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This paper gives a version of Hartman-Grobman theorem for the impulsive differential equations. We assume that the linear
impulsive system has a nonuniform exponential dichotomy. Under some suitable conditions, we proved that the nonlinear
impulsive system is topologically conjugated to its linear system. Indeed, we do construct the topologically equivalent function
(the transformation). Moreover, the method to prove the topological conjugacy is quite different from those in previous works
(e.g., see Barreira and Valls, 2006).

1. Introduction

A basic contribution to the linearization problem for autono-
mous differential equations is the famousHartman-Grobman
theorem (see [1, 2]).Then Palmer successfully generalized the
standard Hartman-Grobman theorem to nonautonomous
differential equations (see [3]). Then Fenner and Pinto [4]
generalized Hartman-Grobman theorem to impulsive differ-
ential equations. However, they did not discuss the Hölder
regularity of the topologically equivalent function 𝐻(𝑡, 𝑥).
ThenXia et al. [5] gave a rigorous proof of theHölder regular-
ity. Xia et al. [6, 7] gave a version of the generalized Hartman-
Grobman theorem for dynamic systems on measure chains.
It should be noted that the above mentioned works are based
on the linear differential equations with uniform exponential
dichotomy. Recently, Barreira and Valls have introduced the
notion of nonuniform exponential dichotomies and have
developed the corresponding theory in a systematic way [8–
11]. So, a version of the Hartman-Grobman theorem is also
given for differential equations with nonuniform hyperbol-
icity (see [12]). However, they did not discuss the impulsive
systems with nonuniform hyperbolicity. For this reason, in
this paper, we considered the linearization of impulsive differ-
ential equations with nonuniform hyperbolicity. Moreover,

our method to prove the topological conjugacy used in this
paper is completely different from that in [12]. We divided
the proof into several lemmas and constructed a concrete
topologically equivalent function.

2. Definitions

Consider the linear nonautonomous system with impulses at
times {𝑡𝑘}𝑘∈Z as follows:

�̇� (𝑡) = 𝐴 (𝑡) 𝑥, 𝑡 ̸= 𝑡𝑘,

Δ𝑥 (𝑡𝑘) = 𝐴 (𝑡𝑘) 𝑥 (𝑡𝑘) , 𝑘 ∈ Z,
(1)

where Δ𝑥(𝑡𝑘) = 𝑥(𝑡
+

𝑘
) − 𝑥(𝑡

−

𝑘
), 𝑥(𝑡−
𝑘
) = 𝑥(𝑡𝑘), represents the

jump of the solution 𝑥(𝑡) at 𝑡 = 𝑡𝑘.
A perturbed nonautonomous system with impulsive is

therefore described by

�̇� (𝑡) = 𝐴 (𝑡) 𝑥 + 𝑓 (𝑡, 𝑥) , 𝑡 ̸= 𝑡𝑘,

Δ𝑥 (𝑡𝑘) = 𝐴 (𝑡𝑘) 𝑥 (𝑡𝑘) + 𝑓 (𝑡𝑘, 𝑥 (𝑡𝑘)) , 𝑘 ∈ Z,
(2)

where, in systems (1) and (2), 𝑥 ∈ R𝑛, 𝐴(𝑡) and 𝐴(𝑡) are 𝑛 × 𝑛
matrixes.
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Definition 1 (see [11, 12]). The impulsive system (1) is said to
be a nonuniform exponential dichotomy in R, if there exist
a projection 𝑃(𝑡) and positive constants 𝛼, 𝑘, and 𝜀 ≥ 0, such
that

‖𝑇 (𝑡, 𝑠) 𝑃 (𝑠)‖ ≤ 𝑘 exp {−𝛼 (𝑡 − 𝑠) + 𝜀 |𝑠|} , 𝑡 ≥ 𝑠,

‖𝑇 (𝑡, 𝑠) 𝑄 (𝑠)‖ ≤ 𝑘 exp {−𝛼 (𝑠 − 𝑡) + 𝜀 |𝑠|} , 𝑡 ≤ 𝑠,

(3)

where 𝑄(𝑡) = Id − 𝑃(𝑡) is the complementary projection and
𝑇(𝑡, 𝑠) is the evolution operator of the impulsive system (1),
which satisfies 𝑇(𝑡, 𝑠)𝑃(𝑠) = 𝑃(𝑡)𝑇(𝑡, 𝑠), 𝑡, 𝑠 ∈ R.

Definition 2 (see [5, 7]). Suppose that there exists a function
𝐻 : R ×R𝑛 → R𝑛 such that

(i) for each fixed 𝑡, 𝐻(𝑡, ⋅) is a homeomorphism of R𝑛
into R𝑛;

(ii) ‖𝐻(𝑡, 𝑥) − 𝑥‖ uniformly bounded with respect to 𝑡;
(iii) 𝐺(𝑡, ⋅) = 𝐻−1(𝑡, ⋅) has property (ii) also;
(iv) if 𝑥(𝑡) is a solution of system (2), then 𝐻(𝑡, 𝑥(𝑡)) is a

solution of system (1).

