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We discuss the existence and uniqueness of solutions for a first-order boundary value problem for impulsive functional g-
integrodifference equations. The main results are obtained with the aid of some classical fixed point theorems. Illustrative examples

are also presented.

1. Introduction

In this paper, we study the boundary value problem for
impulsive functional g-integro-difference equation of the
following the form:

D, x(t)=f(tx®),x01),(S,x)®),

te]:: [O,T], t:/:tk,
Ax(t) =L (x(t)), k=1,2,...,m, ®
ax (0) = Bx(T) + Zy,» J " x (s) dq,.S’

=0t

where 0 = t, <t <ft, < -+ <t <= <t
fiIxR - R, 0:] — ],

<tlyyr = T,

m

(S,%) () = f p(tsx(s)d,s, k=0,1,2,...,m, (2)

I’ xR — [0,00) is a continuous function, I, €
C(R,R), Ax(t) = x(t;) — x(t;) for k = 1,2,...,m, x(t]) =
limy, , gx(t; + h), &, B,y;, i = 0,1,...,m are real constants,
and0 < g <1lfork=0,1,2,...,m.

The notions of gy -derivative and g -integral on finite
intervals were introduced recently by the authors in [1]. Their

basic properties were studied and applications existence and
uniqueness results were proved for initial value problems for
first- and second-order impulsive g -difference equations. In
this paper, we continue the study on this new subject by
considering the boundary value problem (1).

The book by Kac and Cheung [2] covers many of the
fundamental aspects of the quantum calculus. In recent years,
the topic of g-calculus has attracted the attention of several
researchers and a variety of new results can be found in the
papers [3-15] and the references cited therein. On the other
hand, for some monographs on the impulsive differential
equations we refer to [16-18].

The rest of this paper is organized as follows. In Section 2,
we recall the notions of g-derivative and g-integral on
finite intervals and present a preliminary result which will
be used in this paper. In Section 3, we will consider the
existence results for problem (1) while in Section 4, we will
give examples to illustrate our main results.

2. Preliminaries

In this section, we recall the notions of g -derivative and g, -
integral on finite intervals. For a fixed k € N U {0} let J, :=
[t tir1] € Rbean interval and let 0 < g; < 1 be a constant.
We define g -derivative of a function f : J, — R ata point
t € J; as follows.


http://dx.doi.org/10.1155/2014/374565

Definition 1. Assume f : J, — R is a continuous function
and let t € J,. Then the expression

F @)= fqt+(1-q0)t)
(-a)C-n) 7%

Dqkf (tk) = tlE?qukf(t)

Dy f () =

is called the g, -derivative of function f att.

We say that f is g,-differentiable on J, provided that
D,, f(¢) exists for all € J;.. Note thatift;, = Oand g, = gq
in (3), then D, f = D, f, where D, is the well-known g-
derivative of the function f(t) defined by

F@® - f(qt)
(1-gq)t

In addition, we should define the higher g, -derivative of
functions.

D,f (1) = )

Definition 2. Let f : J, — R be a continuous function; we
call the second-order g, -derivative D> f provided that D, f
4k A

is q-differentiable on J, with D} f = D, (D, f) : Jy — R.
Similarly, we define higher order g, -derivative D;‘k T = R

The g, -integral is defined as follows.

Definition 3. Assume f : J, — R isa continuous function.
Then the g, -integral is defined by

J, 7 ©dys=(1-a0 (-1 Yai e+ (1-g) )
ty n=0
)

fort € Ji.. Moreover, ifa € (t;, t), then the definite g, -integral
is defined by

Lt f(s)dys

- j F$)dy s j Fs)d, s

oo (6)
= (1=aq0) (t = 1) Y aif (it + (1= ) t)

C(-a)(a-t) iqu(qzm (-q)t).

Note that if t;, = 0 and g; = g, then (5) reduces to g-
integral of a function f(t), defined by

L fs)dgs=(1 —q)th"f(q"t) for t € [0,00).
n=0
7)

For the basic properties of g, -derivative and g -integral
we refer to [1].

