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This paper presents approximate analytical solutions for the fractional-order Brusselator system using the variational iteration
method. The fractional derivatives are described in the Caputo sense. This method is based on the incorporation of the correction
functional for the equation. Two examples are solved as illustrations, using symbolic computation.The numerical results show that
the introduced approach is a promising tool for solving system of linear and nonlinear fractional differential equations.

1. Introduction

In recent years, fractional differential equations (FDEs) have
been the focus of many studies due to their appearance in
various fields such as physics, chemistry, and engineering
[1–3]. On the other hand, much attention has been paid to
the solutions of fractional differential equations. Since most
fractional differential equations do not have exact analytic
solutions and approximate and numerical techniques, there-
fore, they are used extensively. Recently, theAdomian decom-
positionmethod, homotopy perturbationmethod, homotopy
analysis method, and differential transform method have
been used for solving a wide range of problems [4–10].

Another powerful analytical method, called the varia-
tional iteration method (VIM), was first introduced in [11].
This technique has successfully been applied to many situ-
ations: for example, see [12–17]. Reference [18] was the first
where the variational iteration method was applied to frac-
tional differential equations. Odibat and Momani [19] imple-
mented the variational iteration method to solve partial dif-
ferential equations of fractional order.

In this paper, we introduce a new application of the vari-
ational iteration method to provide approximate solutions

of the fractional-order Brusselator system in the following
form:

𝐷
𝛼
1

𝑡
𝑥 (𝑡) = 𝑎 − (𝜇 + 1) 𝑥 (𝑡) + 𝑥(𝑡)

2

𝑦 (𝑡) ,

𝐷
𝛼
2

𝑡
𝑦 (𝑡) = 𝜇𝑥 (𝑡) − 𝑥(𝑡)

2

𝑦 (𝑡) ,

(1)

subject to the initial conditions

𝑥 (0) = 𝑐
1
, 𝑦 (0) = 𝑐

2
, (2)

with 𝑎 > 0, 𝜇 > 0, 0 < 𝛼
𝑖
≤ 1 (𝑖 = 1, 2), and 𝑐

1
, 𝑐
2
are

constants.
𝐷
𝛼
𝑖 is used to represent the Caputo-type fractional

derivative of order 𝛼
𝑖
.

The Riemann-Liouville definition of the fractional inte-
gration [2] is given by

𝐼
𝛼

𝑡
𝑥 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝜁)
𝛼−1

𝑥 (𝜁) 𝑑𝜁 𝛼 > 0, 𝑡 > 0. (3)

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 496323, 6 pages
http://dx.doi.org/10.1155/2014/496323

http://dx.doi.org/10.1155/2014/496323


2 Abstract and Applied Analysis

For our purpose in this paper, we adopt Caputo’s fractional
derivative [2]:

𝐷
𝛼

𝑡
𝑥 (𝑡)

=

{{{{

{{{{

{

1

Γ (𝑛 − 𝛼)
∫
𝑡

0

(𝑡 − 𝜁)
𝑛−𝛼−1

𝑥
(𝑛)

(𝜁) 𝑑𝜁 𝑛 − 1 < 𝛼 < 𝑛,

𝑑
𝑛

𝑥 (𝑡)

𝑑𝑡𝑛
𝛼 = 𝑛,

(4)

where 𝑛 is a positive integer and Γ(⋅) is the Gamma function.
In particular, 0 < 𝛼

𝑖
< 1, and we have

𝐷
𝛼

𝑡
𝑥 (𝑡) =

1

Γ (1 − 𝛼)
∫

𝑡

0

(𝑡 − 𝜁)
−𝛼

𝑥


(𝜁) 𝑑𝜁. (5)

The fractional-order Brusselator system has been con-
sidered by several authors recently [20–22]. Gafiychuk and
Datsko investigated its stability [20]. Wang and Li proved
by numerical method that the solutions of the fractional-
order Brusselator system have a limit cycle [22]. We used the
variational iteration method to investigate the approximate
solutions of the fractional-order Brusselator system.

2. Variational Iteration Method

The principles of the variational iteration method and its
applicability for various kinds of differential equations are
given in [23, 24]. In [18], it was shown that the variational
iteration method is also valid for fractional differential
equations. In this section, following the discussion presented
in [18], we extend the application of the variational iteration
method to solve the fractional Brusselator equation:

𝐷
𝛼
1

𝑡
𝑥 (𝑡) = 𝑎 − (𝜇 + 1) 𝑥 (𝑡) + 𝑥(𝑡)

2

𝑦 (𝑡) ,

𝐷
𝛼
2

𝑡
𝑦 (𝑡) = 𝜇𝑥 (𝑡) − 𝑥(𝑡)

2

𝑦 (𝑡) .

