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We initiate a study of quasi-Jordan normed algebras. It is demonstrated that any quasi-Jordan Banach algebra with a norm 1 unit
can be given an equivalent norm making the algebra isometrically isomorphic to a closed right ideal of a unital split quasi-Jordan
Banach algebra; the set of invertible elements may not be open; the spectrum of any element is nonempty, but it may be neither
bounded nor closed and hence not compact. Some characterizations of the unbounded spectrum of an element in a split quasi-
Jordan Banach algebra with certain examples are given in the end.

1. Introduction

Looking back at the development ofmodernmathematics, we
see that early formal study of algebrawasmostly commutative
and associative. With an abstract study of functions and
matrices, it became noncommutative but still associative;
then introduction of nonassociative structures, such as Lie
structures due to Sophus Lie [1] and Jordan structures due
to Jordan [2], has led us to the mathematics which at present
is noncommutative as well as nonassociative.

There is a strong relationship between Lie algebras and
Jordan algebras [3]. Jordan structures have been extensively
studied by a large number of mathematicians: P. Jordan,
von Neumann, E. Wigner, N. Jacobson, K. McCrimmon, R.
Braun, M. Koecher, E. Neher, and O. Loos, to name but a
few. A vast literature containing many important results on
Jordan algebras has been developed (cf. [3, 4]). After the
mid-1960s, people began studying Jordan structures from
the point of view of functional analysis. Interesting theories
of Jordan Banach algebras, 𝐽𝐵-algebras, 𝐽𝐵∗-algebras, and
𝐽𝐵

∗-triples have been developed, which closely resemble
that of 𝐶∗-algebras and have found surprisingly important
applications in a wide range of mathematical disciplines
including analysis, physics, and biology (cf. [5–7]).

A Jordan algebra is a nonassociative algebra J with the
product 𝑥 ∘ 𝑦 satisfying 𝑥 ∘ 𝑦 = 𝑦 ∘ 𝑥 and the Jordan identity:
(𝑥

2

∘ 𝑦) ∘ 𝑥 = 𝑥
2

∘ (𝑦 ∘ 𝑥), where 𝑥
2

= 𝑥 ∘ 𝑥. Any associative
algebra 𝐴 becomes a Jordan algebra 𝐴

+ with the same linear

space structure and the Jordan product𝑥∘𝑦 := (1/2)(𝑥𝑦+𝑦𝑥);
it becomes a Lie algebra under the skew-symmetric product
[𝑥, 𝑦] := 𝑥𝑦 − 𝑦𝑥, so called the Lie bracket (cf. [4]). For any
Jordan algebra J, there is a Lie algebra L(J) such that J
is a linear subspace of L(J) and the product of J can be
expressed in terms of the Lie bracket inL(J). Moreover, the
universal enveloping algebra of a Lie algebra has the structure
of an associative algebra; see the original work due to Kantor,
Koecher, and Tits appearing in [8–10].

Loday introduced a generalization of Lie algebras, called
the Leibniz algebras [11, 12], and successfully demonstrated
that the relationship between Lie algebras and associative
algebras can be translated into an analogous relationship
between Leibniz algebras and the so-called dialgebras (cf.
[13]): a dialgebra over a field 𝐾 is a 𝐾-module 𝐷 equipped
with two bilinear associative maps ⊣, ⊢: 𝐷 × 𝐷 → 𝐷

satisfying 𝑥 ⊣ (𝑦 ⊢ 𝑧) = 𝑥 ⊣ (𝑦 ⊣ 𝑧); (𝑥 ⊢ 𝑦) ⊣ 𝑧 =

𝑥 ⊢ (𝑦 ⊣ 𝑧); and (𝑥 ⊣ 𝑦) ⊢𝑧 = (𝑥 ⊢𝑦) ⊢𝑧. The maps ⊣ and ⊢

are called the left product and the right product, respectively.
Any dialgebra (𝐷, ⊣, ⊢) becomes a Leibniz algebra under the
Leibniz bracket [𝑥, 𝑦] := 𝑥 ⊣ 𝑦 − 𝑦⊢𝑥, and the universal
enveloping algebra of a Leibniz algebra has the structure of a
dialgebra; for details, see [12, 13].

Recently in [14], Velásquez and Felipe introduced the
notion of quasi-Jordan algebras, which have relation with the
Leibniz algebras similar to the existing relationship between
the Jordan algebras and the Lie algebras [15]. The quasi-
Jordan algebras are a generalization of Jordan algebras where
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the commutative law is replaced by a quasicommutative iden-
tity and a special form of the Jordan identity is retained.These
facts indicate the significance of studying the quasi-Jordan
algebras; within a few years time, many mathematicians,
including M. K. Kinyon, M. R. Bremner, L. A. Peresi, J. San-
chez-Ortega, and V. Voronin, have got their interests in this
new area. In [16], Felipe made an attempt to study dialge-
bras from the functional analytic point of view.

A Jordan Banach algebra is a real or complex Jordan
algebra with a complete norm ‖ ⋅ ‖ satisfying ‖𝑥𝑦‖ ≤ ‖𝑥‖‖𝑦‖;
basics of Jordan Banach algebras may be seen in [7]. In this
paper, we initiate a study of the quasi-Jordan normed alge-
bras. The class of complete quasi-Jordan normed algebras,
called quasi-Jordan Banach algebras, properly includes all
Jordan Banach algebras and hence all 𝐶∗-algebras (cf. [7]).
This study may provide a better mathematical foundation
for some important areas such as quantum mechanics. We
are interested specially in extending, as much as possible,
the theory of Jordan Banach algebras to the general setting
of quasi-Jordan Banach algebras. We investigate the notions
of invertibility and spectrum of elements in the setting of
unital quasi-JordanBanach algebras. Among other results, we
demonstrate that any quasi-Jordan Banach algebra I with a
norm 1 unit can be given an equivalent norm that makes the
algebra I isometrically isomorphic to a norm closed right
ideal of a unital split quasi-Jordan Banach algebra. We show
that the set of invertible elements in a unital quasi-Jordan
Banach algebra generally is not open and that the spectrumof
any element is nonempty but it may be neither bounded nor
closed, hence not compact. Moreover, if the spectrum of an
element in a complex unital split quasi-JordanBanach algebra
(see below) is unbounded then it coincides with the whole
complex plane and vice versa. Some examples are also given
in the end.

2. Quasi-Jordan Banach Algebras

Webegin by recalling some basics of the quasi-Jordan algebra
theory from [14, 17]. A quasi-Jordan algebra is a vector space
I over a field𝐾 of characteristic ̸= 2 equipped with a bilinear
map ⊲: I × I → I, called the quasi-Jordan product,
satisfying 𝑥 ⊲ (𝑦 ⊲ 𝑧) = 𝑥 ⊲ (𝑧 ⊲ 𝑦) (right commutativity)
and (𝑦 ⊲ 𝑥) ⊲ 𝑥

2

= (𝑦 ⊲ 𝑥
2

) ⊲ 𝑥 (right Jordan identity),
for all 𝑥, 𝑦, 𝑧 ∈ I. Here, 𝑥2 := 𝑥 ⊲ 𝑥 and 𝑥

𝑛

:= 𝑥
𝑛−1

⊲ 𝑥

for 𝑛 ≥ 2; in the sequel, we will see that 𝑥2 ⊲ 𝑥 may not
coincide with 𝑥 ⊲ 𝑥

2. Every quasi-Jordan algebra I includes
two important sets: Iann

:= the linear span of the elements
𝑥 ⊲ 𝑦 − 𝑦 ⊲ 𝑥 𝑤𝑖𝑡ℎ 𝑥, 𝑦 ∈ I and 𝑍(I) := {𝑧 ∈ I : 𝑥 ⊲

𝑧 = 0, ∀𝑥 ∈ I}, respectively, called the annihilator and the
zero part of I. It follows from the right commutativity that
Iann

⊆ 𝑍(I) and that the quasi-Jordan algebra I is a Jordan
algebra if and only ifIann

= {0}.

Example 1. Let (𝐷, ⊣, ⊢) be a dialgebra over a field𝐾 of char-
acteristic ̸= 2. One can define another product⊲: 𝐷×𝐷 → 𝐷

by 𝑥 ⊲ 𝑦 := (1/2)(𝑥 ⊣ 𝑦 + 𝑦 ⊢ 𝑥) for all 𝑥, 𝑦 ∈ 𝐷, which
satisfies the identities 𝑥 ⊲ (𝑦 ⊲ 𝑧) = 𝑥 ⊲ (𝑧 ⊲ 𝑦); (𝑦 ⊲

𝑥) ⊲ 𝑥
2

= (𝑦 ⊲ 𝑥
2

) ⊲ 𝑥; and 𝑥
2

⊲ (𝑥 ⊲ 𝑦) = 𝑥 ⊲

(𝑥
2

⊲ 𝑦); however, this quasi-Jordan product generally is
not commutative.Therefore, (𝐷, ⊲) is a quasi-Jordan algebra,
which may not be a Jordan algebra (cf. [14]). This quasi-
Jordan algebra is denoted by 𝐷

+, called a plus quasi-Jordan
algebra. Any quasi-Jordan algebra which is a homomorphic
image of a plus quasi-Jordan algebra is called special.

We define a quasi-Jordan normed algebra as a quasi-Jor-
dan algebra (I, ⊲) over the field C of complex numbers
endowed with a norm ‖ ⋅ ‖ satisfying ‖𝑥 ⊲ 𝑦‖ ≤ ‖𝑥‖‖𝑦‖, for all
𝑥 ∈ I.Thus, the quasi-Jordan product “⊲” in a normed quasi-
Jordan algebraI is continuous. A quasi-Jordan normed alge-
bra is called a quasi-Jordan Banach algebra if it is complete
as a normed space.

If there is an element 𝑒 in a quasi-Jordan algebra I
satisfying 𝑒 ⊲ 𝑥 = 𝑥 for all 𝑥 ∈ I, called the left unit, then
I becomes commutative and hence a Jordan algebra. Due to
this fact, we will consider only the right unit elements; hence-
forth, unit in a quasi-Jordan algebra would mean a right unit.
An element 𝑒 in a quasi-Jordan algebraI is called a unit if𝑥 ⊲

𝑒 = 𝑥, for all 𝑥 ∈ I. A quasi-Jordan algebra may have many
(right) units (cf. [15, 17]). If the dialgebra 𝐷 has a bar-unit 𝑒
(i.e., 𝑥 ⊣ 𝑒 = 𝑥 = 𝑒⊢𝑥) then 𝑥 ⊲ 𝑒 = (1/2)(𝑥 ⊣ 𝑒 + 𝑒 ⊢ 𝑥) = 𝑥,
for all 𝑥 ∈ 𝐷, and hence 𝑒 is a unit of the plus quasi-Jordan
algebra𝐷

+.
For any quasi-Jordan algebraIwith unit 𝑒, we know from

[17] thatIann and𝑍(I) are two-sided ideals ofI,Iann
= {𝑥 ∈

I : 𝑒 ⊲ 𝑥 = 0} = 𝑍(I), and 𝑈(I) = {𝑥 + 𝑒 : 𝑥 ∈ 𝑍(I)},
where 𝑈(I) denotes the set of all (right) units inI.

One can always attach a (two-sided) unit to any Jordan
algebra by following the standard unitization process. This
unitization process no longer works for quasi-Jordan algebras
(cf. [17, pages 210-211]). Adding a unit to a quasi-Jordan alge-
bra is yet an open problem. In giving a partial solution to this
unitization problem,Velásquez andFelipe [17] introduced the
following special class of quasi-Jordan algebras, called split
quasi-Jordan algebras: letI be a quasi-Jordan algebra and let
𝐼 be an ideal inI such thatIann

⊆ 𝐼 ⊆ 𝑍(I). We say thatI is
a split quasi-Jordan algebra (more precisely, I is split over 𝐼)
if there exists a subalgebra 𝐽 ofI such thatI = 𝐽⊕𝐼, the direct
sum of 𝐽 and 𝐼. It is easily seen that such a subalgebra 𝐽 is a
Jordan algebra. One can attach a unit to any split quasi-Jordan
algebra; details of such a unitization process are given in [17].
If the algebra I has a unit then Iann

= 𝑍(I). Thus, a quasi-
Jordan algebra I with unit is a split quasi-Jordan algebra if
and only if I = 𝐽 ⊕ 𝑍(I) for some subalgebra 𝐽 of I; the
algebra 𝐽 is called the Jordan part of I. In such a case, each
element 𝑥 ∈ I has a unique representation 𝑥 = 𝑥

𝐽
+ 𝑥

𝑍
with

𝑥
𝐽
∈ 𝐽 and 𝑥

𝑍
∈ 𝑍(I), respectively, called the Jordan part and

the zero part of 𝑥. Moreover, ifI is split quasi-Jordan algebra
with unit 𝑒, then there exists a unique element 𝑒

𝐽
∈ 𝐽 which

acts as a unit of the quasi-Jordan algebra I and at the same
time a unit of the Jordan algebra 𝐽.

