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BAM fuzzy cellular neural networks with time-varying delays in leakage terms and impulses are considered. Some sufficient
conditions for the exponential stability of the networks are established by using differential inequality techniques. The results of
this paper are completely new and complementary to the previously known results. Finally, an example is given to demonstrate the
effectiveness and conservativeness of our theoretical results.

1. Introduction

The bidirectional associative memory (BAM) neural net-
works were first introduced by Kosko [1–3]. It is a special
class of recurrent neural networks that can store bipolar
rector pairs. The BAM neural networks are composed of
neurons arranged in two layers, the X-layer and Y-layer.
Recently, many researchers have studied the dynamics of
BAM neural networks with or without delays [4–15]. How-
ever, in mathematical modeling of real world problems,
uncertainty or vagueness is unavoidable. In order to take
vagueness into consideration, fuzzy theory is considered as a
suitable method. In [16, 17], the authors first combined those
operations with cellular neural networks (FCNNs). Some
results have been reported on stability and periodicity of
FCNNs.More recently, state estimation problem for the fuzzy
BAM neural networks has been obtained in the paper [18, 19]
and passivity criteria for the fuzzy BAMneural networks have
been studied in the papers [20, 21].

Very recently, a leakage delay, which is the time delay
in leakage term of the systems and a considerable factor
affecting dynamics for the worse in the systems, is being put
to use in the problem of stability for neural networks [22, 23].
However, so far, very little attention has been paid to neural
networks with time delay in the leakage (or “forgetting”) term
[24–30]. Such time delays in leakage terms are difficult to
handle but have great impact on the dynamical behavior of
neural networks.

In [31], the authors studied the following BAM fuzzy
cellular networkwith time delay in leakage terms and discrete
and unbounded distributed delays:
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However, time-varying delays in the leakage terms inevitably
occur in electronic neural networks owing to the unavoidable
finite switching speed of amplifiers. It is desirable to study
the fuzzy BAM neural networks with time-varying delays
in leakage terms. In [32], by using a fixed point theorem
and differential inequality techniques, the authors studied the
existence and exponential stability of equilibrium point for
the following BAM neural network with time-varying delays
in leakage terms on time scales:
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where T is a time scale. Though the nonimpulsive systems
have been well studied in theory and in practice, the theory of
impulsive differential equations is nowbeing recognized to be
richer than the corresponding theory of differential equations
without impulses (see [33–35]).What ismore, very few results
are available on exponential stability of equilibrium point
for fuzzy BAM neural networks with time-varying delays in
leakage terms and impulses.

Motivated by the above discussion, in this paper, we
consider the following model:

𝑥
󸀠

𝑖
(𝑡) = −𝑎

𝑖
(𝑡) 𝑥
𝑖
(𝑡 − 𝛼

𝑖
(𝑡)) +

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑦
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡))) +

𝑚

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝜔
𝑗

+

𝑚

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠) 𝑓

𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

+

𝑚

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠) 𝑓

𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

+

𝑚

⋀

𝑗=1

𝑇
𝑖𝑗
𝜔
𝑗
+

𝑚

⋁

𝑗=1

𝐻
𝑖𝑗
𝜔
𝑗
+ 𝐴
𝑖
(𝑡) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛,

Δ𝑥
𝑖
(𝑡
𝑘
) = 𝐼
𝑘
(𝑥
𝑖
(𝑡
𝑘
)) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,

𝑦
󸀠

𝑗
(𝑡) = −𝑏

𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛽

𝑗
(𝑡)) +

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
(𝑡) 𝑔
𝑖
(𝑥
𝑖
(𝑡))

+

𝑛

∑

𝑖=1

𝑝
𝑗𝑖
(𝑡) 𝑔
𝑖
(𝑥
𝑖
(𝑡 − 𝜌 (𝑡))) +

𝑛

∑

𝑖=1

𝑞
𝑗𝑖
(𝑡) 𝜇
𝑖

+

𝑛

⋀

𝑖=1

𝛾
𝑗𝑖
(𝑡) ∫

𝑡

−∞

𝑘
𝑖
(𝑡 − 𝑠) 𝑔

𝑖
(𝑥
𝑖
(𝑠)) 𝑑𝑠

+

𝑛

⋁

𝑖=1

𝜂
𝑗𝑖
(𝑡) ∫

𝑡

−∞

𝑘
𝑖
(𝑡 − 𝑠) 𝑔

𝑖
(𝑥
𝑖
(𝑠)) 𝑑𝑠

+

𝑛

⋀

𝑖=1

𝑅
𝑗𝑖
𝜇
𝑖
+

𝑛

⋁

𝑖=1

𝑆
𝑗𝑖
𝜇
𝑖
+ 𝐵
𝑗
(𝑡) ,

𝑡 ≥ 0, 𝑡 ̸= 𝑡
𝑘
, 𝑗 = 1, 2, . . . , 𝑚,

Δ𝑦
𝑗
(𝑡
𝑘
) = 𝐽
𝑘
(𝑦
𝑗
(𝑡
𝑘
)) , 𝑗 = 1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . ,

(3)

where 𝑥
𝑖
(𝑡) and 𝑦

𝑗
(𝑡) are the states of the 𝑖th neuron and the

𝑗th neuron at time 𝑡, 𝑔
𝑖
(𝑡) and 𝑓

𝑗
(𝑡) denote the activation

functions of the 𝑖th neuron and the 𝑗th neuron at time 𝑡, 𝜇
𝑖

and𝜔
𝑗
denote the inputs of the 𝑖th neuron and the 𝑗th neuron,

𝐴
𝑖
(𝑡) and 𝐵

𝑗
(𝑡) denote the bias of the 𝑖th neuron and the 𝑗th

neuron at time 𝑡, 𝑎
𝑖
(𝑡) and 𝑏

𝑗
(𝑡) represent the rates with which

the 𝑖th neuron and the 𝑗th neuron at time 𝑡 will reset their
potential to the resting state in isolation when disconnected
from the networks and external inputs, 𝑎

𝑖𝑗
(𝑡), 𝑏
𝑖𝑗
(𝑡),𝑑
𝑗𝑖
(𝑡), and

𝑝
𝑗𝑖
(𝑡) denote the connectionweights of the feedback template

at time 𝑡 and 𝑐
𝑖𝑗
(𝑡), 𝑞
𝑗𝑖
(𝑡) denote the connection weights of the



Abstract and Applied Analysis 3
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𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑧
󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑚

∑

𝑗=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝛽
𝑖𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑓
𝑗
(𝑧) − 𝑓

𝑗
(𝑧
󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

⋀

𝑖=1

𝛾
𝑗𝑖
(𝑡) 𝑔
𝑖
(𝑧) −

𝑛

⋀

𝑖=1

𝛾
𝑗𝑖
(𝑡) 𝑔
𝑖
(𝑧
󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝛾
𝑗𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑖
(𝑧) − 𝑔

𝑖
(𝑧
󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑛

⋁

𝑗=1

𝜂
𝑗𝑖
(𝑡) 𝑔
𝑖
(𝑧) −

𝑛

⋁

𝑖=1

𝜂
𝑗𝑖
(𝑡) 𝑔
𝑖
(𝑧
󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

𝑛

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝜂
𝑗𝑖
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
𝑖
(𝑧) − 𝑔

𝑖
(𝑧
󸀠
)

󵄨
󵄨
󵄨
󵄨
󵄨
.

(7)

Our main purpose of this paper is by using differential
inequality techniques to study the exponential stability of (3).
The results of this paper are completely new and complemen-
tary to the previously known results and the methods used in
this paper are different from those used in [31, 32].

2. Exponential Stability

In this section, we will give some sufficient conditions to
guarantee the exponential stability of system (3).