(6)

According to the variational iteration method, we can con-
struct the correction functional for (6) as

𝑥
𝑛+1

(𝑡) = 𝑥
𝑛
(𝑡) + 𝐼

𝛼
1

𝑡
[𝜆
1
(𝐷
𝛼
1

𝑡
𝑥
𝑛
(𝑡) − 𝑎 + (𝜇 + 1) 𝑥

𝑛
(𝑡)

−𝑥
2

𝑛
(𝑡) 𝑦
𝑛
(𝑡))]

= 𝑥
𝑛
(𝑡) +

1

Γ (𝛼
1
)
∫

𝑡

0

(𝑡 − 𝜁)
𝛼
1
−1

𝜆
1
(𝜁)

× (𝐷
𝛼
1

𝜁
𝑥
𝑛
(𝜁) − 𝑎 + (𝜇 + 1) 𝑥

𝑛
(𝜁)

−𝑥
2

𝑛
(𝜁) 𝑦
𝑛
(𝜁)) 𝑑𝜁,

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡) + 𝐼

𝛼
2

𝑡
[𝜆
2
(𝐷
𝛼
2

𝑡
𝑦
𝑛
(𝑡) − 𝜇𝑥

𝑛
(𝑡)

+𝑥
2

𝑛
(𝑡) 𝑦
𝑛
(𝑡))]

= 𝑦
𝑛
(𝑡) +

1

Γ (𝛼
2
)
∫

𝑡

0

(𝑡 − 𝜁)
𝛼
2
−1

𝜆
2
(𝜁)

× (𝐷
𝛼
2

𝜁
𝑦
𝑛
(𝜁) − 𝜇𝑥

𝑛
(𝜁) + 𝑥

2

𝑛
(𝜁) 𝑦
𝑛
(𝜁)) 𝑑𝜁,

(7)

where 𝜆
𝑖
, (𝑖 = 1, 2) are the general Lagrangemultiplier, which

can be identified optimally via variational theory [25, 26].
To identify approximately Lagrange multiplier, some

approximations must be made. The correction functional
equation (7) can be approximately expressed as follows:

𝑥
𝑛+1

(𝑡) = 𝑥
𝑛
(𝑡) + ∫

𝑡

0

𝜆
1
(𝜁) (𝑥



𝑛
(𝜁) − 𝑎 + (𝜇 + 1) 𝑥

𝑛
(𝜁)

−𝑥
2

𝑛
(𝜁) 𝑦
𝑛
(𝜁) ) 𝑑𝜁,

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡) + ∫

𝑡

0

𝜆
2
(𝜁) (𝑦



𝑛
(𝜁) − 𝜇𝑥

𝑛
(𝜁)

+𝑥
2

𝑛
(𝜁) 𝑦
𝑛
(𝜁) ) 𝑑𝜁,

(8)

where 𝑥
𝑛
and 𝑦

𝑛
are considered as restricted variations, in

which 𝛿𝑥
𝑛
= 𝛿𝑦
𝑛
= 0. To find the optimal 𝜆

1
and 𝜆

2
, we

proceed as follows:

𝛿𝑥
𝑛+1

(𝑡) = 𝛿𝑥
𝑛
(𝑡) + 𝛿∫

𝑡

0

𝜆
1
(𝜁) (𝑥



𝑛
(𝜁) − 𝑎 + (𝜇 + 1) 𝑥

𝑛
(𝜁)

−𝑥
2

𝑛
(𝜁) 𝑦
𝑛
(𝜁) ) 𝑑𝜁 = 0,

𝛿𝑦
𝑛+1

(𝑡) = 𝛿𝑦
𝑛
(𝑡) + 𝛿∫

𝑡

0

𝜆
2
(𝜁) (𝑦



𝑛
(𝜁) − 𝜇𝑥

𝑛
(𝜁)

+𝑥
2

𝑛
(𝜁) 𝑦
𝑛
(𝜁) ) 𝑑𝜁 = 0.

