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The multilinear Fourier multipliers and their commutators with Sobolev regularity are studied. The purpose of this paper is to
establish that these operators are bounded on certain productMorrey spaces 𝐿𝑝,𝑘(R𝑛

). Based on the boundedness of these operators
from 𝐿

𝑝1 (𝜔1) × ⋅ ⋅ ⋅ × 𝐿
𝑝𝑚 (𝜔𝑚) to 𝐿

𝑝
(∏

𝑚

𝑗=1
𝜔
𝑝/𝑝𝑗 ), we obtained that they are also bounded from 𝐿

𝑝1 ,𝑘(𝜔1) × ⋅ ⋅ ⋅ × 𝐿
𝑝𝑚 ,𝑘(𝜔𝑚) to

𝐿
𝑝,𝑘
(∏

𝑚

𝑗=1
𝜔
𝑝/𝑝𝑗 ), with 0 < 𝑘 < 1, 1 < 𝑝𝑗 < ∞, 1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚, and 𝜔𝑗 ∈ 𝐴𝑝𝑗

, 𝑗 = 1, . . . , 𝑚.

1. Introduction

Recently some authors have taken somuch interest in the text
of multilinear Fourier multipliers with Sobolev regularity.
To state some interesting results, we recall some necessary
notations and definitions. Let 𝜎 ∈ 𝐿

∞
(R𝑚𝑛

); the multilinear
Fourier multiplier operator 𝑇𝜎 is defined by

𝑇𝜎 (
⃗𝑓) (𝑥) = ∫

R𝑚𝑛
exp (2𝜋𝑖𝑥 (𝜉1 + ⋅ ⋅ ⋅ + 𝜉𝑚))

× 𝜎 (𝜉1, . . . , 𝜉𝑚) 𝑓1 (𝜉1) ⋅ ⋅ ⋅ 𝑓𝑚 (𝜉𝑚) 𝑑
⃗𝜉

(1)

for all ⃗𝑓 = (𝑓1, . . . , 𝑓𝑚) ∈ S(R𝑛
)
𝑚, where 𝑑 ⃗𝜉 = 𝑑𝜉1 ⋅ ⋅ ⋅ 𝑑𝜉𝑚

and 𝑓 is the Fourier transform of 𝑓. It is well known that [1]
the boundedness of𝑇𝑚 from𝐿

𝑝
1(R𝑛

)×⋅ ⋅ ⋅×𝐿
𝑝
𝑚(R𝑛

) to𝐿𝑝(R𝑛
)

holds if 𝜎 ∈ 𝐶𝑠(R𝑚𝑛
\ {0}) satisfying the condition
󵄨󵄨󵄨󵄨󵄨
𝜕
𝛼

𝜉
𝜎 (𝜉)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶𝛼|𝜉|

−|𝛼| (2)

for all multi-indice |𝛼| ≤ 𝑠 with 𝑠 ≥ 2𝑚𝑛 + 1 and all 1 <

𝑝, 𝑝1, . . . , 𝑝𝑚 < ∞ with 1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚 = 1/𝑝. Grafakos
and Torres [2] improved the multiplier theorem of Coifman
and Meyer to the indices 1/𝑚 ≤ 𝑝 ≤ 1 by the multilinear
Calderón-Zygmund operator theory in the case of 𝑠 ≥ 𝑚𝑛+1.

An important progress in this topic was given by Tomita. Let
Φ ∈ S(R𝑚𝑛

) satisfy

suppΦ ⊂ {(𝜉1, . . . , 𝜉𝑚) :
1

2
≤

𝑚

∑

𝑘=1

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨 ≤ 2} ;

∑

𝑙∈Z

Φ(2
−𝑙
𝜉1, . . . , 2

−𝑙
𝜉𝑚) = 1,

for all (𝜉1, . . . , 𝜉𝑚) ∈ R
𝑚𝑛

\ {0} .

(3)

Set

𝜎𝑙 (𝜉1, . . . , 𝜉𝑚) = Φ (𝜉1, . . . , 𝜉𝑚) 𝜎 (2
𝑙
𝜉1, . . . , 2

𝑙
𝜉𝑚) ,

󵄩󵄩󵄩󵄩𝜎𝑙
󵄩󵄩󵄩󵄩𝑊𝑠(R𝑚𝑛)

= (∫
R𝑚𝑛

(1 +
󵄨󵄨󵄨󵄨𝜉1
󵄨󵄨󵄨󵄨

2
+ ⋅ ⋅ ⋅ +

󵄨󵄨󵄨󵄨𝜉𝑚
󵄨󵄨󵄨󵄨

2
)
𝑠

×
󵄨󵄨󵄨󵄨𝜎̂ (𝜉1, . . . , 𝜉𝑚)

󵄨󵄨󵄨󵄨

2
𝑑 ⃗𝜉)

1/2

.

(4)

Tomita [3] proved that if

sup
𝑙∈Z

󵄩󵄩󵄩󵄩𝜎𝑙
󵄩󵄩󵄩󵄩𝑊𝑠(R𝑚𝑛)

< ∞, (5)
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for some 𝑠 ∈ (𝑚𝑛/2,∞), then 𝑇𝜎 is bounded from 𝐿
𝑝
1(R𝑛

) ×

⋅ ⋅ ⋅ × 𝐿
𝑝
𝑚(R𝑛

) to 𝐿𝑝(R𝑛
) provided that 1 < 𝑝, 𝑝1, . . . , 𝑝𝑚 <

∞ and 1/𝑝 = ∑
𝑚

𝑘=1
1/𝑝𝑘. Grafakos and Si in [4] obtained

that 𝑇𝜎 maps from 𝐿
𝑝
1(R𝑛

) × ⋅ ⋅ ⋅ × 𝐿
𝑝
𝑚(R𝑛

) to 𝐿
𝑝
(R𝑛

), if
𝜎 satisfies (5) and 1/𝑚 ≤ 𝑝 ≤ 1. Miyachi and Tomita
[5] considered the problem to find minimal smoothness
condition for multilinear Fourier multiplier. Let
󵄩󵄩󵄩󵄩𝜎𝑙

󵄩󵄩󵄩󵄩𝑊𝑠1,...,𝑠𝑚 (R𝑚𝑛)

= (∫
R2𝑛

⟨𝜉1⟩
2𝑠
1

⋅ ⋅ ⋅ ⟨𝜉𝑚⟩
2𝑠
𝑚 󵄨󵄨󵄨󵄨𝜎̂𝑙 (𝜉1, . . . , 𝜉𝑚)

󵄨󵄨󵄨󵄨

2
𝑑 ⃗𝜉)

1/2

,

(6)

where ⟨𝜉𝑘⟩ := (1 + |𝜉𝑘|
2
)
1/2. Miyachi and Tomita [5] proved

that if

sup
𝑙∈Z

󵄩󵄩󵄩󵄩𝜎𝑙
󵄩󵄩󵄩󵄩𝑊𝑠1,𝑠2 (R2𝑛)

< ∞, (7)

for each 𝑠𝑗 ∈ (𝑛/2, 𝑛], then 𝑇𝜎 is bounded from 𝐿
𝑝
1(R𝑛

) ×

𝐿
𝑝
2(R𝑛

) to 𝐿
𝑝
(R𝑛

) provided that 1 < 𝑝1, 𝑝2 < ∞, and
𝑝 > 2/3 with 1/𝑝 = ∑

2

𝑘=1
1/𝑝𝑘. Moreover, they also gave

minimal smoothness condition forwhich𝑇𝜎 is bounded from
𝐻
𝑝
1(R𝑛

) × 𝐻
𝑝
2(R𝑛

) to 𝐿𝑝(R𝑛
).