Theorem 3. Suppose that (H
1
) and (H

2
) hold. Let

𝑧
∗
(𝑡) = (𝑥

∗

1
(𝑡), 𝑥
∗

2
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡), 𝑦
∗

1
(𝑡), 𝑦
∗

2
(𝑡), . . . , 𝑦

∗

𝑚
(𝑡))
𝑇

be a solution of system (3) with the initial condition
𝜙
∗
(𝑡) = (𝜑

∗

1
(𝑡), 𝜑
∗

2
(𝑡), . . . , 𝜑

∗

𝑛
(𝑡), 𝜓
∗

1
(𝑡), 𝜓
∗

2
(𝑡), . . . , 𝜓

∗

𝑚
(𝑡))
𝑇.

Furthermore, assume that

(H
3
)

− [𝑎
𝑖
(𝑡) − 𝑎

𝑖
(𝑡) 𝛼
𝑖
(𝑡) 𝑎
+

𝑖
] + (1 + 𝑎

𝑖
(𝑡) 𝛼
𝑖
(𝑡))

×

𝑚

∑

𝑗=1

(𝑎
+

𝑖𝑗
+ 𝑏
+

𝑖𝑗
+ 𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
𝑗
< 0,

𝑖 = 1, 2, . . . , 𝑛,
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− [𝑏
𝑗
(𝑡) − 𝑏

𝑗
(𝑡) 𝛽
𝑗
(𝑡) 𝑏
+

𝑗
] + (1 + 𝑏

𝑗
(𝑡) 𝛽
𝑗
(𝑡))

×

𝑛

∑

𝑖=1

(𝑑
+

𝑗𝑖
+ 𝑝
+

𝑗𝑖
+ 𝛾
+

𝑗𝑖
+ 𝜂
+

𝑗𝑖
)𝑀
𝑖
< 0,

𝑗 = 1, 2, . . . , 𝑚.

(8)

(H
4
) There exist constants 𝜃

𝑖𝑘
, 𝜃
𝑗𝑘
such that

𝐼
𝑘
(𝑥
𝑖
(𝑡
𝑘
)) = −𝜃

𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) ,

0 ≤ 𝜃
𝑖𝑘
≤ 2, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,

𝐽
𝑘
(𝑦
𝑗
(𝑡
𝑘
)) = −𝜃

𝑗𝑘
𝑦
𝑗
(𝑡
𝑘
) ,

0 ≤ 𝜃
𝑗𝑘
≤ 2, 𝑗 = 1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . .

(9)

Then system (3) is exponentially stable.

Proof. Let 𝑧(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡), 𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . ,

𝑦
𝑚
(𝑡))
𝑇 be an arbitrary solution of system (3) with the initial

condition 𝜙(𝑡) = (𝜑
1
(𝑡), 𝜑
2
(𝑡), . . . , 𝜑

𝑛
(𝑡), 𝜓
1
(𝑡), 𝜓
2
(𝑡), . . . ,

𝜓
𝑚
(𝑡))
𝑇. Set

𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛,

𝑦
𝑗
(𝑡) = 𝑦

𝑗
(𝑡) − 𝑦

∗

𝑗
(𝑡) , 𝑗 = 1, 2, . . . , 𝑚,

(10)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑡)) = 𝑓

𝑗
(𝑦
𝑗
(𝑡) + 𝑦

∗

𝑗
(𝑡)) − 𝑓

𝑗
(𝑦
∗

𝑗
(𝑡)) ,

𝑗 = 1, 2, . . . , 𝑚,

𝑔
𝑖
(𝑥
𝑖
(𝑡)) = 𝑔

𝑖
(𝑥
𝑖
(𝑡) + 𝑥

∗

𝑖
(𝑡)) − 𝑔

𝑖
(𝑥
∗

𝑖
(𝑡)) ,

𝑖 = 1, 2, . . . , 𝑛.

(11)

From (3) and (11), for 𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
, 𝑘 = 1, 2, . . ., we have

𝑥
󸀠

𝑖
(𝑡) = −𝑎

𝑖
(𝑡) 𝑥
𝑖
(𝑡 − 𝛼

𝑖
(𝑡)) +

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡)))

+

𝑚

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

+

𝑚

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛,

(12)

𝑦
󸀠

𝑗
(𝑡) = −𝑏

𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛽

𝑗
(𝑡)) +

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
(𝑡) 𝑔
𝑖
(𝑥
𝑖
(𝑡))

+

𝑛

∑

𝑖=1

𝑝
𝑗𝑖
(𝑡) 𝑔
𝑖
(𝑥
𝑖
(𝑡 − 𝜌 (𝑡)))

+

𝑛

⋀

𝑖=1

𝛾
𝑗𝑖
(𝑡) ∫

𝑡

−∞

𝑘
𝑖
(𝑡 − 𝑠) 𝑔

𝑖
(𝑥
𝑖
(𝑠)) 𝑑𝑠

+

𝑛

⋁

𝑖=1

𝜂
𝑗𝑖
(𝑡) ∫

𝑡

−∞

𝑘
𝑖
(𝑡 − 𝑠) 𝑔

𝑖
(𝑥
𝑖
(𝑠)) 𝑑𝑠,

𝑗 = 1, 2, . . . , 𝑚.

(13)

According to (H
4
), we get

𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
∗

𝑖
(𝑡
+

𝑘
)

= 𝑥
𝑖
(𝑡
𝑘
) + 𝐼
𝑘
(𝑥
𝑖
(𝑡
𝑘
)) − 𝑥

∗

𝑖
(𝑡
𝑘
) − 𝐼
𝑘
(𝑥
∗

𝑖
(𝑡
𝑘
))

= (1 − 𝜃
𝑖𝑘
) (𝑥
𝑖
(𝑡
𝑘
) − 𝑥
∗

𝑖
(𝑡
𝑘
)) ,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,

𝑦
𝑗
(𝑡
+

𝑘
) − 𝑦
∗

𝑗
(𝑡
+

𝑘
)

= 𝑦
𝑗
(𝑡
𝑘
) + 𝐽
𝑘
(𝑦
𝑗
(𝑡
𝑘
)) − 𝑦

∗

𝑗
(𝑡
𝑘
) − 𝐽
𝑘
(𝑦
∗

𝑗
(𝑡
𝑘
))

= (1 − 𝜃
𝑗𝑘
) (𝑦
𝑗
(𝑡
𝑘
) − 𝑦
∗

𝑗
(𝑡
𝑘
)) ,

𝑗 = 1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . .

(14)

So,

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
∗

𝑖
(𝑡
+

𝑘
)
󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
1 − 𝜃
𝑖𝑘

󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
𝑘
) − 𝑥
∗

𝑖
(𝑡
𝑘
)
󵄨
󵄨
󵄨
󵄨
≤
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
𝑘
) − 𝑥
∗

𝑖
(𝑡
𝑘
)
󵄨
󵄨
󵄨
󵄨
,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡
+

𝑘
) − 𝑦
∗

𝑗
(𝑡
+

𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
1 − 𝜃
𝑗𝑘

󵄨
󵄨
󵄨
󵄨
󵄨

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡
𝑘
) − 𝑦
∗

𝑗
(𝑡
𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡
𝑘
) − 𝑦
∗

𝑗
(𝑡
𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑗 = 1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . ,

(15)
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which implies that

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
+

𝑘
)
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
∗

𝑖
(𝑡
+

𝑘
)
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
𝑘
) − 𝑥
∗

𝑖
(𝑡
𝑘
)
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
−

𝑘
)
󵄨
󵄨
󵄨
󵄨
,

𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡
+

𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡
+

𝑘
) − 𝑦
∗

𝑗
(𝑡
+

𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡
𝑘
) − 𝑦
∗

𝑗
(𝑡
𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡
−

𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
,

𝑗 = 1, 2, . . . , 𝑚, 𝑘 = 1, 2, . . . .

