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Empirical mode decomposition (EMD) is particularly useful in analyzing nonstationary and nonlinear time series. However, only
partial data within boundaries are available because of the bounded support of the underlying time series. Consequently, the
application of EMD to finite time series data results in large biases at the edges by increasing the bias and creating artificial wiggles.
This study introduces a new two-stagemethod to automatically decrease the boundary effects present in EMD.At the first stage, local
polynomial quantile regression (LLQ) is applied to provide an efficient description of the corrupted and noisy data. The remaining
series is assumed to be hidden in the residuals. Hence, EMD is applied to the residuals at the second stage. The final estimate is
the summation of the fitting estimates from LLQ and EMD. Simulation was conducted to assess the practical performance of the
proposed method. Results show that the proposed method is superior to classical EMD.

1. Introduction

We consider the following general nonparametric regression
model:

𝑦 = 𝑓 (𝑥) + 𝜀𝑖 ⋅ ⋅ ⋅ , (1)

where𝑌 is the response variable,𝑥 is a covariate,𝑓(𝑥) = 𝐸(𝑦 |
𝑥) is assumed to be a smooth nonparametric function, and
𝜀
𝑖
represents independent and identical random errors with

mean 0 and variance 𝜎2.
Empirical mode decomposition (EMD) is a form of anal-

ysis based on nonparametric methods [1]. This technique is
particularly useful for analyzing nonlinear and nonstationary
time series.Thismethod has been widely applied over the last
few years to analyze data in different disciplines, such as biol-
ogy, finance, engineering, and climatology. EMDcan enhance
estimation performance. Applying the capabilities of EMD
as a fully adaptive method and its advantages of handling
nonlinear and nonstationary signal behaviors leads to better
results. However, EMD suffers from boundary extension,
curve fitting, and stopping criteria [2]. Such problems may

corrupt the entire data and result in a misleading conclusion
[3]. Given that finite data are involved, the algorithms must
be adjusted to use certain boundary conditions. In EMD, the
end points are also considered problems. The influence of
the end points propagates into the data range during sifting.
Data extension (or data prediction) is a risky procedure
for linear and stationary processes and is more difficult
for nonlinear and nonstationary processes. The work in [1]
indicated that only the values and locations of the next several
extrema, and not all extended data, need to be predicted
for EMD. Widely used approaches, such as the characteristic
wave extending method, mirror extending method [4], data
extending method [5], data reconstruction method [6], and
similarity searching method [7], were proposed to over-
come the problem and generate a more reasonable solution.
The work in [8] introduced quantile regression, a signifi-
cant extension of traditional parametric and nonparametric
regression methods. Quantile regression has been largely
used in statistics since its introduction because of its ease
of interpretation, robustness, and numerous applications in
important areas, such as medicine, economics, environment
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modeling, toxicology, and engineering [9, 10]. A robust ver-
sion of classical local linear regression (LLR) known as local
linear quantile regression (LLQ) by [11, 12] respectively, have
increasingly drawn interest. With its robust behavior, LLQ
exhibits excellent boundary adjustment. This characteristic
can more efficiently distinguish systematic differences in
dispersion, tail behavior, and other features with respect to
covariates [12, 13].

The current study aims to use the advantages of LLQ to
automatically reduce the boundary effects of EMD instead of
using classical boundary solutionsmentioned previously.The
proposed method consists of two stages that automatically
decrease the boundary effects of EMD. At the first stage, LLQ
is applied to the corrupted and noisy data. The remaining
series is then expected to be hidden in the residuals. At
the second stage, EMD is applied to the residuals. The final
estimate is the summation of the fitting estimates from LLQ
and EMD. Compared with EMD, this combination obtains
more accurate estimates.

The remainder of this study is organized as follows.
In Section 2, we present a brief background of EMD and
LLQ. Section 3 introduces the proposed method. Section 4
compares the results of the original EMD algorithm and the
proposed new boundary adjustment by simulation experi-
ments. Conclusions are drawn in Section 5.

