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We develop the theory of fractional hybrid differential equations with linear and nonlinear perturbations involving the Caputo
fractional derivative of order 0 < 𝛼 < 1. Using some fixed point theorems we prove the existence of mild solutions for two types of
hybrid equations. Examples are given to illustrate the obtained results.

1. Introduction

Fractional calculus is a field of mathematics that deals
with derivatives and integrals of arbitrary orders. Fractional
differential equations have been of great interest because of
their intensive development of fractional calculus and its
applications [1–11].

Recently, the quadratic perturbation of nonlinear dif-
ferential equations (called hybrid differential equations) has
captured much attention. The importance of the investiga-
tions of hybrid differential equation lies in the fact that they
include several dynamic systems as special cases. Dhage and
Lakshmikantham [12] discussed the existence and unique-
ness theorems of the solution to the ordinary first-order
hybrid differential equation with perturbation of first type

𝑑

𝑑𝑡
[

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
] = 𝑔 (𝑡, 𝑥 (𝑡)) , a.e. 𝑡 ∈ 𝐽, 𝑥 (𝑡

0
) = 𝑥
0
∈ R,

(1)

where 𝑓 ∈ 𝐶(𝐽 × R,R − {0}) and 𝑔 ∈ C(𝐽 × R,R), where
𝐽 = [𝑡

0
, 𝑡
0
+ 𝑎] is a bounded interval in R for some 𝑡

0
and

𝑎 ∈ R with 𝑎 > 0, 𝐶(𝐽 × R,R) is the class of continuous
functions and C(𝐽 × R,R) is called the Caratheodory class

of functions 𝑔 : 𝐽 × R → R which are Lebesgue integrable
bounded by a Lebesgue integrable function on 𝐽. Moreover

(i) the map 𝑡 → 𝑔(𝑡, 𝑥) is measurable for each 𝑥 ∈ R;

(ii) the map 𝑥 → 𝑔(𝑡, 𝑥) is continuous for each 𝑡 ∈ 𝐽.

Dhage and Jadhav [13] discussed the existence and unique-
ness theorems of the solution of the ordinary first-order
hybrid differential equation with perturbation of second type

𝑑

𝑑𝑡
[𝑥 (𝑡) − 𝑓 (𝑡, 𝑥 (𝑡))] = 𝑔 (𝑡, 𝑥 (𝑡)) , a.e. 𝑡 ∈ 𝐽, 𝑥 (𝑡

0
)

= 𝑥
0
∈ R

(2)

Fractional hybrid differential equations have been studied
using Riemman-Liouville derivative in literature (see, e.g.,
[14–16] and the references therein). Ammi et al. [14] discussed
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a generalization of (1) by replacing the ordinary by fractional
derivative in Riemann-Liouvile sense with delay in the form

𝑑
𝛼

𝑑𝑡𝛼
[

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
] = 𝑔(𝑡, 𝑥

𝑡
, ∫

𝑡

0

𝑘 (𝑠, 𝑥
𝑠
) 𝑑𝑠)

a.e., 𝑡 ∈ 𝐼 = [0, 𝑇] ,

subject to 𝑥 (𝑡) = 𝜙 (𝑡) , 𝑡 ∈ 𝐼
0
= [−𝛿, 0] ,

(3)

where 𝜙 ∈ 𝐶(𝐼
0
) and 𝑥

𝑡
: 𝐼
0
→ C is the continuous function

defined by 𝑥
𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for all 𝜃 ∈ 𝐼

0
. They used that 𝑥(𝑡)

is a solution to (3) if and only if it is a solution to the integral
equation

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) 𝐼
𝛼
(𝑔(𝑡, 𝑥

𝑡
, ∫

𝑡

0

𝑘 (𝑠, 𝑥
𝑠
) 𝑑𝑠)) ; (4)

then they studied this integral equation. However, it is
easy to see that this concept of a solution is not realistic
because of neglecting the initial condition. In fact, if we
consider the following trivial example with 𝑓(𝑡, 𝑥(𝑡)) =

1, 𝑔(𝑡, 𝑥
𝑡
, ∫
𝑡

0
𝑘(𝑠, 𝑥
𝑠
)𝑑𝑠) = 0 we get the function 𝑥(𝑡) =

(𝐼
1−𝛼

𝑥(𝑡))|
𝑡=0
(𝑡
𝛼−1

/Γ(𝛼)) which is a solution to (3) but not to
(4).

