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This paper is concerned with antiperiodic solutions for impulsive high-order Hopfield neural networks with leakage delays and
continuously distributed delays. By employing a novel proof, some sufficient criteria are established to ensure the existence and
global exponential stability of the antiperiodic solution, which are new and complement of previously known results. Moreover, an

example and numerical simulations are given to support the theoretical result.

1. Introduction

To describe mathematically a real evolution process with a
short-term perturbation, the impulsive differential equations
were proposed in many fields such as control theory, physics,
chemistry, population dynamics, biotechnologies, industrial
robotics, and economics [1-3]. In particular, high-order
neural networks with impulses have been studied extensively,
and there has been a great deal of the literatures focusing
on the existence and stability of equilibrium points, periodic
solutions, almost periodic solutions, and antiperiodic solu-
tions [4-13]. Reference [14] has introduced and studied the
existence and exponential stability of antiperiodic solutions
for the following Hopfield neural networks with time-varying
and distributed delays:
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Recently, great attention has been paid to neural networks
with time delay in the leakage (or forgetting) term (see
[15-19]). Specifically, Wang [20] considered the antiperiodic
solution of the following impulsive high-order Hopfield
neural networks with leakage delays:
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Under some reasonable conditions on coefficients of (2) and
the following additional conditions:

t—n(t)>0, VE>0,i=1,2,...,n 3)

Wang [20] deduced the criteria on the existence and expo-
nential stability of the antiperiodic solution for (2).

However, to the best of our knowledge, few authors
have investigated the existence and exponential stability of
the antiperiodic solution for impulsive high-order Hop-
field neural networks with leakage delays and continuously
distributed delays. Motivated by the above arguments, we
consider the antiperiodic solution for the impulsive high-
order Hopfield neural networks (IHHNNs) with leakage
delays and continuously distributed delays as follows:
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[ K0 G- w)du 1,0,
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wherei € A := {1,2,...,n} and n is the number of units
in a neural network, x;(t) corresponds to the ith unit of
the state vector at the time ¢, ¢;(f) > 0 represents the rate
with which the ith unit will reset its potential to the resting
state in isolation when disconnected from the network and
external inputs, a;;(t) and b,;(t) are the first- and second-
order connection welghts of the neural network, respectively,
1:(t), 7;;(t), and K;;(t) correspond to the leakage delay, the
transmission delays, and the transmission delay kernels,
respectively, g; and f; are the activation functions of signal
transmission, and I;(t) denotes the external input at time ¢.
Fori, j,l € W, we always assume that ¢, I;, a;;, b : R = R
and#;, 7;; : R — [0, +00) are bounded continuous functions,
and ¢ is bounded above and below by positive constants.
Consider the following : Ax;(t;) = x;(t]) — x;(t;), x;(t}) =
lim,, , gex;(t + AL), x;(t)) = limp, _, o-x;(t + At), i € N,
k =1,2,....t, > 0 are impulsive moments satisfying ;, <
try and limy _,, t, = +00. @(t) = ((pl,goz,...,(pn)T is the
initial condition and ¢;(-) denotes a real-valued continuous
function defined on (-00,0], i € /. It is easy to see that the
system (1) is a special case of system (4) with #;(t) =

The purpose of this paper is to discuss the existence
and exponential stability of antiperiodic solutions for system
(4) without the additional condition (3) since it is unduly
restrictive and unreasonable. The outline of the paper is as
follows. In Section 2, we establish some preliminaries and
basic results, which are useful to derive sufficient conditions
on the existence and exponential stability of antiperiodic
solutions for system (4) in Section 3. In Section 4, we give an
example with numerical simulations to illustrate our results.
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2. Preliminaries and Basic Results

Throughout this paper, we assume that the following condi-
tions hold.

(H,) Fori, j,l € #andk € Z", where Z" denotes the set of
all positive integers, there exists constant w > 0 such
that
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where £,v € Rand v; and v; are real-valued bounded
continuous functions defined on R.

(H,) Fori, j,1 € /¥, there exist constants ¢, 117, I}, a;;, 7;;
and b, j1 such that
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(H;) Consider -2 < d; <0fori€ # andk € Z".