2. Background

2.1. History of Boundary Treatment in Nonparametric Estima-
tors. Most nonparametric techniques such as kernel regres-
sion, wavelet thresholding, and empirical mode decomposi-
tion show a sharp increase in variance and bias at points near
the boundary. Lots of works have been reported in the litera-
ture in order to reduce the effects of boundary problem. For
kernel regression solution, see [14, 15]. For wavelet threshold-
ing, in addition to use of periodic or symmetric assumption,
the authors in [16, 17] used polynomial regression to improve
the boundary problem. For empirical mode decomposition
the authors in [18] provided a new idea about the boundary
extension instead of using the traditional mirror extension
on the boundary, and they proposed a ratio extension on
boundary.The authors in [19] applied neural network to each
IMF to restrain the end effect. The work in [2] provided an
algorithm based on the sigma-pi neural network which is
used to extend signals before applying EMD. The authors
in [20] proposed a new approach that couples the mirror
expansion with the extrapolation prediction of regression
function to solve boundary problem. The algorithm includes
two steps: the extrapolation of the signal through support
vector (SV) regression at both endpoints to form the primary
expansion signal, and then the primary signal is further
expanded through extrema mirror expansion and EMD is
performed on the resulting signal to obtain reduced end
limitations.

In this paper we have followed [16] and [17] strategies to
handle end effects of boundary problem in EMD. Instead of
using classical polynomial nonparametric regression we will
replace it by using a more robust nonparametric estimator,

called local linear quantile regression. Practical justifications
for choosing such estimator will be explained in Section 2.4.

2.2. Empirical Mode Decomposition (EMD). EMD [1] has
proven to be a natural extension and an alternative technique
to traditional methods for analyzing nonlinear and nonsta-
tionary signals, such as wavelet methods, Fourier methods,
and empirical orthogonal functions [21]. In this section, we
briefly describe the EMD algorithm. The main objective of
EMD is to decompose the data 𝑦

𝑡
into small signals called

intrinsic mode functions (IMF). An IMF is a function in
which the upper and the lower envelopes are symmetric; in
addition, the number of zero-crossings and the number of
extremes are equal or differ by atmost one [22].The algorithm
for extracting IMFs for a given time series 𝑦

𝑡
is called shifting

and consists of the following steps.

(I) Setting initial estimates for the residue as 𝑟
0
(𝑡) = 𝑦

𝑡
,

𝑔
0
(𝑡) = 𝑟

𝑘−1
(𝑡), 𝑖 = 1, and the index of IMF as 𝑘 = 1.

(II) Constructing the lower minima 𝐼min𝑖−1 and the upper
𝐼max𝑖−1 envelopes of the signal by the cubic spline
method.

(III) Computing the mean values, 𝑚
𝑖
, by averaging the

upper envelope and the lower envelope as 𝑚
𝑖−1

=

[𝐼max𝑖−1 + 𝐼min𝑖−1]/2.
(IV) Subtracting the mean from the original signal, that is,

𝑔
𝑖
= 𝑔
𝑖−1
−𝑚
𝑖−1

and 𝑖 = 𝑖+1. Steps II to IV are repeated
until 𝑔

𝑖
becomes an IMF. If so, the 𝑘th IMF is given by

IMF
𝐾
= 𝑔
𝑖
.

(V) Updating the residue as 𝑟
𝑘
= (𝑡) = 𝑟

𝑘−1
(𝑛) − IMF

𝐾
.

This residual component is treated as new data and
subjected to the process described above to calculate
the next IMF

𝐾+1
.

(VI) Repeating the steps above until the final residual
component 𝑟(𝑥) becomes a monotonic function and
then considering the final estimation of residue 𝑟(𝑥).

Many methods have been presented to extract trends from
a time series. Freehand and least squares methods are the
commonly used techniques; the former depends on the
experience of users, and the latter is difficult to use when
the original series are very irregular [23]. EMD is another
effective method for extracting trends [19].

2.3. Local Linear Quantile Regression (LLQ). The seminal
study by [8] introduced the parametric quantile regression,
which can be considered an alternative to classical regression
in both parametric and nonparametric fields. Many models
for the nonparametric approach, including locally polyno-
mial quantile regression by [11] and kernel methods by [24],
have since been introduced into the statistical literature. In
this paper we adopt local linear regression (LLQ) introduced
by [12].