Lu et al. [15] discussed a generalization of (2) by replacing
the classical differentiation by fractional derivative in the
Riemann-Liouvile sense as
𝑑
𝛼

𝑑𝑡𝛼
[𝑥 (𝑡) − 𝑓 (𝑡, 𝑥 (𝑡))] = 𝑔 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ 𝐽 = [𝑡

0
, 𝑡
0
+ 𝑎] ,

subject to 𝑥 (𝑡
0
) = 𝑥
0
.

(5)

They proved that 𝑥(𝑡) is a solution to (5) if and only if it is a
solution to the integral equation

𝑥 (𝑡) = 𝑥
0
− 𝑓 (𝑡

0
, 𝑥
0
) + 𝑓 (𝑡, 𝑥 (𝑡))

+
1

Γ (𝛼)
∫

𝑡

𝑡0

(𝑡 − 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑡 ∈ 𝐽;

(6)

then they studied this integral equation. Again, we recall that
this concept of a solution is not realistic because of neglecting
the initial condition. In fact, consider the following trivial
example with 𝑓(𝑡, 𝑥(𝑡)) = 1, 𝑔(𝑡, 𝑥(𝑡)) = 0, 𝑡

0
= 0; we get

that the function 𝑥(𝑡) = 1 + (𝐼
1−𝛼

(𝑥(𝑡) − 1))|
𝑡=0
(𝑡
𝛼−1

/Γ(𝛼)) is
a solution to (5) but not for (6).

Here we discuss the existence of solutions to hybrid
fractional differential equations in both types using the
Caputo fractional derivative instead of the classical one in
both (1) and (2).

Our paper is organized as follows. In Section 2 some
basic definitions and theorems are given. Fractional hybrid
differential equation of type 1 is discussed in Section 3 while
in Section 4 we discuss the fractional hybrid differential
equation of type 2. Our conclusion is presented in Section 5.

2. Preliminaries

Below we present some definitions and theorems used in the
rest of this paper.

Definition 1 (see [1, 8–11]). If 𝑓(𝑡) ∈ 𝐿
1
(𝑎, 𝑏), the set of

all integrable functions, and 𝛼 > 0 then the left Riemann-
Liouville fractional integral of order 𝛼, is defined by

𝐼
𝛼
𝑓 (𝑡) =

1

Γ (𝛼)
∫

𝑡

𝑎

(𝑡 − 𝜏)
𝛼−1

𝑓 (𝜏) 𝑑𝜏. (7)

Definition 2 (see [8–11]). For𝛼 > 0 the leftRiemann-Liouville
fractional derivative of order 𝛼 is defined by

𝑑
𝛼

𝑑𝑡𝛼
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
𝐷
𝑛
∫

𝑡

𝑎

(𝑡 − 𝜏)
𝑛−𝛼−1

𝑓 (𝜏) 𝑑𝜏, (8)

where 𝑛 is such that 𝑛 − 1 < 𝛼 < 𝑛 and𝐷 = 𝑑/𝑑𝑡.

Definition 3 (see [8–11]). For 𝛼 > 0 the left Caputo fractional
derivative of order 𝛼 is defined by

𝐷
𝛼
𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)
∫

𝑡

𝑎

(𝑡 − 𝜏)
𝑛−𝛼−1

𝐷
𝑛
𝑓 (𝜏) 𝑑𝜏, (9)

where 𝑛 is such that 𝑛 − 1 < 𝛼 < 𝑛 and𝐷 = 𝑑/𝑑𝜏.

The following two fixed point theorems are used in our
paper (see [12, 13, 17–19]).

Theorem 4. LetB
𝑟
(0) andB

𝑟
(0) be open and closed balls in

a Banach algebra 𝑋 centered at origin 0 of radius 𝑟, for some
real number 𝑟 > 0, and let𝐴, 𝐵 : B

𝑟
(0) → 𝑋 be two operators

satisfying the following.