Proposition 2. Let I := 𝐽 ⊕ 𝑍(I) be a unital split quasi-
Jordan Banach algebra with unit 𝑒 ∈ 𝐽. Then the Jordan part
𝐽 is a norm closed subalgebra of I and hence a unital Jordan
Banach algebra.
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Proof. From the above discussion, it is clear that the Jordan
part 𝐽 is a unital Jordan normed algebra. Next, let {𝑥

𝑛
} be any

fixed Cauchy sequence in 𝐽. Then, the same {𝑥
𝑛
} is Cauchy

sequence also in the quasi-Jordan Banach algebraI since 𝐽 is
a normed subspace ofI. Hence, 𝑥

𝑛
→ 𝑥 for some 𝑥 ∈ I.

Now, since each𝑥
𝑛
∈ 𝐽 and since 𝑒 is the unit of the Jordan

algebra 𝐽 under the (restricted) product “⊲,” we get 𝑒 ⊲ 𝑥
𝑛
=

𝑥
𝑛
for all 𝑛. So, by the continuity of the product, 𝑥

𝑛
= 𝑒 ⊲

𝑥
𝑛

→ 𝑒 ⊲ 𝑥. Hence, by the uniqueness of the limit of any
convergent sequence in a normed space, 𝑒 ⊲ 𝑥 = 𝑥. However,
𝑥 = 𝑒 ⊲ (𝑥

𝐽
+ 𝑥

𝑍
) = 𝑒 ⊲ 𝑥

𝐽
+ 𝑒 ⊲ 𝑥

𝑍
= 𝑒 ⊲ 𝑥

𝐽
+ 0 = 𝑥

𝐽
∈ 𝐽.

Thus, the required result follows.

We know from [17] that for any quasi-Jordan algebra I,
I

1
:= {(𝑥, 𝑅

𝑦
) : 𝑥, 𝑦 ∈ I} equipped with the sum (𝑥, 𝑅

𝑦
) +

(𝑎, 𝑅
𝑏
) := (𝑥 + 𝑎, 𝑅

𝑦+𝑏
), scalar multiplication 𝜆(𝑥, 𝑅

𝑦
) :=

(𝜆𝑥, 𝑅
𝜆𝑦
), and product (𝑥, 𝑅

𝑦
) ⊲ (𝑎, 𝑅

𝑏
) := (𝑥 ⊲ 𝑏, 𝑅

𝑦⊲𝑏
)

is a split quasi-Jordan algebra and the map 𝑥 → 𝜑(𝑥) :=

(𝑥, 𝑅
𝑥
) is an embedding of I into I

1
, where 𝑅

𝑧
stands for

the usual right multiplication operator on I. It is easily seen
that {0} × 𝑅(I) is the Jordan part of I

1
and the zero part

𝑍(I
1
) = I × {0}. Moreover, the embedding 𝜑 preserves the

units: clearly, (𝑎, 𝑅
𝑏
) ⊲ (𝑒, 𝑅

𝑒
) = (𝑎 ⊲ 𝑒, 𝑅

𝑏⊲𝑒
) = (𝑎, 𝑅

𝑏
) for

all (𝑎, 𝑅
𝑏
) ∈ I

1
so that (𝑒, 𝑅

𝑒
) is a unit in I

1
whenever 𝑒 is a

unit in I. In fact, (𝑥, 𝑅
𝑒
) is a unit in I

1
, for all 𝑥 ∈ I; it may

be noted here that (0, 𝑅
𝑒
) is the only unit in the Jordan part of

I
1
.
From [17], we also know that 𝑅(I) := {𝑅

𝑥
: 𝑥 ∈ I}, with

product “∙” defined by 𝑅
𝑥
∙ 𝑅

𝑦
= 𝑅

𝑥⊲𝑦
, for all 𝑥, 𝑦 ∈ I, is

a quasi-Jordan algebra. Moreover,I
1
is the direct product of

the quasi-Jordan algebrasI and 𝑅(I).
Indeed, the split quasi-Jordan algebraI

1
is a quasi-Jordan

Banach algebra with unit (𝑒, 𝑅
𝑒
)wheneverI is a quasi-Jordan

Banach algebra with a norm 1 unit 𝑒, and that 𝜑(I) =

{(𝑥, 𝑅
𝑥
) : 𝑥 ∈ I} is a closed unital quasi-Jordan normed

subalgebra ofI
1
. To justify this claim, we need the following

result.

Proposition 3. Suppose I is a quasi-Jordan Banach algebra
with a norm 1 unit 𝑒.Then the algebra𝑅(I) as above is a quasi-
Jordan Banach algebra with unit 𝑅

𝑒
of norm 1.

Proof. Clearly, each 𝑅
𝑥
is a bounded linear operator with

‖𝑅
𝑥
‖ ≤ ‖𝑥‖. Hence, the usual operator norm is a norm on

the quasi-Jordan algebra 𝑅(I)with the quasi-Jordan product
𝑅
𝑥
∙ 𝑅

𝑦
= 𝑅

𝑥⊲𝑦
. Further, we observe that


𝑅
𝑥
∙ 𝑅

𝑦


=


𝑅
𝑥⊲𝑦



= sup
𝑧∈I,‖𝑧‖=1


𝑅
𝑥⊲𝑦

(𝑧)


= sup
𝑧∈I,‖𝑧‖=1

𝑧 ⊲ (𝑥 ⊲ 𝑦)


= sup
𝑧∈I,‖𝑧‖=1

𝑧 ⊲ ((𝑒 ⊲ 𝑥) ⊲ 𝑦)


= sup
𝑧∈I,‖𝑧‖=1


𝑧 ⊲ (𝑅

𝑦
(𝑅

𝑥
(𝑒)))



≤ sup
𝑧∈I,‖𝑧‖=1

‖𝑧‖

𝑅
𝑦
(𝑅

𝑥
(𝑒))



=

𝑅
𝑦
(𝑅

𝑥
𝑒)

≤

𝑅𝑥




𝑅
𝑦


‖𝑒‖

=
𝑅𝑥




𝑅
𝑦


.

(1)

Alternately, by exploiting the right commutativity of the
quasi-Jordan product inI, we get


𝑅
𝑥
∙ 𝑅

𝑦


= sup

𝑧∈I,‖𝑧‖=1

𝑧 ⊲ (𝑥 ⊲ 𝑦)


= sup
𝑧∈I,‖𝑧‖=1

𝑧 ⊲ ((𝑥 ⊲ 𝑒) ⊲ (𝑦 ⊲ 𝑒))


= sup
𝑧∈I,‖𝑧‖=1

𝑧 ⊲ ((𝑥 ⊲ 𝑒) ⊲ (𝑒 ⊲ 𝑦))


= sup
𝑧∈I,‖𝑧‖=1

𝑧 ⊲ ((𝑒 ⊲ 𝑦) ⊲ (𝑥 ⊲ 𝑒))


= sup
𝑧∈I,‖𝑧‖=1

𝑧 ⊲ ((𝑒 ⊲ 𝑦) ⊲ (𝑒 ⊲ 𝑥))


= sup
𝑧∈I,‖𝑧‖=1


𝑧 ⊲ (𝑅

𝑦
(𝑒) ⊲ 𝑅

𝑥
(𝑒))



≤ sup
𝑧∈I,‖𝑧‖=1

‖𝑧‖

𝑅
𝑦



𝑅𝑥

 ‖𝑒‖
2

=
𝑅𝑥




𝑅
𝑦


.

(2)

Thus, 𝑅(I) together with the operator norm is a quasi-
Jordan normed algebra. Moreover, for any 𝑥 ∈ 𝑅(I), we
have 𝑅

𝑥
∙ 𝑅

𝑒
= 𝑅

𝑥⊲𝑒
= 𝑅

𝑥
and 1 = ‖𝑒‖ ≥ ‖𝑅

𝑒
‖ =

sup
0 ̸= 𝑧∈I(‖𝑅𝑒

(𝑧)‖/‖𝑧‖) ≥ ‖𝑅
𝑒
(𝑒)‖/‖𝑒‖ = 1; that is, 𝑅

𝑒
is a

norm 1 (right) unit in 𝑅(I).
Suppose {𝑅

𝑥
𝑛

} is any fixed Cauchy sequence in 𝑅(I).
Then, for any fixed 𝑎 ∈ I, ‖𝑎 ⊲ 𝑥

𝑚
− 𝑎 ⊲ 𝑥

𝑛
‖ = ‖𝑅

𝑥
𝑚

(𝑎) −

𝑅
𝑥
𝑛

(𝑎)‖ = ‖(𝑅
𝑥
𝑚

− 𝑅
𝑥
𝑛

)(𝑎)‖ ≤ ‖𝑅
𝑥
𝑚

− 𝑅
𝑥
𝑛

‖‖𝑎‖ → 0 as
𝑚, 𝑛 → ∞, and so {𝑎 ⊲ 𝑥

𝑛
} is a Cauchy sequence in I.

But, I is complete. Hence, the sequence {𝑎 ⊲ 𝑥
𝑛
} for any

𝑎 ∈ I is convergent inI. In particular, the sequence {𝑒 ⊲ 𝑥
𝑛
}

converges to some 𝑦 ∈ I. Moreover, the Cauchy sequence
{𝑅

𝑥
𝑛

} converges to 𝑅
𝑦
∈ 𝑅(I) in the operator norm because

‖(𝑅
𝑥
𝑛

− 𝑅
𝑦
)(𝑧)‖ = ‖𝑧 ⊲ (𝑥

𝑛
− 𝑦)‖ = ‖𝑧 ⊲ 𝑥

𝑛
− 𝑧 ⊲ 𝑦‖ = ‖𝑧 ⊲

(𝑥
𝑛
⊲ 𝑒) − 𝑧 ⊲ 𝑦‖ = ‖𝑧 ⊲ (𝑒 ⊲ 𝑥

𝑛
) − 𝑧 ⊲ 𝑦‖ = ‖𝑧 ⊲ (𝑒 ⊲

𝑥
𝑛
− 𝑦)‖ ≤ ‖𝑧‖‖𝑒 ⊲ 𝑥

𝑛
− 𝑦‖ → 0 as 𝑛 → ∞, for all 𝑧 ∈ I.

Thus, the quasi-Jordan normed algebra 𝑅(I) is complete.

Now, we show that the corresponding algebra I
1
is a

unital split quasi-Jordan Banach algebra.

Proposition 4. Let I be a quasi-Jordan Banach algebra with
a norm 1 unit 𝑒 and let I

1
be as above. Then I

1
is the direct

product of the quasi-Jordan algebras I and 𝑅(I). Moreover,
I

1
equipped with the product norm ‖(𝑥, 𝑅

𝑦
)‖ := ‖𝑥‖ + ‖𝑅

𝑦
‖

is a split quasi-Jordan Banach algebra with unit (𝑒, 𝑅
𝑒
), and

𝜑(I) = {(𝑥, 𝑅
𝑥
) : 𝑥 ∈ I} is a closed right ideal in I

1
in the

norm topology.
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Proof. For the first part, see [17]. Clearly, ‖(𝑥, 𝑅
𝑦
)‖ := ‖𝑥‖ +

‖𝑅
𝑦
‖ is a norm, and it satisfies


(𝑥, 𝑅

𝑦
) ⊲ (𝑧, 𝑅

𝑤
)

=


(𝑥 ⊲ 𝑤, 𝑅

𝑦⊲𝑤
)


=

(𝑥 ⊲ 𝑤, 𝑅

𝑦
∙ 𝑅

𝑤
)


=
𝑅𝑤

(𝑥)
 +


𝑅
𝑦
∙ 𝑅

𝑤



≤ (‖𝑥‖ +

𝑅
𝑦


)
𝑅𝑤



≤ (‖𝑥‖ +

𝑅
𝑦


) (‖𝑧‖ +

𝑅𝑤

)

=

(𝑥, 𝑅

𝑦
)


(𝑧, 𝑅𝑤
)
 ,

(3)

for all 𝑤, 𝑥, 𝑦, 𝑧 ∈ I. Keeping in view Proposition 3, we
deduce that I

1
being the product of complete spaces I and

𝑅(I) is complete in the product norm. Thus, I
1
is a split

quasi-Jordan Banach algebra with (right) unit (𝑒, 𝑅
𝑒
).