(H,) There exists a g € Z* such that

ditkrg) = dir> tirq = Ik T @. @)

(H;) For each j € ./, the activation functions f;, g; :
R — R are continuous and there exist nonnegative

constants LJ; , ij., and M i such that, for all u,v € R,
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R are continuous, and IK ()| are 1ntegrable on
[0, 00) for a certain posmve constant x.
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For ease of notations, let R” be the set of all real vectors
and denote x = (xy,x,,... ,xn)T € R" as a column vector,
in which the symbol (T') represents the transpose of a vector.
As a general rule of the theory of impulsive differential
equations, we assume that x(t) = (x;(£), x,(£), ..., xn(t))T =
(x,(t=0), x,(t = 0),...,x,(t - 0))7 at the points of disconti-
nuity t; of the solution x(t). From system (4), it is easy to
see that the derivative x;(t,) does not exist in general. On
the other hand, according to system (4), there exists the limit
x;(t, ¥ 0). On account of the above convention, we suppose
that x| (t) = x] (t; - 0).

Definition 1. A solution x(t) of (4) is said to be w-
antiperiodic, if
x(t+w)=-x(), t#t,
(10)
x((tk + w)+) =-x(t;), keZ,

where the smallest positive number w is called the antiperiod
of function x(t).

In the sequel, we prove some lemmas which will be used
to prove our main results in Section 3.

Lemma 2. Suppose that (H,)-(H;) hold. If x(t) =
(xl(t),xz(t),...,xn(t))T is a solution of system (4) with
initial conditions

t
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Proof. For t in the interval of existence and i € ./, let

X; () = x; (t) - J-t ¢ (s) x; (s) ds. (15)
-1

On the one hand, suppose that (12) holds. Then, for a
given 7 > 0 in the interval of existence and i € ./, we acquire

|x; (0] < |X; (0] +

t
J G (s)x;(s)ds
= (t)

(16)
<5V ¢'nf sup |x;(s)| fort e (—o0,7],
n se(—oof]
which combined with (H,) implies that (13) holds.
On the other hand, in view of (H;), we have
i (8] = 1+ ] |, (8] < | ()] - a7
Sg, i+flxi(t2)| > &(y/m)/(1-c¢'n)), then |x; ()| > &(y/n)/(1-
G ;)
Thus, considering the above two cases, it is sufficient to
prove (12). We proceed this by contradiction. Suppose that

(12) does not hold; then there exist i € .4 and t, € (tistisr)
such that

Y
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(18)
It follows that (13) holds for all t € (-o0,t,) andi € /. By
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This, together with (H,), (Hs)-(H;), (18), and the fact that
(13) holds for all ¢ € (—co,t,) and i € ./, we obtain
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It contradicts D™|X(t,)| = 0. Hence, (12) holds. The proof is
now completed. O

Remark 3. Under conditions (H,)-(H,), the solution of
system (4) always exists (see [1, 2]). On account of the
boundedness of this solution, it follows from the theory of
impulsive differential equations in [1] that the solution of
system (4) can be defined on [0, +00).
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Lemma 4. Suppose that (H,)-(H,) are true. Let x*(t) =
() (), x5 (1), ... xZ(t))T be the solution of system (4) with
initial value ™ (t) = (¢, (t), 95 (t),... ,(p;(t))T, and let x(t) =
(%, (), %, (), ..., x,(t))" be the solution of system (4) with

initial value ¢(t) = (¢, (£), @,(t), ..., (pn(t))T. Then, there exists
a positive constant A such that
(e—At) ,

Proof. With the help of (H,) and a similar discussion as that
in the proof of (2.9) in [20], we can selectx > A > 0and7 > 0
such that ¢;(t) > A, and

~[(c(p) =2 (1 -2¢'))
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+ ZZ' lJl '
j=1l=1
X<ij K (”)'d”j Ky ()] € du
0
x LI & J |K (u)|e’\”du
ll— +11
x L7 Ej J |K-1(u)|duMl
TR
< _ﬁ; tZO, i€ ./V.
(22)
Let y(t) = x(t) - x*(t) and Y;(t) = €Yyt) -

jf_m o ()" yi()ds, i € A Then,
PACERIOBARYAG)
+ Jz] 0 £, (x; (7))
£ (%] (t -7 0))]
+ZZ by (8) “ K, ) g, (x; (¢ — ) du

j=11=1
x| K@) 1o 6 - )
0
- Jo K;; (u) g; (x; (t - u)) du
X J Ky (w) g, (x] (t —w)) du] ,
0

t>0,
keZz*,

t#:tk)

J’i+ (t;) = (1+dy) y; (te)»
(23)

which leads to
Y] (£) = AeMy, (t) + Myl ()
~la®ey - (1-4®)g(t-n®)
x Oy (- ()]
= Ae’hyi )
~la@wey e - (1-4 )
x¢ (t—n; (1)) eMt_m(t))J’i (t—n (t))]

+e ‘|_Ci () y; (t = 1; (1))
+ a0 [f; (x; (t -7 0))
=
—f; (%] (-7, ®))]

1]1 (t)