(a) 𝐴 is Lipschitz with Lipschitz constant 𝛾;
(b) 𝐵 is continuous and compact;

(c) 𝛾𝑀 < 1, where𝑀 = ‖𝐵(B
𝑟
(0))‖ = sup{‖𝐵(𝑥)‖ : 𝑥 ∈

B
𝑟
(0)}.

Then, either

(i) the equation 𝐴𝑥𝐵𝑥 = 𝑥 has a solution inB
𝑟
(0), or

(ii) there is an element 𝑥 ∈ 𝑋 such that ‖𝑥‖ = 𝑟 satisfying
𝜆𝐴𝑥𝐵𝑥 = 𝑥, for some 0 < 𝜆 < 1.

Definition 5. Let 𝑋 be a Banach space. A mapping 𝑇 : 𝑋 →

𝑋 is called D-Lipschitzian if there exists a continuous and
nondecreasing function 𝜙 : R+ → R+ such that ‖𝑇𝑥 −

𝑇𝑦‖ ≤ 𝜙(‖𝑥 − 𝑦‖) for all 𝑥, 𝑦 ∈ 𝑋, where 𝜙(0) = 0. If 𝜙
is not necessarily nondecreasing and satisfies 𝜙(𝑟) < 𝑟, for
𝑟 > 0, the mapping 𝑇 is called a nonlinear contraction with a
contraction function 𝜙.

Theorem 6. Let 𝑆 be a closed convex and bounded subset of
the Banach space 𝑋 and let 𝐴 : 𝑋 → 𝑋 and 𝐵 : 𝑆 → 𝑋 be
two operators such that

(a) 𝐴 is nonlinear contraction,
(b) 𝐵 is continuous and compact, and
(c) 𝑥 = 𝐴𝑥 + 𝐵𝑦 for all 𝑦 ∈ 𝑆 ⇒ 𝑥 ∈ 𝑆.

Then the operator equation 𝐴𝑥 + 𝐵𝑥 = 𝑥 has a solution in 𝑆.
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3. Fractional Hybrid Differential
Equation of the First Type

Consider the fractional hybrid differential equation in the
form

𝐷
𝛼
[

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
] = ℎ (𝑡) , a.e. 𝑡 ∈ 𝐽 = [0, 𝑇] ,

𝑥 (0) = 𝑥
0
∈ R;

(10)

we have the following Lemma.

Lemma 7. Any function satisfies (10) with ℎ ∈ 𝐿
1
(𝐽,R+) will

also satisfy the integral equation

𝑥 (𝑡)

= 𝑓 (𝑡, 𝑥 (𝑡)) (
𝑥
0

𝑓 (0, 𝑥
0
)
+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠) , 𝑡 ∈ 𝐽.

(11)

In addition if the function 𝑥 → 𝑥/𝑓(0, 𝑥) is injective, and
𝐼
𝛼
ℎ(𝑡) is an absolutely continuous function, then the converse

is true.

Proof. Assume that 𝑥(𝑡) satisfies (10). Then, (𝑥(𝑡)/𝑓(𝑡, 𝑥(𝑡)))
is absolutely continuous that we get that 𝐷𝛼(𝑥(𝑡)/𝑓(𝑡, 𝑥(𝑡)))
exists and is Lebesgue integrable on 𝐽. Applying the fractional
integration 𝐼𝛼 to both sides of (10) we get (11).

Conversely, assume that 𝑥(𝑡) satisfies (11) with 𝐼
𝛼
ℎ(𝑡)

is absolutely continuous we get that (𝑥(𝑡)/𝑓(𝑡, 𝑥(𝑡))) =

(𝑥
0
/𝑓(0, 𝑥

0
))+∫
𝑡

0
((𝑡 − 𝑠)

𝛼−1
/Γ(𝛼))ℎ(𝑠)𝑑𝑠 is absolutely contin-

uous. Then by differentiating both sides and then operating
by the fractional integration 𝐼1−𝛼 we get

𝐷
𝛼
[

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
] = ℎ (𝑡) , (12)

and for the initial condition substitute by 𝑡 = 0 in (11) we get

𝑥 (0)

𝑓 (0, 𝑥 (0))
=

𝑥
0

𝑓 (0, 𝑥
0
)
, (13)

and since 𝑥 → (𝑥/𝑓(0, 𝑥)) is injective then 𝑥(0) = 𝑥
0
.

