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The solvability conditions and the general expression of the generalized bisymmetric and bi-skew-symmetric solutions of a class
of matrix equations (𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷) are established, respectively. If the solvability conditions are not satisfied, the generalized
bisymmetric and bi-skew-symmetric least squares solutions of the matrix equations are considered. In addition, two algorithms are
provided to compute the generalized bisymmetric and bi-skew-symmetric least squares solutions. Numerical experiments illustrate
that the results are reasonable.

1. Introduction

The class of matrix equations, namely, 𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷,
where 𝐴, 𝐵, 𝐶, and𝐷 are given, is one of the most interesting
and intensively studied classes of linear algebra. It has been
investigated by many authors and a series of important and
useful results has been obtained (see, e.g., [1–31]).

For example, Cecioni [1] gave a necessary and sufficient
condition for the matrix equations to have a common solu-
tion and a general expression of the common solution was
obtained by Rao andMitra ([2], page 25) ; Mitra [3] obtained
a common solutionwith theminimumpossible rank and also
other feasible specified rank; Chu [4] achieved new necessary
and sufficient conditions for the matrix equations by using
the generalized singular value decomposition. In [5], Wang
and Yu derived the necessary and sufficient conditions and
the expressions for the orthogonal solutions, the symmetric
orthogonal solutions, and the skew-symmetric orthogonal
solutions of the matrix equations, respectively. Khatri and
Mitra [6] considered the general Hermitian and nonnegative
definite solutions of the matrix equations, respectively. Dajić
and Koliha [7] studied the positive solutions to the matrix
equations for Hilbert space operators using generalized
inverses, and a sufficient and necessary condition for its
solvability and a representation of its general solutions were
also established therein. Li et al. investigated the generalized
reflexive and antireflexive solution of thematrix equations, in

[8, 9], respectively. In [10], Qiu et al. considered the unknown
matrix 𝑋 with the constraint 𝑃𝑋 = 𝑠𝑋𝑃, where 𝑃 is a given
Hermitian matrix satisfying 𝑃2 = 𝐼 and 𝑠 = ±1.

In this paper, 𝑅𝑚×𝑛, 𝑂𝑅𝑛×𝑛, 𝑆𝑅𝑛×𝑛, and 𝑆𝑂𝑅𝑛×𝑛 denote
the set of all 𝑚 × 𝑛 real matrices, the set of all 𝑛 × 𝑛 real
orthogonal matrices, the set of all 𝑛 × 𝑛 real symmetric
matrices, and the set of all 𝑛 × 𝑛 real symmetric orthogonal
matrices, respectively.𝐴⊤ represents the transpose of the real
matrix 𝐴 and ‖ ⋅ ‖ stands for the Frobenius norm induced by
the inner product. (𝐴 𝐵)denotes a rowblockmatrix and𝐴∘𝐵
denotes theHadamard product produced by𝐴 and𝐵, namely,
𝐴∘𝐵 = (𝑎

𝑖𝑗
𝑏
𝑖𝑗
).The symbol 𝐼

𝑛
stands for the identity matrix of

order 𝑛. Let 𝐴† be the Moore-Penrose generalized inverse of
amatrix𝐴 ∈ 𝑅𝑚×𝑛, which is defined to be the unique solution
𝑋 ∈ 𝑅

𝑛×𝑚 satisfying the following four matrix equations:

(1) 𝐴𝑋𝐴 = 𝐴, (2) 𝑋𝐴𝑋 = 𝑋,

(3) (𝐴𝑋)
⊤
= 𝐴𝑋, (4) (𝑋𝐴)

⊤
= 𝑋𝐴.

(1)

Furthermore, L
𝐴

and R
𝐴

represent the two orthogonal
projectors L

𝐴
= 𝐼

𝑛
− 𝐴†𝐴 and R

𝐴
= 𝐼

𝑚
− 𝐴𝐴†. Set

𝑆
𝑛
= (𝑒

𝑛
, 𝑒
𝑛−1
, . . . , 𝑒

1
), where 𝑒

𝑖
denotes the 𝑖th column of the

identity matrix 𝐼
𝑛
. It is easy to see that 𝑆⊤

𝑛
= 𝑆

𝑛
and 𝑆⊤

𝑛
𝑆
𝑛
= 𝐼

𝑛
.

Definition 1. Let 𝑃 ∈ 𝑆𝑂𝑅𝑛×𝑛; that is, 𝑃 = 𝑃⊤ = 𝑃−1. A matrix
𝑋 ∈ 𝑅𝑛×𝑛 is said to be a generalized bisymmetric matrix if
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𝑋 = 𝑋⊤ = 𝑃𝑋𝑃. The set of all 𝑛 × 𝑛 generalized bisymmetric
matrices is denoted by 𝐺𝐵𝑆𝑅𝑛×𝑛.

Definition 2. Let𝑃 ∈ 𝑆𝑂𝑅𝑛×𝑛; that is,𝑃 = 𝑃⊤ = 𝑃−1. Amatrix
𝑋 ∈ 𝑅𝑛×𝑛 is said to be a generalized bi-skew-symmetric
matrix if 𝑋 = −𝑋⊤ = −𝑃𝑋𝑃. The set of all 𝑛 × 𝑛 generalized
bi-skew-symmetric matrices is denoted by 𝐺𝐵𝑆𝑆𝑅𝑛×𝑛.