Let {(𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, . . . , 𝑛} be bivariate observations. To

estimate the 𝜏th conditional quantile function of response 𝑦,
the equation below is defined given𝑋 = 𝑥:

𝑔 (𝑥) = 𝑄𝑦 (𝜏 | 𝑥) . (2)
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Let𝐾 be a positive symmetric unimodal kernel function and
consider the following weighted quantile regression problem:

min
𝛽∈R2

𝑛

∑

𝑖=1

𝑤
𝑖 (𝑥) 𝜌𝜏 (𝑦𝑖 − 𝛽0 − 𝛽1 (𝑥𝑖 − 𝑥)) , (3)

where 𝑤
𝑖
(𝑥) = 𝑘((𝑥

𝑖
− 𝑥)/ℎ)/ℎ. Once the covariate observa-

tions are centered at point 𝑥, the estimate of 𝑔(𝑥) is simply
𝛽
0
, which is the first component of the minimizer of (2). 𝛽

1

determines an estimate of the slope of the function 𝑔 at point
𝑥.

The higher-order LLQ estimate is the minimizer of the
following:

min
𝛽∈R2

𝑛

∑

𝑖=1

𝑤
𝑖 (𝑥) 𝜌𝜏 (𝑦𝑖 − 𝛽0 − 𝛽1 (𝑥𝑖 − 𝑥) − ⋅ ⋅ ⋅ − 𝛽𝑝(𝑥𝑖 − 𝑥)

𝑝
) .

(4)

The choice of the bandwidth parameter ℎsignificantly influ-
ences all nonparametric estimations. An excessively large ℎ
obscures too much local structure by excessive smoothing.
Conversely, an excessively small ℎ introduces too much
variability by relying on very few observations in the local
polynomial fitting [13].

2.4. Bandwidth Selection. The practical performance of
𝑄
𝛼
(𝑥) depends strongly on selected of bandwidth parameter.

In this study we adopt the strategy of [12]. In summary,
we have the automatic bandwidth selection strategy for
smoothing conditional quantiles as follows.

(1) Use ready-made and sophisticated methods to select
ℎmean; we use the technique of [25].

(2) Use ℎ
𝜏
= ℎmean{𝜏(1 − 𝜏)/𝜙(Φ

−1
(𝜏))
2
}
1/5 to obtain all

other ℎ
𝜏
𝑠 from ℎmean.

Here, 𝜙 and Φ are standard normal density and distribution
function and ℎmean is a bandwidth parameter for regression
mean estimation with various existing methods. As it can be
seen, this procedure leads to identical bandwidth for 𝜏 and
(1 − 𝜏) quantiles.

2.5.TheBehavior of Local LinearQuantile Estimator at Bound-
ary Region. To examine the asymptotic the asymptotic
behavior of the local linear quantile estimators at the bound-
aries, we offer this theorem which has been discussed in
detail; see [26]. Here we omitted the proofs and summarized
the key points. Without loss of generality, one can consider
only the left boundary point 𝑢

0
= 𝑐ℎ, 0 < 𝑐 < 1, if 𝑈

𝑡
takes

value only from [0, 1]. However, a similar result holds for the
right boundary point 𝑢

0
= 1 − 𝑐ℎ.

Define

𝑢
𝑗,𝑐
= ∫

1

−𝑐

𝑢
𝑗
𝐾 (𝑢) 𝑑𝑢, V

𝑗,𝑐
= ∫

1

−𝑐

𝑢
𝑗
𝐾
2
(𝑢) 𝑑𝑢. (5)

Theorem 1 (see [26]). Consider the following assumptions.

(1) 𝑎(𝑢) is twice continuously differentiable in a neighbor-
hood of 𝑢

0
for any 𝑢

0
.

(2) 𝑓
𝑢
(𝑢) is continuous and 𝑓

𝑢
(𝑢
0
) > 0.

(3) 𝑓
𝑦|𝑢,𝑥

(𝑦) is bounded and satisfies the Lipschitz condi-
tion.

(4) The kernel function 𝐾(⋅) is symmetric and has a
compact support, say [−1, 1].