Now consider the fractional hybrid differential equation
of first type in the form

𝐷
𝛼
[

𝑥 (𝑡)

𝑓 (𝑡, 𝑥 (𝑡))
] = 𝑔 (𝑡, 𝑥 (𝑡)) , a.e. 𝑡 ∈ 𝐽 = [0, 𝑇] ,

𝑥 (0) = 𝑥
0
∈ R,

(14)

where, 𝑓 ∈ 𝐶(𝐽 ×R,R − 0) and 𝑔 ∈ C(𝐽 ×R,R).

Definition 8. (1) The function 𝑥 ∈ 𝐶(𝐽,R) is called a mild
solution of the hybrid differential equation of first type (14) if
it satisfies the integral equation

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) (
𝑥
0

𝑓 (0, 𝑥
0
)
+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠) .

(15)

(2) The function 𝑥 ∈ 𝐴𝐶(𝐽,R), the space of absolutely
continuous real-valued functions defined on 𝐽, is called a
strong solution of (14) if

(a) the function 𝑡 → (𝑥/𝑓(𝑡, 𝑥)) is absolutely continuous
for each 𝑥 ∈ R, and

(b) 𝑥 satisfies (14).

Theorem 9. Assume the following.
(H1) There exists a constant 𝛾 > 0 such that |𝑓(𝑡, 𝑥) −

𝑓(𝑡, 𝑦)| ≤ 𝛾|𝑥 − 𝑦| for all 𝑡 ∈ 𝐽 and 𝑥, 𝑦 ∈ R.
(H2) There exists a function ℎ ∈ 𝐿

1
(𝐽,R) such that

|𝑔(𝑡, 𝑥)| ≤ ℎ(𝑡) a.e. 𝑡 ∈ 𝐽 for all 𝑥 ∈ R.
(H3) 𝛾(|𝑥

0
/𝑓(0, 𝑥

0
)| + (𝑇

𝛼
/Γ(𝛼 + 1))‖ℎ‖

𝐿
1) < 1.

(H4) There exists 𝑟 > 0 such that 𝑟 > (𝐹
0
(|𝑥
0
/𝑓(0, 𝑥

0
)| +

(𝑇
𝛼
/Γ(𝛼 + 1))‖ℎ‖

𝐿
1))/(1 − 𝛾(|𝑥

0
/𝑓(0, 𝑥

0
)| + (𝑇

𝛼
/Γ(𝛼 +

1))‖ℎ‖
𝐿
1)), where 𝐹

0
= sup

𝑡∈𝐽
|𝑓(𝑡, 0)|.

Then (14) has a mild solution on 𝐽.

Proof. Let B
𝑟
(0) be an open ball centered at the origin and

of radius 𝑟 > 0 in the Banach algebra 𝑋 = 𝐶(𝐽,R) (the
Banach space of continuous valued functions defined on the
interval 𝐽 equipped with the sup-norm, ‖𝑥‖ = sup

𝑠∈𝐽
|𝑥(𝑠)|,

and with multiplication defined by (𝑥𝑦)(𝑠) = 𝑥(𝑠)𝑦(𝑠), for
𝑠 ∈ 𝐽). We prove the existence of a mild solution to problem
(14) by discussing the solution to the integral equation (15)
which is equivalent to the operator equation

𝐴𝑥 (𝑡) 𝐵𝑥 (𝑡) = 𝑥 (𝑡) , 𝑡 ∈ 𝐽, (16)

where 𝐴, 𝐵 : B
𝑟
(0) → 𝑋 are defined by

𝐴𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

𝐵𝑥 (𝑡) =
𝑥
0

𝑓 (0, 𝑥
0
)
+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(17)

Now we divide our proof in several steps.

Step 1.The operator 𝐴 is Lipschitz on𝑋.
Let 𝑥, 𝑦 ∈ 𝑋 and 𝑡 ∈ 𝐽; then by (H1) we get
𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)

 =
𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))



≤ 𝛾
𝑥 (𝑡) − 𝑦 (𝑡)

 ≤ 𝛾
𝑥 − 𝑦

 .

(18)

Taking the supremum over 𝑡 ∈ 𝐽 we get that𝐴 is Lipschitz on
𝑋 with Lipschitz constant 𝛾.