(16)

Define continuous functions Γ
𝑖
(𝜔) and Γ

𝑗
(𝜔) by setting

Γ
𝑖
(𝜔)

= − [𝑎
𝑖
(𝑡) 𝑒
𝜔𝛼𝑖(𝑡)

− 𝜔 − 𝑎
𝑖
(𝑡) 𝑒
𝜔𝛼𝑖(𝑡)

𝛼
𝑖
(𝑡)

× (𝜔 + 𝑎
+

𝑖
𝑒
𝜔𝛼
+

𝑖
)] + [1 + 𝑎

𝑖
(𝑡) 𝑒
𝜔𝛼𝑖(𝑡)

𝛼
𝑖
(𝑡)]

×

𝑚

∑

𝑗=1

[𝑎
+

𝑖𝑗
+ 𝑏
+

𝑖𝑗
𝑒
𝜔𝜏
+ (𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
)∫

+∞

0

𝑘
𝑗
(𝑢) 𝑒
𝜔𝑢
𝑑𝑢] 𝐿

𝑗
,

𝑖 = 1, 2, . . . , 𝑛,

Γ
𝑗
(𝜔)

= − [𝑏
𝑗
(𝑡) 𝑒
𝜔𝛽𝑗(𝑡)

− 𝜔 − 𝑏
𝑗
(𝑡) 𝑒
𝜔𝛽𝑗(𝑡)

𝛽
𝑗
(𝑡)

× (𝜔 + 𝑏
+

𝑗
𝑒
𝜔𝛽
+

𝑗
)] + [1 + 𝑏

𝑗
(𝑡) 𝑒
𝜔𝛽𝑗(𝑡)

𝛽
𝑗
(𝑡)]

×

𝑛

∑

𝑖=1

[𝑑
+

𝑗𝑖
+ 𝑝
+

𝑗𝑖
𝑒
𝜔𝜌
+ (𝛾
+

𝑗𝑖
+ 𝜂
+

𝑗𝑖
) ∫

+∞

0

𝑘
𝑖
(𝑢) 𝑒
𝜔𝑢
𝑑𝑢]𝑀

𝑖
,

𝑗 = 1, 2, . . . , 𝑚.

(17)

Then, for 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, we have

Γ
𝑖
(0) = − [𝑎

𝑖
(𝑡) − 𝑎

𝑖
(𝑡) 𝛼
𝑖
(𝑡) 𝑎
+

𝑖
] + (1 + 𝑎

𝑖
(𝑡) 𝛼
𝑖
(𝑡))

×

𝑚

∑

𝑗=1

(𝑎
+

𝑖𝑗
+ 𝑏
+

𝑖𝑗
+ 𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
𝑗
< 0,

Γ
𝑗
(0) = − [𝑏

𝑗
(𝑡) − 𝑏

𝑗
(𝑡) 𝛽
𝑗
(𝑡) 𝑏
+

𝑗
] + (1 + 𝑏

𝑗
(𝑡) 𝛽
𝑗
(𝑡))

×

𝑛

∑

𝑖=1

(𝑑
+

𝑗𝑖
+ 𝑝
+

𝑗𝑖
+ 𝛾
+

𝑗𝑖
+ 𝜂
+

𝑗𝑖
)𝑀
𝑖
< 0.

(18)

The continuity of Γ
𝑖
(𝜔) and Γ

𝑗
(𝜔) implies that there exists 𝜆 >

0 such that

Γ
𝑖
(𝜆) = − [𝑎

𝑖
(𝑡) 𝑒
𝜆𝛼𝑖(𝑡)

− 𝜆 − 𝑎
𝑖
(𝑡) 𝑒
𝜆𝛼𝑖(𝑡)

𝛼
𝑖
(𝑡)

× (𝜆 + 𝑎
+

𝑖
𝑒
𝜆𝛼
+

𝑖
)] + [1 + 𝑎

𝑖
(𝑡) 𝑒
𝜆𝛼𝑖(𝑡)

𝛼
𝑖
(𝑡)]

×

𝑚

∑

𝑗=1

[𝑎
+

𝑖𝑗
+ 𝑏
+

𝑖𝑗
𝑒
𝜆𝜏
+ (𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
)∫

+∞

0

𝑘
𝑗
(𝑢) 𝑒
𝜆𝑢
𝑑𝑢]

× 𝐿
𝑗
< 0, 𝑖 = 1, 2, . . . , 𝑛,

Γ
𝑗
(𝜆) = − [𝑏

𝑗
(𝑡) 𝑒
𝜆𝛽𝑗(𝑡)

− 𝜆 − 𝑏
𝑗
(𝑡) 𝑒
𝜆𝛽𝑗(𝑡)

𝛽
𝑗
(𝑡)

× (𝜆 + 𝑏
+

𝑗
𝑒
𝜆𝛽
+

𝑗
)] + [1 + 𝑏

𝑗
(𝑡) 𝑒
𝜆𝛽𝑗(𝑡)

𝛽
𝑗
(𝑡)]

×

𝑛

∑

𝑖=1

[𝑑
+

𝑗𝑖
+ 𝑝
+

𝑗𝑖
𝑒
𝜆𝜌
+ (𝛾
+

𝑗𝑖
+ 𝜂
+

𝑗𝑖
)∫

+∞

0

𝑘
𝑖
(𝑢) 𝑒
𝜆𝑢
𝑑𝑢]

×𝑀
𝑖
< 0, 𝑗 = 1, 2, . . . , 𝑚.

(19)

Let

𝑋
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) 𝑒
𝜆𝑡
, 𝑌

𝑗
(𝑡) = 𝑦

𝑗
(𝑡) 𝑒
𝜆𝑡
,

𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(20)

From (12) and (20), we obtain

𝑋
󸀠

𝑖
(𝑡) = 𝜆𝑒

𝜆𝑡
𝑥
𝑖
(𝑡) + 𝑒

𝜆𝑡
𝑥
󸀠

𝑖
(𝑡)

= 𝜆𝑋
𝑖
(𝑡) + 𝑒

𝜆𝑡

×
[

[

− 𝑎
𝑖
(𝑡) 𝑥
𝑖
(𝑡 − 𝛼

𝑖
(𝑡)) +

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡)))

+

𝑚

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

+

𝑚

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

]

]
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= 𝜆𝑋
𝑖
(𝑡) − 𝑎

𝑖
(𝑡) 𝑒
𝜆𝛼𝑖(𝑡)

𝑋
𝑖
(𝑡 − 𝛼

𝑖
(𝑡))

+

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑒
𝜆𝑡 ̃
𝑓
𝑗
(𝑦
𝑗
(𝑡))

+

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑒
𝜆𝑡 ̃
𝑓
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡)))

+

𝑚

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑒
𝜆𝑡
∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

+

𝑚

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑒
𝜆𝑡
∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛.

(21)
Similarly,

𝑌
󸀠

𝑗
(𝑡) = 𝜆𝑌

𝑗
(𝑡) − 𝑏

𝑗
(𝑡) 𝑒
𝜆𝛽𝑗(𝑡)

𝑌
𝑗
(𝑡 − 𝛽

𝑗
(𝑡))

+

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
(𝑡) 𝑒
𝜆𝑡
𝑔
𝑖
(𝑥
𝑖
(𝑡))

+

𝑛

∑

𝑖=1

𝑝
𝑗𝑖
(𝑡) 𝑒
𝜆𝑡
𝑔
𝑖
(𝑥
𝑖
(𝑡 − 𝜌 (𝑡)))

+

𝑛

⋀

𝑖=1

𝛾
𝑗𝑖
(𝑡) 𝑒
𝜆𝑡
∫

𝑡

−∞

𝑘
𝑖
(𝑡 − 𝑠) 𝑔

𝑖
(𝑥
𝑖
(𝑠)) 𝑑𝑠

+

𝑛

⋁

𝑖=1

𝜂
𝑗𝑖
(𝑡) 𝑒
𝜆𝑡
∫

𝑡

−∞

𝑘
𝑖
(𝑡 − 𝑠) 𝑔

𝑖
(𝑥
𝑖
(𝑠)) 𝑑𝑠,

𝑗 = 1, 2, . . . , 𝑚.