Abstract and Applied Analysis

Let ] = [0,T], J, = [te-t1], and Jp = (t;,tsy,] for
k =12,....m Let PC(J,R) = {x : ] - R : x(t) be
continuous everywhere except for some ¢, at which x(t;) and
x(ty) exist and x(t;) = x(t;), k = 1,2,...,m}. PC(J,R) is a
Banach space with the norm | x||pc = sup{|x(¢)|;t € J}.

We now consider the following linear case:

D, x(t) = h(t),

Ax (ti) = I (x (1)),

te[0,T], t#t,

k=12,...,m,
(8)

i

ax (0) = Bx (T) + Z)’i J T (s)dys,
pary

whereh:J — R.

Lemmad4. Leta+ B+, yi(ti1 — ;). The unique solution of
problem (8) is given by

o~ éerl th

k=1 “tk-1

) d, s+ L1 (x(6))
Qk:l

v

l m
Falt J

| 1) dysdyu
L

i

1 m i te
+ 522% (tin —t;) J h(s)d, s
Ly

i=1k=1 )
1 m i
+ EZZ%’ (ti = 1) I (x (t))
i=1k=1
L
- (J h(s)d, s+ (x (tk))>
0<ti<t Ntk
t
+ J h(s) qus,
ti
with Zf’:a(') =0 fora > b, where
Q= ! (10)
a=B=Yl vt —t:)
Proof. Fort € J,, q,-integrating (8), it follows
t
x(t) =x,+ J h(s) d%s, (1)
0
which leads to
ty
x(t;) = xo + J h(s)dys. (12)
0
For t € ]}, taking g, -integral to (8), we have
t
x(t)=x(t])+ J h(s)dys. (13)
t
Since x(t]) = x(t,) + I, (x(t,)), then we have
t t
x(t) = x5+ J h(s)dgs+ J h(s)dy s+ 1 (x(t)).
0 t
(14)
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Again g,-integrating (8) from ¢, to t, where t € J,, then g+ ﬂi th hs)d. s+ ﬁilk (x(6)
i1
k=1 "tk k=1
t
x(t)=x(t;)+ I h(s)d, s T m
®=x(t) t (5) +/3L h(s)dqufooZYi (ti — 1)
m i=0
t 2
—xp [ @ dyst [ dys (1s) "
0 h +ZZY1 i+1 t)J- h(S)qu IS
t i=0 k=1
+I h(s)dys+ 1, (x(6)) + 1 (x (£)). o
5}
+ Z YI tiv — L )Ik ( (tk))
. . i=0 k=1
Repeating the above process, for t € ], we obtain
m L (U
t + ;)yi J'ti L h(s)dgsd,u.
x0=x+ ¥ ([ hod s+ 16:00)
0<t<t N7tk (19)
(16)
t
+ Jt h(s) qus. S ~ b ~
k inceT =t,,,, and ), (-) = 0 for a > b, we have
In particular, for t = T, we have
Xo <“ -B- Z)’i (ti = ti))
i=0
= X, + Z (L h(s)d, s+1k(x(tk))>
k-1 m+1
(17) ‘ﬁZJ h(s)d, s+ﬁZIk(x £))

T
+J h(s) dqms.

m

iz (fi t)J hs)d, s (20

Further, g;-integrating (16) from ¢, to ¢, ,, it follows

[“ s DR RTERIN)

i

m Ly (U
=X (ti — i) + Zyi J J h(s)d,sd,u.
i= L i
it (18) ’
Y ([ Oy s 5 6) G -1)
k=t e Therefore,
ti+1 u
+ J J h(s) dq‘sdq,u.
t; t; ' ' ﬁmﬂ te ﬁ m
Xp = 62 J h(s)d, s+ 52 x ()
Applying the boundary condition of (8), one has k=1t k=1
1 m Ly (U
) o T L L h(s)d,sd,u
axy = fBx, +ﬁz (s)dy, s+ I (x (t)) i= ik
k=1 Nt , (21)
1 m 1
T " +3 ¥ (s — t)J h(S)d“S
+[3L h(s)d, s+%0) ¥ (tiy — t;) Q;; ’ !
m i=0
m i ty _ZZ tivy t)Ik ( ))
I (RICERRESACIR ) (TS Rt
i=0 k=1 k-1
. i% J'l’i+1 Ju ) dqisdqiu Substituting the constant x, into (16), we obtain (9) as

t, g requested. O



3. Main Results

In view of Lemma 4, we define an operator % : PC(J,R) —
PC(J,R) by

(Fx) (1)