Step 2. The operator 𝐵 is continuous operator onB
𝑟
(0).

Let {𝑥
𝑛
} be a convergent sequence in B

𝑟
(0) converging

to 𝑥 ∈ B
𝑟
(0). Then, by the Lebesgue dominated converging

theorem,
lim
𝑛→∞

𝐵𝑥
𝑛
(𝑡)

= lim
𝑛→∞

(
𝑥
0

𝑓 (0, 𝑥
0
)
+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑔 (𝑠, 𝑥

𝑛
(𝑠)) 𝑑𝑠)

=
𝑥
0

𝑓 (0, 𝑥
0
)
+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
lim
𝑛→∞

𝑔 (𝑠, 𝑥
𝑛
(𝑠)) 𝑑𝑠
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=
𝑥
0

𝑓 (0, 𝑥
0
)
+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

= 𝐵𝑥 (𝑡) ,

(19)

for all 𝑡 ∈ 𝐽 with prove the continuity of the operator 𝐵.

Step 3. The operator 𝐵 is compact operator onB
𝑟
(0).

Let 𝑥 be arbitrary inB
𝑟
(0). By hypothesis (H2) and using

Young’s inequality for convolutions we get

|𝐵𝑥 (𝑡)| ≤



𝑥
0

𝑓 (0, 𝑥
0
)



+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)

𝑔 (𝑠, 𝑥 (𝑠))
 𝑑𝑠

≤



𝑥
0

𝑓 (0, 𝑥
0
)



+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

≤



𝑥
0

𝑓 (0, 𝑥
0
)



+
𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖𝐿1 ,

(20)

which by taking the supremum over 𝑡 gives

‖𝐵𝑥‖ ≤



𝑥
0

𝑓 (0, 𝑥
0
)



+
𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖𝐿1 , ∀𝑥 ∈ B

𝑟
(0) (21)

which proves that 𝐵(B
𝑟
(0)) is a uniformly bounded set in𝑋.

Now, we prove that 𝐵(B
𝑟
(0)) is an equicontinuous set in 𝑋.

For 0 ≤ 𝑡
1
≤ 𝑡
2
≤ 𝑇 we have

𝐵𝑥 (𝑡1) − 𝐵𝑥 (𝑡2)


=
1

Γ (𝛼)



∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−∫

𝑡2

0

(𝑡
2
− 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



≤
1

Γ (𝛼)



∫

𝑡1

0

(𝑡
1
− 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−∫

𝑡1

0

(𝑡
2
− 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



+
1

Γ (𝛼)



∫

𝑡1

0

(𝑡
2
− 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−∫

𝑡2

0

(𝑡
2
− 𝑠)
𝛼−1

𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



≤
‖ℎ‖𝐿1

Γ (𝛼
1
)
[

𝑡
𝛼

2
− 𝑡
𝛼

1
− (𝑡
2
− 𝑡
1
)
𝛼
+ (𝑡
2
− 𝑡
1
)
𝛼
] .

(22)

Hence, for 𝜖 > 0, there exists a 𝛿 > 0 such that

𝑡1 − 𝑡2
 < 𝛿 ⇒

𝐵𝑥 (𝑡1) − 𝐵𝑥 (𝑡2)
 < 𝜖,

∀𝑡
1
, 𝑡
2
∈ 𝐽, 𝑥 ∈ B

𝑟
(0).

(23)

This shows that 𝐵(B
𝑟
(0)) is an equicontinuous set in 𝑋. By

the Arzela Ascoli Theorem we get that the operator 𝐵 is a
compact operator.

Step 4. 𝛾𝑀 < 1, where𝑀 = ‖𝐵(B
𝑟
(0))‖ = sup{‖𝐵(𝑥)‖ : 𝑥 ∈

B
𝑟
(0)}.
Using results in Step 3 we get

𝑀 =

𝐵 (B
𝑟 (0))


= sup {‖𝐵 (𝑥)‖ : 𝑥 ∈ B

𝑟 (0) }

≤



𝑥
0

𝑓 (0, 𝑥
0
)



+
𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖𝐿1

(24)

which gives from the hypothesis (H3) that

𝛾𝑀 ≤ 𝛾(



𝑥
0

𝑓 (0, 𝑥
0
)



+
𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖𝐿1) < 1. (25)

It remains to prove that the conclusion (ii) of Theorem 4
cannot be realizable.