(9)

The stationary conditions can be obtained as follows:

𝜆


1
(𝜁)

𝜁=𝑡
= 0, 1 + 𝜆

1
(𝜁)

𝜁=𝑡
= 0 ⇒ 𝜆

1
(𝜁) = −1,

𝜆


2
(𝜁)

𝜁=𝑡
= 0, 1 + 𝜆

2
(𝜁)

𝜁=𝑡
= 0 ⇒ 𝜆

2
(𝜁) = −1.

(10)

We substitute 𝜆
𝑖
(𝜁) = −1, (𝑖 = 1, 2) into the functional

equation (11) to obtain the following iteration formula:

𝑥
𝑛+1

(𝑡) = 𝑥
𝑛
(𝑡) − 𝐼

𝛼
1

𝑡
[𝐷
𝛼
1

𝑡
𝑥
𝑛
(𝑡) − 𝑎 + (𝜇 + 1) 𝑥

𝑛
(𝑡)

−𝑥
2

𝑛
(𝑡) 𝑦
𝑛
(𝑡)] ,

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡) − 𝐼

𝛼
2

𝑡
[𝐷
𝛼
2

𝑡
𝑦
𝑛
(𝑡) − 𝜇𝑥

𝑛
(𝑡)

+𝑥
2

𝑛
(𝑡) 𝑦
𝑛
(𝑡)] .

(11)
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Figure 1

The initial approximations 𝑥
0
(𝑡) and 𝑦

0
(𝑡) can be freely

chosen if they satisfy the initial conditions of the problem.
Finally, we approximate the solutions𝑥(𝑡) = lim

𝑛→1
𝑥
𝑛
(𝑡) and

𝑦(𝑡) = lim
𝑛→1

𝑦
𝑛
(𝑡) by the 𝑛th terms 𝑥

𝑛
(𝑡) and 𝑦

𝑛
(𝑡).

3. Illustrative Examples

For purposes of illustration of (VIM) for solving Brusselator
equation, we present two examples.

Example 1. Consider the following fractional-order Brussela-
tor system:

𝐷
𝛼
1

𝑡
𝑥 (𝑡) = −2𝑥 (𝑡) + 𝑥(𝑡)

2

𝑦 (𝑡) ,

𝐷
𝛼
2

𝑡
𝑦 (𝑡) = 𝑥 (𝑡) − 𝑥(𝑡)

2

𝑦 (𝑡) ,

(12)

with the initial conditions:

𝑥 (0) = 1, 𝑦 (0) = 1. (13)

According to the variational iteration method and (11), the
iteration formula for (12) is given by

𝑥
𝑛+1

(𝑡) = 𝑥
𝑛
(𝑡) − 𝐼

𝛼
1

𝑡
[𝐷
𝛼
1

𝑡
𝑥
𝑛
(𝑡) + 2𝑥

𝑛
(𝑡)

−𝑥
2

𝑛
(𝑡) 𝑦
𝑛
(𝑡)] ,

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡) − 𝐼

𝛼
2

𝑡
[𝐷
𝛼
2

𝑡
𝑦
𝑛
(𝑡) − 𝑥

𝑛
(𝑡)

+𝑥
2

𝑛
(𝑡) 𝑦
𝑛
(𝑡)] .

(14)

By using the above variational iteration formula, if we start
with the initial approximations 𝑥

0
(𝑡) = 1 and 𝑦

0
(𝑡) = 1, we

can obtain directly the other components as

𝑥
1
(𝑡) = 1 −

𝑡
𝛼
1

Γ [𝛼
1
+ 1]

,

𝑦
1
(𝑡) = 1,

𝑥
2
(𝑡) = 1 −

𝑡
𝛼
1

Γ [𝛼
1
+ 1]

+
𝑡
3𝛼
1Γ [2𝛼

1
+ 1]

Γ[1 + 𝛼
1
]
2

Γ [1 + 3𝛼
1
]

,

𝑦
2
(𝑡) = 1 +

𝑡
𝛼
1
+𝛼
2

Γ [𝛼
1
+ 𝛼
2
+ 1]

−
𝑡
2𝛼
1
+𝛼
2Γ [2𝛼

1
+ 1]

Γ[𝛼
1
+ 1]
2

Γ [1 + 2𝛼
1
+ 𝛼
2
]

,

...
(15)

and so on; in the same way the rest of the components of
the iteration formula can be obtained. Figures 1(a) and 1(b)
show comparison between the approximate solutions (𝑥(𝑡) ≅
𝑥
5
(𝑡)), ((𝑦(𝑡) ≅ 𝑦

5
(𝑡)) of (12) obtained using VIM for the

special case 𝛼
1
= 𝛼
2
= 0.98 and the numerical solutions for

the special case 𝛼
1
= 𝛼
2
= 1, respectively. Figures 2(a) and

2(b) show the approximate solutions (𝑥(𝑡) ≅ 𝑥
5
(𝑡)), ((𝑦(𝑡) ≅

𝑦
5
(𝑡)) of (12) using VIM for the special case 𝛼

1
= 𝛼
2
= 1 and

the numerical solutions, respectively.

