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By applying the remarkable orthonormal basis constructed recently by Ausher and Hytönen on spaces of homogeneous type in the
sense of Coifman andWeiss, pointwise multipliers of inhomogeneous Besov and Triebel-Lizorkin spaces are obtained.Wemake no
additional assumptions on the quasi-metric or the doubling measure. Hence, the results of this paper extend earlier related results
to a more general setting.

1. Introduction

Themain purpose of this paper is to provide pointwisemulti-
pliers of inhomogeneous Besov and Triebel-Lizorkin spaces
on spaces of homogeneous type in the sense of Coifman and
Weiss. By a pointwisemultiplier from a function spaceA into
another function spaceB, we meant that a function defines a
bounded linear mapping fromA intoB by pointwise multi-
plication. Pointwise multipliers arise in many different areas
of mathematical analysis and have many applications; for
example, coefficients of differential operators and symbols of
more general pseudodifferential operatorsmay be considered
as pointwisemultipliers. For the theory of pointwisemultipli-
ers acting on several function spaces such as Sobolev, Besov,
and Triebel-Lizorkin spaces onR𝑛 we refer to [1]. See also [2–
5] for more details.

It was well known that the Fourier transform is a crucial
tool to study pointwisemultipliers onR𝑛. However, it was not
clear how to generalize pointwise multipliers onR𝑛 to spaces
of homogeneous type introduced by Coifman and Weiss [6]
because the Fourier transform is no longer available on spaces
of homogenous type. To be more precise, let us first recall
briefly these spaces. A quasi-metric 𝑑 on a set𝑋 is a function
𝑑:𝑋 × 𝑋 → [0,∞) satisfying that (i) 𝑑(𝑥, 𝑦) = 0 if and only
if 𝑥 = 𝑦; (ii) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋; (iii) there exists
a constant 𝐴

0
∈ [1,∞) such that for all 𝑥, 𝑦 and 𝑧 ∈ 𝑋,
𝑑 (𝑥, 𝑦) ≤ 𝐴

0
[𝑑 (𝑥, 𝑧) + 𝑑 (𝑧, 𝑦)] . (1)

Any quasi-metric defines a topology, for which the balls

𝐵 (𝑥, 𝑟) = {𝑦 ∈ 𝑋 : 𝑑 (𝑦, 𝑥) < 𝑟} (2)

for all 𝑥 ∈ 𝑋 and all 𝑟 > 0 form a basis.We say that (𝑋, 𝑑, 𝜇) is
a space of homogeneous type in sense of Coifman and Weiss
if 𝑑 is a quasi-metric and 𝜇 is a nonnegative Borel regular
measure on 𝑋 satisfying the doubling condition; that is, for
all 𝑥 ∈ 𝑋, 𝑟 > 0, then 0 < 𝜇(𝐵(𝑥, 𝑟)) < ∞ and

𝜇 (𝐵 (𝑥, 2𝑟)) ≤ 𝐶𝜇 (𝐵 (𝑥, 𝑟)) , (3)

where 𝜇 is assumed to be defined on a 𝜎-algebra which
contains all Borel sets and all balls 𝐵(𝑥, 𝑟) and the constant
0 < 𝐶 < ∞ is independent of 𝑥 ∈ 𝑋 and 𝑟 > 0. Spaces of
homogenous type in the sense of Coifman and Weiss have
many applications in analysis. For example, Coifman and
Weiss introduced atomic Hardy space 𝐻

𝑝

𝑎𝑡
for 𝑝 ∈ (0, 1] in

[6, 7] that proved that if 𝑇 is a Calderón-Zygmund singular
integral operator and is bounded on 𝐿

2, then 𝑇 extends
a bounded operator from 𝐻

𝑝 to 𝐿
𝑝 for suitable 𝑝 ≤ 1.

However, note that the quasi-metric, in contrast to a metric,
may not be Hölder regular and quasi-metric balls may not
be open. For this reason, in many applications, the additional
assumptions on the quasi-metric 𝑑 and the measure 𝜇 are
required. For instance, in order to provide the maximal
function characterization of the Hardy spaces 𝐻𝑝

𝑎𝑡
on spaces

of homogenous type, Maćıas and Segovia in [8] showed that
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the quasi-metric 𝑑 can be replaced by another quasi-metric 𝑑
such that the topologies induced on 𝑋 by 𝑑 and 𝑑 coincide,
and, moreover, 𝑑 has the following Hölder regularity: there
exist positive constant 𝐶 and 0 < 𝜃 < 1 such that for all
0 < 𝑟 < ∞ and all 𝑥, 𝑥, 𝑦 ∈ 𝑋


𝑑 (𝑥, 𝑦) − 𝑑 (𝑥



, 𝑦)


≤ 𝐶𝑑(𝑥, 𝑥


)
𝜃

[𝑑 (𝑥, 𝑦) + 𝑑 (𝑥


, 𝑦)]
1−𝜃

.

(4)

Furthermore, if balls𝐵(𝑥, 𝑟) are defined by 𝑑, that is,𝐵(𝑥, 𝑟) =

{𝑦 ∈ 𝑋 : 𝑑(𝑦, 𝑥) < 𝑟}, then

𝜇 (𝐵 (𝑥, 𝑟)) ∼ 𝑟. (5)

Maćıas and Segovia provided the maximal function charac-
terization of the Hardy spaces 𝐻𝑝

(𝑋) for (1 + 𝜃)
−1

< 𝑝 ≤ 1,
on spaces of homogeneous type (𝑋, 𝑑, 𝜇) with the regularity
condition (4) on 𝑑 and property (5) on the measure 𝜇.

A fundamental result for these spaces (𝑋, 𝑑, 𝜇) is the 𝑇(𝑏)

theorem of David-Journé-Semmes [9], where 𝑑 and 𝜇 satisfy
(4) and (5), respectively. The crucial tool in the proof of the
𝑇(𝑏) theorem is the existence of a suitable approximation to
the identity.The construction of such an approximation to the
identity is due to Coifman. We would like to point out that
for Coifman’s construction the additional assumptions (4) on
𝑑 and (5) on 𝜇 are crucial. Later, based on the conditions in
(4) and (5), the Calderón reproducing formula, test function
spaces and distributions, the Littlewood-Paley theory, and
function spaces on (𝑋, 𝑑, 𝜇) were developed in [10–12].

In [13], Nagel and Stein developed the product 𝐿𝑝 (1 <

𝑝 < ∞) theory in the setting of the Carnot-Carathéodory
spaces formed by vector fields satisfying Hörmander’s finite
rank condition. The particular Carnot-Carathéodory spaces
studied in [13] are spaces of homogeneous type with a smooth
quasi-metric 𝑑 and a measure 𝜇 satisfying the conditions

𝜇 (𝐵 (𝑥, 𝑠𝑟)) ∼ 𝑠
𝑚+2

𝜇 (𝐵 (𝑥, 𝑟)) (6)

for 𝑠 ≥ 1 and

𝜇 (𝐵 (𝑥, 𝑠𝑟)) ∼ 𝑠
4

𝜇 (𝐵 (𝑥, 𝑟)) (7)

for 𝑠 ≤ 1.
These conditions on the measure are weaker than prop-

erty in (5) but are still stronger than the original doubling
condition in (3).

Recently, pointwise multiplier theorems of Besov and
Triebel-lizorkin spaces were obtained by the first author on
spaces of homogeneous type with the additional assumptions
(1.3) and (1.4) in [14] and with the conditions (1.3) and (1.5) in
[15, 16].

A natural question arises: whether pointwise multipliers
still hold on spaces of homogeneous type in the sense of
Coifman andWeiss with only the original quasi-metric and a
doubling measure?

Very recently, Auscher and Hytönen constructed an
orthonormal basis with Hölder regularity and exponential

decay on spaces of homogeneous type [17]. This result is
remarkable since there are no additional assumptions other
than those defining spaces of homogeneous type in the
sense of Coifman and Weiss. Motivated by Auscher and
Hytönen’s orthonormal basis on spaces of homogeneous type,
the purpose of the current paper is to answer the above
question. More precisely, in this paper, we will provide point-
wise multipliers on spaces of homogeneous type in the sense
of Coifman and Weiss with the original quasi-metric 𝑑 and
doubling measure 𝜇.