Let 𝑥 ∈ 𝑋 and 𝜆 ∈ (0, 1) be such that ‖𝑥‖ = 𝑟 and 𝑥 =

𝜆𝐴𝑥𝐵𝑥. It follows that

|𝑥 (𝑡)|

= 𝜆



𝑓 (𝑡, 𝑥 (𝑡)) (
𝑥
0

𝑓 (0, 𝑥
0
)
+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠)



≤ 𝜆
𝑓 (𝑡, 𝑥 (𝑡))

 (



𝑥
0

𝑓 (0, 𝑥
0
)



+



∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠



)

≤ 𝜆
𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 0) + 𝑓 (𝑡, 0)



× (



𝑥
0

𝑓 (0, 𝑥
0
)



+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)

𝑔 (𝑠, 𝑥 (𝑠))
 𝑑𝑠)

≤ 𝜆 (𝛾 |𝑥 (𝑡)| + 𝐹0) (



𝑥
0

𝑓 (0, 𝑥
0
)



+
𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖𝐿1)

≤
𝐹
0
(
𝑥0/𝑓 (0, 𝑥0)

 + (𝑇
𝛼
/Γ (𝛼 + 1)) ‖ℎ‖𝐿1)

1 − 𝜆𝛾 (
𝑥0/𝑓 (0, 𝑥0)

 + (𝑇
𝛼/Γ (𝛼 + 1)) ‖ℎ‖𝐿1)

.

(26)

Taking supremum over 𝑡 and using (H4) and 𝜆 ∈ (0, 1)we get

‖𝑥‖ ≤
𝐹
0
(
𝑥0/𝑓 (0, 𝑥0)

 + (𝑇
𝛼
/Γ (𝛼 + 1)) ‖ℎ‖𝐿1)

1 − 𝜆𝛾 (
𝑥0/𝑓 (0, 𝑥0)

 + (𝑇
𝛼/Γ (𝛼 + 1)) ‖ℎ‖𝐿1)

<
𝐹
0
(
𝑥0/𝑓 (0, 𝑥0)

 + (𝑇
𝛼
/Γ (𝛼 + 1)) ‖ℎ‖𝐿1)

1 − 𝛾 (
𝑥0/𝑓 (0, 𝑥0)

 + (𝑇
𝛼/Γ (𝛼 + 1)) ‖ℎ‖𝐿1)

< 𝑟

(27)

which contradicts ‖𝑥‖ = 𝑟; thus (ii) of Theorem 4 is not
possible; hence the operator 𝐴𝑥𝐵𝑥 = 𝑥 has a solution in
B
𝑟
(0). As a result problem (14) has amild solution on 𝐽which

completes the proof of our theorem.

We finish this section by the following example.
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Example 10. Consider the fractional hybrid differential equa-
tion

𝐷
0.5
(

𝑥 (𝑡)

1 + (sin (𝑡) /16) |𝑥 (𝑡)|
) =

𝑡𝑥 (𝑡)

1 + |𝑥 (𝑡)|
,

𝑥 (0) = 1, 𝑡 ∈ 𝐽 = [0, 𝜋] .

(28)

It is easy to see that all hypotheses of Theorem 9 are satisfied
with

𝛾 =
1

16
, 𝑇 = 𝜋, ℎ (𝑡) = 𝑡, 𝐹

0
= 1. (29)

We conclude that
𝐹
0
(
𝑥0/𝑓 (0, 𝑥0)

 + (𝑇
𝛼
/Γ (𝛼 + 1)) ‖ℎ‖𝐿1)

1 − 𝛾 (
𝑥0/𝑓 (0, 𝑥0)

 + (𝑇
𝛼/Γ (𝛼 + 1)) ‖ℎ‖𝐿1)

=
1 + 𝜋
2

1 − (1/16) (1 + 𝜋
2)

< 34,

(30)

hence (28) has a mild solution inB
34
(0).