Z J (S’ x (5) » X (9 (S)) 4 (SQk—lx) (S)) qufls

blm

Dlh

AR @)+ Y

T (5920 (5,%) 9) dy sy

t:

i

X
‘_';—

MN

5

i=1k

))1 1+1 i

DIH

1

bk
X

f(S,X(S),X(G(S)))(qul )(S)) i 1

‘—

tr1

Vi (b1 = 1) T (x (8))

+
o
-M§
M_.

Il
—

i=1 k=1

t

f(s,x(s) x(0()),(S,,

+

'*—‘

)(s))qus
< t f(5:x(),x0(),(S,, %) () dg s
0<tk<t k-1

I x(0) ).

(22)

It should be noticed that problem (1) has solutions if and
only if the operator # has fixed points.

Our first result is an existence and uniqueness result for
the impulsive boundary value problem (1) by using Banach’s
contraction mapping principle.

Further, for convenience we set

‘8 + |Q|m+1
S 1 ()
k=1

2
N ¢oLs(te — tiy) ]
1+ g,

(z+1 )
|Q|Z|Yz |: L +L

+4;

(/50 3(t1+1 i) ]

1+g;+q;
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1 m i
|Q|ZZ|Y1|(1+1 i [ L +L2)( tk—l)
i=1 k=1
N GoLs(t - tk—l)z :|
I+ g,

m(lﬁl +191) L,
|Q|Zl |yl| (tl+1 i |Q| >

(23)

|/3| + |Q| m+1 2

z+1
2 = | IZ(tk tkl)+|Q|Z| | 1+q1

t;) (tk = tiy)

|Q| Z Z |Yz| (tin —

i=1 k=1

m(|ﬁ| +1Q) M,
i tl i .

(24)
Theorem 5. Assume the following.

(H,) The function ¢ : J* x R — R is continuous and there
exists a constant ¢, > 0 such that

¢ (ts, ) —p(t,5,2)| < by |y — 2], (25)
foreacht,s € Jand y,z € R.

(H,) The function f: ] x R’ — R is continuous and there
exist constants L, L,, L5 > 0 such that

|f (t. 91320 93) = f (t 21,22, 23))
(26)
<Ly -zi|+ Ly |y, - 2| + Ls|ys - 2],
foreacht € Jand y;,z;,€ R, i=1,2,3.

(Hs) The functions I, : R — R are continuous and there
exists a constant L, > 0 such that

L (7))~ L (2)| < Ly |y - 2|, (27)
foreach y,z e R, k=1,2,...,m
If
A <8<, (28)

where A | is defined by (23), then the boundary value problem
(1) has a unique solution on J.

Proof. Firstly, we transform the boundary value problem (1)
into a fixed point problem, x = #'x, where the operator #
is defined by (22). Using the Banach contraction principle,
we will show that % has a fixed point which is the unique
solution of the boundary value problem (1).

Let M, and M, be nonnegative constants such that

suptellf(t, 0,0,0)] = M, and sup{|[(0)] kK =
1,2,...,m} = M,. By choosing a positive constant r as
A
r>—2 (29)
1-¢
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where § < &€ < 1and A, defined by (24), we will show that
H B, C B,, where a suitable ball B, is defined by B, = {x €
PC(J,R) : ||x|| < r}. For x € B,, we have

|7 x (£)]

[758)