+
M=
[\’Jx

1

LOO Kij (u) g; (xj (t - u)) du

[e)
XJ’
0

™ K;; (u) g (x; (t- u)) du

0
X J Ky () gy (x/ (t—u))du] }
0

MY (t) -

T
I
L

X

—

Ky (u) g (x; (t —w)) du

= (g - (¢ (t) = )
X Jt G(s)e Sy,- (s)ds
t=n;(t)
- [Ci ) - (1 -1 (t)) G(t-n®) e*/\ﬂ,-(t)]
x My, (£=1;(2)
+e lzaij ) (f] (xj (t - T (t)))
=
~f; (%] (t =7 ®))))
+ Z zbijl (1)

j=1l=1

><<J0 Kij(u)gj(x(t—u))du
x| K 9 a6 - )

0

8

8

J (u)g] x (t - u))du

0

XL Ky (u) gy (2 (t - ”))d”):|

t>0, t#t,

(24)



|V; (6] = (1 +dy) Y; (1) - (25)

We define a positive constant M as follows:
M = max{ sup |Y; (s)|} ) (26)

i€ | se(-000]
There is a positive number K such that

Y; ()] < M < KE, Vte(-00,0],ie. (27)

We assert that
[Y; ()| <K&, Vt>0,iel. (28)

Clearly, (28) holds for t = 0. We first prove that (28) is true
for 0 < t < t;. Otherwise, there existi € ./ and p € (0,¢,]
such that

Vi (p)| = K&, |Y;()| <K&, Vtelo,p), jes.
(29)
It follows that, for t € [0, p) and j € A/,
t
M 'yj (t)| < eMyj (t) - J ¢ (s) eAsyj (s)ds
t=n;(t)
t
+ J ¢ (s) e"syj (s)ds (30)
t=n;(t)
< K&, +C+ T sup e -(s)|,
sE —00,p
and thus
K¢,
Mol s lyols 5 @
s€(—co,p] G

Calculating the upper left derivative of |Y;(t)], together with
(22)’ (24)’ (29)) (31)’ (HZ)) and (HS)_(H7)’ we get
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KE,
+a ()" = (1= (p)) & (p = s (p))] = flﬂf
K¢,
Lf At; (P) J
QI
Y3 o ] (M, [ I 0]
j=li=1 0
0 Au g KEZ
X L |K;; ()| e dul] o
Au g J
+ L 'Kij (u)'e duLj—1 - C;’/I;
X JOO |K;; ()| duMl>
0
= { -~ [(a(p) = M) (1 ~2¢"n)
|c (p) ™™ — (1 -7 (p))
(e (P)]] 1 o o
n . E
* J; 'aij (P)' Lﬁel w 1- c]J.*n]f
X o ] (M, [ i 0]
j=11=1 0
X ro K,y (w)] e du
0
g El
x L7 1= C1+’71+
h Au
+ L 'Kij (u)' edu
x LY Ej
T1-cin;
X Jm |Kil (u)| duMl> } K
0
< -yK <0,
(32)

which is a contradiction. Therefore, (28) holds for ¢ € [0, ¢,].
From (25), (28), (31), and (H;), we know that

K&, .
|yl(t |M1 1_;?_, ieAN,
bAGY] M = |1+ d ]y ()] M (33)
Aty KEI- .
<y (t)]e™ < o ien.

Thus, using the same argument as the above procedure, we
can obtain

K¢

+ .+
1-¢'n;

ly; (£)] ™ Vte[t,t,], ieN.  (34)

7

Further, we have
|y; (1) " 1_K5+ o VE>0, e (35)

That is,
|x; (1) = x; ()] < 1_Kf+ Te‘“, VE>0,ie . (36)
i Mi

O
Remark 5. If x*(t) = (xf(t),x;(t),...,x;(t))T is an w-

antiperiodic solution of system (4), it follows from Lemma 4
that x”(t) is globally exponentially stable.

3. Main Results

In this section, we will study the existence and global
exponential stability of the antiperiodic solution for system

(4).

Theorem 6. Suppose that all conditions in Lemma 4 are
satisfied. Then, system (4) has exactly one w-antiperiodic
solution x™ (t). Moreover, x*(t) is globally exponentially stable.