If such a map 𝐻𝑡 exists, then system (2) is topologically
conjugated to (1).𝐻 is an equivalent function.

3. Main Results and Proof

Theorem 3. Suppose that the linear impulsive system (1) has
a nonuniform exponential dichotomy (i.e., system (1) has an
evolution operator𝑇(𝑡, 𝑠) satisfying (3)) and, for any𝑥, 𝑥1, 𝑥2 ∈
R𝑛 and 𝑡 ∈ R, one assumes that

(H1) ‖𝑓(𝑡, 𝑥)‖ ≤ 𝜇 exp(−𝜀|𝑡|),

(H2) ‖𝑓(𝑡, 𝑥)‖ ≤ 𝜇 exp(−𝜀|𝑡|),
(H3) ‖𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖ ≤ 𝑟 exp(−𝜀|𝑡|)‖𝑥1 − 𝑥2‖,

(H4) ‖𝑓(𝑡, 𝑥1) − 𝑓(𝑡, 𝑥2)‖ ≤ 𝑟 exp(−𝜀|𝑡|)‖𝑥1 − 𝑥2‖,
(H5) 2𝑘𝑟𝛼

−1
+ 2𝑘𝑟𝑁[1 + (1/(1 − exp(−𝛼)))] < 1,

where 𝜇, 𝑟 ≥ 0, 𝑘, 𝛼, and 𝜀 are the same constants in (3), and
𝑁 is a positive integer such that the intervals [𝑛, 𝑛 + 1) contain
no more than 𝑁 terms of the sequences {𝑡𝑘}𝑘∈Z, for all 𝑛 ∈ Z.
Then system (2) is topologically conjugated to system (1).

We divide the proof of Theorem 3 into several lemmas.
In what follows, we always suppose that the conditions of

Theorem 3 are satisfied. Denote that 𝑋(𝑡, 𝑡0, 𝑥0) is a solution
of the system (2) satisfying the initial condition 𝑋(𝑡0) = 𝑥0,
and that 𝑌(𝑡, 𝑡0, 𝑦0) is a solution of the system (1) satisfying
the initial condition 𝑌(𝑡0) = 𝑦0.

Lemma 4. If system (1) has a nonuniform exponential
dichotomy, then 𝑥(𝑡) = 0 is the unique bounded solution of
system (1).

Proof. Let 𝑇(𝑡, 𝑠) be the evolution operator satisfying 𝑥(𝑡) =
𝑇(𝑡, 𝑠)𝑥(𝑠) for every 𝑡, 𝑠 ∈ R. Then there exists 𝛼, 𝑘 > 0,
𝜀 ≥ 0, and a projection 𝑃(𝑡) satisfying (3). We suppose that

𝑥(𝑡) is any bounded solution of the system (1), and it satisfies
the initial condition (𝑠, 𝑥(𝑠)).Therefore, 𝑥(𝑡) can be written as
𝑥(𝑡) = 𝑇(𝑡, 𝑠)𝑃(𝑠)𝑥(𝑠) + 𝑇(𝑡, 𝑠)[Id − 𝑃(𝑠)]𝑥(𝑠). Now we prove
𝑃(𝑠)𝑥(𝑠) = 0 and [Id − 𝑃(𝑠)]𝑥(𝑠) = 0.

If 𝑃(𝑠)𝑥(𝑠) ̸= 0, considering 𝑡 ≤ 0,

‖𝑥 (𝑡)‖ = ‖𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑥 (𝑠) + 𝑇 (𝑡, 𝑠) [Id − 𝑃 (𝑠)] 𝑥 (𝑠)‖

≥ |‖𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑥 (𝑠)‖ − ‖𝑇 (𝑡, 𝑠) [Id − 𝑃 (𝑠)] 𝑥 (𝑠)‖| .
(4)

It follows from the first expression of (3) that

‖𝑃 (𝑠) 𝑥 (𝑠)‖ =

𝑃
2
(𝑠) 𝑥 (𝑠)



=

𝑃 (𝑠) 𝑇

−1
(𝑡, 𝑠) 𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑥 (𝑠)



≤

𝑃 (𝑠) 𝑇

−1
(𝑡, 𝑠)


‖𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑥 (𝑠)‖

= ‖𝑃 (𝑠) 𝑇 (𝑠, 𝑡)‖ ‖𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑥 (𝑠)‖

= ‖𝑇 (𝑠, 𝑡) 𝑃 (𝑡)‖ ‖𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑥 (𝑠)‖

≤ 𝑘 exp {−𝛼 (s − 𝑡) + 𝜀 |𝑡|} ‖𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑥 (𝑠)‖ .
(5)

Namely,

‖𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑥 (𝑠)‖ ≥ 𝑘
−1 exp {𝛼 (𝑠 − 𝑡) − 𝜀 |𝑡|} ‖𝑃 (𝑠) 𝑥 (𝑠)‖ .