Clearly, 𝜑(I) is a subspace ofI
1
with (𝑥, 𝑅

𝑥
) ⊲ (𝑦, 𝑅

𝑧
) =

(𝑥 ⊲ 𝑧, 𝑅
𝑥⊲𝑧

) ∈ 𝜑(I) for all (𝑥, 𝑅
𝑥
) ∈ 𝜑(I), (𝑦, 𝑅

𝑧
) ∈ I

1
, so

that 𝜑(I) is a quasi-Jordan normed subalgebra with the unit
(𝑒, 𝑅

𝑒
) included. Further, let {(𝑥

𝑛
, 𝑅

𝑥
𝑛

)} be any fixed Cauchy
sequence in 𝜑(I). Then ‖𝑥

𝑚
− 𝑥

𝑛
‖ ≤ ‖𝑥

𝑚
− 𝑥

𝑛
‖ + ‖𝑅

𝑥
𝑚

−

𝑅
𝑥
𝑛

‖ = ‖(𝑥
𝑚

− 𝑥
𝑛
, 𝑅

𝑥
𝑚

− 𝑅
𝑥
𝑛

)‖ = ‖(𝑥
𝑚
, 𝑅

𝑥
𝑚

) − (𝑥
𝑛
, 𝑅

𝑥
𝑛

)‖ →

0 as 𝑚, 𝑛 → ∞, so that {𝑥
𝑛
} is a Cauchy sequence in (the

complete space) I and hence it converges to some 𝑥 ∈ I.
Now, by using the fact ‖ 𝑅

𝑧
‖≤‖ 𝑧 ‖ for all 𝑧 ∈ I (since

𝑒 is a norm 1 unit in I; see above), we get the convergence
of arbitrarily fixed Cauchy sequence {(𝑥

𝑛
, 𝑅

𝑥
𝑛

)} to (𝑥, 𝑅
𝑥
) ∈

𝜑(I) since ‖(𝑥
𝑛
, 𝑅

𝑥
𝑛

)−(𝑥, 𝑅
𝑥
)‖ = ‖(𝑥

𝑛
−𝑥, 𝑅

𝑥
𝑛
−𝑥

)‖ = ‖𝑥
𝑛
−𝑥‖+

‖𝑅
𝑥
𝑛
−𝑥

‖ ≤ 2‖𝑥
𝑛
−𝑥‖ → 0 as 𝑛 → ∞.Thus, 𝜑(I) being com-

plete is a closed right ideal inI
1
in the norm topology.

Next, we observe the isometry between I and 𝜑(I).

Proposition 5. Let I be a quasi-Jordan Banach algebra with
norm 1 unit. Then there exists an equivalent norm that makes
I isometrically isomorphic to a quasi-Jordan closed subalgebra
𝜑(I) of the split quasi-Jordan Banach algebra I

1
.

Proof. Clearly, ‖𝑥‖
∘

:= ‖𝑥‖ + ‖𝑅
𝑥
‖ defines a norm on the

quasi-Jordan algebra I. It follows that (I, ‖ ⋅ ‖
∘
) is a quasi-

Jordan Banach algebra.Moreover,I is isomorphic to the sub-
algebra {(𝑥, 𝑅

𝑥
) : 𝑥 ∈ I} of I

1
under the isomorphism

𝜑 : 𝑥 → (𝑥, 𝑅
𝑥
), as seen above. Further, we observe that 𝜑

is an isometry since ‖𝑥‖
∘
= ‖𝑥‖ + ‖𝑅

𝑥
‖ = ‖(𝑥, 𝑅

𝑥
)‖ = ‖𝜑(𝑥)‖.

Finally, we note that the two norms ‖ ⋅ ‖ and ‖ ⋅ ‖
∘
on I are

equivalent since ‖𝑥‖ ≤ ‖𝑥‖ + ‖𝑅
𝑥
‖ = ‖𝑥‖

∘
= ‖𝑥‖ + ‖𝑅

𝑥
‖ ≤

2‖𝑥‖.

3. Invertible Elements

As in [17], an element 𝑥 in a quasi-Jordan algebra I is called
invertible with respect to a unit 𝑒 ∈ I if there exists 𝑦 ∈ I

such that 𝑦 ⊲ 𝑥 = 𝑒 + (𝑒 ⊲ 𝑥 − 𝑥) and 𝑦 ⊲ 𝑥
2

= 𝑥 + (𝑒 ⊲

𝑥 − 𝑥) + (𝑒 ⊲ 𝑥
2

− 𝑥
2

); such an element 𝑦 is called an inverse
of𝑥 with respect to 𝑒. Let 𝑒

⊲
(𝑥) denote the element 𝑒 ⊲ 𝑥 − 𝑥.

Then,𝑥 has an inverse𝑦with respect to 𝑒 ⇔ 𝑦 ⊲ 𝑥 = 𝑒+𝑒
⊲
(𝑥)

and 𝑦 ⊲ 𝑥
2

= 𝑥 + 𝑒
⊲
(𝑥) + 𝑒

⊲
(𝑥

2

).
We know from the above discussion that the embedding

𝑥 → 𝜑(𝑥) := (𝑥, 𝑅
𝑥
) of a quasi-Jordan algebraI into the split

quasi-Jordan algebra I
1
preserves the units. The embedding

𝜑 also preserves the corresponding invertible elements: if 𝑦 is
an inverse of 𝑥 with respect to a unit 𝑒 in I, then 𝑦 ⊲ 𝑥 =

𝑒 + (𝑒 ⊲ 𝑥 − 𝑥) and 𝑦 ⊲ 𝑥
2

= 𝑥 + (𝑒 ⊲ 𝑥 − 𝑥) + (𝑒 ⊲ 𝑥
2

− 𝑥
2

).
Hence,

(𝑦, 𝑅
𝑦
) ⊲ (𝑥, 𝑅

𝑥
) = (𝑦 ⊲ 𝑥, 𝑅

𝑦⊲𝑥
)

= (𝑒 + (𝑒 ⊲ 𝑥 − 𝑥) , 𝑅
𝑒+(𝑒⊲𝑥−𝑥)

)

= (𝑒 + (𝑒 ⊲ 𝑥 − 𝑥) , 𝑅
𝑒
+ 𝑅

𝑒⊲𝑥
− 𝑅

𝑥
)

= (𝑒, 𝑅
𝑒
) + (𝑒 ⊲ 𝑥, 𝑅

𝑒⊲𝑥
) − (𝑥, 𝑅

𝑥
)

= (𝑒, 𝑅
𝑒
) + (𝑒, 𝑅

𝑒
) ⊲ (𝑥, 𝑅

𝑥
) − (𝑥, 𝑅

𝑥
) ,

(𝑦, 𝑅
𝑦
) ⊲ (𝑥, 𝑅

𝑥
)
2

= (𝑦 ⊲ 𝑥
2

, 𝑅
𝑦⊲𝑥
2)

= (𝑥, 𝑅
𝑥
) + ((𝑒 ⊲ 𝑥, 𝑅

𝑒⊲𝑥
) − (𝑥, 𝑅

𝑥
))

+ ((𝑒 ⊲ 𝑥
2

, 𝑅
𝑒⊲𝑥
2) − (𝑥

2

, 𝑅
𝑥
2))

= (𝑥, 𝑅
𝑥
) + ((𝑒, 𝑅

𝑒
) ⊲ (𝑥, 𝑅

𝑥
) − (𝑥, 𝑅

𝑥
))

+ ((𝑒, 𝑅
𝑒
) ⊲ (𝑥, 𝑅

𝑥
)
2

− (𝑥, 𝑅
𝑥
)
2

) .

(4)

Thus, (𝑦, 𝑅
𝑦
) is an inverse of (𝑥, 𝑅

𝑥
), with respect to the unit

(𝑒, 𝑅
𝑒
), inI

1
.

Let I = 𝐽 ⊕ 𝑍(I) be a unital split quasi-Jordan algebra.
Then, 𝑅

𝑥
(𝑦) = 𝑦 ⊲ 𝑥 = 𝑦 ⊲ (𝑥

𝐽
+ 𝑥

𝑍
) = 𝑦 ⊲ 𝑥

𝐽
+ 𝑦 ⊲ 𝑥

𝑍
=

𝑦 ⊲ 𝑥
𝐽
+ 0 = 𝑅

𝑥
𝐽

(𝑦), for all 𝑥, 𝑦 ∈ I. Thus, 𝑅
𝑥
= 𝑅

𝑥
𝐽

for all
𝑥 ∈ I.

In this section, we demonstrate that the set of invertible
elements, with respect to a fixed unit, in a quasi-Jordan
Banach algebra, may not be open. For this, we proceed as
follows.

Proposition 6. Let I := 𝐽 ⊕ 𝑍(I) be a unital split quasi-
Jordan algebra with unit 𝑒 ∈ 𝐽. If 𝑥 ∈ I is invertible with
respect to 𝑒, then so is 𝜆𝑥 for all 𝜆 ̸= 0.

Proof. Let𝑦 be an inverse of 𝑥 inIwith respect to 𝑒.We show
that 𝑦

:= (1/𝜆)𝑦
𝐽
+ 𝑦

𝑍
is an inverse of 𝜆𝑥 with respect to 𝑒.

Observe that

𝑦
𝐽
⊲ 𝑥 + 𝑦

𝑍
⊲ 𝑥 = (𝑦

𝐽
+ 𝑦

𝑍
) ⊲ 𝑥

= 𝑦 ⊲ 𝑥 = 𝑒 + 𝑒
⊲
(𝑥)

= 𝑒 + 𝑒
⊲
(𝑥

𝐽
+ 𝑥

𝑍
) = 𝑒 + (−𝑥

𝑍
) ,
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𝑦
𝐽
⊲ 𝑥

2

+ 𝑦
𝑍
⊲ 𝑥

2

= 𝑦 ⊲ 𝑥
2

= 𝑥 + 𝑒
⊲
(𝑥

𝐽
+ 𝑥

𝑍
) + 𝑒

⊲
((𝑥

𝐽
+ 𝑥

𝑍
)
2

)

= 𝑥
𝐽
+ (−𝑥

𝑍
⊲ 𝑥) .

(5)

Hence, by the uniqueness of the representation as sum of Jor-
dan and zero parts, we get 𝑦

𝐽
⊲ 𝑥 = 𝑒, 𝑦

𝑍
⊲ 𝑥 = −𝑥

𝑍
, 𝑦

𝐽
⊲

𝑥
2

= 𝑥
𝐽
, and 𝑦

𝑍
⊲ 𝑥

2

= −𝑥
𝑍

⊲ 𝑥. Therefore, 𝑦

⊲ 𝜆𝑥 =

𝜆(((1/𝜆)𝑦
𝐽
+ 𝑦

𝑍
) ⊲ 𝑥) = 𝑦

𝐽
⊲ 𝑥 + 𝜆𝑦

𝑍
⊲ 𝑥 = 𝑒 − 𝜆𝑥

𝑍
=

𝑒 + 𝑒
⊲
(𝜆𝑥) and 𝑦



⊲ (𝜆𝑥)
2

= 𝜆
2

((1/𝜆)𝑦
𝐽
⊲ 𝑥

2

+ 𝑦
𝑍

⊲ 𝑥
2

) =

𝜆𝑥
𝐽
− 𝜆

2

𝑥
𝑍
⊲ 𝑥 = 𝜆𝑥 + 𝑒

⊲
(𝜆𝑥) + 𝑒

⊲
((𝜆𝑥)

2

) because 𝑒
⊲
(𝜆𝑥) =

𝑒 ⊲ (𝜆𝑥) − 𝜆𝑥 = −𝜆𝑥
𝑍
and 𝑒

⊲
((𝜆𝑥)

2

) = 𝑒 ⊲ 𝜆
2

𝑥
2

− 𝜆
2

𝑥
2

=

𝜆
2

(𝑒
⊲
(𝑥

2

)) = −𝜆
2

𝑥
𝑍
⊲ 𝑥.