Iﬁl

F(5%(9),2(0(9), (S5, %) ()] d 5

|Q|Z|Vl

xjt 1Ju|f sx(s) x(6(s)), (S x) (s) |d sdu

m i

|Q|Z Z h}z 1+1 i

i=1 k=1

<[ 1 (5502 O (55, %) )] 5

|Q|ZZ|Y1 ti — 1) [T (x ()]

i=1 k=1

+J;t |f(s,x(s),x(0(5)) (S x)(s) |d s

b
£ 3 ([ 1 6x0 300 (55,5 ©)dy, s
0<ti<t Wtk

1 () )

AL+ 1e
0]

m+1

X Z J | (5 x(s),x(0 (5))’(qu,1x) (5))'qu,15

)

tiy, (U
><J;1 J |f s, x(s),x(0(s)), (S x)(s) |d sd u

m i

|Q|Z z IYI 1+1 i

i=1 k=1

Lk
<J 1 (550200, (5, %) )]y

|Q|ZZ|Y1 tin — 1) [T (x ()]

i=1 k=1

|/3||;||Q|kzl |Ik( (tk

m+1
v

< L (If (5 x (), x O ), (S, %) (9))

k=1

—f (5,0,0,0)|+ | f (5,0,0,0)|) d,__s
mlzm

xjt J (I (5 x(5), x O, (8,x) )

£ (50,0,0)] + | (5,0,0,0)|) d, s u

|Q|ZZ h/z 1+1 i

i=1k=1
28
x Lk, (£ (5:x(5),x (0 (),(S,,_,x) (5))

~f(50,0,0)| +|f (5,0,0,0)| ) d,_s

|Q|ZZ h}tl (t1+1 |Ik

i=1k=1

(tx)) = I (0)|+ |1, (0)])

+1Q| ¢

k:l
1B| + 1
Q]

~ L O] + |5

<

L1 (U s
XJ J [7‘<L1 +L2+¢0L3J dqu>+M1]dqi5dqiu
Iy t

m i

|Q| Z Z |y: 1+1 i

i=1 k=1

te s
xj [r(Ll +L2+¢0L3J qu71u>+M1]qufls
ti-1 tr-1

|Q|ZZ|% z+1 TL +M)
i=1 k=1
+1QI ¢
|/3||Q| (rL, + M,)
k=1

=rA;+A, <,
(30)

which yields #B, c B,.



For any x, y € PC(J,R) and for each t € J, we have

|Fx () - Hy @)

_ AL+l
]

2.

[ (559, x 0, (S,,,%) )

k-1

~f (576,70 (8,,7) )| dy_s

JJ 1f (5% (). x (0(5)). (S,%) )

~f (57, y O ), (S33) ()] dgs g

m i

I;MZZIM ti —t;)

i=1 k=1

><J; |f s, x(s),x(0(s)), (qk1 )(s))

~ (79,7 0).(S,,5) )] dg_,s

|Q| Z Z IY; ti—t; ) IIk (x tk

i=1 k=1

MEEICES

18| + 19
< Tl | = |

i[L +L,) (¢

— I (v (t)]

- I ( (t)|

C—h) BoLa(ti — ter)’ ]

1+ Gy

|x J’"zm |:(L +L2)('+1 i)2

|Q| i=0

¢o 5t — i) :|

1+ql+q1

12

+ "x_y"izl:' (tin — [(L +Ly) (t — t5y)

i=1 k=1

ti1)
1+ g,

2
Ls(t, —
L dulalt

L4 “x IS Zl

h/zl (t1+1 i

|
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m(|p+1Q1) Ly
T

=2y 2=y
(3D

which implies that | #x—-F yll < A,llx—yl.Since A, <1, F
is a contraction. Therefore, by Banach’s contraction mapping
principle, we conclude that % has a fixed point which is the
unique solution of problem (1). O

The second existence result is based on Krasnoselskii’s
fixed point theorem.

Lemma 6 ((Krasnoselskii’s fixed point theorem) [19]). Let M
be a closed, bounded, convex, and nonempty subset of a Banach
space X. Let A, B be the operators such that (a) Ax + By € M
whenever x, y € M; (b) A is compact and continuous; (c) B
is a contraction mapping. Then there exists z € M such that
z=Az+ Bz.