The main tool used in this paper is the orthonormal basis
constructed by Auscher and Hytönen [17]. We now briefly
recall the orthonormal basis constructed in [17] and inhomo-
geneous Besov and Triebel-Lizorkin spaces obtained in [18]
on spaces of homogeneous type in the sense of Coifman and
Weiss.

The orthonormal basis of 𝐿2(𝑋) constructed by Auscher
and Hytönen [17] is given by the following.

Theorem 1 (see [17] Theorem 7.1). Let (𝑋, 𝑑, 𝜇) be a space of
homogeneous type in the sense of Coifman and Weiss. There
exists an orthonormal basis 𝜓

𝑘

𝛼
, 𝑘 ∈ Z, 𝑦𝑘

𝛼
∈ Y𝑘, of 𝐿2(𝑋),

having exponential decay


𝜓
𝑘

𝛼
(𝑥)


≤

𝐶

√𝜇 (𝐵 (𝑦𝑘

𝛼
, 𝛿𝑘))

exp(−](
𝑑 (𝑦

𝑘

𝛼
, 𝑥)

𝛿𝑘
)

𝑎

) , (8)

Hölder-regularity


𝜓
𝑘

𝛼
(𝑥) − 𝜓

𝑘

𝛼
(𝑦)



≤
𝐶

√𝜇 (𝐵 (𝑦𝑘

𝛼
, 𝛿𝑘))

(
𝑑 (𝑥, 𝑦)

𝛿𝑘
)

𝜂

exp(−](
𝑑 (𝑦

𝑘

𝛼
, 𝑥)

𝛿𝑘
)

𝑎

)

(9)

for some 𝜂 ∈ (0, 1) and for 𝑑(𝑥, 𝑦) ≤ 𝛿
𝑘, and the cancellation

property

∫
𝑋

𝜓
𝑘

𝛼
(𝑥) 𝑑𝜇 (𝑥) = 0, 𝑘 ∈ Z, 𝑦

𝑘

𝛼
∈ Y

𝑘

. (10)

Moreover,

𝑓 (𝑥) = ∑

𝑘∈Z

∑

𝛼∈Y𝑘

⟨𝑓, 𝜓
𝑘

𝛼
⟩𝜓

𝑘

𝛼
(𝑥) (11)

in the sense of 𝐿2(𝑋).

Here 𝑎 = (1 + 2 log 2𝐴0)−1, 𝛿 is a fixed small parameter,
say 𝛿 ≤ 10

−3

𝐴
−10

0
, and ] > 0 and 𝐶 < ∞ are constants

independent of 𝑘, 𝛼, 𝑥, and 𝑦
𝑘

𝛼
; see [17] for more details. In

what follows, we also refer to the functions 𝜓𝑘

𝛼
as wavelets.

To develop function spaces such as the Hardy, Besov
and Triebel-Lizorkin spaces, the key point is to introduce
test function and distributions spaces. For this purpose, the
following definitions were introduced in [18, 19].
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Definition 2. For fixed 𝑥
0
∈ 𝑋, 𝑟 > 0, 𝛾, 𝛽 ∈ (0, 𝜂], where 𝜂 is

given inTheorem 1. A function 𝑓 is said to be a test function
of type (𝑥

0
, 𝑟, 𝛽, 𝛾) centered at 𝑥

0
∈ 𝑋 with width 𝑟 if 𝑓

satisfies the following decay andHölder regularity properties.

(i) For all 𝑥 ∈ 𝑋,

𝑓 (𝑥)
 ≤ 𝐶

1

𝑉
𝑟
(𝑥

0
) + 𝑉 (𝑥, 𝑥

0
)
(

𝑟

𝑟 + 𝑑 (𝑥, 𝑥
0
)
)

𝛾

. (12)

(ii) For all 𝑥, 𝑦 ∈ 𝑋 with 𝑑(𝑥, 𝑦) ≤ (1/2𝐴
0
)(𝑟 + 𝑑(𝑥, 𝑥

0
)),

𝑓 (𝑥) − 𝑓 (𝑦)


≤ 𝐶(
𝑑 (𝑥, 𝑦)

𝑟+𝑑 (𝑥, 𝑥
0
)
)

𝛽

1

𝑉
𝑟
(𝑥

0
)+𝑉 (𝑥, 𝑥

0
)
(

𝑟

𝑟+𝑑 (𝑥, 𝑥
0
)
)

𝛾

.

(13)

If 𝑓 is a test function of type (𝑥
0
, 𝑟, 𝛽, 𝛾) centered at 𝑥

0
∈ 𝑋

with width 𝑟 > 0, we write 𝑓 ∈ G(𝑥
0
, 𝑟, 𝛽, 𝛾). The norm of 𝑓

onG(𝑥
0
, 𝑟, 𝛽, 𝛾) is defined by

𝑓
G(𝑥0 ,𝑟,𝛽,𝛾)

= inf {𝐶 > 0 : (i) and (ii) hold} . (14)

We denote by G(𝛽, 𝛾) the class of all 𝑓 ∈ G(𝑥
0
, 1, 𝛽, 𝛾). It

is easy to check that G(𝑥
1
, 𝑟, 𝛽, 𝛾) = G(𝛽, 𝛾) with equivalent

norms for any fixed 𝑥
1
∈ 𝑋 and 𝑟 > 0. Furthermore, it is also

easy to see that G(𝛽, 𝛾) is a Banach space with respect to the
norm onG(𝛽, 𝛾).

For given 𝜆 ∈ (0, 𝜂], let G̃(𝛽, 𝛾) be the completion of
the space G(𝜆, 𝜆) in G(𝛽, 𝛾) with 0 < 𝛽, 𝛾 ≤ 𝜆. Obviously,
G̃(𝜆, 𝜆) = G(𝜆, 𝜆). Moreover, 𝑓 ∈ G̃(𝛽, 𝛾) if and only if 𝑓 ∈

G(𝛽, 𝛾) with 0 < 𝛽, 𝛾 ≤ 𝜆 and there exists {𝑓
𝑗
}
𝑗∈N ⊂ G(𝜆, 𝜆)

such that ‖𝑓 − 𝑓
𝑗
‖
G(𝛽,𝛾)

→ 0 as 𝑗 → ∞. If 𝑓 ∈ G̃(𝛽, 𝛾), we
define ‖𝑓‖̃G(𝛽,𝛾) = ‖𝑓‖G(𝛽,𝛾). Obviously, G̃(𝛽, 𝛾) is a Banach
space and we also have ‖𝑓‖̃G(𝛽,𝛾) = lim

𝑗→∞
‖𝑓

𝑗
‖
G(𝛽,𝛾)

for the
above chosen {𝑓

𝑗
}
𝑗∈N.

We denote by (G̃(𝛽, 𝛾))


the dual space of G̃(𝛽, 𝛾) con-
sisting of all linear functional £ from G̃(𝛽, 𝛾) to C with the
property that there exists a constant 𝐶, for all 𝑓 ∈ G̃(𝛽, 𝛾),

£ (𝑓)
 ≤ 𝐶

𝑓
̃G(𝛽,𝛾). (15)

We denote by ⟨𝑓, ℎ⟩ the natural pairing of elements ℎ ∈

(G̃(𝛽, 𝛾))


and 𝑓 ∈ G̃(𝛽, 𝛾). Since G̃(𝑥
1
, 𝑟, 𝛽, 𝛾) = G̃(𝛽, 𝛾)

with the equivalent norms for all 𝑥
1

∈ 𝑋 and 𝑟 > 0. Thus,
for all ℎ ∈ (G̃(𝛽, 𝛾))



, ⟨𝑓, ℎ⟩ is well defined for all 𝑓 ∈

G̃(𝑥
0
, 𝑟, 𝛽, 𝛾) with 𝑥

0
∈ 𝑋 and 𝑟 > 0.