(6)

On the other hand, it follows from the second expression of
(3) that

‖𝑇 (𝑡, 𝑠) [Id − 𝑃 (𝑠)] 𝑥 (𝑠)‖ = ‖𝑇 (𝑡, 𝑠) [Id − 𝑃 (𝑠)]

× [Id − 𝑃 (𝑠)] 𝑥 (𝑠)‖

≤ ‖𝑇 (𝑡, 𝑠) [Id − 𝑃 (𝑠)]‖

× ‖[Id − 𝑃 (𝑠)] 𝑥 (𝑠)‖

≤ 𝑘 exp {−𝛼 (𝑠 − 𝑡) + 𝜀 |𝑠|}

× ‖[Id − 𝑃 (𝑠)] 𝑥 (𝑠)‖ .

(7)

From the above analysis, which implies that

‖𝑥 (𝑡)‖ ≥ 𝑘
−1 exp {𝛼 (𝑠 − 𝑡) + 𝜀 |𝑡|} ‖𝑃 (𝑠) 𝑥 (𝑠)‖

− 𝑘 exp {−𝛼 (𝑠 − 𝑡) + 𝜀 |𝑠|} ‖[Id − 𝑃 (𝑠)] 𝑥 (𝑠)‖ .
(8)

Then we obtain ‖𝑥(𝑡)‖ → +∞ as 𝑡 → −∞. Similarly, if
[Id − 𝑃(𝑠)]𝑥(𝑠) ̸= 0, we obtain ‖𝑥(𝑡)‖ → +∞ as 𝑡 → +∞.
Consequently, 𝑃(𝑠)𝑥(s) = 0 and [Id − 𝑃(𝑠)]𝑥(𝑠) = 0. Hence,
𝑥(𝑡) = 0.

Lemma 5. For each (𝜏, 𝜉), system

𝑧

= 𝐴 (𝑡) 𝑧 − 𝑓 (𝑡, 𝑋 (𝑡, 𝜏, 𝜉)) , 𝑡 ̸= 𝑡𝑘,

Δ𝑧 (𝑡𝑘) = 𝐴 (𝑡𝑘) 𝑧 (𝑡𝑘) − 𝑓 (𝑡𝑘, 𝑋 (𝑡𝑘, 𝜏, 𝜉)) , 𝑘 ∈ Z,
(9)

has a unique bounded solution ℎ(𝑡, (𝜏, 𝜉)) with |ℎ(𝑡, (𝜏, 𝜉))| ≤
2𝑘𝜇𝛼
−1
+ 2𝑘𝜇𝑁[1 + (1/(1 − exp(−𝛼)))].
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Proof. For each (𝜏, 𝜉), let

𝑧0 (𝑡) = −∫

𝑡

−∞

𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑋 (𝑠, 𝜏, 𝜉)) 𝑑𝑠

+ ∫

+∞

𝑡

𝑇 (𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑋 (𝑠, 𝜏, 𝜉)) 𝑑𝑠

− ∑

𝑡𝑘∈(−∞,𝑡)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑋 (𝑡𝑘, 𝜏, 𝜉))

+ ∑

𝑡𝑘∈[𝑡,+∞)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑄 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑋 (𝑡𝑘, 𝜏, 𝜉)) .

(10)

Differentiating it, then 𝑧0(𝑡) is a solution of system (9) It
follows from (3), (H1), and (H2) that we can easily deduce

𝑧0 (𝑡)
 ≤ ∫

𝑡

−∞

𝑘 exp {−𝛼 (𝑡 − 𝑠) + 𝜀 |𝑠|}

× 𝜇 exp (−𝜀 |𝑠|) 𝑑𝑠

+ ∫

+∞

𝑡

𝑘 exp {−𝛼 (𝑠 − 𝑡) + 𝜀 |𝑠|}

× 𝜇 exp (−𝜀 |𝑠|) 𝑑𝑠

+ ∑

𝑡𝑘∈(−∞,𝑡)

𝑘 exp {−𝛼 (𝑡 − 𝑡𝑘) + 𝜀
𝑡𝑘
}

× 𝜇 exp (−𝜀 𝑡𝑘
)

+ ∑

𝑡𝑘∈[𝑡,+∞)

𝑘 exp {−𝛼 (𝑡𝑘 − 𝑡) + 𝜀
𝑡𝑘
}

× 𝜇 exp (−𝜀 𝑡𝑘
)

≤ 2𝑘𝜇𝛼
−1
+ 2𝑘𝜇𝑁[1 +

1

1 − exp (−𝛼)
] .

(11)

It is easy to show that 𝑧0(𝑡) is a bounded solution of (9). On
the other hand, for each (𝜏, 𝜉), the linear part of system (9)
has a nonuniform exponential dichotomy, by Lemma 4, then
system (9) has a unique bounded solution 𝑧0(𝑡), we denote
ℎ(𝑡, (𝜏, 𝜉)) and |ℎ(𝑡, (𝜏, 𝜉))| ≤ 2𝑘𝜇𝛼

−1
+ 2𝑘𝜇𝑁[1 + (1/(1 −

exp(−𝛼)))].