Let𝑚𝑛/2 < 𝑠 ≤ 𝑚𝑛,𝑚𝑛/𝑠 < 𝑝1, . . . , 𝑝𝑚 < ∞, and 1/𝑝1 +
⋅ ⋅ ⋅ + 1/𝑝𝑚 = 1/𝑝. Fujita and Tomita [6] proved the following
inequality:

󵄩󵄩󵄩󵄩𝑇𝜎(𝑓1, . . . , 𝑓𝑚)
󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔⃗
)
≤ 𝐶

𝑚

∏

𝑘=1

󵄩󵄩󵄩󵄩𝑓𝑘
󵄩󵄩󵄩󵄩𝐿𝑝𝑘 (𝜔

𝑘
)
, (8)

if ‖ 𝜎𝑙‖𝑊𝑠/𝑚,...,𝑠/𝑚(R𝑚𝑛) < ∞ and 𝜔⃗ = (𝜔1, . . . , 𝜔𝑚) ∈ 𝐴𝑝
1
𝑠/(𝑚𝑛) ×

⋅ ⋅ ⋅ × 𝐴𝑝
𝑚
𝑠/(𝑚𝑛), where and in what follows ]𝜔⃗ = ∏

𝑚

𝑘=1
𝜔
𝑝/𝑝
𝑘

𝑘
.

Li et al. [7] obtained the endpoint cases. Hu and Lin [8]
also obtained this result from another approach. Replacing
𝑊

𝑠
1
,...,𝑠
𝑚 by 𝑊

𝑠, Bui and Duong [9] and Li and Sun [10]
proved that if 𝜔⃗ = (𝜔1, . . . , 𝜔𝑚) ∈ 𝐴 (𝑝

1
𝑠/(𝑚𝑛),...,𝑝

𝑚
𝑠/(𝑚𝑛)),

then (8) also holds. Jiao [11] gave a generalization of the
above inequality with the class 𝐴

𝑃⃗/𝑄⃗
, which generalizes the

class 𝐴
𝑃⃗
introduced by Lerner et al. [12]. Fujita and Tomita

showed a counterexample to answer the questionwhether the
inequality (8) holds under the conditions 𝜔⃗ = (𝜔1, . . . , 𝜔𝑚) ∈

𝐴 (𝑝
1
𝑠/(𝑚𝑛),...,𝑝

𝑚
𝑠/(𝑚𝑛)) and ‖𝜎𝑙‖𝑊𝑠/𝑚,...,𝑠/𝑚(R𝑚𝑛) < ∞.

We still recall the weighted Morrey spaces which were
introduced by Komori and Shirai [13]. A weight 𝜔 is a
nonnegative, locally integrable function on R𝑛. Let 1 < 𝑝 <

∞; a weight function 𝜔 is said to belong to the class 𝐴𝑝, if
there is a constant 𝐶 such that for any cube 𝑄,

(
1

|𝑄|
∫
𝑄

𝜔 (𝑥) 𝑑𝑥)(
1

|𝑄|
∫
𝑄

𝜔(𝑥)
1−𝑝
󸀠

𝑑𝑥)

𝑝−1

≤ 𝐶, (9)

and 𝜔 belongs to the class 𝐴1, if there is a constant 𝐶 such
that, for any cube 𝑄,

1

|𝑄|
∫
𝑄

𝜔 (𝑥) 𝑑𝑥 ≤ 𝐶inf
𝑥∈𝑄

𝜔 (𝑥) . (10)

We denote 𝐴∞ = ∪𝑝>1𝐴𝑝.

Definition 1 (See [13]). Let 1 ≤ 𝑝 < ∞, let 0 < 𝜅 < 1, and let
𝜔 be a weight function on R𝑛. The weighted Morrey space is
defined by

𝐿
𝑝,𝜅

(𝜔) = {𝑓 ∈ 𝐿
𝑝

loc :
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝜔)

< ∞} , (11)

where

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝜔)

= sup
𝑄

(
1

𝜔(𝑄)
𝑘
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨

𝑝
𝜔 (𝑥) 𝑑𝑥)

1/𝑝

. (12)

Our main results can be stated as follows.

Theorem 2. Let 𝜎 be a multiplier satisfying
󵄩󵄩󵄩󵄩𝜎𝑙

󵄩󵄩󵄩󵄩𝑊𝑠1,...,𝑠𝑚 (R𝑚𝑛)
< ∞, (13)

for 𝑠1, . . . , 𝑠𝑚 ∈ (𝑛/2, 𝑛] and let 𝑇𝜎 be the operator defined by
(1) and 0 < 𝜅 < 1. Set 𝑡𝑗 = 𝑛/𝑠𝑗. If 𝑝𝑗 ∈ (𝑡𝑗,∞) and the weight
𝜔𝑗 ∈ 𝐴𝑝

𝑗
/𝑡
𝑗

(R𝑛
) for 1 ≤ 𝑗 ≤ 𝑚 and 𝑝 ∈ [1,∞) such that

1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚, then

󵄩󵄩󵄩󵄩𝑇𝜎(𝑓1, . . . , 𝑓𝑚)
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(]

𝜔⃗
)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝜅(𝜔

𝑗
)
, (14)

where ]𝜔⃗ = ∏
𝑚

𝑗=1
𝜔
𝑝/𝑝
𝑗

𝑗
.

Given a multilinear Fourier multiplier operator 𝑇𝜎 and
𝑏⃗ = (𝑏1, . . . , 𝑏𝑚) ∈ BMO(R𝑛

)
𝑚, we define the commutators

𝑇𝜎,Σb(
⃗𝑓)(𝑥) to be

𝑇𝜎,Σb (
⃗𝑓) (𝑥) =

𝑚

∑

𝑗=1

[𝑏𝑗, 𝑇𝜎]𝑗
(𝑓1, . . . , 𝑓𝑚) (𝑥) , (15)

with

[𝑏𝑗, 𝑇𝜎]𝑗
(𝑓1, . . . , 𝑓𝑚) (𝑥) = 𝑏𝑗 (𝑥) 𝑇𝜎 (𝑓1, . . . , 𝑓𝑗, . . . , 𝑓𝑚) (𝑥)

− 𝑇𝜎 (𝑓1, . . . , 𝑏𝑗𝑓𝑗, . . . , 𝑓𝑚) (𝑥) .

(16)

Theorem 3. Let 𝜎 be a multiplier satisfying
󵄩󵄩󵄩󵄩𝜎𝑙

󵄩󵄩󵄩󵄩𝑊𝑠1,...,𝑠𝑚 (R𝑚𝑛)
< ∞, (17)

for 𝑠1, . . . , 𝑠𝑚 ∈ (𝑛/2, 𝑛] and let 𝑇𝜎 be the operator defined by
(1) and 0 < 𝜅 < 1. Set 𝑡𝑗 = 𝑛/𝑠𝑗. If 𝑝𝑗 ∈ (𝑡𝑗,∞) and the weight
𝜔𝑗 ∈ 𝐴𝑝

𝑗
/𝑡
𝑗

(R𝑛
) for 1 ≤ 𝑗 ≤ 𝑚 and 𝑝 ∈ [1,∞) such that

1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚, then for any 𝑏1, . . . , 𝑏𝑚 ∈ BMO(R𝑛
),

󵄩󵄩󵄩󵄩𝑇𝜎,Σb (𝑓1, . . . , 𝑓𝑚)
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(R𝑛 ,]

𝜔⃗
)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑏⃗
󵄩󵄩󵄩󵄩󵄩BMO𝑚

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝜅(R𝑛 ,𝜔

𝑗
)
,

(18)

where ‖𝑏⃗‖BMO𝑚 = ∏
𝑚

𝑗=1
‖ 𝑏𝑗‖BMO and ]𝜔⃗ = ∏

𝑚

𝑗=1
𝜔
𝑝/𝑝
𝑗

𝑗
.
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Because the regularity condition ‖𝜎𝑙‖𝑊𝑠(R𝑚𝑛) < ∞ is
stronger than that of ‖𝜎𝑙‖𝑊𝑠1,...,𝑠𝑚 (R𝑚𝑛) < ∞, we have the
following corollaries.