Proof. Let x(t) = (x,(t), x,(t),... ,xn(t))T be a solution of
system (4). By Remark 3, the solution x(¢) can be defined for
all t € [0, +00). By hypotheses (H, ), we have, for any natural
number handi € ./,

(D)™, (t+ (h+ D @)
= ()" (xt+ (h+ Do
x{-¢(t+h+1)w)
xx;(t+th+Dw-n;(t+(h+1)w))

) _ h+1

+ zn:a,.j t+h+1)w)

Jj=1

< fi(x;(t+ (h+ Dow-

Z zjl(t+(h+1)w)

I=1

X Joo Kij (u) g; (xj t+th+DHw —u))du

0

7 (t+(h+ 1) w)))

M=

+

-
Il
—

X JOOKH () gy (% (t+ (h+1)w—u))du
0
+1(t+(h+1) w)}

= (-1)"! <|—ci ) x; (t+(h+ 1) w-7n;(t))
+ Y a0 (1) £,
j=1

< ()" (t+ (h+ D -1, (1))

+
.M:
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<.
1l
—
I

1"y (1)
1



X L K,»j (u) 9;
X ((—1)h+1xj t+th+D)w- u)) du
X L K (u) gy
(1), (t+ (h+ D) w—u)) du
+ DML @) }
= () )" %+ (h+ D w—n, (1))

+ Y a; () f; (CD)"'x (t+ (h+ Dw-1,;(1)))

-
—

n

Zbijl (t)

I=1

+

M=

J

X Loo K; () g; ((—1)h+1xj (t+(h+1)w-u)du

Il
—

X ro Ky () g ((-1)""%, (¢ + (h+ 1) 0 - ) du
0
+1;(t), t#t.
(37)

Further, by hypothesis of (H,), we obtain
D" (e + (h+ D w)")
= (-)"'x; (tlt+(h+1)q)
= (1" (14 diger ) Xi (Besnang) (38)
= (1+dy) D" 'x, (8 + (h+ D w),
k=12,....
Hence, for any natural number h, we obtain that (—1)h+1x(t +

(h + 1)w) is a solution of system (4) for all t + (h + 1)w > 0.

Hence, —x(t + w) is also a solution of (4) with initial values:
-x;(s+w), se€(-00,0], i€ (39)

Then, by the proof of Lemma 4, for i € ./, there exists a
constant K > 0 such that, for any natural number h,

|1, (8 + (h+ 1) @) = (-1)"x; (¢ + ho)|
= |x; (t + hw) = (—x; (t + ho + w))|
Kg; pE+ho)

“Ton
K¢, —At( 1 )h
= e — ), t+hw=>0, t+t,,
1-c¢'yf el k

. +y (40)
=1, (8 + (i + D) @)") = (=1)x; (8 + heo) )|

= |1+ dy] |x; (8 + hw) = (=x; (t; + hw + w))]
KE; o Meithe)

A
h
_ KEz e*/\i}(i) , k € Z+.
1-¢'nf eto
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Furthermore, for any natural number m and i € //, we can
obtain

(1) x; (t+ (m+ 1) w)

=x; O+ Y [(D"x (t+ (h+ D w)

h=0
—(—l)hx,- (t+ hw)] , t+hw=0, t#t,
D™ (e + (m+ D w)")

=x; (t;) + Z [(—l)h”xi ((tk +(h+ 1)w)+)
h=0

~(-1"x; ((t +hw) )], kez'
(41)

Due to (40)—(41), we know that (—1)" x(¢ +mw) converges
uniformly to a piecewise continuous function x*(f) =
(o) (), x5 (t), ..., x,, )" on any compact set of R.

Next, we show that x*(¢) is an w-antiperiodic solution of
system (4). It is easy to see that x* (¢) is w-antiperiodic, since

x; (t+w)= mlinzoo(—l)mx,» (t + 0 + mw)
=— lim (-1)""x(t+(m+1)w)

m+1 — +00

=-x; (t), t#t,
x; ((tk + w)+)

_ . _ m+1 ) +
= m&linmo( D™ x; ((tk +(m+1)w) )
=-x; (t{), keZ,

(42)

where i € /. Observing that the right side of (4) is
piecewise continuous, together with (37) and (38), we find
that {(—1)’"“xlf(t + (m + 1)w)} converges uniformly to a
piecewise continuous function on any compact set of R \
{t;,t5,...}. Therefore, letting m — +00 on both sides of (37)
and (38), we get

xI'(t) = —q®)x (t-n (1)

+ a0 f; (] (- 7))
j=1

+ 3 Y by (t) JOO Ky () g; (] (t —w)) du
j=11=1 0 (43)

X L Ky (w) g, (x (t —u))du
+I(1), t>0, t#t,

X (6) = (L di)x; (4), keZz',
i€,

Thus, x*(t) = (x] (£), x5(t), ..., x:l(t))T is an w-antiperiodic
solution of system (4).

Finally, adopting the same procedure as in the proof of
Lemma 4, we can show that x*(¢) is globally exponentially
stable. This completes the proof. O
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4. An Example

In this section, we provide an example to demonstrate the
results obtained in the previous sections.