Lemma 6. For each (𝜏, 𝜉), the system

𝑍

= 𝐴 (𝑡) 𝑍 + 𝑓 (𝑡, 𝑌 (𝑡, 𝜏, 𝜉) + 𝑍) , 𝑡 ̸= 𝑡𝑘,

Δ𝑍 (𝑡𝑘) = 𝐴 (𝑡𝑘) 𝑍 (𝑡𝑘) + 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑍 (𝑡𝑘)) ,

𝑘 ∈ Z,

(12)

has a unique bounded solution 𝑔(𝑡, (𝜏, 𝜉)) and |𝑔(𝑡, (𝜏, 𝜉))| ≤
2𝑘𝜇𝛼
−1
+ 2𝑘𝜇𝑁[1 + (1/(1 − exp(−𝛼)))].

Proof. Let B be the set of all the continuous bounded
functions 𝑧(𝑡) with |𝑧(𝑡)| ≤ 2𝑘𝜇𝛼

−1
+ 2𝑘𝜇𝑁[1 + (1/(1 −

exp(−𝛼)))]. For each (𝜏, 𝜉) and any 𝑧(𝑡) ∈ B, define the
mapping 𝑇 as follows:

𝑇𝑧 (𝑡) = ∫

𝑡

−∞

𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧 (𝑠)) 𝑑𝑠

− ∫

+∞

𝑡

𝑇 (𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧 (𝑠)) 𝑑𝑠

+ ∑

𝑡𝑘∈(−∞,𝑡)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧 (𝑡𝑘))

− ∑

𝑡𝑘∈[𝑡,+∞)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑄 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧 (𝑡𝑘)) .

(13)

It follows from (3), (H1), and (H2) that

|𝑇𝑧 (𝑡)| ≤ ∫

𝑡

−∞

𝑘 exp {−𝛼 (𝑡 − 𝑠) + 𝜀 |𝑠|}

× 𝜇 exp (−𝜀 |𝑠|) 𝑑𝑠

+ ∫

+∞

𝑡

𝑘 exp {−𝛼 (𝑠 − 𝑡) + 𝜀 |𝑠|}

× 𝜇 exp (−𝜀 |𝑠|) 𝑑𝑠

+ ∑

𝑡𝑘∈(−∞,𝑡)

𝑘 exp {−𝛼 (𝑡 − 𝑡𝑘) + 𝜀
𝑡𝑘
}

× 𝜇 exp (−𝜀 𝑡𝑘
)

+ ∑

𝑡𝑘∈[𝑡,+∞)

𝑘 exp {−𝛼 (𝑡𝑘 − 𝑡) + 𝜀
𝑡𝑘
}

× 𝜇 exp (−𝜀 𝑡𝑘
)

≤ 2𝑘𝜇𝛼
−1
+ 2𝑘𝜇𝑁[1 +

1

1 − exp (−𝛼)
]

≜ 𝐵,

(14)

which implies that 𝑇 is a self-map of a sphere with radius 𝐵.
For any 𝑧1(𝑡), 𝑧2(𝑡) ∈ B, and it follows from (3), (H4), and
(H5), then we have

𝑇𝑧1 (𝑡) − 𝑇𝑧2 (𝑡)
 ≤ ∫

𝑡

−∞

𝑘 exp {−𝛼 (𝑡 − 𝑠) + 𝜀 |𝑠|}

× 𝑟 exp (−𝜀 |𝑠|) 𝑧1 (𝑠) − 𝑧2 (𝑠)
 𝑑𝑠

+ ∫

+∞

𝑡

𝑘 exp {−𝛼 (𝑠 − 𝑡) + 𝜀 |𝑠|}

× 𝑟 exp (−𝜀 |𝑠|) 𝑧1 (𝑠) − 𝑧2 (𝑠)
 𝑑𝑠

+ ∑

𝑡𝑘∈(−∞,𝑡)

𝑘 exp {−𝛼 (𝑡 − 𝑡𝑘) + 𝜀
𝑡𝑘
}

× 𝑟 exp (−𝜀 𝑡𝑘
)
𝑧1 (𝑠) − 𝑧2 (𝑠)
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+ ∑

𝑡𝑘∈[𝑡,+∞)

𝑘 exp {−𝛼 (𝑡𝑘 − 𝑡) + 𝜀
𝑡𝑘
}

× 𝑟 exp (−𝜀 𝑡𝑘
)
𝑧1 (𝑠) − 𝑧2 (𝑠)



≤ (2𝑘𝑟𝛼
−1
+ 2𝑘𝑟𝑁[1 +

1

1 − exp (−𝛼)
])

×
𝑧1 − 𝑧2

 .