(5) {(𝑋
𝑡
, 𝑌
𝑡
, 𝑈
𝑡
)} is a strictly 𝛼-mixing stationary

process with mixing coefficient which satisfies
∑
∞

𝑡≥1
𝑡
𝑙
𝛼
(𝛿−2)/𝛿

(𝑡) < ∞ for some positive real number
𝛿 > 2 and 𝑙 > (𝛿 − 2)/𝛿.

(6) 𝐸‖𝑋
𝑡
‖
2𝛿
< ∞ with 𝛿∗ > 𝛿.

(7) Ω(𝑢
0
) is positive-definite and continuous in a neighbor-

hood of 𝑢
0
.

(8) Ω∗(𝑢
0
) is continuous and positive-definite in a neigh-

borhood of 𝑢
0
.

(9) The bandwidth ℎ satisfies ℎ → 0 and ℎ → ∞.
(10) 𝑓(𝑢, V | 𝑥

0
, 𝑥
𝑠
; 𝑠) ≤ 𝑀 < ∞ for 𝑠 ≥ 1 where

𝑓(𝑢, V | 𝑥
0
, 𝑥
𝑠
; 𝑠) is the conditional density of (𝑈

0
, 𝑈
𝑠
)

given (𝑋
0
= 𝑥
0
, 𝑋
𝑠
= 𝑥
𝑠
).

(11) 𝑛1/2−𝛿/4ℎ𝛿/𝛿
∗
−1/2−𝛿/4

= 𝑂(1).

The asymptotic normality of the local linear quantile estimator
at the left boundary point is given by

√𝑛ℎ[𝑎 (𝑐ℎ) − 𝑎 (𝑐ℎ) −
ℎ
2
𝑏
𝑐

2
𝑎

(0+) + 𝑜𝑝 (ℎ

2
)]

→ 𝑁{𝑜, 𝜏 (1 − 𝜏) V𝑐∑
𝛼

0+} ,

(6)

where

𝑏
𝑐
=
𝑢
2

2,𝑐
− 𝑢
1,𝑐
𝑢
3,𝑐

𝑢
2,𝑐
𝑢
0,𝑐
− 𝑢2
1,𝑐

,

V
𝑐
=
𝑢
2

2,𝑐
V
0,𝑐
− 2𝑢
1,𝑐
𝑢
2,𝑐
V
1,𝑐
+ 𝑢
2

1,𝑐
V
2,𝑐

[𝑢
2,𝑐
𝑢
0,𝑐
− 𝑢2
1,𝑐
]
2

.

(7)

Further, the asymptotic normality of the local constant quantile
estimator at the left boundary point 𝑢

0
= 𝑐ℎ for 0 < 𝑐 < 1 is

√𝑛ℎ [𝑎 (𝑐ℎ) − 𝑎 (𝑐ℎ) − �̃�𝑐 + 𝑜𝑝 (ℎ
2
)]

→ 𝑁{0, 𝜏 (1 − 𝜏) V0,𝑐∑
𝛼

(0+)

𝑢2
0,𝑐

} ,

(8)

where

�̃�
𝑐
= ([ℎ

𝑢1,𝑐
𝑎

(0+) +

ℎ
2
𝑢
2,𝑐

2

× {𝑎

(0+) +

2𝑎

(0+) 𝑓



𝑢
(0+)

𝑓
𝑢 (0+)

+2Ω
∗−1

(0+)Ω
∗
(0+) 𝑎


(0+) }])

× (𝑢
0,𝑐
)
−1
.

(9)
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Table 1: Formula of the test functions used in the simulation.

Test function Formula
1 𝑓(𝑥) = sin(𝜋𝑥) − sin(2𝜋𝑥) + 0.5𝑥

2 𝑓(𝑥) =
10𝑒
−10𝑥

+ 2 𝑖𝑓 𝑥 ≤ 0.5

3cos(10𝜋𝑥) 0.5 < 𝑥 < 1

3 𝑓(𝑥) = 5𝑒
(−10(𝑥−0.5)

2
)
+ 𝑒
(−10𝑥)

From the above theorem, one can deduce that, at the
boundaries, the asymptotic bias term for the local constant
quantile estimate is of the order ℎ, compared to the order
ℎ
2 for the local linear quantile estimate. Hence, the local

linear estimation possesses good behavior at boundaries and
there is no need for any boundary correction. In other
words, the local linear quantile estimate does not suffer from
boundary effects but the local constant quantile estimate
does. Therefore, local linear quantile is preferable in practice.