(22)

We rewrite (21) and (22) as follows:

𝑋
󸀠

𝑖
(𝑡)

= 𝜆𝑋
𝑖
(𝑡) − 𝑎

𝑖
(𝑡) 𝑒
𝜆𝛼𝑖(𝑡)

𝑋
𝑖
(𝑡) + 𝑎

𝑖
(𝑡) 𝑒
𝜆𝛼𝑖(𝑡)

× ∫

𝑡

𝑡−𝛼𝑖(𝑡)

{𝜆𝑋i (𝑠) − 𝑎𝑖 (𝑠) 𝑒
𝜆𝛼𝑖(𝑠)

× 𝑋
𝑖
(𝑠 − 𝛼

𝑖
(𝑠))

+

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠 ̃
𝑓
𝑗
(𝑦
𝑗
(𝑠))

+

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠 ̃
𝑓
𝑗
(𝑦
𝑗
(𝑠 − 𝜏 (𝑠)))

+

𝑚

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠
∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑢)) 𝑑𝑢

+

𝑚

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠
∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑢)) 𝑑𝑢}𝑑𝑠

+

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑒
𝜆𝑡 ̃
𝑓
𝑗
(𝑦
𝑗
(𝑡)) +

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑒
𝜆𝑡 ̃
𝑓
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡)))

+

𝑚

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) 𝑒
𝜆𝑡
∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

+

𝑚

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) 𝑒
𝜆𝑡
∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛,

(23)

𝑌
󸀠

𝑗
(𝑡)

= 𝜆𝑌
𝑗
(𝑡) − 𝑏

𝑗
(𝑡) 𝑒
𝜆𝛽𝑗(𝑡)

𝑌
𝑗
(𝑡) + 𝑏

𝑗
(𝑡) 𝑒
𝜆𝛽𝑗(𝑡)

× ∫

𝑡

𝑡−𝛽𝑗(𝑡)

{𝜆𝑌
𝑗
(𝑠) − 𝑏

𝑗
(𝑠) 𝑒
𝜆𝛽𝑗(𝑠)

× 𝑌
𝑗
(𝑠 − 𝛽

𝑗
(𝑠)) +

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
(𝑠) 𝑒
𝜆𝑠
𝑔
𝑖
(𝑥
𝑖
(𝑠))

+

𝑛

∑

𝑖=1

𝑝
𝑗𝑖
(𝑠) 𝑒
𝜆𝑠
𝑔
𝑖
(𝑥
𝑖
(𝑠 − 𝜌 (𝑠)))

+

𝑛

⋀

𝑖=1

𝛾
𝑗𝑖
(𝑠) 𝑒
𝜆𝑠
∫

𝑠

−∞

𝑘
𝑖
(𝑠 − 𝑢) 𝑔

𝑖
(𝑥
𝑖
(𝑢)) 𝑑𝑢

+

𝑛

⋁

𝑖=1

𝜂
𝑗𝑖
(𝑠) 𝑒
𝜆𝑠
∫

𝑠

−∞

𝑘
𝑖
(𝑠 − 𝑢) 𝑔

𝑖
(𝑥
𝑖
(𝑢)) 𝑑𝑢}𝑑𝑠

+

𝑛

∑

𝑖=1

𝑑
𝑗𝑖
(𝑡) 𝑒
𝜆𝑡
𝑔
𝑖
(𝑥
𝑖
(𝑡))

+

𝑛

∑

𝑖=1

𝑝
𝑗𝑖
(𝑡) 𝑒
𝜆𝑡
𝑔
𝑖
(𝑥
𝑖
(𝑡 − 𝜌 (𝑡)))

+

𝑛

⋀

𝑖=1

𝛾
𝑗𝑖
(𝑡) 𝑒
𝜆𝑡
∫

𝑡

−∞

𝑘
𝑖
(𝑡 − 𝑠) 𝑔

𝑖
(𝑥
𝑖
(𝑠)) 𝑑𝑠

+

𝑛

⋁

𝑖=1

𝜂
𝑗𝑖
(𝑡) 𝑒
𝜆𝑡
∫

𝑡

−∞

𝑘
𝑖
(𝑡 − 𝑠) 𝑔

𝑖
(𝑥
𝑖
(𝑠)) 𝑑𝑠,

𝑗 = 1, 2, . . . , 𝑚.

(24)



Abstract and Applied Analysis 7

We define a positive number such that

𝑀 = max
1≤𝑖≤𝑛,

1≤𝑗≤𝑚

{

{

{

sup
𝑠∈[−𝜏,0]

󵄨
󵄨
󵄨
󵄨
𝑋
𝑖
(𝑠)
󵄨
󵄨
󵄨
󵄨
, sup
𝑠∈[−𝜌,0]

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

}

}

}

. (25)

It follows that

󵄨
󵄨
󵄨
󵄨
𝑋
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
< 𝑀, ∀𝑡 ∈ [−𝜏, 0] , 𝑖 = 1, 2, . . . , 𝑛,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑀, ∀𝑡 ∈ [−𝜌, 0] , 𝑗 = 1, 2, . . . , 𝑚.

(26)

We claim that

󵄨
󵄨
󵄨
󵄨
𝑋
𝑖
(𝑡)
󵄨
󵄨
󵄨
󵄨
< 𝑀,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
< 𝑀,

∀𝑡 > 0, 𝑡 ̸= 𝑡
𝑘
, 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚.

(27)

If (27) is not valid, then there exist some 𝑖 ∈ {1, 2, . . . , 𝑛},
some 𝑗 ∈ {1, 2, . . . , 𝑚}, and a first 𝑇

1
> 0 such that one of

the following four cases must occur:

(1) 𝑋
𝑖
(𝑇
1
) = 𝑀, 𝑋󸀠

𝑖
(𝑇
1
) ≥ 0, |𝑋

𝑖
(𝑡)| < 𝑀, |𝑌

𝑗
(𝑡)| < 𝑀,

for 𝑡 < 𝑇
1
;

(2) 𝑋
𝑖
(𝑇
1
) = −𝑀, 𝑋󸀠

𝑖
(𝑇
1
) ≤ 0, |𝑋

𝑖
(𝑡)| < 𝑀, |𝑌

𝑗
(𝑡)| < 𝑀,

for 𝑡 < 𝑇
1
;

(3) 𝑌
𝑗
(𝑇
1
) = 𝑀, 𝑌󸀠

𝑗
(𝑇
1
) ≥ 0, |𝑋

𝑖
(𝑡)| < 𝑀, |𝑌

𝑗
(𝑡)| < 𝑀, for

𝑡 < 𝑇
1
;

(4) 𝑌
𝑗
(𝑇
1
) = −𝑀, 𝑌󸀠

𝑗
(𝑇
1
) ≤ 0, |𝑋

𝑖
(𝑡)| < 𝑀, |𝑌

𝑗
(𝑡)| < 𝑀,

for 𝑡 < 𝑇
1
.