(15)

And together with (H5), 𝑇 has a unique fixed point, namely,
𝑧0(𝑡), and

𝑧0 (𝑡) = ∫

𝑡

−∞

𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧0 (𝑠)) 𝑑𝑠

− ∫

+∞

𝑡

𝑇 (𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧0 (𝑠)) 𝑑𝑠

+ ∑

𝑡𝑘∈(−∞,𝑡)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧0 (𝑡𝑘))

− ∑

𝑡𝑘∈[𝑡,+∞)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑄 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧0 (𝑡𝑘)) .

(16)

It is easy to show that 𝑧0(𝑡) is a bounded solution of (12). Now
we are going to show that the bounded solution is unique.
For this purpose, we assume that there is another bounded
solution 𝑧1(𝑡) of (12). Thus 𝑧1(𝑡) can be written as follows:

𝑧1 (𝑡) = 𝑇 (𝑡, 0) 𝑥0 + ∫

𝑡

0

𝑇 (𝑡, 𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠

+ ∑

𝑡𝑘∈[0,𝑡)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))

= 𝑇 (𝑡, 0) 𝑥0 + ∫

𝑡

0

𝑇 (𝑡, 𝑠) [𝑃 (𝑠) + (Id − 𝑃 (𝑠))]

× 𝑓 (𝑠,Y (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠

+ ∑

𝑡𝑘∈[0,𝑡)

𝑇 (𝑡, 𝑡
+

𝑘
) [𝑃 (𝑡

+

𝑘
) + (Id − 𝑃 (𝑡+

𝑘
))]

× 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))

= 𝑇 (𝑡, 0) 𝑥0 + ∫

𝑡

−∞

𝑇 (𝑡, 𝑠) 𝑃 (𝑠)

× 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠

− ∫

0

−∞

𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠

+ ∫

+∞

0

𝑇 (𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠

− ∫

+∞

𝑡

𝑇 (𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠

+ ∑

𝑡𝑘∈(−∞,𝑡)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))

− ∑

𝑡𝑘∈(−∞,0)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))

+ ∑

𝑡𝑘∈[0,+∞)

𝑇 (𝑡, 𝑡
+

k ) 𝑄 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))

− ∑

𝑡𝑘∈[𝑡,+∞)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑄 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘)) .

(17)

Note that

∫

0

−∞

𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠

= 𝑇 (𝑡, 0) ∫

0

−∞

𝑇 (0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (s)) 𝑑𝑠

≜ 𝑇 (𝑡, 0) 𝑥1.

(18)

And together with (3) and (H1), we have

𝑥1
 =



∫

0

−∞

𝑇 (0, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠



≤



∫

0

−∞

‖𝑇 (0, 𝑠) 𝑃 (𝑠)‖
𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠))

 𝑑𝑠



≤ ∫

0

−∞

𝑘 exp {−𝛼 (0 − 𝑠) + 𝜀 |𝑠|} 𝜇 exp (−𝜀 |𝑠|) 𝑑𝑠

= 𝑘𝜇𝛼
−1
.

(19)

Similarly,

∫

+∞

0

𝑇 (𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠 ≜ 𝑇 (𝑡, 0) 𝑥2,

𝑥2
 ≤ 𝑘𝜇𝛼

−1
.

(20)

On the other hand,

∑

𝑡𝑘∈(−∞,0)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))

= 𝑇 (𝑡, 0) ∑

𝑡𝑘∈(−∞,0)

𝑇 (0, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
)

× 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))

≜ 𝑇 (𝑡, 0) 𝑥3.

(21)
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And together with (3) and (H2), we have

𝑥3
 =



∑

𝑡𝑘∈(−∞,0)

𝑇 (0, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
)

× 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))



≤



∑

𝑡𝑘∈(−∞,0)

𝑇 (0, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
)


×

𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))





≤ ∑

𝑡𝑘∈(−∞,0)

𝑘 exp {−𝛼 (0 − 𝑡𝑘) + 𝜀
𝑡𝑘
}

× 𝜇 exp (−𝜀 𝑡𝑘
)

= 𝑘𝜇 ∑

𝑡𝑘∈(−∞,0)

exp (𝛼𝑡𝑘)

≤ 𝑘𝜇𝑁[1 +
1

1 − exp (−𝛼)
] .

(22)

Similarly,

∑

𝑡𝑘∈[0,+∞)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑄 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))

≜ 𝑇 (𝑡, 0) 𝑥4,

𝑥4
 ≤ 𝑘𝜇𝑁[1 +

1

1 − exp (−𝛼)
] .

(23)

Therefore, it follows from the expression of 𝑧1(𝑡) and it can be
written as follows:

𝑧1 (𝑡) = 𝑇 (𝑡, 0) (𝑥0 − 𝑥1 + 𝑥2 − 𝑥3 + 𝑥4)

+ ∫

𝑡

−∞

𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠

− ∫

+∞

𝑡

𝑇 (𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠

+ ∑

𝑡𝑘∈(−∞,𝑡)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))

− ∑

𝑡𝑘∈[𝑡,+∞)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑄 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘)) .