Corollary 4. Let 𝜎 be a multiplier satisfying
󵄩󵄩󵄩󵄩𝜎𝑙

󵄩󵄩󵄩󵄩𝑊𝑠(R𝑚𝑛)
< ∞, (19)

for 𝑠 ∈ (𝑚𝑛/2,𝑚𝑛] and let 𝑇𝜎 be the operator defined by (1)
and 0 < 𝜅 < 1. Set 𝑟 = 𝑚𝑛/𝑠. If 𝑝𝑗 ∈ (𝑚𝑛/𝑠,∞) and the
weight 𝜔𝑗 ∈ 𝐴𝑝

𝑗
/𝑟(R

𝑛
) for 1 ≤ 𝑗 ≤ 𝑚 and 𝑝 ∈ [1,∞) such that

1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚, then

󵄩󵄩󵄩󵄩𝑇𝜎(𝑓1, . . . , 𝑓𝑚)
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(]

𝜔⃗
)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝜅(𝜔

𝑗
)
, (20)

where ]𝜔⃗ = ∏
𝑚

𝑗=1
𝜔
𝑝/𝑝
𝑗

𝑗
.

Corollary 5. Let 𝜎 be a multiplier satisfying
󵄩󵄩󵄩󵄩𝜎𝑙

󵄩󵄩󵄩󵄩𝑊𝑠(R𝑚𝑛)
< ∞, (21)

for 𝑠 ∈ (𝑚𝑛/2,𝑚𝑛] and let 𝑇𝜎 be the operator defined by (1)
and 0 < 𝜅 < 1. Set 𝑟 = 𝑚𝑛/𝑠. If 𝑝𝑗 ∈ (𝑚𝑛/𝑠,∞) and the
weight 𝜔𝑗 ∈ 𝐴𝑝

𝑗
/𝑟(R

𝑛
) for 1 ≤ 𝑗 ≤ 𝑚 and 𝑝 ∈ [1,∞) such that

1/𝑝 = 1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚, then, for any 𝑏1, . . . , 𝑏𝑚 ∈ BMO(R𝑛
),

󵄩󵄩󵄩󵄩𝑇𝜎,Σb(𝑓1, . . . , 𝑓𝑚)
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(]

𝜔⃗
)
≤ 𝐶

󵄩󵄩󵄩󵄩󵄩
𝑏⃗
󵄩󵄩󵄩󵄩󵄩BMO𝑚

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝜅(𝜔

𝑗
)
,

(22)

where ‖𝑏⃗‖BMO𝑚 = ∏
𝑚

𝑗=1
‖𝑏𝑗‖BMO and ]𝜔⃗ = ∏

𝑚

𝑗=1
𝜔
𝑝/𝑝
𝑗

𝑗
.

Remark 6. For 𝑚 = 1 and 𝜔 ∈ 𝐴𝑝, we also extend
Hörmander’s theorem [14] to the weighted Morrey spaces.

2. Some Notations and Lemmas

We begin with the definitions of Hardy-Littlewood maximal
function,

𝑀𝑓(𝑥) = sup
𝑄∋𝑥

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦)
󵄨󵄨󵄨󵄨 𝑑𝑦, (23)

and of the sharp maximal function,

𝑀
♯
(𝑓) (𝑥) = sup

𝑄∋𝑥

inf
𝑐∈R

1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑓 (𝑦) − 𝑐
󵄨󵄨󵄨󵄨 𝑑𝑦. (24)

For 𝛿 > 0, we also define the following maximal functions
𝑀𝛿(𝑓) = 𝑀(|𝑓|

𝛿
)
1/𝛿 and 𝑀

♯

𝛿
(𝑓) = 𝑀

♯
(|𝑓|

𝛿
)
1/𝛿. The

following classical result belongs to Fefferman and Stein [15].

Lemma 7. Let 0 < 𝑝, 𝛿 < ∞, and 𝜔 ∈ 𝐴∞. Then there exists
some constant 𝐶𝑛,𝑝,𝛿,𝜔 such that

󵄩󵄩󵄩󵄩𝑀𝛿(𝑓)
󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)

≤ 𝐶𝑛,𝑝,𝛿,𝜔

󵄩󵄩󵄩󵄩󵄩
𝑀

♯

𝛿
(𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝(𝜔)
. (25)

Similarly, we have the responding lemma on weighted
Morrey spaces as a consequent result.

Lemma 8. Let 0 < 𝜅 < 1, 0 < 𝑝, 𝛿 < ∞, and 𝜔 ∈ 𝐴∞. Then
there exists some constant 𝐶𝑛,𝑝,𝛿,𝜔 such that

󵄩󵄩󵄩󵄩𝑀𝛿(𝑓)
󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝜔)

≤ 𝐶𝑛,𝑝,𝛿,𝜔

󵄩󵄩󵄩󵄩󵄩
𝑀

♯

𝛿
(𝑓)

󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(𝜔)
. (26)

For ⃗𝑓 = (𝑓1, . . . , 𝑓𝑚), 𝑟𝑖 > 0, 𝑖 = 1, . . . , 𝑚, and set ⃗𝑟 =

(𝑟1, . . . , 𝑟𝑚), we define

M ⃗𝑟 (
⃗𝑓) (𝑥) = sup

𝑄∋𝑥

𝑚

∏

𝑗=1

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑓𝑙 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨

𝑟
𝑗

𝑑𝑦𝑗)

1/𝑟
𝑗

. (27)

This maximal function is the generalization of M which is
introduced by Lerner et al. [12], we refer to [11] for some
properties of it. The following lemma is the special example
of [11, Theorem 2.1].

Lemma 9. Let 𝑝1, . . . , 𝑝𝑚, 𝑝 ∈ (0,∞), 𝑟𝑗 ∈ (0, 𝑝𝑗), and 𝜔𝑗 ∈
𝐴𝑝
𝑗
/𝑟
𝑗

for 1 ≤ 𝑗 ≤ 𝑚 and 1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚 = 1/𝑝. Then we
have

󵄩󵄩󵄩󵄩󵄩
M ⃗𝑟(

⃗𝑓)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝(]

𝜔⃗
)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗 (𝜔
𝑗
)
, (28)

and if at least one 𝑟𝑙 = 𝑝𝑙, then

󵄩󵄩󵄩󵄩󵄩
M ⃗𝑟(

⃗𝑓)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,∞(]

𝜔⃗
)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗 (𝜔
𝑗
)
, (29)

where ]𝜔⃗ = ∏
𝑚

𝑙=1
𝜔
𝑝/𝑝
𝑙

𝑙
.

Lemma 10. Let 𝜅 ∈ (0, 1), 𝑝1, . . . , 𝑝𝑚, 𝑝 ∈ (0,∞), 𝑟𝑗 ∈ (0, 𝑝𝑙),
and 𝜔𝑗 ∈ 𝐴𝑝

𝑗
/𝑟
𝑗

for 1 ≤ 𝑗 ≤ 𝑚 and 1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚 = 1/𝑝.
Then we have

󵄩󵄩󵄩󵄩󵄩
M ⃗𝑟(

⃗𝑓)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(]

𝜔⃗
)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝜅(𝜔

𝑗
)
. (30)

Proof. From [11], there exists some 𝑞 ∈ (0, 1) such that

M ⃗𝑟 (
⃗𝑓) (𝑥) ≤ 𝐶

𝑚

∏

𝑗=1

{

{

{

𝑀
𝑐

]
𝜔⃗

((

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

𝜔𝑗

]𝜔⃗
)

𝑞

)(𝑥)

}

}

}

1/(𝑞𝑝
𝑗
)

,

(31)
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where𝑀𝑐

]
𝜔⃗

is the weighted centered maximal operator. Then
by the Hölder inequality and [13, Theorem 3.1], we get

󵄩󵄩󵄩󵄩󵄩
M ⃗𝑟(

⃗𝑓)(𝑥)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(]

𝜔⃗
)

≤ 𝐶

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑚

∏

𝑗=1

{

{

{

𝑀
𝑐

]
𝜔⃗

([

[

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

𝜔𝑗

]𝜔⃗
]

]

𝑞

)

}

}

}

1/(𝑞𝑝
𝑗
)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝑘(]

𝜔⃗
)

≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

{

{

{

𝑀
𝑐

]
𝜔⃗

([

[

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

𝜔𝑗

]𝜔⃗
]

]

𝑞

)

}

}

}

1/(𝑞𝑝
𝑗
)󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(]
𝜔⃗
)

≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑀
𝑐

]
𝜔⃗

([

[

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

𝜔𝑗

]𝜔⃗
]

]

𝑞

)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/(𝑞𝑝
𝑗
)

𝐿1/𝑞,𝑘(]
𝜔⃗
)

≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗

󵄨󵄨󵄨󵄨󵄨

𝑝
𝑗

𝜔𝑗

]𝜔⃗
)

𝑞󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1/(𝑞𝑝
𝑗
)

𝐿1/𝑞,𝑘(]
𝜔⃗
)

≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝑘(𝜔

𝑗
)
.