3. Proposed Method

This section elaborates on the proposed method. This tech-
nique combines EMD and LLQ (EMD-LLQ). Since local
linear quantile regression produces excellent boundary treat-
ment [27], it is expected that the addition of this component
to empirical mode decomposition will result in equally well-
boundary properties. Results from numerical experiments
extremely support this claim.

The basic idea behind the proposedmethod is to estimate
the underlining function 𝑓 with the sum of a set of EMD
functions, 𝑓EMD, and an LLQ function, 𝑓LLQ. That is,

𝑓LLQ⋅EMD = 𝑓EMD + 𝑓LLQ. (10)

We need to estimate the two components 𝑓EMD and 𝑓LLQ
to obtain our proposed estimate, 𝑓EMD⋅LLQ, by the following
steps.

(1) Applying LLQ to the corrupted and noisy data, 𝑦
𝑖
and

obtaining the trend estimate𝑓LLQ.
(2) Determining the residuals 𝑒

𝑖
from LLQ; that is, 𝑒

𝑖
=

𝑦
𝑖
− 𝑓LLQ.

(3) Applying EMD to 𝑒
𝑖
, given that the remaining series

is expected to be hidden in the residuals. This step is
accomplished by performing the following substeps.

(I) Setting initial estimates for the residue as 𝑟
0
(𝑡) =

𝑒, 𝑔
𝑜
(𝑡) = 𝑟

𝑘−1
(𝑡), 𝑖 = 1, and the index of IMF as

𝑘 = 1.
(II) Constructing the lower minima 𝐼min𝑖−1 and

𝐼max𝑖−1 envelopes of the signal by the cubic spline
method.

(III) Calculating the mean values by averaging the
upper envelope and the lower envelope. Setting
𝑚
𝑖−1
= [𝐼max𝑖−1 + 𝐼min𝑖−1]/2.

(IV) Subtracting themean from the original signal as
𝑔
𝑖
= 𝑔
𝑖−1
− 𝑚
𝑖−1

and 𝑖 = 𝑖 + 1. Steps I to IV are
repeated until 𝑔

𝑖
becomes an IMF. The 𝑘th IMF

is then given as IMF
𝐾
= 𝑔
𝑖
.
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Figure 1: Three test functions used in the simulation.

(V) Updating the residue 𝑟
𝑘(𝑥)

= 𝑟
𝑘−1
(𝑛) − IMF

𝐾
.

This residual component is regarded as a new
datum and is subjected to the process described
above to calculate the next IMF

𝐾+1
.

(VI) The steps above are repeated until the final
residual component 𝑟(𝑥) becomes a monotonic
function.Thefinal estimation of the residue 𝑟(𝑥)
is then considered.
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Table 2:TheMSE of the classical EMD and proposed method under variety of boundary solution noise structure, different values of quantile
𝜏 (0.25, 0.50, and 0.75), and sample size 100.

Test function 1
Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5)
EMD (none) 0.269175 0.310785 0.32917 0.261690 0.3027736 0.3190445 0.2552796 0.306369 0.3223
EMD-LLQ 0.11712 0.122119 0.145831 0.06343 0.058571 0.010130 0.070048 0.067575 0.10510
Wilcoxon test
𝑉 =

451927 459306 449112 49589 497928 480711 493926 494605 479475

Test function 1
Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5)
EMD (periodic) 1.38123 1.40508 1.45777 1.42545 1.43629 1.47529 1.40223 1.41718 1.44426
EMD-LLQ 0.11287 0.12451 0.14150 0.06375 0.05967 0.09826 0.06509 0.06284 0.10475
Wilcoxon test
𝑉 =