(24)

Noticing that 𝑧1(𝑡) is bounded, hence,𝑇(𝑡, 0)(𝑥0−𝑥1+𝑥2−𝑥3+
𝑥4) is bounded. And it is a solution of system (1). By Lemma 4,

we can obtain that𝑇(𝑡, 0)(𝑥0−𝑥1+𝑥2−𝑥3+𝑥4) = 0. It follows
that

𝑧1 (𝑡) = ∫

𝑡

−∞

𝑇 (𝑡, 𝑠) 𝑃 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠

− ∫

+∞

𝑡

𝑇 (𝑡, 𝑠) 𝑄 (𝑠) 𝑓 (𝑠, 𝑌 (𝑠, 𝜏, 𝜉) + 𝑧1 (𝑠)) 𝑑𝑠

+ ∑

𝑡𝑘∈(−∞,𝑡)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘))

− ∑

𝑡𝑘∈[𝑡,+∞)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑄 (𝑡
+

𝑘
) 𝑓 (𝑡𝑘, 𝑌 (𝑡𝑘, 𝜏, 𝜉) + 𝑧1 (𝑡𝑘)) .

(25)

Simple calculation shows

𝑧1 (𝑡) − 𝑧0 (t)
 ≤ ∫

𝑡

−∞

𝑘 exp {−𝛼 (𝑡 − 𝑠) + 𝜀 |𝑠|}

× 𝑟 exp (−𝜀 |𝑠|) 𝑧1 (𝑠) − 𝑧0 (𝑠)
 𝑑𝑠

+ ∫

+∞

𝑡

𝑘 exp {−𝛼 (𝑠 − 𝑡) + 𝜀 |𝑠|}

× 𝑟 exp (−𝜀 |𝑠|) 𝑧1 (𝑠) − 𝑧0 (𝑠)
 𝑑𝑠

+ ∑

𝑡𝑘∈(−∞,𝑡)

𝑘 exp {−𝛼 (𝑡 − 𝑡𝑘) + 𝜀
𝑡𝑘
}

× 𝑟 exp (−𝜀 𝑡𝑘
)
𝑧1 (𝑡𝑘) − 𝑧0 (𝑡𝑘)



+ ∑

𝑡𝑘∈[𝑡,+∞)

𝑘 exp {−𝛼 (𝑡𝑘 − 𝑡) + 𝜀
𝑡𝑘
}

× 𝑟 exp (−𝜀 𝑡𝑘
)
𝑧1 (𝑡𝑘) − 𝑧0 (𝑡𝑘)



≤ (2𝑘𝑟𝛼
−1
+ 2𝑘𝑟𝑁[1 +

1

1 − exp (−𝛼)
])

×
𝑧1 − 𝑧0

 .

(26)

It follows from (H5) that we can obtain 𝑧1(𝑡) ≡ 𝑧0(𝑡). This
implies that the bounded solution of (12) is unique. We
denote it as 𝑔(𝑡(𝜏, 𝜉)). From the above proof, it is easy to see
that |𝑔(𝑡, (𝜏, 𝜉))| ≤ 2𝑘𝜇𝛼−1+2𝑘𝜇𝑁[1+(1/(1−exp(−𝛼)))].

Lemma 7. Let 𝑥(𝑡) be any solution of the system (2); then
𝑧(𝑡) = 0 is the unique bounded solution of system

𝑧

= 𝐴 (𝑡) 𝑍 + 𝑓 (𝑡, 𝑥 (𝑡) + 𝑍) − 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ̸= 𝑡𝑘,

Δ𝑍 (𝑡𝑘) = 𝐴 (𝑡𝑘) 𝑍 (𝑡𝑘) + 𝑓 (𝑡𝑘, 𝑥 (𝑡𝑘) + 𝑍 (𝑡𝑘))

− 𝑓 (𝑡𝑘, 𝑥 (𝑡𝑘)) , 𝑘 ∈ Z.

(27)

Proof. Obviously, 𝑧 ≡ 0 is a bounded solution of system (27).
We show that the bounded solution is unique; if not, there
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is another bounded solution 𝑧1(𝑡), which can be written as
follows:
𝑧1 (𝑡) = 𝑇 (𝑡, 0) 𝑧1 (0)

+ ∫

𝑡

0

𝑇 (𝑡, 𝑠) [𝑓 (𝑠, 𝑥 (𝑠) + 𝑧1 (𝑠)) − 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

+ ∑

𝑡𝑘∈[0,𝑡)

𝑇 (𝑡, 𝑡
+

𝑘
) [𝑓 (𝑡𝑘, 𝑥 (𝑡𝑘) + 𝑧1 (𝑡𝑘))

−𝑓 (𝑡𝑘, 𝑥 (𝑡𝑘))] .