(32)

Lemma 11 (See [6]). Let 1 < 𝑝1, . . . , 𝑝𝑚 < ∞ and 1/𝑝 =

1/𝑝1 + ⋅ ⋅ ⋅ + 1/𝑝𝑚. Suppose that 𝜎 ∈ 𝐿∞(R𝑚𝑛
) satisfies

󵄩󵄩󵄩󵄩𝜎𝑙
󵄩󵄩󵄩󵄩𝑊𝑠1,...,𝑠𝑚 (R𝑚𝑛)

< ∞. (33)

Then 𝑇𝜎 is bounded from 𝐿
𝑝
1(R𝑛

) × ⋅ ⋅ ⋅ × 𝐿
𝑝
𝑚(R𝑛

) to 𝐿𝑝(R𝑛
).

For 𝑞1, . . . , 𝑞𝑚 ∈ (0,∞) and 𝑠1, . . . , 𝑠𝑚 ∈ R, the weighted
Lebesgue space of mixed type 𝐿(𝑞1 ,...,𝑞𝑚)(𝜔(𝑠

1
,...,𝑠
𝑚
)) is defined

by the norm

‖𝐹‖𝐿(𝑞1,...,𝑞𝑚)(𝜔
(𝑠1,...,𝑠𝑚)

)

= [∫
R𝑛
⋅ ⋅ ⋅ {∫

R𝑛
(∫

R𝑛
|𝐹 (𝑥)|

𝑞
1⟨𝑥1⟩

𝑠
1

𝑑𝑥1)

𝑞
2
/𝑞
1

× ⟨𝑥2⟩
𝑠
2

𝑑𝑥2}

𝑞
3
/𝑞
2

⋅ ⋅ ⋅ ⟨𝑥𝑚⟩
𝑠
𝑚

𝑑𝑥𝑚]

1/𝑞
𝑚

.

(34)

Lemma 12 (See [6]). Let 𝑟 > 0, 2 ≤ 𝑞𝑗 < ∞, and 𝑠𝑗 ≥ 0 for
1 ≤ 𝑗 ≤ 𝑚. Then there exists a constant 𝐶 > 0 such that

󵄩󵄩󵄩󵄩󵄩
𝐹
󵄩󵄩󵄩󵄩󵄩𝐿(𝑞1,...,𝑞𝑚)(𝜔

(𝑠1,...,𝑠𝑚)
)
≤ 𝐶‖𝐹‖𝑊𝑠1/𝑞1,...,𝑠𝑚/𝑞𝑚 , (35)

for all 𝐹 ∈ 𝑊
𝑠
1
/𝑞
1
,...,𝑠
𝑚
/𝑞
𝑚(R𝑚𝑛

) with supp𝐹 ⊂ {|𝑥1|
2
⋅ ⋅ ⋅ +

|𝑥𝑚|
2
≤ 𝑟}.

By the reverse Hölder inequality, we have the following
lemma.

Lemma 13. Assume that 𝜔⃗ ∈ ∏
𝑚

𝑗=1
𝐴𝑝
𝑗

, with 1 < 𝑝1, . . . , 𝑝𝑚 <

∞. Let 𝑛/2 < 𝑠𝑗 ≤ 𝑛; then there exist constants 1 < 𝜖𝑗 <

min{𝑝𝑗, 𝑠𝑗/(𝑠𝑗 − 1), 2𝑠𝑗/𝑛} such that 𝜔𝑗 ∈ 𝐴𝑝
𝑗
/𝜖
𝑗

.

The following lemma is the key to our main results.

Lemma 14. Let “𝜎” be a multplier satisfying
󵄩󵄩󵄩󵄩𝜎𝑙

󵄩󵄩󵄩󵄩𝑊(𝑠1,...,𝑠𝑚)(R𝑛)
< ∞, (36)

for 𝑠1, . . . , 𝑠𝑚 ∈ (𝑛/2, 𝑛] and let 𝑇𝜎 be the operator defined by
(1). If 1 < 𝑝𝑗 < ∞, 𝑡𝑗 = 𝑛/𝑠𝑗 and 0 < 𝛿 < 𝑟/𝑚, where
1/𝑟 = 1/𝑟1+⋅ ⋅ ⋅+1/𝑟𝑚, 𝑟𝑗 = 𝜖𝑗𝑡𝑗 and 1 < 𝜖𝑗 < min{𝑝𝑗, 𝑠𝑗/(𝑠𝑗−
1), 2𝑠𝑗/𝑛}. Then for all ⃗𝑓 ∈ 𝐿

𝑝
1(R𝑛

) × ⋅ ⋅ ⋅ × 𝐿
𝑝
𝑚(R𝑛

) with 𝑟𝑗 ≤
𝑝𝑗 < ∞ for 1 ≤ 𝑗 ≤ 𝑚,

𝑀
♯

𝛿
(𝑇𝜎 (

⃗𝑓)) (𝑥) ≤ 𝐶M ⃗𝑟 (
⃗𝑓) (𝑥) , (37)

where ⃗𝑟 = (𝑟1, . . . , 𝑟𝑚).

Proof. By Lemma 13, 1 < 𝑡𝑗𝜖𝑗 ≤ 2; then 𝑟𝑗/𝑚 ≤ 1. Fix a point
𝑥 and a cube 𝑄 such that 𝑥 ∈ 𝑄. It suffices to prove that

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇𝜎 (

⃗𝑓) (𝑧) − 𝑐𝑄

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

≤ 𝐶M ⃗𝑟 (
⃗𝑓) (𝑥) , (38)

for some constant 𝑐𝑄. We decompose𝑓𝑗 = 𝑓
0

𝑗
+𝑓

∞

𝑗
with𝑓0

𝑗
=

𝑓𝑗𝜒𝑄⋆ for all 𝑗 = 1, . . . , 𝑚 and 𝑄⋆
= 4√𝑛𝑄. Then

𝑚

∏

𝑗=1

𝑓𝑗 (𝑦𝑗) =

𝑚

∏

𝑗=1

(𝑓
0

𝑗
(𝑦𝑗) + 𝑓

∞

𝑗
(𝑦𝑗))

= ∑

𝛼
1
,...,𝛼
𝑚
∈{0,∞}

𝑓
𝛼
1

1
(𝑦1) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
(𝑦𝑚)

=

𝑚

∏

𝑗=1

𝑓
0

𝑗
(𝑦𝑗) + ∑

𝛼
1
,...,𝛼
𝑚
∈I

𝑓
𝛼
1

1
(𝑦1) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
(𝑦𝑚) ,

(39)

where I = {𝛼1, . . . , 𝛼𝑚 : there is at least one 𝛼𝑗 ̸= 0}. Then
we can write

𝑇𝜎 (
⃗𝑓) (𝑧) = 𝑇𝜎 (

⃗𝑓
0
) (𝑧) + ∑

𝛼
1
,...,𝛼
𝑚
∈I

𝑇𝜎 (𝑓
𝛼
1

1
⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
) (𝑧)

:= 𝐼 + 𝐼𝐼.

(40)

Applying Kolmogorov’s inequality to 𝐼, we have

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇𝜎 (

⃗𝑓
0
) (𝑧)

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑇𝜎 (

⃗𝑓
0
)
󵄩󵄩󵄩󵄩󵄩𝐿𝑟,∞(𝑄,𝑑𝑥/|𝑄|)

≤ 𝐶

𝑚

∏

𝑗=1

(
1

|𝑄
⋆
|
∫
𝑄⋆

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨

𝑟
𝑙

𝑑𝑦𝑗)

𝑟
𝑗

≤ 𝐶M ⃗𝑟 (
⃗𝑓) (𝑥) ,

(41)

since 𝑇𝜎 is bounded from 𝐿
𝑟
1 × ⋅ ⋅ ⋅ × 𝐿

𝑟
𝑚 to 𝐿𝑟 by Lemma 11.
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Taking

𝑐𝑄 = ∑

𝛼
1
,...,𝛼
𝑚
∈I

𝑇𝜎 (𝑓
𝛼
1

1
⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
) (𝑥) , (42)

we claim that, for any 𝑧 ∈ 𝑄,
∑

𝛼
1
,...,𝛼
𝑚
∈I

󵄨󵄨󵄨󵄨𝑇𝜎 (𝑓
𝛼
1

1
⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
) (𝑧) − 𝑇𝜎 (𝑓

𝛼
1

1
⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨

≤ 𝐶M ⃗𝑟 (
⃗𝑓) (𝑥) .