Example 2. Consider the following fractional-order Brusse-
lator system:

𝐷
𝛼
1𝑥 (𝑡) = 0.5 − 1.1𝑥 (𝑡) + 𝑥(𝑡)

2

𝑦 (𝑡) ,

𝐷
𝛼
2𝑦 (𝑡) = 0.1𝑥 (𝑡) − 𝑥(𝑡)

2

𝑦 (𝑡) ,

(16)
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with the initial conditions:

𝑥 (0) = 0.4, 𝑦 (0) = 1.5. (17)

The correction functional for (16) turns out to be

𝑥
𝑛+1

(𝑡) = 𝑥
𝑛
(𝑡) − 𝐼

𝛼
1

𝑡
[𝐷
𝛼
1

𝑡
𝑥
𝑛
(𝑡) − 0.5 + 1.1𝑥

𝑛
(𝑡)

−𝑥
2

𝑛
(𝑡) 𝑦
𝑛
(𝑡)] ,

𝑦
𝑛+1

(𝑡) = 𝑦
𝑛
(𝑡) − 𝐼

𝛼
2

𝑡
[𝐷
𝛼
2

𝑡
𝑦
𝑛
(𝑡) − 0.1𝑥

𝑛
(𝑡)

+𝑥
2

𝑛
(𝑡) 𝑦
𝑛
(𝑡)] .

(18)

By the above variational iteration formula and beginningwith
the initial approximations 𝑥

0
(𝑡) = 0.4 + (0.5 × 𝑡

𝛼
1/Γ[𝛼
1
+ 1])

and 𝑦
0
(𝑡) = 1.5, we can obtain directly the other components

as

𝑥
1
(𝑡) = 0.4 +

0.5𝑡
𝛼
1

Γ [𝛼
1
+ 1]

+
0.05𝑡
2𝛼
1

Γ [2𝛼
1
+ 1]

+
0.119316

𝛼
1𝑡
3𝛼
1

Γ [2𝛼
1
+ 1] Γ [3𝛼

1
+ 1]

−
0.2𝑡
𝛼
1

Γ [𝛼
1
+ 1]

,

𝑦
1
(𝑡) = 1.5 −

0.55𝑡
𝛼
1
+𝛼
2

Γ [𝛼
1
+ 𝛼
2
+ 1]

−
0.375𝑡

2𝛼
1
+𝛼
2Γ [2𝛼

1
+ 1]

Γ[𝛼
1
+ 1]
2

Γ [2𝛼
1
+ 𝛼
2
+ 1]

−
0.2𝑡
𝛼
2

Γ [𝛼
2
+ 1]

,

...

(19)

and so on; in the same manner the remaining set of the com-
ponents of the iteration formula can be obtained. Figures 3(a)
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and 3(b) show comparison between the approximate solu-
tions (𝑥(𝑡) ≅ 𝑥

4
(𝑡)), ((𝑦(𝑡) ≅ 𝑦

4
(𝑡)) of (16) obtained using

VIM for the special case 𝛼
1
= 𝛼
2
= .98 and the numerical

solutions for the special case 𝛼
1

= 𝛼
2

= 1, respectively.
Figures 4(a) and 4(b) show the approximate solutions (𝑥(𝑡) ≅
𝑥
4
(𝑡)), ((𝑦(𝑡) ≅ 𝑦

4
(𝑡)) of (16) using VIM for the special case

𝛼
1
= 𝛼
2
= 1 and the numerical solutions, respectively.

4. Conclusions

The variational iteration method is a powerful method
which is able to handle linear/nonlinear fractional differential
equations. The method has been applied to fractional-order
Brusselator system in order to find its approximate solutions.
The results show that the applied method is suitable and
inexpensive for obtaining the approximate solutions.
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