If (1) holds from (19), (23), and (H
3
), we have

𝑋
󸀠

𝑖
(𝑇
1
)

= 𝜆𝑋
𝑖
(𝑇
1
) − 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

𝑋
𝑖
(𝑇
1
) + 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

× ∫

𝑇1

𝑇1−𝛼𝑖(𝑇1)

{𝜆𝑋
𝑖
(𝑠) − 𝑎

𝑖
(𝑠) 𝑒
𝜆𝛼𝑖(𝑠)

𝑋
𝑖
(𝑠 − 𝛼

𝑖
(𝑠))

+

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠 ̃
𝑓
𝑗
(𝑦
𝑗
(𝑠))

+

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠 ̃
𝑓
𝑗
(𝑦
𝑗
(𝑠 − 𝜏 (𝑠)))

+

𝑚

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠
∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑢)) 𝑑𝑢

+

𝑚

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠

× ∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑢)) 𝑑𝑢} 𝑑𝑠

+

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
(𝑇
1
) 𝑒
𝜆𝑇1 ̃

𝑓
𝑗
(𝑦
𝑗
(𝑇
1
))

+

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑇
1
) 𝑒
𝜆𝑇1 ̃

𝑓
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡)))

+

𝑚

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑇
1
) 𝑒
𝜆𝑡
∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

+

𝑚

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑇
1
) 𝑒
𝜆𝑇1

∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

≤ 𝜆𝑋
𝑖
(𝑇
1
) − 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

𝑋
𝑖
(𝑇
1
) + 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

× ∫

𝑇1

𝑇1−𝛼𝑖(𝑇1)

{

{

{

𝜆𝑋
𝑖
(𝑇
1
) + 𝑎
+

𝑖
𝑒
𝜆𝛼
+

𝑖
𝑋
𝑖
(𝑇
1
) +

𝑚

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
𝑒
𝜆𝜏
𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠 − 𝜏 (𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑗=1

𝛼
+

𝑖𝑗
∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢) 𝑒

𝜆(𝑠−𝑢)
𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢

+

𝑚

∑

𝑗=1

𝛽
+

𝑖𝑗
∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢) 𝑒

𝜆(𝑠−𝑢)

× 𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢

}

}

}

𝑑𝑠

+

𝑚

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑇
1
)

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
𝐿
𝑗
𝑒
𝜆𝜏 󵄨󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑇
1
− 𝜏 (𝑇

1
))

󵄨
󵄨
󵄨
󵄨
󵄨

+

𝑚

∑

𝑗=1

𝛼
+

𝑖𝑗
∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠) 𝑒
𝜆(𝑇1−𝑠)

𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

+

𝑚

∑

𝑗=1

𝛽
+

𝑖𝑗
∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠) 𝑒
𝜆(𝑇1−𝑠)

𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≤ − [𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

− 𝜆 − 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

× 𝛼
𝑖
(𝑇
1
) (𝜆 + 𝑎

+

𝑖
𝑒
𝜆𝛼
+

𝑖
)]𝑋
𝑖
(𝑇
1
) + 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)
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× ∫

𝑇1

𝑇1−𝛼𝑖(𝑇1)

[

[

𝑚

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑗
𝑀+

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
𝑒
𝜆𝜏
𝐿
𝑗
𝑀 +

𝑚

∑

𝑗=1

𝛼
+

𝑖𝑗
𝐿
𝑗
𝑀

× ∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢) 𝑒

𝜆(𝑠−𝑢)
𝑑𝑢

+

𝑚

∑

𝑗=1

𝛽
+

𝑖𝑗
𝐿
𝑗
𝑀∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢) 𝑒

𝜆(𝑠−𝑢)
𝑑𝑢
]

]

𝑑𝑠

+

𝑚

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑗
𝑀+

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
𝑒
𝜆𝜏
𝐿
𝑗
𝑀+

𝑚

∑

𝑗=1

𝛼
+

𝑖𝑗
𝐿
𝑗
𝑀

× ∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠) 𝑒
𝜆(𝑇1−𝑠)

𝑑𝑢

+

𝑚

∑

𝑗=1

𝛽
+

𝑖𝑗
𝐿
𝑗
𝑀∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠) 𝑒
𝜆(𝑇1−𝑠)

𝑑𝑢

≤ − [𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

− 𝜆 − 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

× 𝛼
𝑖
(𝑇
1
) (𝜆 + 𝑎

+

𝑖
𝑒
𝜆𝛼
+

𝑖
)]𝑋
𝑖
(𝑇
1
)

+ (1 + 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

𝛼
𝑖
(𝑇
1
))

×

𝑚

∑

𝑗=1

[𝑎
+

𝑖𝑗
+ 𝑏
+

𝑖𝑗
𝑒
𝜆𝜏
+ (𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) × ∫

+∞

0

𝑘
𝑗
(𝑢) 𝑒
𝜆𝑢
𝑑𝑢] 𝐿

𝑗
𝑀

= { − [𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

− 𝜆 − 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

× 𝛼
𝑖
(𝑇
1
) (𝜆 + 𝑎

+

𝑖
𝑒
𝜆𝛼
+

𝑖
)]

+ (1 + 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

𝛼
𝑖
(𝑇
1
))

×

𝑚

∑

𝑗=1

[𝑎
+

𝑖𝑗
+ 𝑏
+

𝑖𝑗
𝑒
𝜆𝜏
+ (𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
)

× ∫

+∞

0

𝑘
𝑗
(𝑢) 𝑒
𝜆𝑢
𝑑𝑢] 𝐿

𝑗
}𝑀

< 0,

(28)

and this is a contradiction. Hence, (1) does not hold.
If (2) holds, then, from (H

3
), (19), and (24), we have

𝑋
󸀠

𝑖
(𝑇
1
)

= 𝜆𝑋
𝑖
(𝑇
1
) − 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

𝑋
𝑖
(𝑇
1
) + 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

× ∫

𝑇1

𝑇1−𝛼𝑖(𝑇1)

{

{

{

𝜆𝑋
𝑖
(𝑠) − 𝑎

𝑖
(𝑠) × 𝑒

𝜆𝛼𝑖(𝑠)
𝑋
𝑖
(𝑠 − 𝛼

𝑖
(𝑠))

+

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠 ̃
𝑓
𝑗
(𝑦
𝑗
(𝑠))

+

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠 ̃
𝑓
𝑗
(𝑦
𝑗
(𝑠 − 𝜏 (𝑠)))

+

𝑚

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠
∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑢)) 𝑑𝑢

+

𝑚

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑠) 𝑒
𝜆𝑠

× ∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑢)) 𝑑𝑢

}

}

}

𝑑𝑠

+

𝑚

∑

𝑗=1

𝑎
𝑖𝑗
(𝑇
1
) 𝑒
𝜆𝑇1 ̃

𝑓
𝑗
(𝑦
𝑗
(𝑇
1
))

+

𝑚

∑

𝑗=1

𝑏
𝑖𝑗
(𝑇
1
) 𝑒
𝜆𝑇1 ̃

𝑓
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡)))

+

𝑚

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑇
1
) 𝑒
𝜆𝑡
∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

+

𝑚

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑇
1
) 𝑒
𝜆𝑇1

∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠)

̃
𝑓
𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

≥ 𝜆𝑋
𝑖
(𝑇
1
) − 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

𝑋
𝑖
(𝑇
1
) + 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

× ∫

𝑇1

𝑇1−𝛼𝑖(𝑇1)

{

{

{

𝜆𝑋
𝑖
(𝑇
1
) + 𝑎
+

𝑖
𝑒
𝜆𝛼
+

𝑖
𝑋
𝑖
(𝑇
1
) −

𝑚

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨

−

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
𝑒
𝜆𝜏
𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠 − 𝜏 (𝑠))

󵄨
󵄨
󵄨
󵄨
󵄨

−

𝑚

∑

𝑗=1

𝛼
+

𝑖𝑗
∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢) 𝑒

𝜆(𝑠−𝑢)
𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢

−

𝑚

∑

𝑗=1

𝛽
+

𝑖𝑗
∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢) 𝑒

𝜆(𝑠−𝑢)

× 𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑢)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑢

}

}

}

𝑑𝑠

−

𝑚

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑇
1
)

