(2FQY) @1Q\(2F Q)
00 m . l/rj
= fily; ]dy<> 1.
SITI(Jy g 1O
Denote h = z — x and Q = x — Q"; it follows from Lemma 12
that
Hli(; """ 0
1/r!

m

NN
~ ~ T
= I o I _ ~<J _ ~IGz(h+y1,---,h+ym)—Uz(yp-u,ym)l1dy1> Ay,
21\ (2FQ) 21\ 2FQ) 2F1Q\(2FQ)

1/r!

1 r /I’,f m
] rlr miim-l
|6 (yp---,ym)l”dyl) ) dym>

<2 I I < J
< C12"€(Q)£Iym|<Q2k”€(Q)( 28 0(Q<ly 1121 6(Q) a2ke(Qxly <2 Q)

< (@)

r 57 rlr Tl
X J ‘ ‘ J ’ . <J ; . |Uz(y1,---,ym)|‘<y1>“dy1>
a250(Q) <y l< 2 e(Q) \ Je2ke(Q<ly, 1< 251 (Q) a2ke(Q)<y <6 2K e(Q)

1/

m

X (3 "y, )



(st

2

(s1++S,,)

<C(21Q)

<
a2*e(Q=ly,l<a2k " e(Q

—Imn ~

'2 (o]

< L 2UQ= Y1 <625 Q) < L 2Qsly <251 e(Q)

/7!

m

x (27y,) """ dy,

< C(2kl (Q))_(31+'"+Sm)21(51+--~+sm)z—lmnz—l(n/r{+-~-+n/r,’n)

(271)/1,...
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! !
/ ol Tt

o 57 nin
’zilym)' <2 l)/1> d)’l) )

!

I/ ! rm/rmfl
< r 57 2N
) .[ K J J |6/ (215 2,0)| " (21) N dzy
a2ke(Q<ly,l<e, 2k e(Q) \ Je2ke(Q<ly,, 1 1< 25 1e(Q) 2 eQsly <21 Q)
1/r:n
X (z,,)""""dz,,
—(syttsn) e
< C(zkl (Q)) s s 2 I(n/r+tn1,—s, SM)llal”Wﬁ»--nSm'
(46)
Given that 2% < I(Q) < 2", then we have that « 9 Mnfritetn s —sy,)
< Csup”(fl"Ws1 AAAAA on 27k($1+'"+sm)Z(Q)*(ﬂ/rl+---+n/rm)'

I l

kil
I<ly )

LY (@)

i<l

that

..... |6,(h+ yp,.. b+ ) —
J(2k+1§)\(2k6) < J(zkHé)\(zké) < Lz"*l@\(zk@ "

<

sze(Q)g|y,,,|<c22k+le(Q) Jclzke(Q)g|ym,l|<c22k+1e(Q)

=

1
sze@)sm|<c22k+1e(Q> <L

V6, (y, +6h,...

On the other hand, a similar process follows in [10]; we get

l/r:n

Al Tl Tt
. rl 2/
Gz(yp-u,ym)lldyl) ) Ay

!
Pl 1/r,
TmTm-1 "

' ré/r{
"
Y + OR)] d9> dy1> dy,,
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IN

1
.[o sze(@g Yml<c 26 Le(Q)

/7]

m

i r:n/r:n—l
o noo\R
j (J - V6, (y, +Oh....., 3,, + Oh)| dy1> dy, | do
a2k 6(Q<lym-11< 25 Q) a2ke(Qslyr < 2K 1eQ

< -6, (v s i)

Jclzke(o)s\ymkczzk“e(Q) < sze(Q)swm_l [<e 21 e(Q) < Lz"e(Q)g\ 31 l<c2K1e(Q)

where i = (h,...,h) € R™. Since we have

BV (Vsoos V) = D RONVE (Vs )5 (49)
j=1

1 Tl Tt
m r{ )/
<yel | | (] 06O lan) ) a
Z a2ke@Q<lyml<c 28t e \ Jo2ke(Q)<lym-1 <2 e(Q) clzke(Q)s|y1|<c22k“€(Q)| / ! " ! "

<Ye@(21@)

-
1l
—_

! !
rm/rm—l

4ok Y

~ 1

x Jk B Jk o <j . o 1056 G )M ) 1dy1>
a2 eQslyml<c 21 6@ \ J 2y 1< 21 e(Q) azkeQszly <21 eQ

l/r,/n

X (Y)Y,

X
sze(Q)g Iml<c 2K 1e(Q)

1ot
Y Tl Tm-1

J <,[ I ( ! ! )|r{ < 1o\ i
27 0.0, (27 vy, 27y, 27y d)’)
a2ke(Qxlym1 <251 eQ a2ke@Qzly <2 1eQ) ! ' " 1 1

/7!

m

% (275,)"" dy,,



< C(zkl (Q))-(sl+--~+sm)21(sl+~~+sm)2—lmn2—1(n/r{+~~~+n/r£n)
1 | (]
a25e(Q=lyml< 2 1eQ) \ Jo 2k e(Qxlym-1 <0251 eQ a2ke(Qxly <25 e
l/r,/n
!
X (2,) " " dz,,
—(sp+4Sy) P
< C(Zkl (Q)) 1 2 Iy +-tn/rp,+1-s; sy,,)"().l”WSl AAAAA o

From Lemmal13, n/r; +---+n/r,, > s; +---+s,,— 1, it deduces
that

. z—k(sl Jr-“Jrsm)l(Q)—(n/rl +---+n/rm).