Proposition 7. LetI be a quasi-Jordan normed algebrawith a
unit 𝑒. Let𝐺

𝑒
(I) := {𝑥 ∈ I : 𝑥 is invertible with respect to 𝑒}

be an open set and 𝑥 ∈ 𝐺
𝑒
(I). Then 𝑥 + 𝑧 ∈ 𝐺

𝑒
(I) for all

𝑧 ∈ 𝑍(I).

Proof. Suppose 𝑥 ∈ 𝐺
𝑒
(I) and 𝑧 ∈ 𝑍(I). If 𝑧 = 0 then 𝑥+𝑧 =

𝑥 ∈ 𝐺
𝑒
(I). Next, suppose 𝑧 ̸= 0. Since 𝐺

𝑒
(I) is an open set,

there exists 𝜖 > 0 such that 𝑎 ∈ 𝐺
𝑒
(I) whenever ‖𝑥 − 𝑎‖ < 𝜖.

Hence, 𝑥 + 𝑧
∘
∈ 𝐺

𝑒
(I) with 𝑧

∘
= (𝜖/2‖𝑧‖)𝑧.

Let 𝑦 and 𝑦
∘
be inverses of 𝑥 and 𝑥 + 𝑧

∘
with respect to 𝑒,

respectively. Then

𝑦
∘
⊲ (𝑥 + 𝑧

∘
) = 𝑒 + 𝑒

⊲
(𝑥 + 𝑧

∘
)

= 𝑒 + 𝑒
⊲
(𝑥) − 𝑧

∘

= 𝑦 ⊲ 𝑥 − 𝑧
∘
,

𝑦
∘
⊲ (𝑥 + 𝑧

∘
)
2

= 𝑥 + 𝑧
∘
+ 𝑒

⊲
(𝑥 + 𝑧

∘
) + 𝑒

⊲
((𝑥 + 𝑧

∘
)
2

)

= 𝑥 + 𝑒
⊲
(𝑥) + 𝑒

⊲
(𝑥

2

) − 𝑧
∘
⊲ 𝑥

= 𝑦 ⊲ 𝑥
2

− 𝑧
∘
⊲ 𝑥.

(6)

Hence, by setting 𝑦
1
= 𝑦 + 𝛼(𝑦

∘
− 𝑦) with 𝛼 = 2‖𝑧‖/𝜖, we see

that
𝑦
1
⊲ (𝑥 + 𝑧) = (𝑦 + 𝛼 (𝑦

∘
− 𝑦)) ⊲ 𝑥

= 𝑦 ⊲ 𝑥 + 𝛼 (𝑦
∘
⊲ (𝑥 + 𝑧

∘
) − 𝑦 ⊲ 𝑥)

= 𝑒 + 𝑒
⊲
(𝑥) + 𝛼 (−𝑧

∘
)

= 𝑒 + 𝑒
⊲
(𝑥) − 𝑧

= 𝑒 + 𝑒
⊲
(𝑥 + 𝑧) ,

𝑦
1
⊲ (𝑥 + 𝑧)

2

= (𝑦 + 𝛼 (𝑦
∘
− 𝑦)) ⊲ 𝑥

2

= 𝑦 ⊲ 𝑥
2

+ 𝛼 (𝑦
∘
⊲ (𝑥 + 𝑧

∘
)
2

− 𝑦 ⊲ 𝑥
2

)

= 𝑥 + 𝑒
⊲
(𝑥) + 𝑒

⊲
(𝑥

2

) − 𝛼 (𝑧
∘
⊲ 𝑥)

= 𝑥 + 𝑒
⊲
(𝑥) + 𝑒

⊲
(𝑥

2

) − 𝑧 ⊲ 𝑥

= (𝑥 + 𝑧) + 𝑒
⊲
(𝑥 + 𝑧) + 𝑒

⊲
((𝑥 + 𝑧)

2

) ,

(7)

since 𝑧 ∈ 𝑍(I). Thus, 𝑦
1
is an inverse of 𝑥 + 𝑧 with respect to

the unit 𝑒.

Corollary 8. Under the hypothesis of Proposition 7, 𝜆𝑒 − 𝑥 ∈

𝐺
𝑒
(I) implies 𝜆𝑒 − (𝑥 + 𝑧) ∈ 𝐺

𝑒
(I) for all 𝑧 ∈ 𝑍(I).

Proposition 9. LetI = 𝐽 ⊕ 𝑍(I) be a split quasi-Jordan nor-
med algebra and let 𝑒 ∈ 𝐽 be a unit inI such that the set𝐺

𝑒
(I)

is open. Then 𝑥 ⊲ 𝑥
2

= 𝑥
2

⊲ 𝑥 for all 𝑥 ∈ I.

Proof. Of course, the element 𝑒 is the unit of the Jordan
algebra 𝐽. Then, for any fixed element 𝑎 ∈ 𝐽, there exists
𝜆 ∈ C such that 𝜆𝑒 − 𝑎 is invertible in 𝐽; otherwise, we
would get the negation of the well-known fact that spectrum
of an element of a unital Jordan algebra is bounded. That
is, there exists 𝑦 ∈ 𝐽 such that 𝑦 ⊲ (𝜆𝑒 − 𝑎) = 𝑒 and
𝑦 ⊲ (𝜆𝑒−𝑎)

2

= (𝜆𝑒−𝑎). However, 𝑒
⊲
(𝑎) = 0 = 𝑒

⊲
(𝑎

2

). Hence,
𝑦 is an inverse of 𝑎 in the quasi-Jordan algebraIwith respect
to the unit 𝑒. By Corollary 8, 𝜆𝑒 − (𝑎 + 𝑧) is also invertible
for any 𝑧 ∈ 𝑍(I). This in turn gives the existence of 𝑏 ∈ I

satisfying 𝑏 ⊲ (𝜆𝑒 − (𝑎 + 𝑧)) = 𝑒 + 𝑧 and 𝑏 ⊲ (𝜆𝑒 − (𝑎 + 𝑧))
2

=

(𝜆𝑒−𝑎)+𝑧 ⊲ (𝜆𝑒−𝑎). Multiplying the first equation from the
right by (𝜆𝑒 − (𝑎 + 𝑧))

2, the second equation by (𝜆𝑒− (𝑎+𝑧)),
and using the right Jordan identity, we get

(𝑒 + 𝑧) ⊲ (𝜆𝑒 − (𝑎 + 𝑧))
2

= ((𝜆𝑒 − 𝑎) + 𝑧 ⊲ (𝜆𝑒 − 𝑎)) ⊲ (𝜆𝑒 − (𝑎 + 𝑧)) .

(8)

Hence,

(𝑒 + 𝑧) ⊲ (𝜆𝑒 − 𝑎)
2

= ((𝜆𝑒 − 𝑎) + 𝑧 ⊲ (𝜆𝑒 − 𝑎)) ⊲ (𝜆𝑒 − 𝑎) ,

(9)

so that

𝑒 ⊲ (𝜆𝑒 − 𝑎)
2

+ 𝜆
2

𝑧 − 2𝜆 (𝑧 ⊲ 𝑎) + 𝑧 ⊲ 𝑎
2

= (𝜆𝑒 − 𝑎)
2

+ 𝜆
2

𝑧 − 2𝜆𝑧 ⊲ 𝑎 + (𝑧 ⊲ 𝑎) ⊲ 𝑎.

(10)

This last equation reduces to 𝑒 ⊲ (𝜆𝑒 − 𝑎)
2

= (𝜆𝑒 − 𝑎)
2 since

(𝜆𝑒 − 𝑎)
2

∈ 𝐽 and 𝑒 is the unit of 𝐽. Hence, 𝑧 ⊲ 𝑎
2

= (𝑧 ⊲

𝑎) ⊲ 𝑎 for all 𝑎 ∈ 𝐽 and 𝑧 ∈ 𝑍(I). Now, for any 𝑥 ∈ I, the
last equation with 𝑎 = 𝑥

𝐽
and 𝑧 = 𝑥

𝑍
gives 𝑥

𝑍
⊲ 𝑥

2

𝐽
= (𝑥

𝑍
⊲

𝑥
𝐽
) ⊲ 𝑥

𝐽
.Thus, 𝑥 ⊲ 𝑥

2

= 𝑥
𝐽
⊲ 𝑥

2

𝐽
+𝑥

𝑍
⊲ 𝑥

2

𝐽
= 𝑥

2

𝐽
⊲ 𝑥

𝐽
+(𝑥

𝑍
⊲

𝑥
𝐽
) ⊲ 𝑥

𝐽
= 𝑥

2

⊲ 𝑥 for all 𝑥 ∈ I.

Corollary 10. If a unital split quasi-Jordan algebra has an
element 𝑥 with 𝑥 ⊲ 𝑥

2

̸= 𝑥
2

⊲ 𝑥 then the set of invertible
elements, with respect to the unit of the Jordan part, is not open.

In the sequel, we will show the existence of a unital split
quasi-Jordan Banach algebra with elements 𝑥 such that 𝑥 ⊲

𝑥
2

̸= 𝑥
2

⊲ 𝑥. Thus, the above result establishes that the set of
invertible elements, with respect to a fixed unit, in a quasi-
Jordan Banach algebra may not be open.



6 Abstract and Applied Analysis

4. The Spectrum of Elements in a Unital
Quasi-Jordan Algebra

As usual, we define the spectrum of an element 𝑥 in a
unital quasi-Jordan algebra (I, 𝑒), denoted by 𝜎

(I,𝑒)(𝑥), to
be the collection of all complex numbers 𝜆 for which 𝜆𝑒 −

𝑥 is not invertible. Thus, 𝜎
(I,𝑒)(𝑥) := {𝜆 ∈ C : 𝜆𝑒 −

𝑥 is not invertible}. Here, the subscript 𝑒 indicates that the
invariability depends on the choice of unit 𝑒, which generally
is not unique.

Proposition 11. Let I be a unital quasi-Jordan algebra. Then
𝜎
(I,𝑒)(𝑒



) = {1} for all 𝑒, 𝑒 ∈ 𝑈(I).

Proof. Let 𝑒, 𝑒 ∈ 𝑈(I). Then, for any 𝜆 ̸= 1, 𝑦 := (1/(𝜆−1))𝑒


is an inverse of 𝜆𝑒 − 𝑒
 with respect to the unit 𝑒 because 𝑦 ⊲

(𝜆𝑒 − 𝑒


) = (1/(𝜆 − 1))𝑒


⊲ (𝜆𝑒 − 𝑒


) = 𝑒 + 𝑒
⊲
(𝜆𝑒 − 𝑒



) and
𝑦 ⊲ (𝜆𝑒 − 𝑒



)
2

= (𝜆𝑒 − 𝑒


) + 𝑒
⊲
(𝜆𝑒 − 𝑒



) + 𝑒
⊲
((𝜆𝑒 − 𝑒



)
2

).

Proposition 12. Let I be a quasi-Jordan algebra with unit 𝑒.
Then 𝜎

(I,𝑒)(𝑧) = {0} for all 𝑧 ∈ 𝑍(I).

Proof. For any fixed 𝑧 ∈ 𝑍(I) and nonzero scalar 𝜆, the
vector 𝑦 := (1/𝜆)(𝑒 + 𝑧) satisfies 𝑦 ⊲ (𝜆𝑒 − 𝑧) = 𝜆𝑦 = 𝑒 + 𝑧 =

𝑒+ 𝑒
⊲
(𝜆𝑒− 𝑧) and 𝑦 ⊲ (𝜆𝑒 − 𝑧)

2

= 𝜆
2

𝑦 = 𝜆𝑒+𝜆𝑧 = (𝜆𝑒−𝑧) +

𝑒
⊲
(𝜆𝑒 − 𝑧) + 𝑒

⊲
((𝜆𝑒 − 𝑧)

2

). So (1/𝜆)(𝑒 + 𝑧) is an inverse of
𝜆𝑒 − 𝑧 with respect to 𝑒. This means 𝜆 ∉ 𝜎

(I,𝑒)(𝑧) for all 𝜆 ̸= 0.
However, the zero vector is not invertible. Thus, 𝜎

(I,𝑒)(𝑧) =

{0}.

Proposition 13. Let I = 𝐽 ⊕ 𝑍(I) be a split quasi-Jordan
algebra with unit 𝑒 ∈ 𝐽. Then 𝜎

(I,𝑒)(𝑝) ⊆ {0, 1} for all idempo-
tents 𝑝 ∈ I (i.e., 𝑝2

= 𝑝).