󵄨
󵄨
󵄨
󵄨
󵄨
−

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
𝐿
𝑗
𝑒
𝜆𝜏 󵄨󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑇
1
− 𝜏 (𝑇

1
))

󵄨
󵄨
󵄨
󵄨
󵄨

−

𝑚

∑

𝑗=1

𝛼
+

𝑖𝑗
∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠) 𝑒
𝜆(𝑇1−𝑠)

𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

−

𝑚

∑

𝑗=1

𝛽
+

𝑖𝑗
∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠) 𝑒
𝜆(𝑇1−𝑠)

𝐿
𝑗

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝑠

≥ − [𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

− 𝜆 − 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

× 𝛼
𝑖
(𝑇
1
) (𝜆 + 𝑎

+

𝑖
𝑒
𝜆𝛼
+

𝑖
)]𝑋
𝑖
(𝑇
1
) + 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)
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× ∫

𝑇1

𝑇1−𝛼𝑖(𝑇1)

[

[

−

𝑚

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑗
𝑀−

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
𝑒
𝜆𝜏
𝐿
𝑗
𝑀−

𝑚

∑

𝑗=1

𝛼
+

𝑖𝑗
𝐿
𝑗
𝑀

× ∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢) 𝑒

𝜆(𝑠−𝑢)
𝑑𝑢

−

𝑚

∑

𝑗=1

𝛽
+

𝑖𝑗
𝐿
𝑗
𝑀∫

𝑠

−∞

𝑘
𝑗
(𝑠 − 𝑢) 𝑒

𝜆(𝑠−𝑢)
𝑑𝑢
]

]

𝑑𝑠

−

𝑚

∑

𝑗=1

𝑎
+

𝑖𝑗
𝐿
𝑗
𝑀−

𝑚

∑

𝑗=1

𝑏
+

𝑖𝑗
𝑒
𝜆𝜏
𝐿
𝑗
𝑀−

𝑚

∑

𝑗=1

𝛼
+

𝑖𝑗
𝐿
𝑗
𝑀

× ∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠) 𝑒
𝜆(𝑇1−𝑠)

𝑑𝑢

−

𝑚

∑

𝑗=1

𝛽
+

𝑖𝑗
𝐿
𝑗
𝑀∫

𝑇1

−∞

𝑘
𝑗
(𝑇
1
− 𝑠) 𝑒
𝜆(𝑇1−𝑠)

𝑑𝑢

≥ { − [𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

− 𝜆 − 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

× 𝛼
𝑖
(𝑇
1
) (𝜆 + 𝑎

+

𝑖
𝑒
𝜆𝛼
+

𝑖
)]𝑋
𝑖
(𝑇
1
)

+ (1 + 𝑎
𝑖
(𝑇
1
) 𝑒
𝜆𝛼𝑖(𝑇1)

𝛼
𝑖
(𝑇
1
))

×

𝑚

∑

𝑗=1

[𝑎
+

𝑖𝑗
+ 𝑏
+

𝑖𝑗
𝑒
𝜆𝜏
+ (𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
)

× ∫

+∞

0

𝑘
𝑗
(𝑢) 𝑒
𝜆𝑢
𝑑𝑢] 𝐿

𝑗
} (−𝑀)

> 0.

(29)

This is also a contradiction.
Similarly, if (3) (or (4)) holds, we can derive a contradic-

tion. Therefore, (27) holds.
Furthermore, together with (16) and (17), we have

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
+

𝑘
)
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
+

𝑘
) − 𝑥
∗

𝑖
(𝑡
+

𝑘
)
󵄨
󵄨
󵄨
󵄨

≤
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
𝑘
) − 𝑥
∗

𝑖
(𝑡
𝑘
)
󵄨
󵄨
󵄨
󵄨
=
󵄨
󵄨
󵄨
󵄨
𝑥
𝑖
(𝑡
−

𝑘
)
󵄨
󵄨
󵄨
󵄨

=
󵄨
󵄨
󵄨
󵄨
𝑋
𝑖
(𝑡
−

𝑘
)
󵄨
󵄨
󵄨
󵄨
𝑒
−𝜆𝑡𝑘

≤ 𝑀𝑒
−𝜆𝑡𝑘

,

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡
+

𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡
+

𝑘
) − 𝑦
∗

𝑗
(𝑡
+

𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨

≤

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡
𝑘
) − 𝑦
∗

𝑗
(𝑡
𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
𝑗
(𝑡
−

𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨

=

󵄨
󵄨
󵄨
󵄨
󵄨
𝑌
𝑗
(𝑡
−

𝑘
)

󵄨
󵄨
󵄨
󵄨
󵄨
𝑒
−𝜆𝑡𝑘

≤ 𝑀𝑒
−𝜆𝑡𝑘

,

(30)

where 𝑖 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, and 𝑘 = 1, 2, . . ..

From (27) and (30), we get

𝑥
𝑖
(𝑡) − 𝑥

∗

𝑖
(𝑡) = 𝑂 (𝑒

−𝜆𝑡
) ,

𝑦
𝑗
(𝑡) − 𝑦

∗

𝑗
(𝑡) = 𝑂 (𝑒

−𝜆𝑡
)

(31)

for all 𝑡 > 0, 𝑖 = 1, 2, . . . , 𝑛, and 𝑗 = 1, 2, . . . , 𝑚. Therefore,
system (3) is exponentially stable. This completes the proof.

3. An Example

In this section, we present an example to illustrate the
feasibility of our results obtained in previous sections.

Example 4. Consider the following fuzzy BAM neural net-
works with distributed delays and impulses:

𝑥
󸀠

𝑖
(𝑡) = −𝑎

𝑖
(𝑡) 𝑥
𝑖
(𝑡 − 𝛼

𝑖
(𝑡)) +

2

∑

𝑗=1

𝑎
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑦
𝑗
(𝑡))

+

2

∑

𝑗=1

𝑏
𝑖𝑗
(𝑡) 𝑓
𝑗
(𝑦
𝑗
(𝑡 − 𝜏 (𝑡))) +

2

∑

𝑗=1

𝑐
𝑖𝑗
(𝑡) 𝜔
𝑗

+

2

⋀

𝑗=1

𝛼
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠) 𝑓

𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

+

2

⋁

𝑗=1

𝛽
𝑖𝑗
(𝑡) ∫

𝑡

−∞

𝑘
𝑗
(𝑡 − 𝑠) 𝑓

𝑗
(𝑦
𝑗
(𝑠)) 𝑑𝑠

+

2

⋀

𝑗=1

𝑇
𝑖𝑗
𝜔
𝑗
+

𝑚

⋁

𝑗=1

𝐻
𝑖𝑗
𝜔
𝑗
+ 𝐴
𝑖
(𝑡) , 𝑡 ≥ 0, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑥
𝑖
(𝑡
𝑘
) = −𝜃

𝑖𝑘
𝑥
𝑖
(𝑡
𝑘
) , 𝑘 = 1, 2, . . . ,

𝑦
󸀠

𝑗
(𝑡) = −𝑏

𝑗
(𝑡) 𝑦
𝑗
(𝑡 − 𝛽

𝑗
(𝑡)) +

2

∑

𝑖=1

𝑑
𝑗𝑖
(𝑡) 𝑔
𝑖
(𝑥
𝑖
(𝑡))

+

2

∑

𝑖=1

𝑝
𝑗𝑖
(𝑡) 𝑔
𝑖
(𝑥
𝑖
(𝑡 − 𝜌 (𝑡)))