We now give definitions of inhomogeneous Besov and
Triebel-Lizorkin spaces on spaces of homogeneous type
in the sense of Coifman and Weiss. Denote 𝑃

0
(𝑥, 𝑦)

= ∑
𝑘≤−1,𝛼

𝜓
𝑘

𝛼
(𝑥)𝜓

𝑘

𝛼
(𝑦) and 𝑄

𝑘
(𝑥, 𝑦) = ∑

𝛼
𝜓
𝑘

𝛼
(𝑥)𝜓

𝑘

𝛼
(𝑦). Let

𝑃
0
(𝑓)(𝑥) = ∫𝑃

0
(𝑥, 𝑦)𝑓(𝑦)𝑑𝜇(𝑦) and 𝑄

𝑘
(𝑓)(𝑥) = ∫𝑄

𝑘
(𝑥,

𝑦)𝑓(𝑦)𝑑𝜇(𝑦).

Definition 3 (see [18]). Let 1 < 𝑝, 𝑞 < ∞ and |𝑠| < 𝜂. The
inhomogeneous Besov space 𝐵

𝑠,𝑞

𝑝
(𝑋) is defined by

𝐵
𝑠,𝑞

𝑝
(𝑋) = {𝑓 ∈ (G̃ (𝛽, 𝛾))



:
𝑓

𝐵
𝑠,𝑞

𝑝

< ∞} , (16)

where

𝑓
𝐵
𝑠,𝑞

𝑝

=
𝑃0 (𝑓)

𝑝 + {∑

𝑘≥0

(𝛿
−𝑘𝑠𝑄𝑘

(𝑓)
𝑝)

𝑞

}

1/𝑞

. (17)

The inhomogeneous Triebel-Lizorkin space 𝐹
𝑠,𝑞

𝑝
(𝑋) is

defined by

𝐹
𝑠,𝑞

𝑝
(𝑋) = {𝑓 ∈ (G̃ (𝛽, 𝛾))



:
𝑓

𝐹
𝑠,𝑞

𝑝

< ∞} , (18)

where

𝑓
𝐹
𝑠,𝑞

𝑝

=
𝑃0 (𝑓)

𝑝 +



{∑

𝑘≥0

(𝛿
−𝑘𝑠 𝑄𝑘

(𝑓)
)
𝑞

}

1/𝑞𝑝

. (19)

Wewould like to point out that onR𝑛,𝐻𝑠

𝑝
(R𝑛

) = 𝐹
𝑠,2

𝑝
(R𝑛

)

are the Bessel-potential spaces (Lebesgue spaces, Liouville
spaces). If 𝑚 = 0, 1, 2, . . . and 1 < 𝑝 < ∞, then 𝑊

𝑚

𝑝
(R𝑛

) =

𝐻
𝑚

𝑝
(R𝑛

) = 𝐹
𝑚,2

𝑝
(R𝑛

) are the usual Sobolev spaces. If 0 < 𝑠, 1 <

𝑝 < ∞ and 1 ≤ 𝑞 ≤ ∞, then 𝐵
𝑠,𝑞

𝑝
(R𝑛

) coincides with the
classical Besov spaces (Lipschitz spaces 𝐴𝑠,𝑞

𝑝
(R𝑛

)).

In this paper, we will consider the following.

Definition 4. Suppose that 𝑔 is a given function on𝑋. Then 𝑔

is called a pointwise multiplier for 𝐵𝑠,𝑞

𝑝
(𝑋) if 𝑓 → 𝑔𝑓 admits

a bounded linear mapping from 𝐵
𝑠,𝑞

𝑝
(𝑋) into itself. Similarly,

𝑔 is called a pointwise multiplier for 𝐹
𝑠,𝑞

𝑝
(𝑋) if 𝑓 → 𝑔𝑓

admits a bounded linear mapping from 𝐹
𝑠,𝑞

𝑝
(𝑋) into itself.

The main results in this paper are as follows.

Theorem 5. Let |𝑠| < 𝜂, 1 < 𝑝, 𝑞 < ∞; then 𝑔 ∈ C𝛼 is a
multiplier for 𝐵𝑠,𝑞

𝑝
with 𝛼 > |𝑠|. Moreover, there exists a positive

constant 𝐶 such that
𝑔𝑓

𝐵
𝑠,𝑞

𝑝

≤ 𝐶
𝑔

C𝛼
𝑓

𝐵
𝑠,𝑞

𝑝
(20)

for all 𝑔 ∈ C𝛼 and all 𝑓 ∈ 𝐵
𝑠,𝑞

𝑝
.

Theorem 6. Let |𝑠| < 𝜂, 1 < 𝑝, 𝑞 < ∞; then 𝑔 ∈ C𝛼 is a
multiplier for 𝐹𝑠,𝑞

𝑝
with 𝛼 > |𝑠|. Moreover, there exists a positive

constant 𝐶 such that
𝑔𝑓

𝐹
𝑠,𝑞

𝑝

≤ 𝐶
𝑔

C𝛼
𝑓

𝐹
𝑠,𝑞

𝑝
(21)

for all 𝑔 ∈ C𝛼 and all 𝑓 ∈ 𝐹
𝑠,𝑞

𝑝
.

Here, the Hölder spaceC𝛼

(𝑋) is defined as the collection
of 𝑓 such that

𝑓
C𝛼 =

𝑓
∞ + sup

𝑥 ̸= 𝑦

𝑓 (𝑥) − 𝑓 (𝑦)


𝑑(𝑥, 𝑦)
𝛼

< ∞. (22)
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We remark that Theorems 5 and 6 were proved in [4]
on R𝑛 based on Fourier transform. As mentioned before,
the Fourier transform on spaces of homogeneous type is not
available and hence the idea used in [4] does not work for
this more general setting. A recent work on pointwise multi-
pliers of Besov and Triebel-Lizorkin spaces on Carnot-
Carathéodory spaces was developed in [14–16]. However, all
results in those papers require the additional assumptions on
both the quasi-metric 𝑑 and the measure 𝜇. Therefore, results
in the present paper extend all results given in [4, 14–16].

Throughout this paper, we use 𝐶 to denote positive con-
stants, whose value may change from one occurrence to the
next. For the measure of ball 𝐵(𝑥, 𝑟) =: {𝑦 ∈ 𝑋 : 𝑑(𝑥, 𝑦) < 𝑟},
we sometimes use the abbreviations

𝑉
𝑟
(𝑥) := 𝜇 (𝐵 (𝑥, 𝑟)) , 𝑉 (𝑥, 𝑦) := 𝑉 (𝑥, 𝑑 (𝑥, 𝑦)) . (23)

A brief description of the contents of this paper is as
follows. In Section 2 we prove Theorem 5. The proof of
Theorem 6 will be given in Section 3.

2. Proof of Theorem 5

Let 𝑃
0
and𝑄

𝑘
be orthogonal projections onto𝑉

0
and𝑊

𝑘
with

𝑘 ∈ N, respectively. The next lemma gives some estimates on
kernels of operators 𝑃

0
and 𝑄

𝑘
.