Proof. Let 𝑝 be any fixed idempotent inI. Since 𝑝 ∈ I, 𝑝 has
a unique representation 𝑝 = 𝑝

𝐽
+ 𝑝

𝑍
with 𝑝

𝐽
∈ 𝐽 and 𝑝

𝑍
∈

𝑍(I). Clearly, 𝑝2

𝐽
+ 𝑝

𝑍
⊲ 𝑝

𝐽
= 𝑝

2

= 𝑝 = 𝑝
𝐽
+ 𝑝

𝑍
. Then,

by uniqueness of the representation in the split quasi-Jordan
algebra I, 𝑝

𝑍
⊲ 𝑝

𝐽
= 𝑝

𝑍
and 𝑝

2

𝐽
= 𝑝

𝐽
; this means 𝑝

𝐽
is an

idempotent in the Jordan algebra 𝐽. Hence, 𝜎
(𝐽,𝑒)

(𝑝
𝐽
) ⊆ {0, 1}.

Thus, 𝑝
𝜆
:= 𝜆𝑒 − 𝑝

𝐽
is invertible in 𝐽 with the unique inverse

𝑝
−1

𝜆
, for all 𝜆 ∉ {0, 1}.
We show that 𝑦 := 𝑝

−1

𝜆
+ (1/(𝜆 − 1))𝑝

𝑍
is an inverse of

𝜆𝑒 − 𝑝 in I with respect to the unit 𝑒; for this, we note that
𝜆𝑒 − 𝑝 = 𝑝

𝜆
− 𝑝

𝑍
, (𝑝

𝜆
− 𝑝

𝑍
)
2

= 𝑝
2

𝜆
− 𝑝

𝑍
⊲ 𝑝

𝜆
, 𝑒

⊲
(𝜆𝑒 −

𝑝) = 𝑒
⊲
(𝑝

𝜆
− 𝑝

𝑍
) = 𝑒 ⊲ (𝑝

𝜆
− 𝑝

𝑍
) − (𝑝

𝜆
− 𝑝

𝑍
) = 𝑝

𝑍
, and

𝑒
⊲
((𝜆𝑒 − 𝑝)

2

) = 𝑒
Δ
((𝑝

𝜆
− 𝑝

𝑍
)
2

) = 𝑒
⊲
(𝑝

2

𝜆
− 𝑝

𝑍
⊲ 𝑝

𝜆
) = 𝑝

𝑍
⊲

𝑝
𝜆
= 𝑝

𝑍
⊲ (𝜆𝑒−𝑝

𝐽
) = 𝜆𝑝

𝑍
−𝑝

𝑍
⊲ 𝑝

𝐽
= 𝜆𝑝

𝑍
−𝑝

𝑍
= (𝜆−1)𝑝

𝑍
.

Hence, 𝑦 ⊲ (𝜆𝑒 − 𝑝) = 𝑦 ⊲ (𝑝
𝜆
− 𝑝

𝑍
) = 𝑦 ⊲ 𝑝

𝜆
= (𝑝

−1

𝜆
+

(1/(𝜆 − 1))𝑝
𝑍
) ⊲ 𝑝

𝜆
= 𝑝

−1

𝜆
⊲ 𝑝

𝜆
+ (1/(𝜆 − 1))𝑝

𝑍
⊲ 𝑝

𝜆
= 𝑒 +

(1/(𝜆 − 1))𝑝
𝑍

⊲ (𝜆𝑒 − 𝑝
𝐽
) = 𝑒 + (1/(𝜆 − 1))(𝜆𝑝

𝑍
− 𝑝

𝑍
⊲

𝑝
𝐽
) = 𝑒 + (1/(𝜆 − 1))(𝜆𝑝

𝑍
− 𝑝

𝑍
) = 𝑒 + 𝑝

𝑍
= 𝑒 + 𝑒

⊲
(𝜆𝑒 − 𝑝)

and 𝑦 ⊲ (𝜆𝑒 − 𝑝)
2

= 𝑦 ⊲ (𝑝
2

𝜆
− 𝑝

𝑍
⊲ 𝑝

𝜆
) = 𝑦 ⊲ 𝑝

2

𝜆
=

(𝑝
−1

𝜆
+(1/(𝜆−1))𝑝

𝑍
) ⊲ 𝑝

2

𝜆
= 𝑝

𝜆
+(1/(𝜆−1))𝑝

𝑍
⊲ (𝜆𝑒−𝑝

𝐽
)
2

=

𝑝
𝜆
+(1/(𝜆−1))𝑝

𝑍
⊲ (𝜆

2

𝑒−2𝜆𝑝
𝐽
+𝑝

2

𝐽
) = 𝑝

𝜆
+(1/(𝜆−1))𝑝

𝑍
⊲

(𝜆
2

𝑒 − 2𝜆𝑝
𝐽
+ 𝑝

𝐽
) = 𝑝

𝜆
+ (1/(𝜆 − 1))(𝜆

2

𝑝
𝑍

⊲ 𝑒 − 2𝜆𝑝
𝑍

⊲

𝑝
𝐽
+ 𝑝

𝑍
⊲ 𝑝

𝐽
) = 𝑝

𝜆
+ (1/(𝜆 − 1))(𝜆

2

𝑝
𝑍

− 2𝜆𝑝
𝑍

+ 𝑝
𝑍
) =

𝑝
𝜆
+ (1/(𝜆 − 1))(𝜆 − 1)

2

𝑝
𝑍
= 𝜆𝑒 −𝑝

𝐽
+ (𝜆 − 1)𝑝

𝑍
= (𝜆𝑒 −𝑝) +

𝑒
⊲
(𝜆𝑒 − 𝑝) + 𝑒

⊲
((𝜆𝑒 − 𝑝)

2

).

As mentioned in Section 2, if I is a quasi-Jordan algebra
with a unit 𝑒 then the set {𝑒 + 𝑧 : 𝑧 ∈ 𝑍(I)} coincides with
the set 𝑈(I) of all units inI.

Proposition 14. Let I = 𝐽 ⊕ 𝑍(I) be a unital split quasi-
Jordan algebrawith unit 𝑒 ∈ 𝐽 and𝑥 ∈ I invertiblewith respect
to some 𝑒 ∈ 𝑈(I).Then𝑥

𝐽
is invertible, with respect to the unit

𝑒, in the Jordan algebra 𝐽.

Proof. Clearly, 𝑒 ⊲ 𝑥 − 𝑥 = −𝑥
𝑍
and 𝑒 ⊲ 𝑥

2

− 𝑥
2

= −𝑥
𝑍
⊲ 𝑥

𝐽
.

Since 𝑒


∈ 𝑈(I), we have 𝑒


:= 𝑒 + 𝑧 for some 𝑧 ∈ 𝑍(I).
Hence, the invertibility of 𝑥 in I, with respect to the unit 𝑒,
gives the existence of 𝑦 ∈ I such that 𝑦

𝐽
⊲ 𝑥

𝐽
+ 𝑦

𝑍
⊲ 𝑥

𝐽
=

𝑦 ⊲ 𝑥
𝐽
= 𝑦 ⊲ 𝑥 = 𝑒 + 𝑧 + (𝑒 + 𝑧) ⊲ 𝑥 − 𝑥 = 𝑒 + 𝑧 + 𝑧 ⊲ 𝑥 − 𝑥

𝑍

and 𝑦
𝐽
⊲ 𝑥

2

𝐽
+ 𝑦

𝑍
⊲ 𝑥

2

𝐽
= 𝑦 ⊲ 𝑥

2

𝐽
= 𝑦 ⊲ 𝑥

2

= (𝑒 + 𝑧) ⊲

𝑥 + (𝑒 + 𝑧) ⊲ 𝑥
2

− 𝑥
2

= 𝑥
𝐽
+ 𝑧 ⊲ 𝑥 + 𝑧 ⊲ 𝑥

2

− 𝑥
𝑍
⊲ 𝑥

𝐽
. So, by

the uniqueness of the representations in the split algebra I,
we get 𝑦

𝐽
⊲ 𝑥

𝐽
= 𝑒 and 𝑦

𝐽
⊲ 𝑥

2

𝐽
= 𝑥

𝐽
. Thus, 𝑦

𝐽
is the inverse

of 𝑥
𝐽
in the Jordan algebra 𝐽.

Next, we observe that the spectrum of 𝑥 in a unital split
quasi-Jordan algebra with respect to any unit includes the
spectrum of 𝑥

𝐽
in the Jordan part 𝐽.

Corollary 15. LetI = 𝐽 ⊕𝑍(I) be a unital split quasi-Jordan
algebra with unit 𝑒 ∈ 𝐽, and let 𝑥 ∈ I. Then 𝜎

(𝐽,𝑒)
(𝑥

𝐽
) ⊆

𝜎
(I,𝑒)(𝑥) for all 𝑒 ∈ 𝑈(I).

Proof. Let 𝑒 := 𝑒 + 𝑧 with 𝑧 ∈ 𝑍(I), and let 𝜆 ∉ 𝜎
(I,𝑒)(𝑥).

Then, 𝜆𝑒 − 𝑥 is invertible in I with respect to the unit 𝑒.
Hence, its Jordanpart𝜆𝑒−𝑥

𝐽
is invertible in the Jordan algebra

𝐽 by Proposition 14. Thus, 𝜆 ∉ 𝜎
(𝐽,𝑒)

(𝑥
𝐽
).

It is well known that the spectrum of any element in
a unital Jordan Banach algebra is nonempty (cf. [7]). This
together with Proposition 2 and Corollary 15 gives the
following result.

Corollary 16. The spectrum of any element in a unital split
quasi-Jordan Banach algebra is nonempty.

The next result extends Corollary 16 to any quasi-Jordan
Banach algebra with a norm 1 unit.

Proposition 17. The spectrum of any element in a quasi-
Jordan Banach algebra with a norm 1 unit is nonempty.

Proof. Let I be a unital quasi-Jordan Banach algebra with
a norm 1 unit 𝑒. From Section 2, we know that the map
𝜑 : 𝑥 → 𝜑(𝑥) = (𝑥, 𝑅

𝑥
) embeds I into the unital split

quasi-Jordan Banach algebra I
1

:= {(𝑥, 𝑅
𝑦
) : 𝑥, 𝑦 ∈ I},

equipped with the sum (𝑥, 𝑅
𝑦
) + (𝑎, 𝑅

𝑏
) := (𝑥 + 𝑎, 𝑅

𝑦+𝑏
), sca-

lar multiplication 𝜆(𝑥, 𝑅
𝑦
) := (𝜆𝑥, 𝑅

𝜆𝑦
), and product (𝑥,

𝑅
𝑦
) ⊲ (𝑎, 𝑅

𝑏
) := (𝑥 ⊲ 𝑏, 𝑅

𝑦⊲𝑏
), and the image 𝜑(I) is a

norm closed right ideal isomorphic to I with norm 1 unit
(𝑒, 𝑅

𝑒
). Moreover, it is seen in Section 3 that the embedding
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𝜑 also preserves the corresponding invertible elements; that
is, (𝑦, 𝑅

𝑦
) is an inverse of (𝑥, 𝑅

𝑥
), with respect to the unit

(𝑒, 𝑅
𝑒
), in I

1
whenever 𝑦 is an inverse of 𝑥, with respect

to a unit 𝑒, in I. Hence, by Corollary 16, it follows that
𝜙 ̸= 𝜎

(I
1
,(𝑒,𝑅
𝑒
))
(𝑥, 𝑅

𝑥
) ⊆ 𝜎

(𝜑(I),(𝑒,𝑅
𝑒
))
(𝑥, 𝑅

𝑥
) = 𝜎

(I,𝑒)(𝑥), for all
𝑥 ∈ I.

Proposition 18. Let I = 𝐽 ⊕ 𝑍(I) be a unital split quasi-
Jordan algebra with unit 𝑒 ∈ 𝐽 and let 𝑥 ∈ 𝐽. Then 𝜎

(𝐽,𝑒)
(𝑥) =

𝜎
(I,𝑒)(𝑥).

Proof. By Corollary 15, 𝜎
(𝐽,𝑒)

(𝑥) ⊆ 𝜎
(I,𝑒)(𝑥). For the reverse

inclusion, let 𝜆 ∉ 𝜎
(𝐽,𝑒)

(𝑥), then 𝜆𝑒 − 𝑥 is invertible in 𝐽; that
is, there exists 𝑦 ∈ 𝐽 such that 𝑦 ⊲ (𝜆𝑒 − 𝑥) = 𝑒 and 𝑦 ⊲

(𝜆𝑒 − 𝑥)
2

= 𝜆𝑒 − 𝑥. However, 𝑒
⊲
(𝜆𝑒 − 𝑥) = 0 = 𝑒

⊲
((𝜆𝑒 − 𝑥)

2

).
Hence, 𝑦 is an inverse of 𝜆𝑒 − 𝑥 in I with respect to the unit
𝑒; that is, 𝜆 ∉ 𝜎

(I,𝑒)(𝑥). Thus, 𝜎
(I,𝑒)(𝑥) ⊆ 𝜎

(𝐽,𝑒)
(𝑥).