500496 50076 500427 500500 500076 500477 500493 500490 500476

𝑃-value < 2.2𝑒−16

Test function 1
Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5)
EMD (symmetric) 0.86598 0.91897 1.005607 0.87603 0.916301 1.005788 0.8820793 0.92558 0.96602
EMD-LLQ 0.11656 0.12304 0.14698 0.8760 0.05816 0.09760 0.070185 0.06459 0.10498
Wilcoxon test
𝑉 =

500500 499701 500456 500498 499540 500497 500500 500497 500492

𝑃-value < 2.2𝑒−16

Test function 1
Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) errors N∼(0, 1) 𝑇(100, 3) AR(0.5) Errors N∼(0, 1)
EMD (wave) 1.20811 1.18084 1.250195 1.19274 1.20855 1.226365 1.199136 1.20274 1.22829
EMD-LLQ 0.11318 0.11967 0.14845 0.06456 0.06173 0.098486 0.066864 0.06339 0.10583
Wilcoxon test
𝑉 =

500500 500500 500500 500500 500500 500500 500500 500500 500500

(4) The final estimate is the summation of the fitting
estimates from LLQ and EMD, as follows:

𝑓LLQ⋅EMD = 𝑓EMD + 𝑟 (𝑡) . (11)

4. Simulation Study

In this simulation, the software package 𝑅 was employed to
evaluate classical EMD by [1] and the proposed combined
method, EMD-LLQ.The following conditions were set.

(1) Three different test functions (Table 1).
(2) Three different values of quantile 𝜏 (0.25, 0.50, and

0.75).
(3) Three different kinds of noise structure errors,

namely:

(a) normal distribution with zero mean and unity
variance,

(b) correlated noise from the first-order autoregres-
sive model AR (1) with parameter (0.5),

(c) heavy-tailed noise from 𝑡distributionwith three
degrees of freedom.

Datasets were simulated from each of the three test func-
tions with a sample size of 𝑛 = 100 (Figure 1). For each
simulated dataset, the above two methods were applied to
estimate the test function. In each case, 1,000 replications
of the sample size 𝑛 = 100 were made. The mean squared
error (MSE) was used as the numerical measure to assess
the quality of the estimate. The MSE was calculated for those
observations that were at most 10 sample points away from
the boundaries of the test functions:

MSE
Δ
(𝑓) =

1

2Δ
∑

𝑖∈𝑁(Δ)

{𝑓 (𝑥
𝑖
) − 𝑓 (𝑥

𝑖
)}
2

(Δ = 1, 2, . . . , [
𝑛

2
] ; 𝑥
𝑖
=
𝑖

𝑛
) ,

(12)

where𝑁(Δ) = {1, . . . , Δ, 𝑛 − Δ + 1, . . . , 𝑛}.
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Table 3:TheMSE of the classical EMD and proposed method under variety of boundary solution noise structure, different values of quantile
𝜏 (0.25, 0.50, and 0.75), and sample size = 100.

Test function 2

Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5)

EMD (none) 13.71622 8.517261 7.290762 7.818736 8.094024 6.974746 7.168348 8.445187 7.364002

EMD-LLQ 2.200657 2.148026 2.063819 2.147824 0.8982332 0.847309 1.68474 1.69877 1.57035
Wilcoxon test
𝑉 =

467459 463117 500260 499774 498875 489150 482567 483765 489150

𝑃-value < 2.2𝑒−16

Test function 2

Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5)

EMD (periodic) 7.430924 6.976339 6.77826 7.135594 6.982454 6.827251 7.226472 6.865929 6.725184

EMD-LLQ 2.118629 2.145495 2.052055 0.904618 0.9031342 0.8702984 1.672161 1.691775 1.598264
Wilcoxon test
𝑉 =

498562 497328 495251 500441 500350 500203 498068 496900 496766

𝑃-value < 2.2𝑒−16

Test function 2

Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5)

EMD (symmetric) 8.693953 8.800117 8.678484 8.679718 8.902223 8.76185 8.623087 8.756977 8.718655

EMD-LLQ 2.121942 2.142339 2.059669 0.918506 0.8823274 0.8637991 1.655741 1.670038 1.571081
Wilcoxon test
𝑉 =