Lemma 7 (see [17, 18]). Let 𝜂 be the Hölder regularity, 𝑘 ∈ N

and 𝜖 > 0. Suppose that 𝑃
0
(𝑥, 𝑦) and𝑄

𝑘
(𝑥, 𝑦) are kernels of 𝑃

0

and 𝑄
𝑘
, respectively. Then there exists a constant 𝐶 such that

(i)

𝑃0 (𝑥, 𝑦)
 ≤ 𝐶

1

𝑉
1
(𝑥) + 𝑉 (𝑥, 𝑦)

(
1

1 + 𝑑 (𝑥, 𝑦)
)

𝜖

, (24)

(ii) for 𝑑(𝑦, 𝑦

) ≤ (1/2𝐴
0
)(1 + 𝑑(𝑥, 𝑦)),


𝑃
0
(𝑥, 𝑦) − 𝑃

0
(𝑥, 𝑦



)


≤ 𝐶(
𝑑 (𝑦, 𝑦



)

1 + 𝑑 (𝑥, 𝑦)
)

𝜂

1

𝑉
1
(𝑥) + 𝑉 (𝑥, 𝑦)

(
1

1 + 𝑑 (𝑥, 𝑦)
)

𝜖

,

(25)

(iii)

∫
𝑋

𝑃
0
(𝑥, 𝑦) 𝑑𝜇 (𝑥) = 1, (26)

(iv)

𝑄𝑘
(𝑥, 𝑦)

 ≤ 𝐶
1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

, (27)

(v) for 𝑑(𝑦, 𝑦

) ≤ (1/2𝐴
0
)(𝛿

𝑘

+ 𝑑(𝑥, 𝑦)),

𝑄
𝑘
(𝑥, 𝑦) − 𝑄

𝑘
(𝑥, 𝑦



)


≤ 𝐶(
𝑑 (𝑦, 𝑦



)

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜂

1

𝑉
𝛿
𝑘 (𝑥)+𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

,

(28)

(vi)

∫
𝑋

𝑄
𝑘
(𝑥, 𝑦) 𝑑𝜇 (𝑥) = 0. (29)

Note that (ii), (iii), (v), and (vi) still hold with 𝑥 and 𝑦 inter-
changed.

The key tool used in this paper, as mentioned, is the
following version of the wavelet expansion.

Lemma 8 (see [18]). Let 𝑃
0
and {𝑄

𝑘
}
𝑘∈Z+

be the same as in
Definition 3. Then

𝑓 = 𝑃
2

0
(𝑓) + ∑

𝑘≥0

𝑄
2

𝑘
(𝑓) (30)

holds in 𝐿
𝑝 with 1 < 𝑝 < ∞.

For our purpose, we need the following lemmas.

Lemma 9 (see [18]). Let 0 < 𝛽, 𝛾 < 𝜂. Then (30) still holds in
G̃(𝛽, 𝛾) and (G̃(𝛽, 𝛾))



.

Lemma 10. If 𝑓 ∈ G(𝛽, 𝛾) with |𝑠| < 𝛽 < 𝜂, 0 < 𝛾 < 𝜂, then
𝑓 ∈ 𝐵

𝑠,𝑞

𝑝
and 𝑓 ∈ 𝐹

𝑠,𝑞

𝑝
with |𝑠| < 𝜂, 1 < 𝑝 < ∞, 1 < 𝑞 < ∞.

Proof. Suppose that 𝑓 ∈ G(𝛽, 𝛾) with |𝑠| < 𝛽 < 𝜂, 0 < 𝛾 < 𝜂.
We claim that


∫
𝑋

𝑃
0
(𝑥, 𝑦) 𝑓 (𝑥) 𝑑𝜇 (𝑥)



≤ 𝐶
𝑓

G(𝛽,𝛾)

1

𝑉
1
(𝑥

0
) + 𝑉 (𝑦, 𝑥

0
)
(

1

1 + 𝑑 (𝑥
0
, 𝑦)

)

𝛾
(31)

and for 𝑘 ∈ N


∫
𝑋

𝑄
𝑘
(𝑥, 𝑦) 𝑓 (𝑥) 𝑑𝜇 (𝑥)



≲ 𝛿
𝑘𝛽𝑓

G(𝛽,𝛾)

1

𝑉
1
(𝑥

0
) + 𝑉 (𝑦, 𝑥

0
)
(

1

1 + 𝑑 (𝑥
0
, 𝑦)

)

𝛾

.

(32)

We first verify (31). By the size condition of 𝑃
0
and

definition of test functions, we have

∫
𝑋

𝑃
0
(𝑥, 𝑦) 𝑓 (𝑥) 𝑑𝜇 (𝑥)



≤ ∫
𝑋

𝐶
𝑓

G(𝛽,𝛾)

𝑉
1
(𝑥) + 𝑉 (𝑥, 𝑦)

(
1

1+𝑑 (𝑥, 𝑦)
)

𝛾

1

𝑉
1
(𝑥

0
) + 𝑉 (𝑥, 𝑥

0
)

× (
1

1 + 𝑑 (𝑥, 𝑥
0
)
)

𝛾

𝑑𝜇 (𝑥)

≤ 𝐶
𝑓

G(𝛽,𝛾)

1

𝑉
1
(𝑥

0
) + 𝑉 (𝑦, 𝑥

0
)
(

1

1 + 𝑑 (𝑥
0
, 𝑦)

)

𝛾

.

(33)
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To estimate (32), by the cancellation condition on 𝑄
𝑘
(𝑥,

𝑦), we have


∫
𝑋

𝑄
𝑘
(𝑥, 𝑦) 𝑓 (𝑥) 𝑑𝜇 (𝑥)



=


∫
𝑋

𝑄
𝑘
(𝑥, 𝑦) [𝑓 (𝑥) − 𝑓 (𝑦)] 𝑑𝜇 (𝑥)



≤ ∫
𝑊1

𝑄𝑘
(𝑥, 𝑦)


𝑓 (𝑥) − 𝑓 (𝑦)

 𝑑𝜇 (𝑥)

+ ∫
𝑊2

𝑄𝑘
(𝑥, 𝑦)


𝑓 (𝑥)

 𝑑𝜇 (𝑥)

+ ∫
𝑊2

𝑄𝑘
(𝑥, 𝑦)


𝑓 (𝑦)

 𝑑𝜇 (𝑥)

:= 𝑅
1
+ 𝑅

2
+ 𝑅

3
,

(34)

where 𝑊
1
= {𝑥 : 𝑑(𝑥, 𝑦) ≤ (1/2𝐴

0
)(1 + 𝑑(𝑥

0
, 𝑦))} and 𝑊

2
=

𝑋 \ 𝑊
1
.

For 𝑅
1
, for any 𝜖 > 0, we have

𝑅
1
≤ 𝐶

𝑓
G(𝛽,𝛾)

× ∫
𝑊1

1

𝑉
𝛿
𝑘 (𝑥)+𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘+𝑑 (𝑥, 𝑦)
)

𝜖

(
𝑑 (𝑥, 𝑦)

1+𝑑 (𝑥
0
, 𝑦)

)

𝛽

×
1

𝑉
1
(𝑥

0
) + 𝑉 (𝑥

0
, 𝑦)

(
1

1 + 𝑑 (𝑥
0
, 𝑦)

)

𝛾

𝑑𝜇 (𝑥)

≤ 𝐶
𝑓

G(𝛽,𝛾)𝛿
𝛽𝑘

1

𝑉
1
(𝑥

0
) + 𝑉 (𝑥

0
, 𝑦)

(
1

1 + 𝑑 (𝑥
0
, 𝑦)

)

𝛾

,

(35)

where 𝜖 > 𝛽 > 0.
For 𝑅

2
, 𝑑(𝑥, 𝑦) ≥ (1/2𝐴

0
)(1 + 𝑑(𝑥

0
, 𝑦)) implies𝑉(𝑥, 𝑦) ≳

𝑉
1
(𝑥

0
) + 𝑉(𝑦, 𝑥

0
); then

𝑅
2
≤ 𝐶

𝑓
G(𝛽,𝛾) ∫

𝑊2

1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

×
1

𝑉
1
(𝑥

0
) + 𝑉 (𝑥

0
, 𝑥)

(
1

1 + 𝑑 (𝑥
0
, 𝑥)

)

𝛾

𝑑𝜇 (𝑥)

≤ 𝐶
𝑓

G(𝛽,𝛾)𝛿
𝛽𝑘

1

𝑉
1
(𝑥

0
) + 𝑉 (𝑥

0
, 𝑦)

(
1

1 + 𝑑 (𝑥
0
, 𝑦)

)

𝛾

,

(36)

where 𝜖 > 𝛽 > 0 and 𝜖 > 𝛾 > 0.