(43)

Let

𝑊𝑙 (𝑥, 𝑧; 𝑦1, . . . , 𝑦𝑚) = 𝜎̌𝑙 (𝑥 − 𝑦1, . . . , 𝑥 − 𝑦𝑚)

− 𝜎̌𝑙 (𝑧 − 𝑦1, . . . , 𝑧 − 𝑦𝑚) .

(44)

At first we consider the case 𝛼1 = ⋅ ⋅ ⋅ = 𝛼𝑚,

󵄨󵄨󵄨󵄨𝑇𝜎 (𝑓
∞

1
⋅ ⋅ ⋅ 𝑓

∞

𝑚
) (𝑧) − 𝑇𝜎 (𝑓

∞

1
⋅ ⋅ ⋅ 𝑓

∞

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨

≤ ∑

𝑙∈Z

󵄨󵄨󵄨󵄨󵄨
𝑇𝜎
𝑙

(𝑓
∞

1
⋅ ⋅ ⋅ 𝑓

∞

𝑚
) (𝑧) − 𝑇𝜎

𝑙

(𝑓
∞

1
⋅ ⋅ ⋅ 𝑓

∞

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨󵄨
≤ ∑

𝑙∈Z

∫
R𝑚𝑛\(𝑄⋆)

𝑚

󵄨󵄨󵄨󵄨𝑊𝑙 (𝑥, 𝑧; 𝑦1, . . . , 𝑦𝑚)
󵄨󵄨󵄨󵄨

𝑚

∏

𝑗=1

𝑓𝑗 (𝑦𝑗) 𝑑 ⃗𝑦

≤ ∑

𝑙∈Z

∞

∑

𝑘=0

∫
(2𝑘+1𝑄⋆\2𝑘𝑄⋆)

𝑚

󵄨󵄨󵄨󵄨𝑊𝑙 (𝑥, 𝑧; 𝑦1, . . . , 𝑦𝑚)
󵄨󵄨󵄨󵄨

𝑚

∏

𝑗=1

𝑓𝑗 (𝑦𝑗) 𝑑 ⃗𝑦

≤

∞

∑

𝑘=0

∑

𝑙∈Z

𝑚

∏

𝑗=1

(∫
2𝑘+1𝑄⋆

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨

𝑟
𝑗

𝑑𝑦𝑗)

1/𝑟
𝑗

× (∫
(2𝑘+1𝑄⋆)\(2𝑘𝑄⋆)

(∫
(2𝑘+1𝑄⋆)\(2𝑘𝑄⋆)

⋅ ⋅ ⋅ (∫
(2𝑘+1Q⋆)\(2𝑘𝑄⋆)

󵄨󵄨󵄨󵄨𝑊𝑙 (𝑥, 𝑧; 𝑦1, . . . , 𝑦𝑚)
󵄨󵄨󵄨󵄨

𝑟
󸀠

1
𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚

:=

∞

∑

𝑘=0

∑

𝑙∈Z

𝑚

∏

𝑗=1

(∫
2𝑘+1𝑄⋆

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨

𝑟
𝑗

𝑑𝑦𝑗)

1/𝑟
𝑗

𝐼𝐼
∞,...,∞

𝑘,𝑙
.

(45)

Denote ℎ = 𝑧 − 𝑥 and 𝑄 = 𝑥 − 𝑄
⋆; it follows from Lemma 12

that

𝐼𝐼
∞,...,∞

𝑘,𝑙

= (∫
(2𝑘+1𝑄̃)\(2𝑘𝑄̃)

(∫
(2𝑘+1𝑄̃)\(2𝑘𝑄̃)

⋅ ⋅ ⋅ (∫
(2𝑘+1𝑄̃)\(2𝑘𝑄̃)

󵄨󵄨󵄨󵄨𝜎̌𝑙 (ℎ + 𝑦1, . . . , ℎ + 𝑦𝑚) − 𝜎̌𝑙 (𝑦1, . . . , 𝑦𝑚)
󵄨󵄨󵄨󵄨

𝑟
󸀠

1
𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚

≤ 2(∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

𝑚
|<𝑐
2
2𝑘+1ℓ(𝑄)

(∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

𝑚−1
|<𝑐
2
2𝑘+1ℓ(𝑄)

⋅ ⋅ ⋅ (∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

1
|<𝑐
2
2𝑘+1ℓ(𝑄)

󵄨󵄨󵄨󵄨𝜎̌𝑙 (𝑦1, . . . , 𝑦𝑚)
󵄨󵄨󵄨󵄨

𝑟
󸀠

1
𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚

≤ 𝐶(2
𝑘
𝑙 (𝑄))

−(𝑠
1
+⋅⋅⋅+𝑠

𝑚
)

× (∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

𝑚
|<𝑐
2
2𝑘+1ℓ(𝑄)

(∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

𝑚−1
|<𝑐
2
2𝑘+1ℓ(𝑄)

⋅ ⋅ ⋅ (∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

1
|<𝑐
2
2𝑘+1ℓ(𝑄)

󵄨󵄨󵄨󵄨𝜎̌𝑙 (𝑦1, . . . , 𝑦𝑚)
󵄨󵄨󵄨󵄨

𝑟
󸀠

1
⟨𝑦1⟩

𝑠
1
𝑟
󸀠

1
𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

× ⟨𝑦𝑚⟩
𝑠
𝑚
𝑟
󸀠

𝑚𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚
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≤ 𝐶(2
𝑘
𝑙 (𝑄))

−(𝑠
1
+⋅⋅⋅+𝑠

𝑚
)

2
𝑙(𝑠
1
+⋅⋅⋅+𝑠

𝑚
)

× (∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

𝑚
|<𝑐
2
2𝑘+1ℓ(𝑄)

(∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

𝑚−1
|<𝑐
2
2𝑘+1ℓ(𝑄)

⋅ ⋅ ⋅ (∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

1
|<𝑐
2
2𝑘+1ℓ(𝑄)

󵄨󵄨󵄨󵄨󵄨
2
−𝑙𝑚𝑛

𝜎̌𝑙 (2
−𝑙
𝑦1, . . . , 2

−𝑙
𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

𝑟
󸀠

1

⟨2
−𝑙
𝑦1⟩

𝑠
1
𝑟
󸀠

1

𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

× ⟨2
−𝑙
𝑦𝑚⟩

𝑠
𝑚
𝑟
󸀠

𝑚

𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚

≤ 𝐶(2
𝑘
𝑙 (𝑄))

−(𝑠
1
+⋅⋅⋅+𝑠

𝑚
)

2
𝑙(𝑠
1
+⋅⋅⋅+𝑠

𝑚
)
2
−𝑙𝑚𝑛

2
−𝑙(𝑛/𝑟

󸀠

1
+⋅⋅⋅+𝑛/𝑟

󸀠

𝑚
)

× (∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

𝑚
|<𝑐
2
2𝑘+1ℓ(𝑄)

(∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

𝑚−1
|<𝑐
2
2𝑘+1ℓ(𝑄)

⋅ ⋅ ⋅ (∫
𝑐
1
2𝑘ℓ(𝑄)≤|𝑦

1
|<𝑐
2
2𝑘+1ℓ(𝑄)

󵄨󵄨󵄨󵄨𝜎̌𝑙 (𝑧1, . . . , 𝑧𝑚)
󵄨󵄨󵄨󵄨

𝑟
󸀠

1
⟨𝑧1⟩

𝑠
1
𝑟
󸀠

1
𝑑𝑧1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

× ⟨𝑧𝑚⟩
𝑠
𝑚
𝑟
󸀠

𝑚𝑑𝑧𝑚)

1/𝑟
󸀠

𝑚

≤ 𝐶(2
𝑘
𝑙 (𝑄))

−(𝑠
1
+⋅⋅⋅+𝑠

𝑚
)

2
−𝑙(𝑛/𝑟

1
+⋅⋅⋅+𝑛/𝑟

𝑚
−𝑠
1
−⋅⋅⋅−𝑠

𝑚
)󵄩󵄩󵄩󵄩𝜎𝑙

󵄩󵄩󵄩󵄩𝑊𝑠1,...,𝑠𝑚
.