DI < Csuploily.

=1,

(51)

So

ITo (F7° - ) @) =Ty (7 £)) ()]

(T, (fis s ) @) = To (Fi -5 ) ()]

SSH(],. o)

k=017 j=1

, rir
x Jk k <Jk k (J (J |"Vz(x,z;)’1,...,ym)|1dy1> .
21QH\2KQ" 212kt \ Jor Q

The same argument as the case a; = - -+ = «,,, = 00 computes

that
T, (F s f) @) = To (Fi75 s f) ()]
L (54)
< Cll; (f) (x).
This completes the proof. O
Lemma15. “Let 0" be a multplier satisfying
||Glllw(51r"' sm) (R™) < 00, (55)

fors,,...,s,, € (n/2,n] and let T, be the operator defined by
(. If1 < pj < 00, t; = nls; and 0 < 8 < & < r/m, where
1/r=1/r1+...+1/rm, ri=€jt; and1 < € < min{pj,sj/(sj—

1),2s;/n}, and let b € BMO™. Then for any § > 7 that is,

Abstract and Applied Analysis

|6j6, (zy,--

iy ’v’n/’yln—l
’; , ry/ry
sr
"Zm)| (zl>11dzl>

(50)
< COZO‘,2‘k(51+---+sm—n/r1_'"_n/rm)‘%? (f) (%)
k=0
< CM; (J? ) (x).
(52)

It remains to consider the case that there exists a proper subset
{jl,...,jy} of {1,...,m}, 1 < y < m, such that aj ==
a = 0. Without loss of generality, we write, for the case

Upoeeeriyh = Loy

!
ol M2l Ty Y
dyy) dyy+l> dym

(53)

y; > 1jj = L,....m, there exists some constant C > 0 such
that

M (130 (7)) 9

) ) ) (56)
< Cl] e (M. (T, (F)) ) + 25 (F) ().

for all m-tuples f = (fir--o> fn) Oof bounded measurable
functions with compact support.

Proof. By linearity it is sufficient to consider the particular

case when b = b € BMO. Fix b € BMO and consider the
operator

Ty (F) (%) = b ) T, () (x) = Ty (bf s fare s frn) (%)

(57)
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Fix x € R", for any cube Q with center at x; set A = b, where
Q" = 4+/nQ. We have

T, (f) (x)

=) -VT(f)x) - s fon) ().

(58)

T, ((b=A) f1, frr---

Since0<d <r/m<1,

(IQI JQ
(g7 Jo 1o (F) @ =<2
C

<|6J |(b(Z) AMT, *) (Z)'adz>1/5

/6
1T, (F) @) - Iel? dz)l

1/8

IN

IN

(IQIJ e A)fv---’fm)(z)—c|6dz>l/6

= A+ B.
(59)

By the John-Nirenberg inequality and Holder inequality, one
has, for 1 < g < €/8 such that ¢’ > 1,

, 1/4'6
J b (2) —w“dz)

1/q6
“az) (60)

A<
Ql

([, (e

< ClbllgyoMgs (T (f)) ()

< ClbllgyoM. (T, (f)) (x).

To estimate term B, we split each function f; as f;

where f]o = fixq forj=1,...
decomposition,

0
=fj+f]$)o’

,m. We also have the same

ﬁfj (y,-)

—

(ff(‘) (yj) +fi (yj))
= Z f1 ()

st €{0,00}

- l_[fJO () +
j=1 o,

-
I
—_

(61)
S (Ym)

Z f1 (1)

0, €F

R

where .5 = {a;,...,a,, : there is atleast one a; # 0}.

Takingc =Y, . 7 T,((b=A)f}" -+ fym), we have

/6
) (2) |6dz>1

BSC{<|—I I, (-1 £2..

y (|Q|j T, (6= £ f5) (2)

O sy, €F

—T,(b=X) f" o fom)

1/6
X (x)dz|8> }

= B, + B,.
(62)

By using Kolmogorov’s inequality and Holder’s inequality,
one has

B, <C|T,((b-N)fy,.... f)@)

Lr*(Qdx/1Ql)

<o( g [ le-vsef d)

. H( 1 o 17 @l'ae)

< Cllbllppio-#5 (f) -

(63)

1/r;

By the same argument in the proof of Lemma 14, we have the
following estimate:

> T

O eens0yy €F

e f) @) = T (7 fr) ()]

< Ci 2—k(s1 +ets,,—n/r)——nfr,,)

k=0
1 1/1‘1
% ( |2k+1Q*| J kg I(b )‘) (Z)|r1dz) (64)
m 1 l/rj
X H( |2k+lQ* J2k+lQ |f (Z)| dZ)
< Cul; (f) ().
This completes the proof. O
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3. Proof of Theorems

Proof of Theorem 2. By Lemmas 8 and 14, we have
7 (Pl
< [Ms (T, (FDl s

< CIM3To ()] o, (65)

< C“-ﬂ? (f>||L1”"(m)

m
<C[ 1Al
j1

O

Proof of Theorem 3. By Lemma 13, there are e;. < pj/rj such
that w; € Apj/(,je;). Lety; = rje;; by Lemmas 8 and 15, one
has

R P ) | PR OGS

and then
oDl <L Wby @)
O
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