To estimate 𝑅
3
, since 𝑑(𝑥, 𝑦)/(𝑑(𝑦, 𝑥

0
) + 1) ≳ 1, then

𝑅
3
≤ 𝐶

𝑓
G(𝛽,𝛾)

× ∫
𝑊2

1

𝑉
𝛿
𝑘 (𝑥)+𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘+𝑑 (𝑥, 𝑦)
)

𝜖

(
𝑑 (𝑥, 𝑦)

1+𝑑 (𝑥
0
, 𝑦)

)

𝛽

×
1

𝑉
1
(𝑥

0
) + 𝑉 (𝑥

0
, 𝑦)

(
1

1 + 𝑑 (𝑥
0
, 𝑦)

)

𝛾

𝑑𝜇 (𝑥)

≤ 𝐶
𝑓

G(𝛽,𝛾)𝛿
𝛽𝑘

1

𝑉
1
(𝑥

0
) + 𝑉 (𝑥

0
, 𝑦)

(
1

1 + 𝑑 (𝑥
0
, 𝑦)

)

𝛾

,

(37)

where 𝜖 > 𝛽 > 0. The claim is concluded.
We now return to the proof of Lemma 10 and only prove

thatG(𝛽, 𝛾) ⊂ 𝐵
𝑠,𝑞

𝑝
since the proof ofG(𝛽, 𝛾) ⊂ 𝐹

𝑠,𝑞

𝑝
is similar.

By applying (31) and (32), it follows that

𝑓
𝐵
𝑠,𝑞

𝑝

=
𝑃0 (𝑓)

𝐿𝑝 + {

∞

∑

𝑘=0

(𝛿
−𝑘𝑠𝑄𝑘

(𝑓)
𝐿𝑝)

𝑞

}

1/𝑞

≤ 𝐶
𝑓

G(𝛽,𝛾) + 𝐶
𝑓

G(𝛽,𝛾){

∞

∑

𝑘=0

(𝛿
𝑘(𝛽−𝑠)

)
𝑞

}

1/𝑞

≤ 𝐶
𝑓

G(𝛽,𝛾),

(38)

where 𝛽 > 𝑠. ThusG(𝛽, 𝛾) ⊂ 𝐵
𝑠,𝑞

𝑝
.

Lemma 11. Let 𝑔 ∈ C𝛼 and 𝑘, 𝑙 ∈ N. For 𝜖 > 𝜂,

𝑃0𝑔𝑃0 (𝑥, 𝑦)
 ≤ 𝐶

𝑔
C𝛼

1

𝑉
1
(𝑥) + 𝑉 (𝑥, 𝑦)

(
1

1 + 𝑑 (𝑥, 𝑦)
)

𝜖

;

(39)

𝑄𝑘
𝑔𝑄

𝑙
(𝑥, 𝑦)

 ≤ 𝐶
𝑔

C𝛼𝛿
|𝑘−𝑙|(𝛼∧𝜂)

×
1

𝑉
𝛿
(𝑘∧𝑙) (𝑥)+𝑉 (𝑥, 𝑦)

(
𝛿
(𝑘∧𝑙)

𝛿(𝑘∧𝑙)+𝑑 (𝑥, 𝑦)
)

𝜖

;

(40)
𝑃0𝑔𝑄𝑙

(𝑥, 𝑦)


≤ 𝐶
𝑔

C𝛼𝛿
𝑙(𝛼∧𝜂)

1

𝑉
1
(𝑥) + 𝑉 (𝑥, 𝑦)

(
1

1 + 𝑑 (𝑥, 𝑦)
)

𝜖

,

(41)

𝑄𝑘
𝑔𝑃

0
(𝑥, 𝑦)



≤ 𝐶
𝑔

C𝛼𝛿
𝑘(𝛼∧𝜂)

1

𝑉
1
(𝑥) + 𝑉 (𝑥, 𝑦)

(
1

1 + 𝑑 (𝑥, 𝑦)
)

𝜖

,

(42)

where 𝑎 ∧ 𝑏 denotes the minimum of 𝑎 and 𝑏.
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Proof. We first consider (39). By the size conditions of 𝑃
0
and

the definition of Hölder spaceC𝛼, we have

𝑃0𝑔𝑃0 (𝑥, 𝑦)
 ≤ 𝐶

𝑔
C𝛼

× ∫
𝑋

1

𝑉
1
(𝑥) + 𝑉 (𝑥, 𝑧)

(
1

1 + 𝑑 (𝑧, 𝑥)
)

𝜖

×
1

𝑉
1
(𝑦)+𝑉 (𝑦, 𝑧)

(
1

1+𝑑 (𝑧, 𝑦)
)

𝜖

𝑑𝜇 (𝑧)

≤ 𝐶
1

𝑉
1
(𝑦) + 𝑉 (𝑦, 𝑥)

(
1

1 + 𝑑 (𝑥, 𝑦)
)

𝜖

.

(43)

For (40), we only consider that the case for 𝑙 ≥ 𝑘 ≥ 1 and
the proof for 𝑘 ≥ 𝑙 ≥ 1 are similar. In fact, if 𝑙 ≥ 𝑘 ≥ 1, we
have

𝑄𝑘
𝑔𝑄

𝑙
(𝑥, 𝑦)



=


∫
𝑋

[𝑄
𝑘
(𝑥, 𝑧) 𝑔 (𝑧) − 𝑄

𝑘
(𝑥, 𝑦) 𝑔 (𝑦)]𝑄

𝑙
(𝑧, 𝑦) 𝑑𝜇 (𝑧)



≤ ∫
𝑋

𝑄𝑘
(𝑥, 𝑧) − 𝑄

𝑘
(𝑥, 𝑦)


𝑔 (𝑧)


𝑄𝑙

(𝑧, 𝑦)
 𝑑𝜇 (𝑧)

+ ∫
𝑋

𝑄𝑘
(𝑥, 𝑦)


𝑔 (𝑧) − 𝑔 (𝑦)


𝑄𝑙

(𝑧, 𝑦)
 𝑑𝜇 (𝑧)

=: 𝐿
1
+ 𝐿

2
.

(44)

We estimate 𝐿
1
by further splitting it into

𝐿
1
= ∫

𝑊1

𝑄𝑘
(𝑥, 𝑧) − 𝑄

𝑘
(𝑥, 𝑦)


𝑔 (𝑧)


𝑄𝑙

(𝑧, 𝑦)
 𝑑𝜇 (𝑧)

+ ∫
𝑊2

𝑄𝑘
(𝑥, 𝑧)


𝑔 (𝑧)


𝑄𝑙

(𝑧, 𝑦)
 𝑑𝜇 (𝑧)

+ ∫
𝑊2

𝑄𝑘
(𝑥, 𝑦)


𝑔 (𝑧)


𝑄𝑙

(𝑧, 𝑦)
 𝑑𝜇 (𝑧)

=: 𝐿
11

+ 𝐿
12

+ 𝐿
13
,

(45)

where 𝑊
1
= {𝑧 ∈ 𝑋 : 𝑑(𝑧, 𝑦) ≤ (1/2𝐴

0
)(𝛿

𝑘

+ 𝑑(𝑥, 𝑦))} and
𝑊

2
= 𝑋 \ 𝑊

1
.