We use the following notations:

2

LRSS (ti ~
3= |Q| kzl( k1)+|Q|Z| | 1+q1
(32)
|Q|ZZ |)’z tin — 1) (B = tiet) >
i=1 k=1

A4—

N N
i=1 k=1

Theorem 7. Let f : ] x R — R be a continuous function.
Suppose that (H;) holds. In addition, we suppose the following:

(Hy) |f(t, 2y, 20, 23)| < u(t), V(t,2,25,25) € ] x R, and
p € C(J,R"),

(Hs) there exists a constant N > 0 such that |I,(x)| < N for
allx € R, fork=1,2,...,m

Then the impulsive functional qy-integrodifference boundary
value problem (1) has at least one solution on ] provided that

Q
(%) 4 |Q|Zl |Yl| (tz+1 ,- <1 (34)

Proof. Letsup, ;|u(t)] = ||lull. By choosing a suitable ball By =
{x € PC(],R) : |Ix|| £ R}, where

R> |y As+ Ay (35)
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and A;, A, are defined by (32) and (33), respectively; we
define the operators &/, and &/, on By by

(o,x)(t)

m+1
S0 2 |, F6x0x@0.(5,,)0)dy o

1 m
+ 52%’

i=0

X J; " Lu f (s,x (8),x(0(s)), (Sqix) (s)) dqis dq,-“

i i

ey

0<t<t 7tk

f(5x(),x06),(S, x)6)d, s
+ Lf f (5%, x0)),(8,x) () s,
(o) (2)
:ézuum»+—zz (tr 1) I (x(2)
k=1 i=1 k=1
+ ) Le(x ().

0<ty<t

(36)
For any x, y € By, we have

”‘Q{Ix +'Q[2)’"
|ﬁ| m+l
1Ql & z J

|Q|ZZ|yz|(tz+1 t)J qu,ls

i=1 k=1

- (" ! m|B| N
+Z L 1 qufls + Jt qus:| + 1l

k=1 — m

< u

|Q|Z|Vt J L d%quiu

t; i

m i
|Q|ZZ|YI|(tl+1 t)+mN

i=1 k=1

7
ﬂ+MW“ (tin —t)°
1o [ B - g
Z Z (tin —t;) (b = tiy)
i=1 k=1
N m i
+ m||g|| Ez Z Vrl (tig —t;) + mN
i=1 k=1
<R.
(37)

This implies that &/, x + &/, y € Bg.
To show that &/, is a contraction, for x, y € PC(J, R), we
have

2% = oty
< B 1 000 1 O )
+ 2 3 il s = ) ) 5 ()

+ ki | (x (1) = I (v (8))]

SK@59)4 ] =

From (34), it follows that o7, is a contraction.
Next, the continuity of f implies that operator &/, is
continuous. Further, ¢/, is uniformly bounded on By by

<=1
(38)

|, x|| < [l A 5. (39)

Now we will prove the compactness of &f,. Setting

SUP (1,2, 2, ey | f (20 20, 23) = f© < oo, then for
each 7,1, € (t,t;,,) for some !/ € {0,1,...,m} with 7, > 7,
we have

|(1x) (z,) = (1 x) (1)

Ln f(5x(5),x09)),(S%) () dys
| (40)
S (55915 O (535) ) dys

<l -n|f

As 77 — 1,, the right hand side above tends to zero
independently on x. Therefore, the operator o/, is equicontin-
uous. Since & ; maps bounded subsets into relatively compact
subsets, it follows that &/, is relative compact on By. Hence,
by the Arzeld-Ascoli theorem, &/, is compact on By. Thus,
all the assumptions of Lemma 6 are satisfied. Hence, by



the conclusion of Lemma 6, the impulsive functional g-
integrodifference boundary value problem (1) has at least one
solution on J. O

Our third existence result is based on Leray-Schauder
degree theory. Before proving the result, we set

_ B+l (t = tear)’
As = Tg{ & (bt 1)+5253qu1
1 L (t1+1 i) (tH—l i)3
+ @i;lﬂ |:£1 1—+ 52531+q1 p ]
+ ﬁz Z lyil (ki1 = 13) (41)
=1 k=1
& (e —tiy) +€2faw]
+ gk
m(|B] +1Q1) &,
|Q|ZI vl (tis1 = 1) T
Q m+1
Ag = % Z ngz(%l) +Q (e - tk—l)]
k=1 -1

(1+1 t) (H—l t)
|0|Z|Y’ [€2Q21+q,+q AT

EzQz% +Q, (ty —tiy) :|
m(lﬁl +1Q]) Qs
|Q|ZI |%l (tl+1 i |Q| .