Example 1. Consider the following IHHNNs consisting of
two neurons with leakage delays and continuously distributed
delays:

! |cos nt|>
t)= —-1.5 t— —
* 1) E ( 1000
sinrt
S £y (- 2 s
|cos 7it| cos 7t
> f> (x, (t = 2 |cos mit])) + >
x H sinue “g; (x, (t —u)) du
X J cosue “g; (x; (t —u))du
0
+J- sinue “g; (x, (t —u)) du
0
(0]
X J sinue g, (x, (t —u)) du
0
+ J cos2ue " g, (x, (t —u)) du
0
X J- sin2ue “g; (x; (t —u)) du
0
[0
+ J cos2ue g, (x, (t —u)) du
0
X J cos2ue “g, (x, (t —u)) du]
0
+ 10 sin 7tt,
|cos mt|
x; (t) = - 1.5x, (t ~ 1000 )
cos 7t
+ I £ (- 2 eosmt))
sin 7tt . sin 7tt
l |f2( , (t =2 |sin7t])) + >

x [JOO sinue g, (x, (t —u))du

X

<'>—é°

cosue g, (x; (t —u))du
+ JOO sinue g, (x, (t —u))du
X J'oo sinue “g, (x, (t —u))du
+ JOO cos2ue “g, (x, (t —u)) du
X JOO sin2ue “g; (x; (t —u)) du

+ J cos2ue “g, (x, (t —u)) du

[e¢]
X J cos2ue g, (x, (t —u)) du | + 10 cos rt,
0

t+k-0.5,
x; (tg) = (1 +dy) x; () »
diag) = 2, dias-1) = —1,
te=k-05 i=1,2
k,s=1,2,....
(44)

Here, it is assumed that the activation functions

f1 (x)
91 (x) =g, (x) =
Note that

=f2 (x) = 2X,

[x+ 1| —]x—-1]. (45)

=1)=19=19=2, M,=M,=2
q()=¢ () =15,

|sin 7rt|
a,, (t) = ———,
11 ( ) 32

|cos e
ay (t) = Y

bnz (t) =

LOO 'Kij (u)' du<l,

|cos mt|

32
|sm 7Tt|

2()_ >

costt
by, (1) = BT (46)

sin 7t

t >
222 ( ) 32

a,, (t) =

>

b111 (1) = b121 (t) =

byyy (t) = byyy () = by, () =

|cos 7t|
= t) = s
1, (t) 1000
L, (t) = 10 cos 7it,
Ty, (t) = 2|cosmt|,

T,, (t)

1 (£)

I, (t) = 10 sin ¢,
7, (t) = 2 |sin7t],

Ty, (t) = 2|cos mt|, =2 |sin7t|.

Then, we obtain

~la®@-2¢"%) -] @ - (1 -7 ()6 (-1 0)|]

+ +Z|aij(t)|L§1 + + +ZZ' Jl(t)|

i =1 L=

X (Mj L |Kij (u)|du L |Kﬂ (u)| duL‘?l mp

J |K (u)| duLg

E o)
By L K (u)|d“Mz>

1
<—[1.5<1—2>< > 5x = ]
1000 1000 T—1.5/1000

1

+ — X2X ——— X2
32 1-1.5/1000

+ — <2 X 2 X ! +2 X ! X 2>
32 1-1.5/1000 1-1.5/1000
x4=-03619<-03, &=1,i=12.
(47)
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ffJﬂ

o
~ =T
=

0 5 10 15 20 25 30 35 40 45 50
— x (1)

(b)

FIGURE 1: Numerical solutions x(t) = (xl(t),xz(t))r of system (1) for initial value ¢(t) = (10, -13)%, (=10, 13)7, (0,0)7, ¢ € (=0, 0].

It follows that system (1) satisfies all the conditions
in Theorem 6. Therefore, system (1) has exactly one 1-
antiperiodic solution. Moreover, the l-antiperiodic solution
is globally exponentially stable. The fact is verified by the
numerical simulations in Figure 1.

Remark 7. Since [4-13] mainly obtained the stability results
on the impulsive Hopfield neural networks without leakage
delays and [15-19] dealt with nonimpulsive neural networks,
it can be observed that all the results in the literature and
the references therein cannot be applicable to prove the
existence and exponential stability of 1-antiperiodic solution
for IHHNNS (1). Furthermore,

|cos 7t
1000

is possible for some ¢ > 0,7 = 1, 2; one can find that the results
in [20] are invalid. This implies that the results of this paper
are essentially new.

t—n @) =t- (48)
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