(28)

By Lemma 6, we can get

𝑧1 (𝑡) = ∫

𝑡

−∞

𝑇 (𝑡, 𝑠) 𝑃 (𝑠) [𝑓 (𝑠, 𝑥 (𝑠) + 𝑧1 (𝑠))

− 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

− ∫

+∞

𝑡

𝑇 (𝑡, 𝑠) 𝑄 (𝑠) [𝑓 (𝑠, 𝑥 (𝑠) + 𝑧1 (𝑠))

− 𝑓 (𝑠, 𝑥 (𝑠))] 𝑑𝑠

+ ∑

𝑡𝑘∈(−∞,𝑡)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑃 (𝑡
+

𝑘
) [𝑓 (𝑡𝑘, 𝑥 (𝑡𝑘) + 𝑧1 (𝑡𝑘))

− 𝑓 (𝑡𝑘, 𝑥 (𝑡𝑘))]

− ∑

𝑡𝑘∈[𝑡,+∞)

𝑇 (𝑡, 𝑡
+

𝑘
) 𝑄 (𝑡
+

𝑘
) [𝑓 (𝑡𝑘, 𝑥 (𝑡𝑘) + 𝑧1 (𝑡𝑘))

− 𝑓 (𝑡𝑘, 𝑥 (𝑡𝑘))] .

(29)

Then it follows from (3), (H3), and (H4) that

𝑧1 (𝑡)
 ≤ ∫

𝑡

−∞

𝑘 exp {−𝛼 (𝑡 − 𝑠) + 𝜀 |𝑠|}

× 𝑟 exp (−𝜀 |𝑠|) 𝑧1 (𝑠)
 𝑑𝑠

+ ∫

+∞

𝑡

𝑘 exp {−𝛼 (𝑠 − 𝑡) + 𝜀 |𝑠|}

× 𝑟 exp (−𝜀 |𝑠|) 𝑧1 (𝑠)
 𝑑𝑠

+ ∑

𝑡𝑘∈(−∞,𝑡)

𝑘 exp {−𝛼 (𝑡 − 𝑡𝑘) + 𝜀
𝑡𝑘
}

× 𝑟 exp (−𝜀 𝑡𝑘
)
𝑧1 (𝑡𝑘)



+ ∑

𝑡𝑘∈[𝑡,+∞)

𝑘 exp {−𝛼 (𝑡𝑘 − 𝑡) + 𝜀
𝑡𝑘
}

× 𝑟 exp (−𝜀 𝑡𝑘
)
𝑧1 (𝑡𝑘)



≤ [2𝑘𝑟𝛼
−1
+ 2𝑘𝑟𝑁[1 +

1

1 − exp (−𝛼)
]]
𝑧1
 ,

(30)

And, together with (H5), consequently, 𝑧1(𝑡) ≡ 0. This
completes the proof of Lemma 7.

Now we define two functions as follows:

𝐻(𝑡, 𝑥) = 𝑥 + ℎ (𝑡, (𝑡, 𝑥)) , (31)

𝐺 (𝑡, 𝑥) = 𝑦 + 𝑔 (𝑡, (𝑡, 𝑦)) . (32)

Lemma8. For any fixed (𝑡0, 𝑥0),𝐻(𝑡,𝑋(𝑡, 𝑡0, 𝑥0)) is a solution
of system (1).

Proof. Replace (𝜏, 𝜉) by (𝑡, 𝑋(𝑡, 𝜏, 𝜉)) in (9); system (9) is not
changed. Due to the uniqueness of the bounded solution of
(9), we can get that ℎ(𝑡, (𝑡, 𝑋(𝑡, 𝑡0, 𝑥0))) = ℎ(𝑡, (𝑡0, 𝑥0)). Thus

𝐻(𝑡, 𝑋 (𝑡, 𝑡0, 𝑥0)) = 𝑋 (𝑡, 𝑡0, 𝑥0) + ℎ (𝑡, (𝑡0, 𝑥0)) . (33)

Differentiating it and noticing that 𝑋(𝑡, 𝑡0, 𝑥0) and
ℎ(𝑡, (𝑡0, 𝑥0)) are the solutions of (2) and (9), respectively, we
can obtain
[𝐻 (𝑡, 𝑋 (𝑡, 𝑡0, 𝑥0))]


= 𝐴 (𝑡)𝑋 (𝑡, 𝑡0, 𝑥0) + 𝑓 (𝑡, 𝑋 (𝑡, 𝑡0, 𝑥0))

+ 𝐴 (𝑡) ℎ (𝑡, (𝑡0, 𝑥0))

− 𝑓 (𝑡, 𝑋 (𝑡, 𝑡0, 𝑥0))

= 𝐴 (𝑡) (𝑋 (𝑡, 𝑡0, 𝑥0) + ℎ (𝑡, (𝑡0, 𝑥0)))

= 𝐴 (𝑡)𝐻 (𝑡, 𝑋 (𝑡, 𝑡0, 𝑥0))

Δ𝐻 (𝑡𝑘, 𝑋 (𝑡𝑘, 𝑡0, 𝑥0))= 𝐴 (𝑡𝑘)𝑋 (𝑡𝑘, 𝑡0, 𝑥0)

+ 𝑓 (𝑡𝑘, 𝑋 (𝑡𝑘, 𝑡0, 𝑥0))

+ 𝐴 (𝑡𝑘) ℎ (𝑡𝑘, (𝑡𝑘, 𝑋 (𝑡𝑘, 𝑡0, 𝑥0)))

− 𝑓 (𝑡𝑘, 𝑋 (𝑡𝑘, 𝑡0, 𝑥0))

= 𝐴 (𝑡𝑘)(𝑋 (𝑡𝑘, 𝑡0, 𝑥0) + ℎ (𝑡𝑘, (𝑡0, 𝑥0)))

= 𝐴 (𝑡𝑘)𝐻 (𝑡𝑘, 𝑋 (𝑡𝑘, 𝑡0, 𝑥0)) .