Proposition 19. Let I be a unital quasi-Jordan normed
algebra, and let 𝑒 be a unit inI for which 𝐺

𝑒
(I) is open. Then

𝜎
(I,𝑒)(𝑥) = 𝜎

(I,𝑒)(𝑥 + 𝑧), for all 𝑧 ∈ 𝑍(I).

Proof. By Corollary 8, 𝜆𝑒 − 𝑥 is invertible if and only if 𝜆𝑒 −

(𝑥 + 𝑧) is invertible, for all 𝑧 ∈ 𝑍(I). Thus, 𝜆 ∉ 𝜎
(I,𝑒)(𝑥) if

and only if 𝜆 ∉ 𝜎
(I,𝑒)(𝑥 + 𝑧) for all 𝑧 ∈ 𝑍(I).

Corollary 20. LetI = 𝐽⊕𝑍(I) be a unital split quasi-Jordan
normed algebra, and let 𝑒 be a unit in I such that 𝐺

𝑒
(I) is

open. Then 𝜎
(I,𝑒)(𝑥) = 𝜎

(I,𝑒)(𝑥𝐽) for all 𝑥 = 𝑥
𝐽
+ 𝑥

𝑍
∈ I.

Further, if the unit 𝑒 ∈ 𝐽 then𝜎
(I,𝑒)(𝑥) = 𝜎

(I,𝑒)(𝑥𝐽) = 𝜎
(𝐽,𝑒)

(𝑥
𝐽
).

Lemma 21. Let I = 𝐽 ⊕ 𝑍(I) be a unital split quasi-Jordan
algebra with a unit 𝑒 ∈ 𝐽, and let 𝑥 ∈ I be invertible with
respect to 𝑒. Then 𝑥

𝑍
⊲ 𝑥

2

= (𝑥
𝑍
⊲ 𝑥) ⊲ 𝑥.

Proof. As 𝑥 is invertible, there exists 𝑦 ∈ I such that 𝑦 ⊲ 𝑥 =

𝑒 + (𝑒 ⊲ 𝑥 − 𝑥) = 𝑒 − 𝑥
𝑍
and 𝑦 ⊲ 𝑥

2

= 𝑥 + (𝑒 ⊲ 𝑥 − 𝑥) + (𝑒 ⊲

𝑥
2

− 𝑥
2

) = 𝑥
𝐽
− 𝑥

𝑍
⊲ 𝑥. Hence, by the uniqueness of the

representation in a split quasi-Jordan algebra, we obtain

𝑦
𝑍
⊲ 𝑥 = −𝑥

𝑍
, (11)

𝑦
𝑍
⊲ 𝑥

2

= −𝑥
𝑍
⊲ 𝑥. (12)

Thus,

𝑥
𝑍
⊲ 𝑥

2

= − (𝑦
𝑍
⊲ 𝑥) ⊲ 𝑥

2

(by (11))

= − (𝑦
𝑍
⊲ 𝑥

2

) ⊲ 𝑥 (by the right Jordan identity)

= (𝑥
𝑍
⊲ 𝑥) ⊲ 𝑥 (by (12)) .

(13)

Proposition 22. Let I = 𝐽 ⊕ 𝑍(I) be a unital split quasi-
Jordan algebra with a unit 𝑒 ∈ 𝐽; 𝑥 = 𝑥

𝐽
+ 𝑥

𝑍
∈ I satisfies

𝜎
(I,𝑒)(𝑥) ̸=C. Then,

(1) 𝑥
𝑍
⊲ 𝑥

2

= (𝑥
𝑍
⊲ 𝑥) ⊲ 𝑥,

(2) 𝑥2 ⊲ 𝑥 = 𝑥 ⊲ 𝑥
2.

Proof. (1) Let 𝜆 ∉ 𝜎
(I,𝑒)(𝑥). Then 𝜆𝑒 − 𝑥 = (𝜆𝑒 − 𝑥

𝐽
) + (−𝑥

𝑍
)

is invertible with respect to 𝑒. By Lemma 21, we have

𝑥
𝑍
⊲ (𝜆𝑒 − 𝑥)

2

= (𝑥
𝑍
⊲ (𝜆𝑒 − 𝑥)) ⊲ (𝜆𝑒 − 𝑥) , (14)

since the zero part of 𝜆𝑒 − 𝑥 is −𝑥
𝑍
. However,

𝑥
𝑍
⊲ (𝜆𝑒 − 𝑥)

2

= 𝑥
𝑍
⊲ (𝜆

2

𝑒 − 𝜆𝑒 ⊲ 𝑥 − 𝜆𝑥 ⊲ 𝑒 + 𝑥
2

)

= 𝜆
2

(𝑥
𝑍
⊲ 𝑒) − 𝜆 (𝑥

𝑍
⊲ (𝑒 ⊲ 𝑥))

− 𝜆 (𝑥
𝑍
⊲ (𝑥 ⊲ 𝑒)) + 𝑥

𝑍
⊲ 𝑥

2

= 𝜆
2

𝑥
𝑍
− 2𝜆𝑥

𝑍
⊲ 𝑥

+ 𝑥
𝑍
⊲ 𝑥

2

(by the right commutativity of ⊲) ,

(𝑥
𝑍
⊲ (𝜆𝑒 − 𝑥)) ⊲ (𝜆𝑒 − 𝑥)

= (𝜆 (𝑥
𝑍
⊲ 𝑒) − 𝑥

𝑍
⊲ 𝑥) ⊲ (𝜆𝑒 − 𝑥)

= (𝜆𝑥
𝑍
− 𝑥

𝑍
⊲ 𝑥) ⊲ (𝜆𝑒 − 𝑥)

= 𝜆
2

(𝑥
𝑍
⊲ 𝑒) − 𝜆 (𝑥

𝑍
⊲ 𝑥) ⊲ 𝑒

− 𝜆𝑥
𝑍
⊲ 𝑥 + (𝑥

𝑍
⊲ 𝑥) ⊲ 𝑥

= 𝜆
2

𝑥
𝑍
− 2𝜆𝑥

𝑍
⊲ 𝑥 + (𝑥

𝑍
⊲ 𝑥) ⊲ 𝑥.

(15)

Therefore, (14) becomes

𝜆
2

𝑥
𝑍
− 2𝜆𝑥

𝑍
⊲ 𝑥 + 𝑥

𝑍
⊲ 𝑥

2

= 𝜆
2

𝑥
𝑍
− 2𝜆𝑥

𝑍
⊲ 𝑥 + (𝑥

𝑍
⊲ 𝑥) ⊲ 𝑥,

(16)

which after simplification reduces to the required equation
𝑥
𝑍
⊲ 𝑥

2

= (𝑥
𝑍
⊲ 𝑥) ⊲ 𝑥.

(2) Since 𝑥2 = (𝑥
𝐽
+ 𝑥

𝑍
)
2

= 𝑥
2

𝐽
+ 𝑥

𝑍
⊲ 𝑥

𝐽
, we have

𝑥
2

⊲ 𝑥 = (𝑥
2

𝐽
+ 𝑥

𝑍
⊲ 𝑥) ⊲ 𝑥

= 𝑥
2

𝐽
⊲ 𝑥 + (𝑥

𝑍
⊲ 𝑥) ⊲ 𝑥

= 𝑥
2

𝐽
⊲ 𝑥

𝐽
+ (𝑥

𝑍
⊲ 𝑥) ⊲ 𝑥

= 𝑥
2

𝐽
⊲ 𝑥

𝐽
+ 𝑥

𝑍
⊲ 𝑥

2

(17)

by the part (1). But, 𝑥2
𝐽
⊲ 𝑥

𝐽
= 𝑥

𝐽
⊲ 𝑥

2

𝐽
since 𝑥

𝐽
is in the Jor-

dan algebra 𝐽. Therefore, 𝑥2 ⊲ 𝑥 = 𝑥
2

𝐽
⊲ 𝑥

𝐽
+ 𝑥

𝑍
⊲ 𝑥

2

= 𝑥
𝐽
⊲

𝑥
2

𝐽
+ 𝑥

𝑍
⊲ 𝑥

2

= 𝑥 ⊲ 𝑥
2.

Remark 23. In any quasi-Jordan algebra, if an element 𝑥

satisfies 𝑥
3

= 𝑥
2

⊲ 𝑥 = 𝑥 ⊲ 𝑥
2, then 𝑥

𝑛

⊲ 𝑥
2

= 𝑥
𝑛+2 for

all positive integers 𝑛. For this, suppose 𝑥 satisfies 𝑥2 ⊲ 𝑥 =

𝑥 ⊲ 𝑥
2 and 𝑥

𝑚

⊲ 𝑥
2

= 𝑥
𝑚+2 for any fixed𝑚 ≥ 1. Then 𝑥

𝑚+1

⊲

𝑥
2

= (𝑥
𝑚

⊲ 𝑥) ⊲ 𝑥
2

= (𝑥
𝑚

⊲ 𝑥
2

) ⊲ 𝑥 (by the right Jor-
dan identity) = 𝑥

𝑚+2

⊲ 𝑥 = 𝑥
𝑚+3.

Proposition 24. Let I be a unital quasi-Jordan Banach
algebra with unit 𝑒, and let 𝑥 ∈ I satisfy (𝑒 − 𝑥) ⊲ (𝑒 − 𝑥)

2

=

(𝑒 − 𝑥)
2

⊲ (𝑒 − 𝑥). Then 𝑥 ∈ 𝐺
𝑒
(I) whenever ‖𝑒 − 𝑥‖ < 1.
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Proof. First note that ‖𝑒−𝑥‖ < 1 gives ‖(𝑒 − 𝑥)
𝑛

‖ ≤ ‖𝑒 − 𝑥‖
𝑛

<

1 for all 𝑛 = 1, 2, 3, . . .. Hence, the infinite geometric series
𝑒 +∑

∞

𝑛=1
(𝑒 −𝑥)

𝑛 converges absolutely to some element 𝑦 ∈ I.
We show that the geometric series sum 𝑦 is an inverse of 𝑥,
with respect to the unit 𝑒. For any fixed positive integer 𝑛, let
𝑦
𝑛
:= 𝑒+∑

𝑛

𝑘=1
(𝑒−𝑥)

𝑘.Then, the sequence {𝑦
𝑛
} of partial sums

converges to 𝑦. By setting 𝑤 = 𝑒 − 𝑥, we get

𝑦
𝑛
⊲ 𝑥 = (𝑒 +

𝑛

∑

𝑘=1

𝑤
𝑘

) ⊲ (𝑒 − 𝑤)

= 𝑒 +

𝑛

∑

𝑘=1

𝑤
𝑘

− (𝑒 ⊲ 𝑤 +

𝑛+1

∑

𝑘=2

𝑤
𝑘

)

= 𝑒 + 𝑤 − 𝑒 ⊲ 𝑤 − 𝑤
𝑛+1

= 𝑒 + (𝑒 − 𝑥) − 𝑒 ⊲ (𝑒 − 𝑥) − (𝑒 − 𝑥)
𝑛+1

= 𝑒 + (𝑒 − 𝑥 − 𝑒 + 𝑒 ⊲ 𝑥) − (𝑒 − 𝑥)
𝑛+1

= 𝑒 + (𝑒 ⊲ 𝑥 − 𝑥) − (𝑒 − 𝑥)
𝑛+1

.

(18)

Thus, by allowing 𝑛 → ∞, we obtain 𝑥 ⊲ 𝑦 = 𝑒 + (𝑒 ⊲

𝑥 − 𝑥) = 𝑒 + 𝑒
⊲
(𝑥) since ‖𝑒 − 𝑥‖ < 1.