(42)

Theorem 8. Assume that f : JxR® — Rand¢ : I’xR — R
are continuous functions. In addition we suppose the following.

(Hg) There exist constants £;,&, > 0 and Q, > 0 such that
|f (21,2, 25)| < & |oa| + & |2 + Q

(43)
V (2,25, 2;) € ] X R,

(H,) There exist constants &5 > 0 and Q, > 0 such that
lp(t,s,2)| <&zl +Q, Y (ts,2) € P xR. (44)
(Hg) There exist constants &, > 0 and Q5 > 0 such that

| (2)] <&, 1zl + Qs VzeR, k=1,2,...,m.  (45)

If
Ag <1, (46)
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where A 5 is given by (41), then the impulsive functional qy-
integrodifference boundary value problem (1) has at least one
solution on J.

Proof. We define an operator % : PC(J,R) — PC(J,R) as
in (22) and consider the fixed point problem:

x=Fx. (47)

We are going to prove that there exists a fixed point x €
PC(J, R) satistying (47). It is sufficient to show that 7 : B, —
PC(J, R) satisfies

x#AFKx, Vxe€0B, VAel0,1], (48)
where B, = {x € PC(J,R) : max,|x(t)| < p,p > 0}. We
define

HA,x)=AFx, xePC(J,R), A€]0,1]. (49)

It is easy to see that the operator % is continuous, uniformly
bounded, and equicontinuous. Then, by the Arzeld-Ascoli
Theorem, a continuous map h; defined by hy(x) = x -
H(A, x) = x — AF x is completely continuous. If (48) is true,
then the following Leray-Schauder degrees are well defined
and by the homotopy invariance of topological degree, it
follows that

deg (hA,BP,O)
= deg (I - A%, B,,0) = deg(hy, B,,0) (50)

= deg(hy, B,,0) = deg(I,B,,0) = 1#0, 0¢€B,,

P

where I denotes the identity operator. By the nonzero
property of Leray-Schauder degree, h,(x) = x — Fx = 0
for at least one x € B,. In order to prove (48), we assume that
x = AK x for some A € [0, 1]. Then

| Z x (t)]

£m+1 te
< Sup{Q Lk lf(s’x(5)>x(9(s))’(sqk 1 )(S)) k- 1

k=1 “"k-

(tk)) +3 Z%

XJ'M J;uf(s)x(s)’x(e(S))’(sqix) (S))d%sdqt‘u

£ i

+ _ZZYI (t1+1 i

11k1

x L:_ Fsx(),x @), (S, x)()d, s
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te s
+ —Zzy, (tir = 1) I (x (t)) x J <£1 lxll + & J (& el + Q) dy, v+ Ql> dg, s
l 1k=1 ti1 tr_y
t
+ J f (s,x (8),x(0(s)), (qux) (s)) qus |Q| z Z IY: tion — 1) (& Ixll + Q3)
ty i=1 k=1
+ Q] &
3 ([ S er x5 D)y A g g o)
0<ty<t |Q| k=1
= As x|+ A,
o) -
18| + 1 which implies that
=il A
6
i I < 7= (52)
[ (5505 @6 (5, %) ©)] s - |
1 If p= Ag/(1-Aj)+ 1, inequality (48) holds. This completes
the proof. O
1 m
i
IQ' 4. Examples
y J i1 J |f 6.x(9).x0(5), ( S x (s))| d,sd,u In this section, we will give some examples to illustrate our
t, main results.
Example 1. Consider the following boundary value prob-
| Q ; kzl il (b1 = 1) lem for nonlinear first-order impulsive functional g-