(34)

It indicates that𝐻(𝑡, 𝑋(𝑡, 𝑡0, 𝑥0)) is the solution of system (1).

Lemma 9. For any fixed (𝑡0, 𝑦0),𝐺(𝑡, 𝑌(𝑡, 𝑡0, 𝑦0)) is a solution
of the system (2).

Proof. The proof is similar to Lemma 8.

Lemma 10. For any 𝑡 ∈ R, 𝑦 ∈ R𝑛,𝐻(𝑡, 𝐺(𝑡, 𝑦)) ≡ 𝑦.

Proof. Let 𝑦(𝑡) be any solution of system (1). By Lemma 9,
𝐺(𝑡, 𝑦(𝑡)) is a solution of system (2). Then by Lemma 8, we
see that 𝐻(𝑡, 𝐺(𝑡, 𝑦(𝑡))) is a solution of system (1) written as
𝑦1(𝑡). Denote 𝐽(𝑡) = 𝑦1(𝑡) − 𝑦(𝑡). Differentiating it, we have

𝐽

(𝑡) = 𝑦



1
(𝑡) − 𝑦


(𝑡) = 𝐴 (𝑡) 𝑦1 (𝑡) − 𝐴 (𝑡) 𝑦 (t)

= 𝐴 (𝑡) 𝐽 (𝑡) ,

Δ𝐽 (𝑡) = Δ𝑦1 (𝑡) − Δ𝑦 (𝑡) = 𝐴 (𝑡𝑘) 𝑦1 (𝑡𝑘) − 𝐴 (𝑡𝑘) 𝑦 (𝑡𝑘)

= 𝐴 (𝑡𝑘) 𝐽 (𝑡𝑘) ,

(35)
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which implies that 𝐽(𝑡) is a solution of system (1). On the other
hand, following the definition of𝐻, 𝐺, and Lemmas 5 and 6,
we can obtain

|𝐽 (𝑡)| =
𝐻 (𝑡, 𝐺 (𝑡, 𝑦 (𝑡))) − 𝑦 (𝑡)



≤
𝐻 (𝑡, 𝐺 (𝑡, 𝑦 (𝑡))) − 𝐺 (𝑡, 𝑦 (𝑡))



+
𝐺 (𝑡, 𝑦 (𝑡)) − 𝑦 (𝑡)



=
ℎ (𝑡, (𝑡, 𝐺 (𝑡, 𝑦 (𝑡))))

 +
𝑔 (𝑡, (𝑡, 𝑦))



≤ 4𝑘𝜇𝛼
−1
+ 4𝑘𝜇𝑁[1 +

1

1 − exp (−𝛼)
] .

(36)

This implies that 𝐽(𝑡) is a bounded solution of system (1).
However, by Lemma 4, system (1) has only one zero solution.
Hence 𝐽(𝑡) ≡ 0; consequently, 𝑦1(𝑡) ≡ 𝑦(𝑡); that is,
𝐻(𝑡, 𝐺(𝑡, 𝑦)) = 𝑦(𝑡). Since 𝑦(𝑡) is any solution of the system
(1), then Lemma 10 follows.

Lemma 11. For any 𝑡 ∈ R, 𝑥 ∈ R𝑛, 𝐺(𝑡,𝐻(𝑡, 𝑥)) ≡ 𝑥.

Proof. The proof is similar to Lemma 10.

Now we are in a position to prove the main result.

Proof of Theorem 3. We are going to show that𝐻(𝑡, ⋅) satisfies
the four conditions of Definition 2 in the following.

Proof of condition (i) for any fixed 𝑡, it follows from
Lemmas 10 and 11 that𝐻(𝑡, ⋅) is homeomorphism and
𝐺(𝑡, ⋅) = 𝐻

−1
(𝑡, ⋅).

Proof of condition (ii) it follows from (31) and
Lemma 5 that |𝐻(𝑡, 𝑥)−𝑥| is bounded uniformly with
respect to 𝑡.
Proof of condition (iii) it follows from (32) and
Lemma 6 that |𝐺(𝑡, 𝑦)−𝑦| is bounded uniformly with
respect to 𝑡.
Proof of condition (iv) it follows from Lemma 8 and
Lemma 9 that we easily prove that condition (iv) is
true.

Hence, system (2) is topologically conjugated to system
(1). This completes the proof of Theorem 3.
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