500500 500500 500500 500500 500500 500500 500500 500500 500500

𝑃-value < 2.2𝑒−16

Test function 2

Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5)

EMD (wave) 7.243865 7.493569 7.341059 7.138806 7.430882 7.449 7.124459 7.374468 7.302789

EMD-LLQ 2.12519 2.149727 2.053073 0.908747 0.9056965 0.8560205 1.653102 1.704716 1.552656
Wilcoxon test
𝑉 =

500500 500500 500500 500500 500500 500500 500500 500497 500500

𝑃-value < 2.2𝑒−16

To compare the methods, Tables 2, 3, and 4 present the
numerical results of the classical EMD with respect to the
proposed method.

4.1. Results. From the simulation results, reported in
Tables 2, 3, and 4, we have observed the following. Regardless
of the boundary assumptions, test functions, noise structures,
and different values of quantile, the proposed method is
constantly superior to the classical EMD under periodic,
symmetric (Mirror) and wave conditions. Tables 2, 3, and 4
summarize the results.

To ensure that the improvement in mean squared error
is due to our proposed treatment, not to something else,
we evaluated the classical method and our proposed one
when no boundary treatment has been set up at all. From

simulation result, we observed that even though the classical
solutions help improve the mean squared error, our improve-
ment is much better. Then, at the end, to get rid of some
suspicions that the differences might not be significant, we
used rank Wilcoxon test. This provided us evidence that our
proposedmethod still achieves a better performance near the
boundaries than EMD. All 𝑃 value for Wilcoxon test are less
than 0.05.

5. Conclusions

In this study, a new two-stage method is introduced to
decrease the effects of the boundary problem in EMD. The
proposed method is based on a coupling of LLQ at the first
stage and classical EMD at the second stage. The empirical
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Table 4:TheMSE of the classical EMD and proposedmethod under variety of boundary solution noise structure, different values of quantile
𝜏 (0.25, 0.50, and 0.75), and sample size = 100.

Test function 3

Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5)

EMD (none) 0.034744 0.037490 0.06867 0.035888 0.035473 0.0708678 0.03540 0.0375 0.07260

EMD-LLQ 0.01494 0.01827 0.04637 0.0142052 0.0168427 0.04288602 0.014913 0.0197 0.048020
Wilcoxon test
𝑉 =

453610 426890 371062 740664 435835 415746 455217 420619 393951

𝑃-value < 2.2𝑒−16

Test function 3

Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5)

EMD (periodic) 0.01495 0.01601 1.46184 0.014931 0.017672 1.475389 0.01513 0.0173 1.44361

EMD-LLQ 0.01201 0.01425 0.14555 0.010031 0.016859 0.0967748 0.01176 0.0157 0.10338
Wilcoxon test
𝑉 =

142798 167295 500426 159630 193475 500491 133946 170435 500474

𝑃-value < 2.2𝑒−16

Test function 3

Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏=0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5)

EMD (symmetric) 0.856264 0.938382 1.01019 0.853808 0.928291 0.9873542 0.86854 0.9322 0.96783

EMD-LLQ 0.11334 0.12452 0.14649 0.065446 0.056100 0.09569597 0.06553 0.06180 0.104910
Wilcoxon-test
𝑉 =

500489 499304 500420 500500 500498 500474 500500 500485 500463

𝑃-value < 2.2𝑒−16

Test function 3

Quantiles 𝜏 = 0.25 𝜏 = 0.50 𝜏 = 0.75

Errors N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5) N∼(0, 1) 𝑇(100, 3) AR(0.5)

EMD (wave) 1.19549 1.19853 1.22884 1.180275 1.200136 1.217799 1.193706 1.20841 1.236941

EMD-LLQ 0.11508 0.12732 0.14624 0.063552 0.055484 0.094623 0.06860 0.20362 0.110907
Wilcoxon test
𝑉 =

500500 500500 500500 500500 500500 500500 500500 499500 500500

𝑃-value < 2.2𝑒−16

performance of the proposed method was tested on dif-
ferent numerical experiments by simulation and real data
application. The results of these experiments illustrate the
improvement of the EMD estimation in terms of MSE.
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