+

2

∑

𝑖=1

𝑞
𝑗𝑖
(𝑡) 𝜇
𝑖
+

𝑛

⋀

𝑖=1

𝛾
𝑗𝑖
(𝑡) ∫

𝑡

−∞

𝑘
𝑖
(𝑡 − 𝑠) 𝑔

𝑖
(𝑥
𝑖
(𝑠)) 𝑑𝑠

+

2

⋁

𝑖=1

𝜂
𝑗𝑖
(𝑡) ∫

𝑡

−∞

𝑘
𝑖
(𝑡 − 𝑠) 𝑔

𝑖
(𝑥
𝑖
(𝑠)) 𝑑𝑠

+

2

⋀

𝑖=1

𝑅
𝑗𝑖
𝜇
𝑖
+

𝑛

⋁

𝑖=1

𝑆
𝑗𝑖
𝜇
𝑖
+ 𝐵
𝑗
(𝑡) , 𝑡 ≥ 0, 𝑡 ̸= 𝑡

𝑘
,

Δ𝑦
𝑗
(𝑡
𝑘
) = −𝜃

𝑗𝑘
𝑦
𝑗
(𝑡
𝑘
) , 𝑘 = 1, 2, . . . ,

(32)
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Figure 1: Phase responses of states 𝑥
1
, 𝑥
2
, 𝑦
1
, and 𝑦

2
.

where 𝑖, 𝑗 = 1, 2, 𝑓
𝑗
(𝑥) = 𝑔

𝑖
(𝑥) = (1/8)(|𝑥 + 1| − |𝑥 − 1|),

and 𝑡
1
< 𝑡
2
< ⋅ ⋅ ⋅ is strictly increasing sequences such that

lim
𝑘→∞

𝑡
𝑘
= +∞; the coefficients are as follows:

𝑎
1
(𝑡) =

1

2

(9 + sin 𝑡) , 𝑎
2
(𝑡) = 4 + |sin 𝑡| ,

𝛼
1
(𝑡) = 𝛼

2
(𝑡) =

1

20

(1 + sin 𝑡) ,

𝑏
1
(𝑡) =

1

2

(9 + cos 𝑡) , 𝑏
2
(𝑡) = 4 + |cos 𝑡| ,

𝛽
1
(𝑡) = 𝛽

2
(𝑡) =

1

20

(1 + cos 𝑡) ,

𝑎
11
(𝑡) = 𝑎

12
(𝑡) = 𝑎

21
(𝑡) = 𝑎

22
(𝑡) =

1

9

(1 + 2 sin 𝑡) ,

𝑏
11
(𝑡) = 𝑏

12
(𝑡) = 𝑏

21
(𝑡) = 𝑏

22
(𝑡) =

1

9

(1 + 2 cos 𝑡) ,

𝑑
11
(𝑡) = 𝑑

12
(𝑡) = 𝑑

21
(𝑡) = 𝑑

22
(𝑡) =

1

6

(1 + sin 𝑡) ,

𝑝
11
(𝑡) = 𝑝

12
(𝑡) = 𝑝

21
(𝑡) = 𝑝

22
(𝑡) =

1

6

(1 + cos 𝑡) ,

𝛼
11
(𝑡) = 𝛼

12
(𝑡) = 𝛼

21
(𝑡) = 𝛼

22
(𝑡) =

1

3

sin 𝑡,

𝛽
11
(𝑡) = 𝛽

12
(𝑡) = 𝛽

21
(𝑡) = 𝛽

22
(𝑡) =

1

3

cos 𝑡,

𝛾
11
(𝑡) = 𝛾

12
(𝑡) = 𝛾

21
(𝑡) = 𝛾

22
(𝑡) =

1

12

(1 + 3 sin 𝑡) ,

𝜂
11
(𝑡) = 𝜂

12
(𝑡) = 𝜂

21
(𝑡) = 𝜂

22
(𝑡) =

1

12

(1 + 3 cos 𝑡) ,

𝑇
𝑖𝑗
= 𝐻
𝑖𝑗
= 𝑅
𝑖𝑗
= 𝑆
𝑖𝑗
= 1,

𝜔
𝑗
= 𝜇
𝑖
= 1 (𝑖, 𝑗 = 1, 2) ,

𝐴
1
(𝑡) = 𝐴

2
(𝑡) =

1

2

cos 𝑡, 𝐵
1
(𝑡) = 𝐵

2
(𝑡) =

1

2

sin 𝑡,

𝜃
𝑖𝑘
= 1 −

1

3

sin (2 + 𝑘) ,

𝜃
𝑗𝑘
= 1 +

2

3

cos (3𝑘) , (𝑖, 𝑗 = 1, 2) .

(33)

By calculating, we have

𝑎
+

1
= 𝑎
+

2
= 𝑏
+

1
= 𝑏
+

2
= 5,

𝑎
−

1
= 𝑎
−

2
= 𝑏
−

1
= 𝑏
−

2
= 4,

𝛼
+

1
= 𝛼
+

2
= 𝛽
+

1
= 𝛽
+

2
=

1

10

,
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𝑎
+

𝑖𝑗
= 𝑏
+

𝑖𝑗
= 𝑑
+

𝑗𝑖
= 𝑝
+

𝑗𝑖
= 𝛼
+

𝑖𝑗
= 𝛽
+

𝑖𝑗
= 𝛾
+

𝑗𝑖
= 𝜂
+

𝑗𝑖

=

1

3

(𝑖, 𝑗 = 1, 2) ,

𝐿
𝑗
= 𝑀
𝑖
=

1

4

(𝑖, 𝑗 = 1, 2) .

(34)

We can see that system (32) satisfies the conditions (H
1
), (H
2
),

and (H
4
); for 𝑖 = 1, 2, 𝑗 = 1, 2, we have

− 𝑎
−

𝑖
(1 − 𝑎

+

𝑖
𝛼
+

𝑖
) + (1 + 𝑎

+

𝑖
𝛼
+

𝑖
)

×

2

∑

𝑗=1

(𝑎
+

𝑖𝑗
+ 𝑏
+

𝑖𝑗
+ 𝛼
+

𝑖𝑗
+ 𝛽
+

𝑖𝑗
) 𝐿
𝑗
< 0,

− 𝑏
−

𝑗
(1 − 𝑏

+

𝑗
𝛽
+

𝑗
) + (1 + 𝑏

+

𝑗
𝛽
+

𝑗
)

×

2

∑

𝑖=1

(𝑑
+

𝑗𝑖
+ 𝑝
+

𝑗𝑖
+ 𝛾
+

𝑗𝑖
+ 𝜂
+

𝑗𝑖
)𝑀
𝑖
< 0,

(35)

which implies that (H
3
) holds. Therefore, from Theorem 3,

system (32) is exponentially stable (Figure 1 illustrates our
plausible results).

4. Conclusion

In this paper, we consider a class of BAM fuzzy cellular
neural networks with time-varying delays in leakage terms
and impulses. By using differential inequality techniques,
we obtain sufficient conditions for the exponential stability
of this class of networks. Our results are completely new
and complementary to the previously known results. Finally,
an example is given to demonstrate the effectiveness and
conservativeness of our theoretical results.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

Thiswork is supported by theNational Natural Science Foun-
dation of People’s Republic of China under Grant 11361072.

References

[1] B. Kosko, “Bidirectional associative memories,” IEEE Transac-
tions on Systems, Man, and Cybernetics, vol. 18, no. 1, pp. 49–60,
1988.

[2] B. Kosko, “Adaptive bi-directional associative memories,”
Applied Optics, vol. 26, pp. 4947–4960, 1987.

[3] B. Kosko, “A dynamical system approach machine intelligence,”
in Neural Networks and Fuzzy Systems, pp. 38–108, 1992.

[4] X. Liao, K.-W. Wong, and S. Yang, “Convergence dynamics of
hybrid bidirectional associative memory neural networks with
distributed delays,” Physics Letters A, vol. 316, no. 1-2, pp. 55–64,
2003.

[5] X. F. Liao and J. B. Yu, “Qualitative analysis of bi-directional
associative memory with time delay,” International Journal of
Circuit Theory and Applications, vol. 26, pp. 219–229, 1988.