For 𝐿
11
, for any 𝜖 > 0, we have

𝐿
11

≤ 𝐶
𝑔

C𝛼

× ∫
𝑊1

(
𝑑 (𝑧, 𝑦)

𝛿𝑘+𝑑 (𝑥, 𝑦)
)

𝜂

1

𝑉
𝛿
𝑘 (𝑥)+𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘+𝑑 (𝑥, 𝑦)
)

𝜖

×
1

𝑉
𝛿
𝑙 (𝑦) + 𝑉 (𝑦, 𝑧)

(
𝛿
𝑙

𝛿𝑙 + 𝑑 (𝑧, 𝑦)
)

𝜖

𝑑𝜇 (𝑧)

≤ 𝐶
𝑔

C𝛼𝛿
(𝑙−𝑘)𝜂

1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

× ∫
𝑋

1

𝑉
𝛿
𝑙 (𝑦) + 𝑉 (𝑦, 𝑧)

(
𝛿
𝑙

𝛿𝑙 + 𝑑 (𝑧, 𝑦)
)

𝜖−𝜂

𝑑𝜇 (𝑧)

≤ 𝐶
𝑔

C𝛼𝛿
(𝑙−𝑘)𝜂

1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

,

(46)

where 𝜖 > 𝜂.
For 𝐿

12
, note that (1/2𝐴

0
)(𝛿

𝑘

+𝑑(𝑥, 𝑦)) ≤ 𝑑(𝑧, 𝑦) implies
that 𝑉

𝛿
𝑘(𝑦) + 𝑉(𝑥, 𝑦) ≲ 𝑉(𝑧, 𝑦); then we have

𝐿
12

≤ 𝐶
𝑔

C𝛼
1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑙

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

× ∫
𝑋

1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑦, 𝑥)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑧, 𝑥)
)

𝜖

𝑑𝜇 (𝑧)

≤ 𝐶
𝑔

C𝛼𝛿
(𝑙−𝑘)𝜂

1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

,

(47)

where 𝜖 > 𝜂.
For 𝐿

13
, we have

𝐿
13

≤ 𝐶
𝑔

C𝛼
1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

× ∫
𝑊2

1

𝑉
𝛿
𝑙 (𝑦) + 𝑉 (𝑦, 𝑧)

(
𝛿
𝑙

𝛿𝑙 + 𝑑 (𝑧, 𝑦)
)

𝜖

𝑑𝜇 (𝑧) .

(48)

Denoting 𝑡 = (1/2𝐴
0
)(𝛿

𝑘

+ 𝑑(𝑥, 𝑦)), then

∫
𝑊2

1

𝑉
𝛿
𝑙 (𝑦) + 𝑉 (𝑦, 𝑧)

(
𝛿
𝑙

𝛿𝑙 + 𝑑 (𝑧, 𝑦)
)

𝜖

𝑑𝜇 (𝑧)

=

∞

∑

𝑗=0

∫
2
𝑗
𝑡<𝑑(𝑧,𝑦)≤2

𝑗+1
𝑡

1

𝑉
𝛿
𝑙 (𝑦) + 𝑉 (𝑦, 𝑧)

× (
𝛿
𝑙

𝛿𝑙 + 𝑑 (𝑧, 𝑦)
)

𝜖

𝑑𝜇 (𝑧)

≤

∞

∑

𝑗=0

(
𝛿
𝑙

2𝑗𝑡
)

𝜖

1

𝑉
2
𝑗
𝑡
(𝑦)

∫
𝑑(𝑧,𝑦)≤2

𝑗+1
𝑡

𝑑𝜇 (𝑧)

≤ 𝐶

∞

∑

𝑗=0

(
𝛿
𝑙

𝛿𝑘
)

𝜖

𝑉
2
𝑗+1

𝑡
(𝑦)

𝑉
2
𝑗
𝑡
(𝑦)

≤ 𝐶𝛿
(𝑙−𝑘)𝜖

.

(49)

Thus

𝐿
13

≤ 𝐶
𝑔

C𝛼𝛿
(𝑙−𝑘)𝜂

1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

,

(50)
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where 𝜖 > 𝜂 and we obtain

𝐿
1
≤ 𝐶

𝑔
C𝛼𝛿

(𝑙−𝑘)𝜂
1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

.

(51)

We now return to verify 𝐿
2
. By the size condition of 𝑄

𝑘
,

𝑄
𝑙
and the definition ofC𝛼, we have

𝐿
2
≤ 𝐶

𝑔
C𝛼

1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

× ∫
𝑋

𝑑(𝑧, 𝑦)
𝛼 1

𝑉
𝛿
𝑙 (𝑦) + 𝑉 (𝑧, 𝑦)

(
𝛿
𝑙

𝛿𝑙 + 𝑑 (𝑧, 𝑦)
)

𝜖

𝑑𝜇 (𝑥)

≤ 𝐶
𝑔

C𝛼𝛿
𝑙𝛼

1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

,

(52)

where 𝜖 > 𝛼. Then

𝐿
1
+ 𝐿

2

≤ 𝐶
𝑔

C𝛼𝛿
(𝑙−𝑘)(𝛼∧𝜂)

1

𝑉
𝛿
𝑘 (𝑥) + 𝑉 (𝑥, 𝑦)

(
𝛿
𝑘

𝛿𝑘 + 𝑑 (𝑥, 𝑦)
)

𝜖

,

(53)

where 𝑙 ≥ 𝑘.
The proofs of (41) and (42) are similar to the proof of (40)

and we omit the details.

We are now ready to proveTheorem 5.

Proof of Theorem 5. We first show Theorem 5 for the special
case; that is, if 𝑓 ∈ G(𝛽, 𝛾) with |𝑠| < 𝛽 < 𝜂, 0 < 𝛾 < 𝜂 and
𝑔 ∈ C𝛼 with |𝑠| < 𝛼, then

𝑓𝑔
𝐵
𝑠,𝑞

𝑝

≤ 𝐶
𝑔

C𝛼
𝑓

𝐵
𝑠,𝑞

𝑝

. (54)

To verify (54), we write

𝑓𝑔
𝐵
𝑠,𝑞

𝑝

=
𝑃0 (𝑔𝑓)

𝐿𝑝 + {

∞

∑

𝑘=0

(𝛿
−𝑘𝑠𝑄𝑘

(𝑔𝑓)
𝐿𝑝)

𝑞

}

1/𝑞

=: 𝑌
1
+ 𝑌

2
.

(55)

By the wavelet expansion, Hölder’s inequality, and the esti-
mates in (39) and (41), we obtain

𝑌
1
≤



𝑃
0
𝑔(𝑃

2

0
(𝑓) +

∞

∑

𝑙=0

𝑄
2

𝑙
(𝑓))

𝐿𝑝

≤
𝑃0𝑔𝑃0𝑃0 (𝑓)

𝐿𝑝 +



∞

∑

𝑙=0

𝑃
0
𝑔𝑄

𝑙
𝑄
𝑙
(𝑓)

𝐿𝑝

≤ 𝐶
𝑔

C𝛼
𝐸0

(𝑓)
𝐿𝑝 + 𝐶

𝑔
C𝛼

×

∞

∑

𝑙=0

𝛿
𝑙(𝛼∧𝜂+𝑠)

𝛿
−𝑙𝑠𝐷𝑙

(𝑓)
𝐿𝑝

≤ 𝐶
𝑔

C𝛼
𝐸0

(𝑓)
𝐿𝑝 + 𝐶

𝑔
C𝛼

× {

∞

∑

𝑙=0

(𝛿
−𝑙𝑠𝐷𝑙

(𝑓)
𝐿𝑝)

𝑞

}

1/𝑞

≤ 𝐶
𝑔

C𝛼
𝑓

𝐵
𝑠,𝑞

𝑝

,

(56)

where we use the fact that (𝛼 ∧ 𝜂) + 𝑠 > 0 and in the
third inequality, by (39) and (41), we use the estimates
∫ |𝑃

0
𝑔𝑃

0
(𝑥, 𝑦)|𝑑𝜇(𝑥) ≤ 𝐶‖𝑔‖C𝛼 , ∫ |𝑃

0
𝑔𝑃

0
(𝑥, 𝑦)|𝑑𝜇(𝑦) ≤

𝐶‖𝑔‖C𝛼 , ∫ |𝑃
0
𝑔𝑄

𝑙
(𝑥, 𝑦)|𝑑𝜇(𝑥) ≤ 𝐶‖𝑔‖C𝛼𝛿

𝑙(𝛼∧𝜂) and
∫ |𝑃

0
𝑔𝑄

𝑙
(𝑥, 𝑦)|𝑑𝜇(𝑦) ≤ 𝐶‖𝑔‖C𝛼𝛿

𝑙(𝛼∧𝜂).
For 𝑌

2
, instead of using (40) and (42), we have

𝑌
2
≤ {

∞

∑

𝑘=0

(𝛿
−𝑘𝑠



𝑄
𝑘
(𝑔(𝑃

2

0
(𝑓) +

∞

∑

𝑙=0

𝑄
2

𝑙
(𝑓)))