Next, by Remark 23, we have

𝑦
𝑛
⊲ 𝑥

2

= 𝑦
𝑛
⊲ (𝑒 − 𝑤)

2

= 𝑦
𝑛
⊲ (𝑒 − 𝑒 ⊲ 𝑤 − 𝑤 ⊲ 𝑒 + 𝑤

2

)

= 𝑦
𝑛
⊲ (𝑒 − 2𝑤 + 𝑤

2

)

= 𝑦
𝑛
⊲ 𝑒 − 2𝑦

𝑛
⊲ 𝑤 + 𝑦

𝑛
⊲ 𝑤

2

= 𝑦
𝑛
− 2𝑦

𝑛
⊲ 𝑤 + 𝑦

𝑛
⊲ 𝑤

2

= (𝑒 +

𝑛

∑

𝑘=1

𝑤
𝑘

) − 2(𝑒 +

𝑛

∑

𝑘=1

𝑤
𝑘

) ⊲ 𝑤

+ (𝑒 +

𝑛

∑

𝑘=1

𝑤
𝑘

) ⊲ 𝑤
2

= (𝑒 +

𝑛

∑

𝑘=1

𝑤
𝑘

) − 2(𝑒 ⊲ 𝑤 +

𝑛+1

∑

𝑘=2

𝑤
𝑘

)

+ (𝑒 ⊲ 𝑤
2

+

𝑛+2

∑

𝑘=3

𝑤
𝑘

)

= 𝑒 + 𝑤 − 2𝑒 ⊲ 𝑤 − 𝑤
2

+ 𝑒 ⊲ 𝑤
2

− 𝑤
𝑛+1

+ 𝑤
𝑛+2

.

(19)

Taking the limit as 𝑛 → ∞, we get

𝑦 ⊲ 𝑥
2

= 𝑒 + 𝑤 − 2𝑒 ⊲ 𝑤 − 𝑤
2

+ 𝑒 ⊲ 𝑤
2

= 𝑒 + (𝑒 − 𝑥) − 2𝑒 ⊲ (𝑒 − 𝑥) − (𝑒 − 𝑥)
2

+ 𝑒 ⊲ (𝑒 − 𝑥)
2

= 2𝑒 − 𝑥 − 2𝑒 + 2𝑒 ⊲ 𝑥 − 𝑒 + 𝑒 ⊲ 𝑥 + 𝑥 − 𝑥
2

+ 𝑒 − 2𝑒 ⊲ 𝑥 + 𝑒 ⊲ 𝑥
2

= 𝑥 + (𝑒 ⊲ 𝑥 − 𝑥) + (𝑒 ⊲ 𝑥
2

− 𝑥
2

) .

(20)

Proposition 25. Let I be a unital split quasi-Jordan Banach
algebra with unit 𝑒. If 𝑥 ∈ I with (𝑒 − 𝑥) ⊲ (𝑒 − 𝑥)

2

=

(𝑒 − 𝑥)
2

⊲ (𝑒 − 𝑥), then |𝜆| ≤ ‖𝑥‖ for all 𝜆 ∈ 𝜎
(I,𝑒)(𝑥).

Proof. If 𝜆 ∈ 𝜎
(I,𝑒)(𝑥) with 𝜆 ̸= 0, then, the noninvertibility of

𝜆𝑒 − 𝑥 means the noninvertibility of 𝑒 − (1/𝜆)𝑥, with respect
to the unit 𝑒. However, by Proposition 24, 𝑒 − (1/𝜆)𝑥must be
invertible with respect to the unit 𝑒, whenever (1/|𝜆|)‖𝑥‖ < 1.
It follows that |𝜆| ≤ ‖𝑥‖ for all 𝜆 ∈ 𝜎

(I,𝑒)(𝑥).

5. Unbounded and Nonclosed Spectrum

In this section, we show that the spectrum of an element in
a split quasi-Jordan Banach algebra may be neither bounded
nor closed, and hence not compact.The following result gives
a couple of characterizations of the unbounded spectrum of
an element in a split quasi-Jordan Banach algebra.

Proposition 26. Let 𝑥 be an element of a unital split quasi-
Jordan Banach algebra I = 𝐽 ⊕ 𝑍(I) with a unit 𝑒 ∈ 𝐽. Then,
the following statements are equivalent.

(1) 𝜎
(I,𝑒)(𝑥) ̸=C.

(2) 𝑥2 ⊲ 𝑥 = 𝑥 ⊲ 𝑥
2.

(3) |𝜆| ≤ ‖𝑥‖, for all 𝜆 ∈ 𝜎
(I,𝑒)(𝑥).

Proof. (1⇒2): See Proposition 22.
(2⇒3): Suppose 𝑥2 ⊲ 𝑥 = 𝑥 ⊲ 𝑥

2. Then,

(𝑒 − 𝑥)
2

⊲ (𝑒 − 𝑥) = (𝑒 − 𝑒 ⊲ 𝑥 − 𝑥 + 𝑥
2

) ⊲ (𝑒 − 𝑥)

= 𝑒 − 2𝑒 ⊲ 𝑥 − 𝑥 + 2𝑥
2

+ (𝑒 ⊲ 𝑥) ⊲ 𝑥 − 𝑥
2

⊲ 𝑥

= 𝑒 − 2𝑥
𝐽
− 𝑥 + 2𝑥

2

+ 𝑒 ⊲ 𝑥
2

− 𝑥
3

,

(𝑒 − 𝑥) ⊲ (𝑒 − 𝑥)
2

= (𝑒 − 𝑥) ⊲ (𝑒 − 2𝑥 + 𝑥
2

)

= 𝑒 − 2 (𝑒 ⊲ 𝑥) + 𝑒 ⊲ 𝑥
2

− 𝑥

+ 2𝑥
2

− 𝑥 ⊲ 𝑥
2

= 𝑒 − 2𝑥
𝐽
+ 𝑒 ⊲ 𝑥

2

− 𝑥 + 2𝑥
2

− 𝑥
3

.

(21)
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From (21), we get

(𝑒 − 𝑥)
2

⊲ (𝑒 − 𝑥) = (𝑒 − 𝑥) ⊲ (𝑒 − 𝑥)
2

. (22)

Hence, |𝜆| ≤ ‖𝑥‖, for all 𝜆 ∈ 𝜎
(I,𝑒)(𝑥) by Proposition 25.

(3⇒1): Immediate.

Remark 27. There do exist unital split quasi-Jordan algebras
containing elements that have the spectrum, with respect to
the unit of the Jordan part, equal to the whole ofC, and hence
unbounded. To justify this claim, we proceed as follows.

Let 𝐴 be a unital associative algebra and let 𝑀 be an 𝐴-
bimodule. Let 𝑓 : 𝑀 → 𝐴 be an 𝐴-bimodule map (i.e., an
additive map satisfying 𝑓(𝑎𝑥) = 𝑎𝑓(𝑥) and 𝑓(𝑥𝑎) = 𝑓(𝑥)𝑎,
for all 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑀). Then, one can put a dialgebra structure
on 𝑀 as follows: 𝑥 ⊣ 𝑦 := 𝑥𝑓(𝑦) and 𝑥⊢𝑦 := 𝑓(𝑥)𝑦 (cf. [13,
Example 2.2(d)]). Hence,𝑀+ is a quasi-Jordan algebra under
the quasi-Jordan product “⊲” given by𝑥 ⊲ 𝑦 := (1/2)(𝑥𝑓(𝑦)+

𝑓(𝑦)𝑥). Further, for any 𝑥 ∈ 𝑀, we observe that

𝑥
2

⊲ 𝑥 =
1

2
(𝑥𝑓 (𝑥) + 𝑓 (𝑥) 𝑥) ⊲ 𝑥

=
1

4
((𝑥𝑓 (𝑥) + 𝑓 (𝑥) 𝑥) 𝑓 (𝑥)

+𝑓 (𝑥) (𝑥𝑓 (𝑥) + 𝑓 (𝑥) 𝑥))

=
1

4
(𝑥𝑓 (𝑥) 𝑓 (𝑥) + 2𝑓 (𝑥) 𝑥𝑓 (𝑥) + 𝑓 (𝑥) 𝑓 (𝑥) 𝑥) ,

𝑥 ⊲ 𝑥
2

=
1

2
𝑥 ⊲ (𝑥𝑓 (𝑥) + 𝑓 (𝑥) 𝑥)

=
1

4
(𝑥𝑓 (𝑥𝑓 (𝑥) + 𝑓 (𝑥) 𝑥) + 𝑓 (𝑥𝑓 (𝑥) + 𝑓 (𝑥) 𝑥) 𝑥)

=
1

4
(2𝑥𝑓 (𝑥) 𝑓 (𝑥) + 2𝑓 (𝑥) 𝑓 (𝑥) 𝑥) .

(23)

However, the right hand sides of the above equations (23)
may not be equal; see the following example (Example 28).
For such elements 𝑥, we have 𝑥

2

⊲ 𝑥 ̸= 𝑥 ⊲ 𝑥
2. Hence, by

Proposition 26, the spectrum of 𝑥 is unbounded whenever
𝑀

+ is a unital split quasi-Jordan Banach algebra.

Example 28. Let 𝑀 be the collection of 2 × 2 matrices with
entries from the fieldC, and let𝐴 be the algebra of allmatrices
of the form [

𝛼 0

0 𝛽
] with 𝛼, 𝛽 ∈ C. Then, it is easily seen

that 𝑀 is an 𝐴-bimodule. Next, we define 𝑓 : 𝑀 → 𝐴

by 𝑓 [
𝑎
11

𝑎
12

𝑎
21

𝑎
22

] := [
𝑎
11

0

0 𝑎
22

]. Of course, 𝑓 is an additive map
satisfying

𝑓([
𝛼 0

0 𝛽
] [

𝑎
11

𝑎
12

𝑎
21

𝑎
22

]) = [
𝛼 0

0 𝛽
]𝑓([

𝑎
11

𝑎
12

𝑎
21

𝑎
22

]) ,

𝑓([
𝑎
11

𝑎
12

𝑎
21

𝑎
22

] [
𝛼 0

0 𝛽
]) = 𝑓([

𝑎
11

𝑎
12

𝑎
21

𝑎
22

]) [
𝛼 0

0 𝛽
] .

(24)

Hence,𝑓 is an𝐴-bimodule map.Thus, by Remark 27,𝑀+ is a
quasi-Jordan algebra with the quasi-Jordan product as below:

[
𝑎
11

𝑎
12

𝑎
21

𝑎
22

] ⊲ [
𝑏
11

𝑏
12

𝑏
21

𝑏
22

] :=
1

2
([

𝑎
11

𝑎
12

𝑎
21

𝑎
22

]𝑓([
𝑏
11

𝑏
12

𝑏
21

𝑏
22

])

+𝑓([
𝑏
11

𝑏
12

𝑏
21

𝑏
22

]) [
𝑎
11

𝑎
12

𝑎
21

𝑎
22

])

=
[
[

[

𝑎
11
𝑏
11

𝑎
12

𝑏
11

+ 𝑏
22

2

𝑎
21

𝑏
11

+ 𝑏
22

2
𝑎
22
𝑏
22

]
]

]

.

(25)

Indeed, 𝑀+

= 𝐽 ⊕ 𝑍(𝑀
+

), where 𝐽 = {[
𝑎 0

0 𝑏
] : 𝑎, 𝑏 ∈ C}

is a subalgebra of 𝑀+ and 𝑍(𝑀
+

) = {[
0 𝑎

𝑏 0
] : 𝑎, 𝑏 ∈ C}. Any

matrix of the form [
1 𝑎

𝑏 1
] with 𝑎, 𝑏 ∈ C is a (right) unit in𝑀

+.
Thus,𝑀+ is a unital split quasi-Jordan algebrawith thematrix
𝐼 = [

1 0

0 1
] as the unit of its Jordan part 𝐽.

Further, a natural norm is defined on𝑀
+ as follows:



[
𝑎
11

𝑎
12

𝑎
21

𝑎
22

]



:=
𝑎11

 +
𝑎12

 +
𝑎21

 +
𝑎22

 . (26)

This norm also satisfies


[
𝑎
11

𝑎
12

𝑎
21

𝑎
22

] ⊲ [
𝑏
11

𝑏
12

𝑏
21

𝑏
22

]



=
1

2
(



[
𝑎
11

𝑎
12

𝑎
21

𝑎
22

] [
𝑏
11

0

0 𝑏
22

]

+ [
𝑏
11

0

0 𝑏
22

] [
𝑎
11

𝑎
12

𝑎
21

𝑎
22

]



)

≤



[
𝑎
11

𝑎
12

𝑎
21

𝑎
22

]





[
𝑏
11

0

0 𝑏
22

]



≤



[
𝑎
11

𝑎
12

𝑎
21

𝑎
22

]





[
𝑏
11

𝑏
12

𝑏
21

𝑏
22

]



.