(46)

Given that 2𝑙0 ≤ 𝑙(𝑄) ≤ 2
𝑙
0
+1, then we have that

∑

𝑙<𝑙
0

𝐼𝐼
∞,...,∞

𝑘,𝑙

≤ 𝐶sup
𝑙

󵄩󵄩󵄩󵄩𝜎𝑙
󵄩󵄩󵄩󵄩𝑊𝑠1,...,𝑠𝑚

∑

𝑙<𝑙
0

(2
𝑘
𝑙 (𝑄))

−(𝑠
1
+⋅⋅⋅+𝑠

𝑚
)

× 2
−𝑙(𝑛/𝑟

1
+⋅⋅⋅+𝑛/𝑟

𝑚
−𝑠
1
−⋅⋅⋅−𝑠

𝑚
)

≤ 𝐶sup
𝑙

󵄩󵄩󵄩󵄩𝜎𝑙
󵄩󵄩󵄩󵄩𝑊𝑠1,...,𝑠𝑚

2
−𝑘(𝑠
1
+⋅⋅⋅+𝑠

𝑚
)
𝑙(𝑄)

−(𝑛/𝑟
1
+⋅⋅⋅+𝑛/𝑟

𝑚
)
.

(47)

On the other hand, a similar process follows in [10]; we get
that

𝐼𝐼
∞,...,∞

𝑘,𝑙
= (∫

(2𝑘+1𝑄̃)\(2𝑘𝑄̃)

(∫
(2𝑘+1𝑄̃)\(2𝑘𝑄̃)

⋅ ⋅ ⋅ (∫
(2𝑘+1𝑄̃)\(2𝑘𝑄̃)

󵄨󵄨󵄨󵄨𝜎̌𝑙(ℎ + 𝑦1, . . . , ℎ + 𝑦𝑚) − 𝜎̌𝑙(𝑦1, . . . , 𝑦𝑚)
󵄨󵄨󵄨󵄨

𝑟
󸀠

1
𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚

≤ (∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚|<𝑐22

𝑘+1ℓ(𝑄)

(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚−1|<𝑐22

𝑘+1ℓ(𝑄)

⋅ ⋅ ⋅

(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦1|<𝑐22

𝑘+1ℓ(𝑄)

(∫

1

0

󵄨󵄨󵄨󵄨󵄨
ℎ⃗ ⋅ ∇𝜎̌𝑙 (𝑦1 + 𝜃ℎ, . . . , 𝑦𝑚 + 𝜃ℎ)

󵄨󵄨󵄨󵄨󵄨
𝑑𝜃)

𝑟
󸀠

1

𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅)

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚
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≤ ∫

1

0

(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚|<𝑐22

𝑘+1ℓ(𝑄)

(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚−1|<𝑐22

𝑘+1ℓ(𝑄)

⋅ ⋅ ⋅ (∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦1 |<𝑐22

𝑘+1ℓ(𝑄)

󵄨󵄨󵄨󵄨󵄨
ℎ⃗ ⋅ ∇𝜎̌𝑙 (𝑦1 + 𝜃ℎ, . . . , 𝑦𝑚 + 𝜃ℎ)

󵄨󵄨󵄨󵄨󵄨

𝑟
󸀠

1

𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚

𝑑𝜃

≤ (∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚|<𝑐22

𝑘+1ℓ(𝑄)

(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚−1|<𝑐22

𝑘+1ℓ(𝑄)

⋅ ⋅ ⋅ (∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦1 |<𝑐22

𝑘+1ℓ(𝑄)

󵄨󵄨󵄨󵄨󵄨
ℎ⃗ ⋅ ∇𝜎̌𝑙 (𝑦1, . . . , 𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

𝑟
󸀠

1

𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚

,

(48)

where ℎ⃗ = (ℎ, . . . , ℎ) ∈ R𝑚𝑛. Since

ℎ⃗ ⋅ ∇𝜎̌𝑙 (𝑦1, . . . , 𝑦𝑚) =

𝑚

∑

𝑗=1

ℎ𝑗𝜕𝑗∇𝜎̌𝑙 (𝑦1, . . . , 𝑦𝑚) , (49)

we have

𝐼𝐼
∞,...,∞

𝑘,𝑙

≤

𝑚

∑

𝑗=1

ℓ (𝑄)(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚 |<𝑐22

𝑘+1ℓ(𝑄)

(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚−1|<𝑐22

𝑘+1ℓ(𝑄)

⋅ ⋅ ⋅ (∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦1|<𝑐22

𝑘+1ℓ(𝑄)

󵄨󵄨󵄨󵄨󵄨
𝜕𝑗 ⋅ 𝜎̌𝑙 (𝑦1, . . . , 𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

𝑟
󸀠

1

𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚

≤

𝑚

∑

𝑗=1

ℓ (𝑄) (2
𝑘
𝑙 (𝑄))

−(𝑠1+⋅⋅⋅+𝑠𝑚)

×(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚 |<𝑐22

𝑘+1ℓ(𝑄)

(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚−1|<𝑐22

𝑘+1ℓ(𝑄)

⋅ ⋅ ⋅ (∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦1 |<𝑐22

𝑘+1ℓ(𝑄)

󵄨󵄨󵄨󵄨󵄨
𝜕𝑗𝜎̌𝑙 (𝑦1, . . . , 𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

𝑟
󸀠

1

⟨𝑦1⟩
𝑠1𝑟
󸀠

1
𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

× ⟨𝑦𝑚⟩
𝑠𝑚𝑟
󸀠

𝑚
𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚

≤ 𝐶(2
𝑘
𝑙 (𝑄))

−(𝑠1+⋅⋅⋅+𝑠𝑚)

2
𝑙(𝑠1+⋅⋅⋅+𝑠𝑚)

×(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚 |<𝑐22

𝑘+1ℓ(𝑄)

(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚−1|<𝑐22

𝑘+1ℓ(𝑄)

⋅ ⋅ ⋅ (∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦1 |<𝑐22

𝑘+1ℓ(𝑄)

󵄨󵄨󵄨󵄨󵄨
2
−𝑙𝑚𝑛

⋅ 𝜕𝑗𝜎̌𝑙 (2
−𝑙
𝑦1, . . . , 2

−𝑙
𝑦𝑚)

󵄨󵄨󵄨󵄨󵄨

𝑟
󸀠

1

⟨2
−𝑙
𝑦1⟩

𝑠1𝑟
󸀠

1

𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

× ⟨2
−𝑙
𝑦𝑚⟩

𝑠𝑚𝑟
󸀠

𝑚

𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚
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≤ 𝐶(2
𝑘
𝑙 (𝑄))

−(𝑠1+⋅⋅⋅+𝑠𝑚)

2
𝑙(𝑠1+⋅⋅⋅+𝑠𝑚)

2
−𝑙𝑚𝑛

2
−𝑙(𝑛/𝑟
󸀠

1
+⋅⋅⋅+𝑛/𝑟

󸀠

𝑚
)

×(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚 |<𝑐22

𝑘+1ℓ(𝑄)

(∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦𝑚−1|<𝑐22

𝑘+1ℓ(𝑄)

⋅ ⋅ ⋅ (∫
𝑐12
𝑘ℓ(𝑄)≤|𝑦1 |<𝑐22

𝑘+1ℓ(𝑄)

󵄨󵄨󵄨󵄨󵄨
𝜕𝑗𝜎̌𝑙 (𝑧1, . . . , 𝑧𝑚)

󵄨󵄨󵄨󵄨󵄨

𝑟
󸀠

1

⟨𝑧1⟩
𝑠1𝑟
󸀠

1𝑑𝑧1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ )

𝑟
󸀠

𝑚
/𝑟
󸀠

𝑚−1

× ⟨𝑧𝑚⟩
𝑠𝑚𝑟
󸀠

𝑚
𝑑𝑧𝑚)

1/𝑟
󸀠

𝑚

≤ 𝐶(2
𝑘
𝑙 (𝑄))

−(𝑠1+⋅⋅⋅+𝑠𝑚)

2
−𝑙(𝑛/𝑟1+⋅⋅⋅+𝑛/𝑟𝑚+1−𝑠1−⋅⋅⋅−𝑠𝑚)󵄩󵄩󵄩󵄩𝜎𝑙

󵄩󵄩󵄩󵄩𝑊𝑠1,...,𝑠𝑚
.