4. Fractional Hybrid Differential
Equation of Second Type

Consider the fractional hybrid differential equation in the
form
𝐷
𝛼
[𝑥 (𝑡) − 𝑓 (𝑡, 𝑥 (𝑡))] = ℎ (𝑡) , a.e. 𝑡 ∈ 𝐽 = [0, 𝑇] ,

𝑥 (0) = 𝑥
0
∈ R;

(31)

similar to Lemma 7 we can prove

Lemma 11. Any function satisfies (31) with ℎ ∈ 𝐿1(𝐽,R+) will
also satisfy the integral equation

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑥0 − 𝑓 (0, 𝑥0)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠, 𝑡 ∈ 𝐽.

(32)

In addition if the function 𝑥 → 𝑥 − 𝑓(0, 𝑥) is injective, and
𝐼
𝛼
ℎ(𝑡) is an absolutely continuous function then the converse is

true.

Now consider the fractional hybrid differential equation
of second type in the form

𝐷
𝛼
[𝑥 (𝑡) − 𝑓 (𝑡, 𝑥 (𝑡))] = 𝑔 (𝑡, 𝑥 (𝑡)) , a.e. 𝑡 ∈ 𝐽 = [0, 𝑇] ,

𝑥 (0) = 𝑥
0
∈ R,

(33)

where, 𝑓 ∈ 𝐶(𝐽 ×R,R − 0) and 𝑔 ∈ C(𝐽 ×R,R).

Definition 12. One has the following functions.
(1) The function 𝑥 ∈ 𝐶(𝐽,R) is called a mild solution of

the hybrid differential equation of second type (33) if
it satisfies the integral equation

𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) + 𝑥
0
− 𝑓 (0, 𝑥

0
)

+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(34)

(2) The function 𝑥 ∈ 𝐴𝐶(𝐽,R) is called a strong solution
of (14) if

(a) the function 𝑡 → 𝑥 − 𝑓(𝑡, 𝑥) is absolutely
continuous for each 𝑥 ∈ R, and

(b) 𝑥 satisfies (33).

Theorem 13. Assume the following.

(A1) There exists constants𝑀 ≥ 𝐿 > 0 such that |𝑓(𝑡, 𝑥) −
𝑓(𝑡, 𝑦)| ≤ (𝐿|𝑥 − 𝑦|/(𝑀 + |𝑥 − 𝑦|)) for all 𝑡 ∈ 𝐽 and
𝑥, 𝑦 ∈ R.

(A2) There exists a function ℎ ∈ 𝐿
1
(𝐽,R) such that

|𝑔(𝑡, 𝑥)| ≤ ℎ(𝑡) a.e. 𝑡 ∈ 𝐽 for all 𝑥 ∈ R.

(A3) There exists 𝑟 > 0 such that 𝑟 > |𝑥
0
− 𝑓(0, 𝑥

0
)| + 𝐿 +

𝐹
0
+ (𝑇
𝛼
/Γ(𝛼 + 1))‖ℎ‖

𝐿
1 where 𝐹

0
= sup

𝑡∈𝐽
|𝑓(𝑡, 0)|.

Then (33) has a mild solution on 𝐽.

Proof. Set 𝑋 = 𝐶(𝐽,R) and define the set 𝑆 ⊂ 𝑋 by 𝑆 = {𝑥 ∈

𝑋 : ‖𝑥‖ ≤ 𝑟}. We prove the existence of a mild solution
to problem (33) by discussing the solution to the integral
equation (34) which is equivalent to the operator equation

𝐴𝑥 (𝑡) + 𝐵𝑥 (𝑡) = 𝑥 (𝑡) , 𝑡 ∈ 𝐽, (35)

where

𝐴𝑥 (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) ,

𝐵𝑥 (𝑡) = 𝑥
0
− 𝑓 (0, 𝑥

0
) + ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
𝑔 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(36)

Now we prove our theorem by proving that the conditions of
Theorem 6 are satisfied.

(a) Using the hypothesis (A1) we get

𝐴𝑥 (𝑡) − 𝐴𝑦 (𝑡)
 =

𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))


≤
𝐿
𝑥 (𝑡) − 𝑦 (𝑡)



𝑀 +
𝑥 (𝑡) − 𝑦 (𝑡)



≤
𝐿
𝑥 − 𝑦



𝑀 +
𝑥 − 𝑦



,

(37)

thus the operator 𝐴 is a nonlinear contraction with
the function 𝜙 defined by 𝜙(𝑟) = 𝐿𝑟/(𝑀 + 𝑟).