𝐿𝑝

)

𝑞

}

1/𝑞

≤ 𝐶{

∞

∑

𝑘=0

(𝛿
−𝑘𝑠

𝛿
𝑘(𝛼∧𝜂)𝑃0 (𝑓)

𝐿𝑝)
𝑞

}

1/𝑞

+ 𝐶{

∞

∑

𝑘=0

(𝛿
−𝑘𝑠𝑄𝑘

𝑔𝑄
𝑙
𝑄
𝑙
(𝑓)

𝐿𝑝)
𝑞

}

1/𝑞

≤ 𝐶
𝑔

C𝛼
𝑃0 (𝑓)

𝐿𝑝

+ 𝐶{

∞

∑

𝑘=0

(

∞

∑

𝑙=0

𝛿
−𝑘𝑠

𝛿
|𝑘−𝑙|(𝛼∧𝜂)𝑔

C𝛼
𝑄𝑙

(𝑓)
𝐿𝑝)

𝑞

}

1/𝑞

≤ 𝐶
𝑔

C𝛼
𝑃0 (𝑓)

𝐿𝑝

+ 𝐶
𝑔

C𝛼{

∞

∑

𝑙=0

∞

∑

𝑘=0

𝛿
(𝑙−𝑘)𝑠

𝛿
|𝑘−𝑙|(𝛼∧𝜂)

(𝛿
−𝑙𝑠𝑄𝑙

(𝑓)
𝐿𝑝)

𝑞

}

1/𝑞

≤ 𝐶
𝑔

C𝛼
𝑃0 (𝑓)

𝐿𝑝

+ 𝐶
𝑔

C𝛼{

∞

∑

𝑙=0

(𝛿
−𝑙𝑠𝑄𝑙

(𝑓)
𝐿𝑝)

𝑞

}

1/𝑞

≤ 𝐶
𝑔

C𝛼
𝑓

𝐵
𝑠,𝑞

𝑝

,

(57)
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where |𝑠| < 𝜂 and |𝑠| < 𝛼. Thus,

𝑌
1
+ 𝑌

2
≤ 𝐶

𝑔
C𝛼

𝑓
𝐵
𝑠,𝑞

𝑝

. (58)

This completes the proof of (54).
To show Theorem 5 for 𝑓 ∈ 𝐵

𝑠,𝑞

𝑝
, note that if 𝑓 ∈ 𝐵

𝑠,𝑞

𝑝
, in

general, 𝑓 could be a distribution and the multiplication of
𝑔𝑓 is not well defined even for 𝑔 ∈ C𝛼. For this purpose, we
make the following observation: for any 𝑓 ∈ 𝐵

𝑠,𝑞

𝑝
with 1 < 𝑝,

𝑞 < ∞, |𝑠| < 𝜂 and 𝑔 ∈ C𝛼 with 𝛼 > |𝑠|, there exists a
sequence {𝑓

𝑛
}
𝑛∈N such that 𝑓

𝑗
∈ G(𝜆, 𝜆) with 0 < 𝜆 < 𝜂,

‖𝑓
𝑛
‖
𝐵
𝑠,𝑞

𝑝

≲ ‖𝑓‖
𝐵
𝑠,𝑞

𝑝

and lim
𝑛→∞

⟨𝑔𝑓
𝑛
, ℎ⟩ converges for any ℎ ∈

G̃(𝛽, 𝛾) with 𝛽, 𝛾 satisfying |𝑠| < 𝛽 < 𝜂, 0 < 𝛾 < 𝜂. Indeed, for
any 𝑓 ∈ 𝐵

𝑠,𝑞

𝑝
with 1 < 𝑝, 𝑞 < ∞, |𝑠| < 𝜂, set

𝑓
𝑛
=

𝑛

∑

𝑘=−1

𝐵
2

𝑘
(𝑓) , (59)

where 𝐵
−1

= 𝑃
0
, 𝐵

𝑘
= 𝑄

𝑘
for 𝑘 ∈ Z

+
. By the Proposition 4.4

of [18], 𝑓
𝑛

∈ G̃(𝜆, 𝜆), and ‖𝑓
𝑛
‖
𝐵
𝑠,𝑞

𝑝

≲ ‖𝑓‖
𝐵
𝑠,𝑞

𝑝

. Now we prove
that lim

𝑛→∞
⟨𝑔𝑓

𝑛
, ℎ⟩ converges for any ℎ ∈ G̃(𝛽, 𝛾) with 𝛽, 𝛾

satisfying |𝑠| < 𝛽 < 𝜂, 0 < 𝛾 < 𝜂. To do this, for 𝑛,𝑚 ∈ N
+
,

𝑚 < 𝑛, by duality in [18] and the estimate in (54), we have
⟨𝑓𝑛 − 𝑓

𝑚
, 𝑔ℎ⟩

 ≤
𝑓𝑛 − 𝑓

𝑚

𝐵
𝑠,𝑞

𝑝

𝑔ℎ

𝐵
−𝑠,𝑞


𝑝

≤ 𝐶
𝑔

C𝛼
𝑓𝑛 − 𝑓

𝑚

𝐵
𝑠,𝑞

𝑝

‖ℎ‖
𝐵
−𝑠,𝑞


𝑝

.

(60)

Note that ‖ℎ‖
𝐵
−𝑠,𝑞


𝑝

≤ 𝐶‖ℎ‖̃G(𝛽,𝛾) and ‖𝑓
𝑛
− 𝑓

𝑚
‖
𝐵
𝑠,𝑞

𝑝

tend to zero
as 𝑛,𝑚 tend to infinity.This implies that |⟨𝑓

𝑛
−𝑓

𝑚
, 𝑔ℎ⟩| → 0

as 𝑛,𝑚 → ∞ with 1 < 𝑝, 𝑞 < ∞, |𝑠| < 𝜂.
Now for any𝑔 ∈ C𝛼with |𝑠| < 𝛼 < 𝜂 and𝑓 ∈ 𝐵

𝑠,𝑞

𝑝
with 1 <

𝑝, 𝑞 < ∞, |𝑠| < 𝜂, by the above observation, lim
𝑛→∞

⟨𝑔𝑓
𝑛
, ℎ⟩

exists. Therefore, we define

⟨𝑔𝑓, ℎ⟩ = lim
𝑛→∞

⟨𝑔𝑓
𝑛
, ℎ⟩ (61)

for ℎ ∈ G̃(𝛽, 𝛾) with 𝛽, 𝛾 satisfying |𝑠| < 𝛽 < 𝜂, 0 < 𝛾 < 𝜂. It
is easy to see that limit is independent of the choice of 𝑓

𝑛
. By

Fatou’s lemma and (54), we have
𝑔𝑓

𝐵
𝑠,𝑞

𝑝

≤ lim
𝑛→∞

inf 𝑔𝑓𝑛
𝐵
𝑠,𝑞

𝑝

≤ lim
𝑛→∞

inf 𝐶𝑔
C𝛼

𝑓𝑛
𝐵
𝑠,𝑞

𝑝

≤ 𝐶
𝑔

C𝛼
𝑓

𝐵
𝑠,𝑞

𝑝

,

(62)

which gives the proof of Theorem 5.

3. Proof of Theorem 6

We first prove the following technical version of Theorem 6.

Lemma 12. For any 𝑔 ∈ C𝛼, 𝑓 ∈ G(𝛽, 𝛾) when 0 < 𝛽, 𝛾 < 𝜂,
then

𝑓𝑔
𝐹
𝑠,𝑞

𝑝

≤ 𝐶
𝑔

C𝛼
𝑓

𝐹
𝑠,𝑞

𝑝

, (63)

where 1 < 𝑝 < ∞, 1 < 𝑞 < ∞, −𝜂 < 𝑠 < 𝜂, and −𝛼 < 𝑠 < 𝛼.