integrodifference equation:

tk
X J
i1

f(s,x(s),x(@ (5))’(8%1’6) (S))|qu715 D 12 sin(((e+1)/6)m) X ()

tsinmt x| 3tx (t/2)

|Q|ZZ [vil (ti1 = 1) | (x (1) Tt I+ 2+ 3)?
i=1k=1
t* 2t —s
L0 m + J x(8)d (14 s,
LBl |Z 1L (x (2) 2@ 1 12 b 2e ¥ O Ao
0 Rt
te], t#t,
_ Bl +19]
- Ax(tk)=%, =K k=124
— 2(k+3)+|x ()] 5
k
<> [ (& L a1
k=1 5} X(O) = gx(l) + Z <m> J; X(S) d(l/2)sin(((i+l)/6)7r)5'
s i=0 i
+&, J (& lIxll+Q,) d,, v+ Q1>quils (53)
k-1
Set J = [0,1], ¢ = (1/2)sin((k + 1)7/6) for k =
Zly 0,1,...,4,y, = 1/(i+2)fori = 0,1,...,4,m =4,T =1,
IQI ' 0(t) = t/2,

. Jt L < £ 1 f(txx0),(S,x))

t;
t*sinzt |x| 3tx (t/2)

S = —_
+&, J (& Ixl + Q) quV + Q1> dqudqi” Qt+4)% Ix[+1  2(t+3)? (54)
- t? tot—s
1 md T I = X () di1y)sin(erny/6mS
2 1 de
| | Zlkz l l+1 i (@ + ) t
i=1 k=1

and I;.(x) = [x(t )]/ (2(k + 3) + |x(t)]).
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Since
1
9 (t59) -9 (ts,2)| < Sy -2,

|f (& y1s y20 y3) = f (821,25, 23)]|

(55)
<sbi-al+ gzl g -zl
Sg Al Tt o~ &)
1
() - L@ < g ly-2l,
then (H,)-(H;) are satisfied with ¢, = 1/2, L, = 1/9,

L, = 1/6,L; = 1/8,and L, = 1/8. We can show that
A, = 0.9517257476 < 1. Hence, by Theorem 5, the boundary
value problem (53) has a unique solution on [0, 1].

Example 2. Consider the following boundary value prob-
lem for nonlinear first-order impulsive functional g-
integrodifference equation:

Dy e ()

1 cos t 2t
=&2%+(t+2)zsin2<x<—>>
(4t +3)" x*+2 3

5cosmt (! sin® (t —s) ©)d
3t +4) I (et + 1)2x * ey o>
t€]:[0,1], t:/:tk,

(56)

|x ()]

Ax(t,)) = ————————— +35si t.),
x (t) 5(k+4)+|x(tk)|Jr sinx (t)
k
t = -, k:1,2, a8)
k™9

1 S i+ 1 [l
2x(0) = Zx(l) + Z (1+—4> x (s) d(i+1)/W5~
i=0 £

Setq; = (k+1)/(Vek ) fork = 0,1,...,8, y; = (i+1)/(i+
4)fori=0,1,...,8, m=8,T=1,

F(10x©).(5,%))

B t?cosmt  x F(t+ 2)zsin2 (x<2t>>
(4t +3)2 K2 +2 3 (57)

. 5cos it Jt sin® (t — s)
3(et +4)2 J (et + 1)
0(t) = 2t/3, and L(x) = (|x(t;)|/(5(k + 5) + |x(t)]) +

3 sinmwx(ty,).
Since

1 1
'f (t, x,x(0), (qux))| < s |x| + e Sg.x

6t s, x)] < (1/4)|x], and |L(x)] < (1/25)|x|] + 3, then
(Hg)-(Hjg) are satisfied with &, = 1/18,&, = 1/15,&; = 1/4,
&, =1/25,Q, = 9,Q, = 0,and Q; = 3. We can show that
A5 = 0.9134109736 < 1. Hence, by Theorem 8, the boundary
value problem (56) has at least one solution on [0, 1].

x()d ) v

+9, (58)
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