(50)

From Lemma 13, 𝑛/𝑟1+⋅ ⋅ ⋅+𝑛/𝑟𝑚 > 𝑠1+⋅ ⋅ ⋅+𝑠𝑚−1, it deduces
that

∑

𝑙≥𝑙
0

𝐼𝐼
∞,...,∞

𝑘,𝑙
≤ 𝐶sup

𝑙

󵄩󵄩󵄩󵄩𝜎𝑙
󵄩󵄩󵄩󵄩𝑊𝑠1,...,𝑠𝑚

2
−𝑘(𝑠
1
+⋅⋅⋅+𝑠

𝑚
)
𝑙(𝑄)

−(𝑛/𝑟
1
+⋅⋅⋅+𝑛/𝑟

𝑚
)
.

(51)

So

󵄨󵄨󵄨󵄨𝑇𝜎 (𝑓
∞

1
⋅ ⋅ ⋅ 𝑓

∞

𝑚
) (𝑧) − 𝑇𝜎 (𝑓

∞

1
⋅ ⋅ ⋅ 𝑓

∞

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨

≤ 𝐶

∞

∑

𝑘=0

2
−𝑘(𝑠
1
+⋅⋅⋅+𝑠

𝑚
−𝑛/𝑟
1
−⋅⋅⋅−𝑛/𝑟

𝑚
)
M ⃗𝑟 (

⃗𝑓) (𝑥)

≤ 𝐶M ⃗𝑟 (
⃗𝑓) (𝑥) .

(52)

It remains to consider the case that there exists a proper subset
{𝑗1, . . . , 𝑗𝛾} of {1, . . . , 𝑚}, 1 ≤ 𝛾 < 𝑚, such that 𝛼𝑗

1

= ⋅ ⋅ ⋅ =

𝛼𝑗
𝛾

= 0. Without loss of generality, we write, for the case
{𝑗1, . . . , 𝑗𝛾} = {1, . . . , 𝛾},

󵄨󵄨󵄨󵄨𝑇𝜎 (𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑧) − 𝑇𝜎 (𝑓

𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨

≤

∞

∑

𝑘=0

∑

𝑙∈Z

𝑚

∏

𝑗=1

(∫
2𝑘+1𝑄⋆

󵄨󵄨󵄨󵄨󵄨
𝑓𝑗 (𝑦𝑗)

󵄨󵄨󵄨󵄨󵄨

𝑟
𝑗

𝑑 ⃗𝑦)

1/𝑟
𝑗

×(∫
2𝑘+1𝑄⋆\2𝑘𝑄⋆

⋅ ⋅ ⋅ (∫
2𝑘+1𝑄⋆\2𝑘𝑄⋆

(∫
𝑄⋆
⋅ ⋅ ⋅ (∫

𝑄⋆

󵄨󵄨󵄨󵄨𝑊𝑙 (𝑥, 𝑧; 𝑦1, . . . , 𝑦𝑚)
󵄨󵄨󵄨󵄨

𝑟
󸀠

1
𝑑𝑦1)

𝑟
󸀠

2
/𝑟
󸀠

1

⋅ ⋅ ⋅ 𝑑𝑦𝛾)

𝑟
󸀠

𝛾+1
/𝑟
󸀠

𝛾

𝑑𝑦𝛾+1)

𝑟
󸀠

𝛾+2
/𝑟
󸀠

𝛾+1

⋅ ⋅ ⋅ 𝑑𝑦𝑚)

1/𝑟
󸀠

𝑚

.

(53)

The same argument as the case 𝛼1 = ⋅ ⋅ ⋅ = 𝛼𝑚 = ∞ computes
that

󵄨󵄨󵄨󵄨𝑇𝜎 (𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑧) − 𝑇𝜎 (𝑓

𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨

≤ 𝐶M ⃗𝑟 (
⃗𝑓) (𝑥) .

(54)

This completes the proof.

Lemma 15. “Let 𝜎” be a multplier satisfying

󵄩󵄩󵄩󵄩𝜎𝑙
󵄩󵄩󵄩󵄩𝑊(𝑠1,⋅⋅⋅ ,𝑠𝑚)(R𝑛)

< ∞, (55)

for 𝑠1, . . . , 𝑠𝑚 ∈ (𝑛/2, 𝑛] and let 𝑇𝜎 be the operator defined by
(1). If 1 < 𝑝𝑗 < ∞, 𝑡𝑗 = 𝑛/𝑠𝑗 and 0 < 𝛿 < 𝜀 < 𝑟/𝑚, where
1/𝑟 = 1/𝑟1+. . .+1/𝑟𝑚, 𝑟𝑗 = 𝜖𝑗𝑡𝑗 and 1 < 𝜖𝑗 < min{𝑝𝑗, 𝑠𝑗/(𝑠𝑗−
1), 2𝑠𝑗/𝑛}, and let 𝑏⃗ ∈ BMO𝑚. Then for any ⃗𝛾 > ⃗𝑟, that is,

𝛾𝑗 > 𝑟𝑗, 𝑗 = 1, . . . , 𝑚, there exists some constant 𝐶 > 0 such
that

𝑀
♯

𝛿
(𝑇𝜎,Σb (

⃗𝑓)) (𝑥)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑏⃗
󵄩󵄩󵄩󵄩󵄩BMO𝑚 (𝑀𝜀 (𝑇𝜎 (

⃗𝑓)) (𝑥) +M ⃗𝛾 (
⃗𝑓) (𝑥)) ,

(56)

for all 𝑚-tuples ⃗𝑓 = (𝑓1, . . . , 𝑓𝑚) of bounded measurable
functions with compact support.

Proof. By linearity it is sufficient to consider the particular
case when 𝑏⃗ = 𝑏 ∈ BMO. Fix 𝑏 ∈ BMO and consider the
operator

𝑇𝜎,𝑏 (
⃗𝑓) (𝑥) = 𝑏 (𝑥) 𝑇𝜎 (

⃗𝑓) (𝑥) − 𝑇𝜎 (𝑏𝑓1, 𝑓2, . . . , 𝑓𝑚) (𝑥) .

(57)
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Fix 𝑥 ∈ R𝑛, for any cube𝑄with center at 𝑥; set 𝜆 = 𝑏𝑄⋆ , where
𝑄
⋆
= 4√𝑛𝑄. We have

𝑇𝜎,𝑏 (
⃗𝑓) (𝑥)

= (𝑏 (𝑥) − 𝜆) 𝑇 ( ⃗𝑓) (𝑥) − 𝑇𝜎 ((𝑏 − 𝜆) 𝑓1, 𝑓2, . . . , 𝑓𝑚) (𝑥) .

(58)

Since 0 < 𝛿 < 𝑟/𝑚 < 1,

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝑇𝜎,𝑏 (

⃗𝑓) (𝑧)
󵄨󵄨󵄨󵄨󵄨

𝛿

− |𝑐|
𝛿
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑧)

1/𝛿

≤ (
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇𝜎,𝑏 (

⃗𝑓) (𝑧) − 𝑐
󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

≤ (
𝐶

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
(𝑏 (𝑧) − 𝜆) 𝑇𝜎 (

⃗𝑓) (𝑧)
󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

+ (
𝐶

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑇𝜎 ((𝑏 − 𝜆) 𝑓1, . . . , 𝑓𝑚) (𝑧) − 𝑐
󵄨󵄨󵄨󵄨

𝛿
𝑑𝑧)

1/𝛿

:= 𝐴 + 𝐵.