Proof. Applying the wavelet expansion, for any 𝑔 ∈ C𝛼, 𝑓 ∈

G(𝛽, 𝛾) when 0 < 𝛽, 𝛾 < 𝜂, we have

𝑓𝑔
𝐹
𝑠,𝑞

𝑝

≤

𝑃
0
𝑔𝑃

2

0
(𝑓)

𝐿𝑝
+



𝑃
0
𝑔(

∞

∑

𝑙=0

𝑄
2

𝑙
(𝑓))

𝐿𝑝

+



{

∞

∑

𝑘=0

[𝛿
−𝑘𝑠


𝑄
𝑘
𝑔𝑃

2

0
(𝑓)


]
𝑞

}

1/𝑞𝐿𝑝

+



{

∞

∑

𝑘=0

[𝛿
−𝑘𝑠



𝑄
𝑘
𝑔

∞

∑

𝑙=0

𝑄
2

𝑙
(𝑓)



]

𝑞

}

1/𝑞𝐿𝑝

=: 𝑍
1
+ 𝑍

2
+ 𝑍

3
+ 𝑍

4
.

(64)

The estimate of 𝑍
1
is the same as in the proof ofTheorem

5.We only estimate𝑍
2
,𝑍

3
, and𝑍

4
. By applying the inequality

(39)–(42), the Hölder inequality and the Fefferman-stein
vector-valued maximal function inequality for 1 < 𝑝 < ∞,
1 < 𝑞 < ∞ in [20], it follows that

𝑍
2
≤ 𝐶

𝑔
C𝛼



∞

∑

𝑙=0

𝛿
𝑙((𝛼∧𝜂)+𝑠)

𝛿
−𝑙𝑠

𝑀(𝑄
𝑙
(𝑓))

𝐿𝑝

≤ 𝐶
𝑔

C𝛼



{

∞

∑

𝑙=0

[𝛿
−𝑙𝑠 𝑄𝑙

(𝑓)
]
𝑞

}

1/𝑞𝐿𝑝

≤ 𝐶
𝑔

C𝛼
𝑓

𝐹
𝑠,𝑞

𝑝

;

𝑍
3
≤ 𝐶

𝑔
C𝛼



{

∞

∑

𝑘=0

[𝛿
𝑘((𝛼∧𝜂)−𝑠)

𝑀(𝑃
0
(𝑓))]

𝑞

}

1/𝑞𝐿𝑝

≤ 𝐶
𝑔

C𝛼
𝑃0𝑓

𝐿𝑝 ≤ 𝐶
𝑔

C𝛼
𝑓

𝐹
𝑠,𝑞

𝑝

;

𝑍
4
≤ 𝐶

𝑔
C𝛼



{

∞

∑

𝑘=0

[𝛿
−𝑘𝑠

∞

∑

𝑙=0

𝛿
−|𝑘−𝑙|(𝜂∧𝛼)

𝑀(𝑄
𝑙
(𝑓))]

𝑞

}

1/𝑞𝐿𝑝

≤ 𝐶
𝑔

C𝛼



{

{

{

∞

∑

𝑘=0

[

∞

∑

𝑙=0

𝛿
−(𝑘−𝑙)𝑠

𝛿
|𝑘−𝑙|(𝜂∧𝛼)

]

𝑞/𝑞


×[

∞

∑

𝑙=0

𝛿
−(𝑘−𝑙)𝑠

𝛿
|𝑘−𝑙|(𝜂∧𝛼)

(𝛿
−𝑙𝑠

𝑀(𝑄
𝑙
𝑓))

𝑞

]
}

}

}

1/𝑞𝐿𝑝

≤ 𝐶
𝑔

C𝛼



{

∞

∑

𝑙=0

(𝛿
−𝑘𝑠

𝑀(𝐷
𝑙
𝑓))

𝑞

}

1/𝑞𝐿𝑝

≤ 𝐶
𝑔

C𝛼
𝑓

𝐹
𝑠,𝑞

𝑝

,

(65)

where we use the fact that −(𝜂∧𝛼) < 𝑠 < (𝜂∧𝛼). This verifies
Lemma 12.

To showTheorem 6, we also need the following technical
lemma.
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Lemma 13 (see [18]). For any 𝑓 ∈ 𝐹
𝑠,𝑞

𝑝
, there exists a sequence

{𝑓
𝑛
}
𝑛∈Z+

∈ G(𝛽, 𝛾) for 0 < 𝛽, 𝛾 < 𝜂, such that 𝑓
𝑛

→ 𝑓 in
𝐹
𝑠,𝑞

𝑝
with ‖𝑓

𝑛
‖
𝐹
𝑠,𝑞

𝑝

≤ 𝐶‖𝑓‖
𝐹
𝑠,𝑞

𝑝

, where 1 < 𝑝 < ∞, 1 < 𝑞 < ∞,
−𝜂 < 𝑠 < 𝜂.

Suppose that 𝑓, 𝑓
𝑛
are given as in Lemma 13 and 𝑔 ∈ C𝛼.

Note that if |𝑠| < 𝛽 < 𝜂, 0 < 𝛾 < 𝜂, then ℎ ∈ G(𝛽, 𝛾) ⊂

𝐹
𝑠,𝑞

𝑝
∩𝐹

−𝑠,𝑞


𝑝
. By duality given in [18] and Lemma 12, it follows

that

⟨𝑔 (𝑓

𝑗
− 𝑓

𝑘
) , ℎ⟩


≤


𝑔 (𝑓

𝑗
− 𝑓

𝑘
)
𝐹
𝑠,𝑞

𝑝

‖ℎ‖
𝐹
−𝑠,𝑞


𝑝


≤
𝑔

C𝛼

𝑓
𝑗
− 𝑓

𝑘

𝐹
𝑠,𝑞

𝑝

‖ℎ‖G(𝛽,𝛾) → 0

as 𝑗, 𝑘 → ∞.

(66)

The above estimate implies that lim
𝑛→∞

⟨𝑔𝑓
𝑛
, ℎ⟩ exists

and the limit is independent of the choice of 𝑓
𝑛
. Therefore,

for 𝑔 ∈ C𝛼, 𝑓 ∈ 𝐹
𝑠,𝑞

𝑝
we define

⟨𝑔𝑓, ℎ⟩ = lim
𝑛→∞

⟨𝑔𝑓
𝑛
, ℎ⟩ , (67)

where ℎ ∈ G(𝛽, 𝛾) for 0 < 𝛽, 𝛾 < 𝜂 and 𝑓
𝑛
is a sequence

defined in Lemma 13.
We now apply Fatou’s lemma and Lemma 13 to show

Theorem 6.

Proof of Theorem 6. For any 𝑔 ∈ C𝛼, 𝑓 ∈ 𝐹
𝑠,𝑞

𝑝
, applying

Fatou’s lemma and Lemma 13 implies that

𝑔𝑓
𝐹
𝑠,𝑞

𝑝

≤



{

∞

∑

𝑘=0

[𝛿
−𝑘𝑠


lim
𝑛→∞

𝐵
𝑘
(𝑔𝑓

𝑛
)

]
𝑞

}

1/𝑞𝑝

≤ lim inf
𝑛→∞

𝑔𝑓𝑛
𝐹
𝑠,𝑞

𝑝

≤ 𝐶lim inf
𝑛→∞

𝑔
C𝛼

𝑓𝑛
𝐹
𝑠,𝑞

𝑝

≤ 𝐶
𝑔

C𝛼
𝑓

𝐹
𝑠,𝑞

𝑝

,

(68)

where, as before, 𝐵
−1

= 𝑃
0
, 𝐵

𝑘
= 𝑄

𝑘
for 𝑘 ∈ Z

+
.

The proof of Theorem 6 is concluded.
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