(b) Similarly, in proving Theorem 9 we can prove that 𝐵
is continuous and compact.
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(c) Let 𝑥 ∈ 𝑋 be fixed and 𝑦 ∈ 𝑆 be arbitrary such that
𝑥 = 𝐴𝑥 + 𝐵𝑦. Then we get

|𝑥 (𝑡)|

≤ |𝐴𝑥 (𝑡)| +
𝐵𝑦 (𝑡)

 ≤
𝑓 (𝑡, 𝑥 (𝑡))

 +
𝑥0 − 𝑓 (0, 𝑥0)



+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)

𝑔 (𝑠, 𝑦 (𝑠))
 𝑑𝑠

≤
𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 0)

 +
𝑓 (𝑡, 0)

 +
𝑥0 − 𝑓 (0, 𝑥0)



+ ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

Γ (𝛼)
ℎ (𝑠) 𝑑𝑠

≤ 𝐿 + 𝐹
0
+
𝑥0 − 𝑓 (0, 𝑥0)

 +
𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖𝐿1

≤ 𝑟

(38)

which proves that ‖𝑥‖ ≤ 𝑟; thus 𝑥 ∈ 𝑆.
Thus the conditions of Theorem 6 are satisfied; then the

operator equation 𝐴𝑥(𝑡) + 𝐵𝑥(𝑡) = 𝑥(𝑡) has a solution in 𝑆

which proves the existence of a mild solution to problem (33)
in 𝐽.

We finish this section with the following example.

Example 14. Consider the fractional hybrid differential equa-
tion

𝐷
0.5
(𝑥 (𝑡) −

sin (𝑡) |𝑥 (𝑡)|
2 + |𝑥 (𝑡)|

) =
𝑡𝑥 (𝑡)

1 + |𝑥 (𝑡)|
,

𝑥 (0) = 1, 𝑡 ∈ 𝐽 = [0, 𝜋] ;

(39)

we get that
𝑓 (𝑡, 𝑥 (𝑡)) − 𝑓 (𝑡, 𝑦 (𝑡))



≤
|𝑥 (𝑡)|

2 + |𝑥 (𝑡)|
−

𝑦 (𝑡)


2 +
𝑦 (𝑡)



≤

𝑥 (𝑡) − 𝑦 (𝑡)
 +

𝑦 (𝑡)


2 +
𝑥 (𝑡) − 𝑦 (𝑡)

 +
𝑦 (𝑡)



−

𝑦 (𝑡)


2 +
𝑥 (𝑡) − 𝑦 (𝑡)

 +
𝑦 (𝑡)



≤

𝑥 (𝑡) − 𝑦 (𝑡)


2 +
𝑥 (𝑡) − 𝑦 (𝑡)

 +
𝑦 (𝑡)



≤

𝑥 (𝑡) − 𝑦 (𝑡)


2 +
𝑥 (𝑡) − 𝑦 (𝑡)



(40)

and where |𝑔(𝑡, 𝑥(𝑡))| ≤ 𝑡 we get that all hypotheses of
Theorem 13 are satisfied with

𝐿 = 1, 𝑀 = 2, 𝑇 = 𝜋, ℎ (𝑡) = 𝑡, 𝐹
0
= 0. (41)

We conclude that
𝑥0 − 𝑓 (0, 𝑥0)

 + 𝐿 + 𝐹0 +
𝑇
𝛼

Γ (𝛼 + 1)
‖ℎ‖𝐿1 = 2 + 𝜋

2
< 12;

(42)

hence (39) has a mild solution in 𝑆 = {𝑥 ∈ 𝑋 : ‖𝑥‖ ≤ 12}.

5. Conclusions

In this paper we gave definitions of both strong and mild
solutions to the fractional hybrid boundary value problems
in two types using the Caputo fractional derivative of order
𝛼 ∈ (0, 1) and then we discussed the existence of at least one
mild solution for each type. We gave examples proving the
importance of taking into account of the initial conditions,
therefore our results are realistic. We mention that in [14, 15]
the initial conditions were neglected.
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