[6] A. Chen, L. Huang, Z. Liu, and J. Cao, “Periodic bidirectional
associative memory neural networks with distributed delays,”
Journal of Mathematical Analysis and Applications, vol. 317, no.
1, pp. 80–102, 2006.

[7] Z. Zhang,W. Liu, and D. Zhou, “Global asymptotic stability to a
generalized Cohen-Grossberg BAM neural networks of neutral
type delays,” Neural Networks, vol. 25, pp. 94–105, 2012.

[8] R. Samidurai, R. Sakthivel, and S. M. Anthoni, “Global asymp-
totic stability of BAM neural networks with mixed delays and
impulses,” Applied Mathematics and Computation, vol. 212, no.
1, pp. 113–119, 2009.

[9] L. Zhang and L. Si, “Existence and exponential stability of
almost periodic solution for BAMneural networkswith variable
coefficients and delays,”AppliedMathematics and Computation,
vol. 194, no. 1, pp. 215–223, 2007.

[10] Y. Liu and W. Tang, “Existence and exponential stability of
periodic solution for BAM neural networks with periodic
coefficients and delays,”Neurocomputing, vol. 69, pp. 2152–2160,
2006.

[11] L. Hu, H. Liu, and Y. Zhao, “New stability criteria for BAM
neural networks with time-varying delays,” Neurocomputing,
vol. 72, pp. 3245–3252, 2009.

[12] Y. Li and P. Liu, “Existence and stability of positive periodic
solution for BAM neural networks with delays,” Mathematical
and Computer Modelling, vol. 40, no. 7-8, pp. 757–770, 2004.

[13] C. Li, C. Li, X. Liao, and T. Huang, “Impulsive effects on
stability of high-order BAM neural networks with time delays,”
Neurocomputing, vol. 74, pp. 1541–1550, 2011.

[14] P. Balasubramaniam, R. Rakkiyappan, and R. Sathy, “Delay
dependent stability results for fuzzy BAM neural networks
with Markovian jumping parameters,” Expert Systems With
Applications, vol. 38, pp. 121–130, 2011.

[15] Y. Li, X. Chen, and L. Zhao, “Stability and existence of periodic
solutions to delayed CohenCGrossberg BAM neural networks
with impulses on time scales,”Neurocomputing, vol. 72, pp. 1621–
1630, 2009.

[16] T. Yang and L.-B. Yang, “The global stability of fuzzy cellular
neural network,” IEEE Transactions on Circuits and Systems, vol.
43, no. 10, pp. 880–883, 1996.

[17] T. Yang, L. Yang, C. Wu, and L. Chua, “Fuzzy cellular neural
networks: theory,” in Proceedings of the IEEE International
Workshop on Cellular Neural Networks Application, pp. 181–186,
1996.

[18] A. Arunkumar, R. Sakthivel, K. Mathiyalagan, and S. M.
Anthoni, “State estimation for switched discrete-time stochastic
BAM neural networks with time varying delay,” Nonlinear
Dynamics, vol. 73, no. 3, pp. 1565–1585, 2013.

[19] P. Vadivel, R. Sakthivel, K. Mathiyalagan, and A. Arunkumar,
“Robust state estimation for uncertain fuzzy bidirectional asso-
ciative memory networks with time-varying delays,” Physica
Scripta, vol. 88, no. 3, Article ID 035008, 2013.

[20] K. Mathiyalagan, R. Sakthivel, and S. M. Anthoni, “New robust
passivity criteria for stochastic fuzzy BAMneural networkswith
time-varying delays,”Communications in Nonlinear Science and
Numerical Simulation, vol. 17, no. 3, pp. 1392–1407, 2012.

[21] P. Vadivel, R. Sakthivel, K. Mathiyalagan, and P. Thangaraj,
“New passivity criteria for fuzzy BAM neural networks with
Markovian jumping parameters and time-varying delays,”
Reports on Mathematical Physics, vol. 71, no. 1, pp. 69–91, 2013.



12 Abstract and Applied Analysis

[22] P. Balasubramaniam, G. Nagamani, and R. Rakkiyappan,
“Passivity analysis for neural networks of neutral type with
Markovian jumping parameters and time delay in the leakage
term,” Communications in Nonlinear Science and Numerical
Simulation, vol. 16, no. 11, pp. 4422–4437, 2011.

[23] X. Li and J. Cao, “Delay-dependent stability of neural networks
of neutral type with time delay in the leakage term,” Nonlinear-
ity, vol. 23, no. 7, pp. 1709–1726, 2010.

[24] B. Liu, “Global exponential stability for BAM neural networks
with time-varying delays in the leakage terms,” Nonlinear
Analysis: Real World Applications, vol. 14, no. 1, pp. 559–566,
2013.

[25] P. Balasubramaniam, M. Kalpana, and R. Rakkiyappan, “Exis-
tence and global asymptotic stability of fuzzy cellular neural
networks with time delay in the leakage term and unbounded
distributed delays,” Circuits, Systems, and Signal Processing, vol.
30, no. 6, pp. 1595–1616, 2011.

[26] X. Li, R. Rakkiyappan, and P. Balasubramaniam, “Existence and
global stability analysis of equilibrium of fuzzy cellular neural
networks with time delay in the leakage term under impulsive
perturbations,” Journal of the Franklin Institute, vol. 348, no. 2,
pp. 135–155, 2011.

[27] S. Lakshmanan, J. H. Park, H. Y. Jung, and P. Balasubramaniam,
“Design of state estimator for neural networks with leakage,
discrete and distributed delays,”AppliedMathematics and Com-
putation, vol. 218, no. 22, pp. 11297–11310, 2012.

[28] X. Li, X. Fu, P. Balasubramaniam, and R. Rakkiyappan, “Exis-
tence, uniqueness and stability analysis of recurrent neural
networks with time delay in the leakage term under impulsive
perturbations,”Nonlinear Analysis: RealWorld Applications, vol.
11, no. 5, pp. 4092–4108, 2010.

[29] K. Gopalsamy, “Leakage delays in BAM,” Journal of Mathemati-
cal Analysis and Applications, vol. 325, no. 2, pp. 1117–1132, 2007.

[30] C. Li and T. Huang, “On the stability of nonlinear systems with
leakage delay,” Journal of the Franklin Institute, vol. 346, no. 4,
pp. 366–377, 2009.

[31] P. Balasubramaniam,M. Kalpana, and R. Rakkiyappan, “Global
asymptotic stability of BAM fuzzy cellular neural networks
with time delay in the leakage term, discrete and unbounded
distributed delays,”Mathematical and Computer Modelling, vol.
53, no. 5-6, pp. 839–853, 2011.

[32] Y. K. Li, L. Yang, and L. J. Sun, “Existence and exponential
stability of an equilibriumpoint for fuzzy BAMneural networks
with time-varying delays in leakage terms on time scales,”
Advances in Difference Equations, vol. 2013, article 218, 2013.

[33] V. Lakshmikantham, D. D. Bainov, and D. Simeonov, Theory
of Impilsive Differential Equations, World Scientific, Singaore,
1989.

[34] Y. Li, “Global exponential stability of BAM neural networks
with delays and impulses,” Chaos, Solitons and Fractals, vol. 24,
no. 1, pp. 279–285, 2005.

[35] X. Liu and G. Ballinger, “Existence and continuability of solu-
tions for differential equations with delays and state-dependent
impulses,” Nonlinear Analysis: Theory, Methods & Applications,
vol. 51, no. 4, pp. 633–647, 2002.

[36] T. Yang, L. Yang, C. Wu, and L. Chua, “Fuzzy cellular neural
networks: applications,” in Proceedings of the IEEE International
Workshop onCellularNeuralNetworksApplication, pp. 225–230,
1996.