(27)

Next, for any 𝑥 = [
𝑎
11

𝑎
12

𝑎
21

𝑎
22

] ∈ 𝑀
+, we observe that

𝑥
2

= [
𝑎
11

𝑎
12

𝑎
21

𝑎
22

] ⊲ [
𝑎
11

𝑎
12

𝑎
21

𝑎
22

]

=
[
[

[

𝑎
2

11
𝑎
12

𝑎
11

+ 𝑎
22

2

𝑎
21

𝑎
11

+ 𝑎
22

2
𝑎
2

22

]
]

]

(28)

so that

𝑥
2

⊲ 𝑥 = [

[

𝑎
3

11

𝑎
12

4
(𝑎

11
+ 𝑎

22
)
2

𝑎
21

4
(𝑎

11
+ 𝑎

22
)
2

𝑎
3

22

]

]

,

𝑥 ⊲ 𝑥
2

= [

[

𝑎
3

11

𝑎
12

2
(𝑎

2

11
+ 𝑎

2

22
)

𝑎
21

2
(𝑎

2

11
+ 𝑎

2

22
) 𝑎

3

22

]

]

.

(29)

So, for any 𝑥 = [
𝑎
11

𝑎
12

𝑎
21

𝑎
22

] ∈ 𝑀
+, 𝑥2 ⊲ 𝑥 = 𝑥 ⊲ 𝑥

2

⇔

𝑎
12

= 𝑎
21

= 0 or 𝑎
11

= 𝑎
22
. Thus, by Proposition 26,
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𝜎
(𝑀
+
,𝐼)
([

𝑎
11

𝑎
12

𝑎
21

𝑎
22

]) = C whenever 𝑎
11

̸= 𝑎
22

and {𝑎
12
, 𝑎

21
} ̸= {0}.

In particular, for 𝑥 := [
1 1

0 2
] ∈ 𝑀

+, we have

𝑥
2

⊲ 𝑥 =
[
[

[

1
3

1

4
(1 + 2)

2

0

4
(1 + 2)

2

2
3

]
]

]

= [
1

9

4

0 8

] ,

𝑥 ⊲ 𝑥
2

=
[
[

[

1
3

1

2
(1

2

+ 2
2

)

0

2
(1

2

+ 2
2

) 2
3

]
]

]

= [
1

5

2

0 8

] .

(30)

Concerning the inequality between the right hand sides
of (23) in Remark 27, we observe for 𝑥 as above that

1

4
(𝑥𝑓 (𝑥) 𝑓 (𝑥) + 2𝑓 (𝑥) 𝑥𝑓 (𝑥) + 𝑓 (𝑥) 𝑓 (𝑥) 𝑥)

=
1

4
([

1 1

0 2
] [

1 0

0 2
] [

1 0

0 2
] + 2 [

1 0

0 2
] [

1 1

0 2
] [

1 0

0 2
]

+ [
1 0

0 2
] [

1 0

0 2
] [

1 1

0 2
]) = [

1
9

4

0 8

] ,

(31)

but

1

4
(2𝑥𝑓 (𝑥) 𝑓 (𝑥) + 2𝑓 (𝑥) 𝑓 (𝑥) 𝑥)

=
1

4
(2 [

1 1

0 2
] [

1 0

0 2
] [

1 0

0 2
] + 2 [

1 0

0 2
] [

1 0

0 2
] [

1 1

0 2
])

= [
1

5

2

0 8

] .

(32)

Hence, 𝑥2 ⊲ 𝑥 ̸= 𝑥 ⊲ 𝑥
2. Thus, 𝜎

(𝑀
+
,𝐼)
([

1 1

0 2
]) = C by

Proposition 26.
Further, suppose the matrix [

𝑎
1
𝑎
2

𝑎
3
𝑎
4

] ∈ 𝑀
+ is invertible

with respect to the unit 𝐼; that is, [ 𝑎1 𝑎2𝑎
3
𝑎
4

] ∈ 𝐺
𝐼
(𝑀

+

). Then
there exists [ 𝑏

1
𝑏
2

𝑏
3
𝑏
4

] ∈ 𝑀
+ such that

[
𝑏
1

𝑏
2

𝑏
3

𝑏
4

] ⊲ [
𝑎
1

𝑎
2

𝑎
3

𝑎
4

] = 𝐼 + 𝐼
⊲
([

𝑎
1

𝑎
2

𝑎
3

𝑎
4

]) = [
1 −𝑎

2

−𝑎
3

1
] ,

[
𝑏
1

𝑏
2

𝑏
3

𝑏
4

] ⊲ [
𝑎
1

𝑎
2

𝑎
3

𝑎
4

]

2

= [
𝑎
1

𝑎
2

𝑎
3

𝑎
4

] + 𝐼
⊲
([

𝑎
1

𝑎
2

𝑎
3

𝑎
4

])

+ 𝐼
⊲
([

𝑎
1

𝑎
2

𝑎
3

𝑎
4

]

2

)

=
[
[

[

𝑎
1

−𝑎
2

𝑎
1
+ 𝑎

4

2

−𝑎
3

𝑎
1
+ 𝑎

4

2
𝑎
4

]
]

]

.

(33)

However,

[
𝑏
1

𝑏
2

𝑏
3

𝑏
4

] ⊲ [
𝑎
1

𝑎
2

𝑎
3

𝑎
4

] =
[
[

[

𝑏
1
𝑎
1

𝑏
2

𝑎
1
+ 𝑎

4

2

𝑏
3

𝑎
1
+ 𝑎

4

2
𝑏
4
𝑎
4

]
]

]

,

[
𝑏
1

𝑏
2

𝑏
3

𝑏
4

] ⊲ [
𝑎
1

𝑎
2

𝑎
3

𝑎
4

]

2

=

[
[
[

[

𝑏
1
𝑎
1

𝑏
2

𝑎
2

1
+ 𝑎

2

4

2

𝑏
3

𝑎
2

1
+ 𝑎

2

4

2
𝑏
4
𝑎
2

4

]
]
]

]

.

(34)

It follows that 𝑎
1

̸= 0, 𝑎
4

̸= 0, 𝑏
1
= 1/𝑎

1
, 𝑏

4
= 1/𝑎

4
, 𝑏

2
((𝑎

1
+

𝑎
4
)/2) = −𝑎

2
, 𝑏

3
((𝑎

1
+𝑎

4
)/2) = −𝑎

3
, 𝑏

2
((𝑎

2

1
+𝑎

2

4
)/2) = −𝑎

2
((𝑎

1
+

𝑎
4
)/2), and 𝑏

3
((𝑎

2

1
+ 𝑎

2

4
)/2) = −𝑎

3
((𝑎

1
+ 𝑎

4
)/2). From these

equations, we get 𝑏
2
(𝑎

1
− 𝑎

4
)
2

= 0 and 𝑏
3
(𝑎

1
− 𝑎

4
)
2

= 0, so that
(𝑏

2
−𝑏

3
)(𝑎

1
− 𝑎

4
)
2

= 0.Then, for 𝑎
1

̸= 𝑎
4
, we obtain 𝑏

2
= 𝑏

3
= 0

and hence 𝑎
2
= 𝑎

3
= 0. Therefore,

𝐺
𝐼
(𝑀

+

) = {[
𝑎 𝑏

𝑐 𝑎
] , 𝑥 = [

𝛼 0

0 𝛽
] ∈ 𝑀

+

: 𝑎 ̸= 0,

𝛼 ̸= 0, 𝛽 ̸= 0, 𝛼 ̸= 𝛽} .

(35)

The set 𝐺
𝐼
(𝑀

+

) is not open: clearly [
1 1

0 1
] ∈ 𝐺

𝐼
(𝑀

+

); for
any 𝜖 > 0,



[
1 1

0 1
] − [

[

1 −
𝜖

4
1

0 1 +
𝜖

4

]

]



=



[

[

𝜖

4
0

0 −
𝜖

4

]

]



=
𝜖

2
< 𝜖

(36)

but [ 1−𝜖/4 1

0 1+𝜖/4
] ∉ 𝐺

𝐼
(𝑀

+

).
Now, if 𝐴 = [

−1 1

0 1
], then 𝜆𝐼 − 𝐴 = [

𝜆+1 −1

0 𝜆−1
] ∉ 𝐺

𝐼
(𝑀

+

),
and so 𝜆 ∈ 𝜎

(𝑀
+
,𝐼)
(𝐴) for all 𝜆 ∈ C. Thus, 𝜎

(𝑀
+
,𝐼)
(𝐴) = C, an

unbounded spectrum.

Next, we observe that the spectrum of an element with
respect to a unit is closed whenever the corresponding set of
invertibles is open.

Proposition 29. LetI be a quasi-Jordan normed algebra with
a unit 𝑒 such that𝐺

𝑒
(I) is open.Then 𝜎

(I,𝑒)(𝑥) is closed, for all
𝑥 ∈ I.

Proof. Define 𝑓 : C → I by 𝑓(𝜆) = 𝜆𝑒 − 𝑥. Since 𝑓 is
continuous, the inverse image of the open set 𝐺

𝑒
(I) is open

in C and so its complement 𝜎
(I,𝑒)(𝑥) is closed.

We conclude this paper with the following example of a
nonclosed spectrum.

Example 30. Let 𝑀 and 𝑀
+ be as in Example 28. Let 𝐸 =

[
1 1

0 1
] and 𝐴 = [

𝑎 0

0 𝑏
] with 𝑎 ̸= 𝑏 both different from 1. Then

𝐸 is a unit in 𝑀
+. We show that 𝜎

(𝑀
+
,𝐸)

(𝐴) = C \ {1}. For
this, let us first investigate when can an element of the form
𝐵 = [

𝛼 𝛽

0 𝛾
] be invertible? Assuming that 𝐵 is invertible, we get

the existence of an element 𝐶 ∈ 𝐷
+ such that

𝐶 ⊲ 𝐵 = 𝐸 + 𝐸
⊲
(𝐵) ,

𝐶 ⊲ 𝐵
2

= 𝐵 + 𝐸
⊲
(𝐵) + 𝐸

⊲
(𝐵

2

) .

(37)
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From these equations, we get 𝛼 ̸= 0, 𝛾 ̸= 0, and

𝐶 =
[
[

[

1

𝛼
𝛽
∘

0
1

𝛾

]
]

]

, (38)

where 𝛽
∘
satisfies the following two equations:

𝛽
∘
(
𝛼 + 𝛾

2
) = 1 − 𝛽 +

𝛼 + 𝛾

2
,

𝛽
∘
(
𝛼
2

+ 𝛾
2

2
) =

𝛼 + 𝛾

2
+

𝛼
2

+ 𝛾
2

2
− 𝛽

𝛼 + 𝛾

2
.

(39)

Multiplying the last equation by 2(𝛼 + 𝛾)/(𝛼
2

+ 𝛾
2

) and then
using the other equation, we get

2 (1 − 𝛽) + (𝛼 + 𝛾) = (1 − 𝛽)
(𝛼 + 𝛾)

2

𝛼
2
+ 𝛾

2

+ (𝛼 + 𝛾) , (40)

or equivalently

2 (1 − 𝛽) = (1 − 𝛽)
(𝛼 + 𝛾)

2

𝛼
2
+ 𝛾

2

; (41)

this equation is satisfied for 𝛽 = 1 or 𝛼 = 𝛾. Hence, thematrix
𝐵 is invertible if and only if 𝐵 = [

𝛼 1

0 𝛾
] or 𝐵 = [

𝛼 𝛽

0 𝛼

] for 𝛼, 𝛾 ∈

C \ {0} and 𝛽 ∈ C.
We conclude that 𝐴

𝜆
:= 𝜆𝐸 − 𝐴 = [

𝜆−𝑎 𝜆

0 𝜆−𝑏
] is invertible

with respect to 𝐸 if and only if 𝜆 − 𝑏 ̸= 0, 𝜆 − 𝑎 ̸= 0, and 𝜆 = 1;
that is,𝐴

𝜆
is invertible if 𝑎 ̸= 𝜆 and 𝑏 ̸= 𝜆 and 𝜆 = 1. Hence,𝐴

𝜆

is invertible only if 𝜆 = 1 as we assumed that 𝑎 ̸= 𝑏 and both
are not 1. So, for all 𝜆 ̸= 1, 𝐴

𝜆
∉ 𝐺

𝐸
(𝑀

+

). Thus, 𝜎
(𝑀
+
,𝐸)

(𝐴) =

C \ {1}, which is neither bounded nor closed.
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