(59)

By the John-Nirenberg inequality and Hölder inequality, one
has, for 1 < 𝑞 < 𝜖/𝛿 such that 𝑞󸀠𝛿 > 1,

𝐴 ≤ 𝐶(
1

|𝑄|
∫
𝑄

|𝑏 (𝑧) − 𝜆|
𝑞
󸀠
𝛿
𝑑𝑧)

1/𝑞
󸀠
𝛿

× (
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇𝜎 (

⃗𝑓) (𝑧)
󵄨󵄨󵄨󵄨󵄨

𝑞𝛿

𝑑𝑧)

1/𝑞𝛿

≤ 𝐶‖𝑏‖BMO𝑀𝑞𝛿 (𝑇𝜎 (
⃗𝑓)) (𝑥)

≤ 𝐶‖𝑏‖BMO𝑀𝜖 (𝑇𝜎 (
⃗𝑓)) (𝑥) .

(60)

To estimate term 𝐵, we split each function𝑓𝑗 as𝑓𝑗 = 𝑓
0

𝑗
+𝑓

∞

𝑗
,

where 𝑓0
𝑗
= 𝑓𝑗𝜒𝑄⋆ for 𝑗 = 1, . . . , 𝑚. We also have the same

decomposition,

𝑚

∏

𝑗=1

𝑓𝑗 (𝑦𝑗)

=

𝑚

∏

𝑗=1

(𝑓
0

𝑗
(𝑦𝑗) + 𝑓

∞

𝑗
(𝑦𝑗))

= ∑

𝛼
1
,...,𝛼
𝑚
∈{0,∞}

𝑓
𝛼
1

1
(𝑦1) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
(𝑦𝑚)

=

𝑚

∏

𝑗=1

𝑓
0

𝑗
(𝑦𝑗) + ∑

𝛼
1
,...,𝛼
𝑚
∈I

𝑓
𝛼
1

1
(𝑦1) ⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
(𝑦𝑚) ,

(61)

whereI = {𝛼1, . . . , 𝛼𝑚 : there is atleast one 𝛼𝑗 ̸= 0}.

Taking 𝑐 = ∑𝛼
1
,...,𝛼
𝑚
∈I 𝑇𝜎((𝑏 − 𝜆)𝑓

𝛼
1

1
⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
), we have

𝐵 ≤ 𝐶

{

{

{

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨󵄨
𝑇𝜎 ((𝑏 − 𝜆) 𝑓

0

1
, . . . , 𝑓

0

𝑚
) (𝑧)

󵄨󵄨󵄨󵄨󵄨

𝛿

𝑑𝑧)

1/𝛿

+ ∑

𝛼
1
,...,𝛼
𝑚
∈I

(
1

|𝑄|
∫
𝑄

󵄨󵄨󵄨󵄨𝑇𝜎 ((𝑏 − 𝜆) 𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
) (𝑧)

− 𝑇𝜎 ((𝑏 − 𝜆) 𝑓
𝛼
1

1
, . . . , 𝑓

𝛼
𝑚

𝑚
)

× (𝑥)𝑑𝑧|
𝛿
)

1/𝛿}

}

}

:= 𝐵1 + 𝐵2.

(62)

By using Kolmogorov’s inequality and Hölder’s inequality,
one has

𝐵1 ≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑇𝜎((𝑏 − 𝜆)𝑓

0

1
, . . . , 𝑓

0

𝑚
)(𝑧)

󵄩󵄩󵄩󵄩󵄩𝐿𝛾,∞(𝑄,𝑑𝑥/|𝑄|)

≤ 𝐶(
1

|𝑄
⋆
|
∫
𝑄⋆

󵄨󵄨󵄨󵄨󵄨
(𝑏 − 𝜆) 𝑓

0

1
(𝑧)

󵄨󵄨󵄨󵄨󵄨

𝑟
1

𝑑)

1/𝑟
1

×

𝑚

∏

𝑗=2

(
1

|𝑄
⋆
|
∫
𝑄⋆

󵄨󵄨󵄨󵄨󵄨
𝑓
0

𝑗
(𝑧)

󵄨󵄨󵄨󵄨󵄨

𝑟
𝑗

𝑑𝑧)

1/𝑟
𝑗

≤ 𝐶‖𝑏‖BMOM ⃗𝛾 (
⃗𝑓) .

(63)

By the same argument in the proof of Lemma 14, we have the
following estimate:

∑

𝛼
1
,...,𝛼
𝑚
∈I

󵄨󵄨󵄨󵄨𝑇𝜎 (𝑓
𝛼
1

1
⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
) (𝑧) − 𝑇𝜎 (𝑓

𝛼
1

1
⋅ ⋅ ⋅ 𝑓

𝛼
𝑚

𝑚
) (𝑥)

󵄨󵄨󵄨󵄨

≤ 𝐶

∞

∑

𝑘=0

2
−𝑘(𝑠
1
+⋅⋅⋅+𝑠

𝑚
−𝑛/𝑟
1
−⋅⋅⋅−𝑛/𝑟

𝑚
)

× (
1

󵄨󵄨󵄨󵄨2
𝑘+1𝑄⋆󵄨󵄨󵄨󵄨

∫
2𝑘+1𝑄⋆

󵄨󵄨󵄨󵄨(𝑏 − 𝜆) 𝑓
𝛼
1

1
(𝑧)

󵄨󵄨󵄨󵄨

𝑟
1

𝑑𝑧)

1/𝑟
1

×

𝑚

∏

𝑗=2

(
1

󵄨󵄨󵄨󵄨2
𝑘+1𝑄⋆󵄨󵄨󵄨󵄨

∫
2𝑘+1𝑄⋆

󵄨󵄨󵄨󵄨󵄨
𝑓
𝛼
𝑗

𝑗
(𝑧)

󵄨󵄨󵄨󵄨󵄨

𝑟
𝑗

𝑑𝑧)

1/𝑟
𝑗

≤ 𝐶M ⃗𝑟 (
⃗𝑓) (𝑥) .

(64)

This completes the proof.
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3. Proof of Theorems

Proof of Theorem 2. By Lemmas 8 and 14, we have
󵄩󵄩󵄩󵄩󵄩
𝑇𝜎 (

⃗𝑓)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(]

𝜔⃗
)

≤
󵄩󵄩󵄩󵄩󵄩
𝑀𝛿 (𝑇𝜎 (

⃗𝑓))
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(]

𝜔⃗
)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
𝑀

♯

𝛿
(𝑇𝜎(

⃗𝑓))
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(]

𝜔⃗
)

≤ 𝐶
󵄩󵄩󵄩󵄩󵄩
M ⃗𝑟 (

⃗𝑓)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(]

𝜔⃗
)

≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝜅
.

(65)

Proof of Theorem 3. By Lemma 13, there are 𝜖󸀠
𝑗
< 𝑝𝑗/𝑟𝑗 such

that 𝜔𝑗 ∈ 𝐴𝑝
𝑗
/(𝑟
𝑗
𝜖󸀠
𝑗
). Let 𝛾𝑗 = 𝑟𝑗𝜖

󸀠

𝑗
; by Lemmas 8 and 15, one

has

󵄩󵄩󵄩󵄩󵄩
M ⃗𝛾(

⃗𝑓)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(]

𝜔⃗
)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝜅

(𝜔𝑗) , (66)

and then

󵄩󵄩󵄩󵄩󵄩
𝑇𝜎,Σb(

⃗𝑓)
󵄩󵄩󵄩󵄩󵄩𝐿𝑝,𝜅(]

𝜔⃗
)
≤ 𝐶

𝑚

∏

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝐿
𝑝𝑗,𝜅(𝜔

𝑗
)
. (67)
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[14] L. Hörmander, “Estimates for translation invariant operators in
𝐿
𝑝 spaces,” Acta Mathematica, vol. 104, pp. 93–140, 1960.

[15] C. Fefferman and E. M. Stein, “𝐻𝑝 spaces of several variables,”
Acta Mathematica, vol. 129, no. 3-4, pp. 137–193, 1972.