Without special statement, we assume that 𝑃 is a given
symmetric orthogonal matrix in the remainder of this paper.

If 𝑃 = 𝑆
𝑛
, then the generalized bisymmetric matrix

reduces to the bisymmetric matrix and the generalized bi-
skew-symmetric matrix reduces to the antisymmetric and
persymmetric matrix.

In this paper, we consider the following problems.

Problem 3. Given 𝐴, 𝐵 ∈ 𝑅
𝑚×𝑛, 𝐶,𝐷 ∈ 𝑅𝑛×𝑙, find 𝑋 ∈

𝐺𝐵𝑆𝑅𝑛×𝑛 such that

𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷. (2)

Problem 4. Given 𝐴, 𝐵 ∈ 𝑅𝑚×𝑛, 𝐶,𝐷 ∈ 𝑅𝑛×𝑙, find 𝑋 ∈

𝐺𝐵𝑆𝑆𝑅𝑛×𝑛 such that

𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷. (3)

Problem 5. Given 𝐴, 𝐵 ∈ 𝑅𝑚×𝑛, 𝐶,𝐷 ∈ 𝑅𝑛×𝑙, find 𝑋 ∈

𝐺𝐵𝑆𝑅𝑛×𝑛 such that


𝐴𝑋 − 𝐵


+

𝑋𝐶 − 𝐷


= min
𝑋∈𝐺𝐵𝑆𝑅

𝑛×𝑛

‖𝐴𝑋 − 𝐵‖ + ‖𝑋𝐶 − 𝐷‖ .

(4)

Problem 6. Given 𝐴, 𝐵 ∈ 𝑅𝑚×𝑛, 𝐶,𝐷 ∈ 𝑅𝑛×𝑙, find 𝑋 ∈

𝐺𝐵𝑆𝑆𝑅
𝑛×𝑛 such that


𝐴𝑋 − 𝐵


+

𝑋𝐶 − 𝐷


= min
𝑋∈𝐺𝐵𝑆𝑆𝑅

𝑛×𝑛

‖𝐴𝑋 − 𝐵‖ + ‖𝑋𝐶 − 𝐷‖ .

(5)

If 𝐶 = 𝐷 = 0, then those problems become the problems
discussed in [11]. So, this paper extends the part results of
[11]. In our work, the necessary and sufficient conditions
for the existence of the solutions to Problems 3 and 4 are
derived and their general expressions of the solutions are
given by Moore-Penrose generalized inverse, respectively. If
the solvability conditions are not satisfied, Problems 5 and 6
will be considered.

The remainder of this paper is arranged as follows. In
Section 2, we establish the necessary and sufficient conditions
and the explicit expressions of Problems 3 and 4. In Section 3,
we investigate Problems 5 and 6 by virtue of the singular
value decomposition (SVD) and the special decompositions
of the generalized bisymmetric matrices and the generalized
bi-skew-symmetric matrices. In Section 4, we give two algo-
rithms and some examples to illustrate the efficiency of our
proposed results. In Section 5, some conclusions are made.

2. The Generalized Bisymmetric (Bi-Skew-
Symmetric) Solutions of the Matrix
Equations 𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷

In this section, we first recall some lemmaswhichwill be used
for obtaining the necessary and sufficient conditions and the
explicit expressions of Problems 3 and 4.

Lemma 7 (see [12]). Assume 𝑃 ∈ SOR𝑛×𝑛, and let

𝑃
1
=
1

2
(𝐼
𝑛
+ 𝑃) , 𝑃

2
=
1

2
(𝐼
𝑛
− 𝑃) . (6)

Then 𝑃
1
and 𝑃

2
are orthogonal projection matrices satisfying

𝑃
1
+ 𝑃

2
= 𝐼

𝑛
, 𝑃

1
𝑃
2
= 0. Furthermore, assume rank(𝑃

1
) = 𝑟.

Then, rank(𝑃
2
) = 𝑛 − 𝑟 and there exist unit column orthogonal

matrices 𝑈
1
∈ 𝑅𝑛×𝑟 and 𝑈

2
∈ 𝑅𝑛×(𝑛−𝑟) such that

𝑃
1
= 𝑈

1
𝑈
⊤

1
, 𝑃

2
= 𝑈

2
𝑈
⊤

2
,

𝑃 = 𝑈
1
𝑈
⊤

1
− 𝑈

1
𝑈
⊤

1
, 𝑈

⊤

1
𝑈
2
= 0.

(7)

From Lemma 7, we note that 𝑈 = (𝑈1 𝑈2) is an
orthogonal matrix and the symmetric orthogonal matrix 𝑃
can be expressed as

𝑃 = 𝑈(
𝐼
𝑟

0

0 −𝐼
𝑛−𝑟

)𝑈
⊤
. (8)

Lemma 8 (see [11]). Assume that the spectral decomposition
of 𝑃 is given as in (8). Then 𝑋 ∈ 𝐺𝐵𝑆𝑅𝑛×𝑛 if and only if 𝑋 can
be expressed as

𝑋 = 𝑈(
𝑋
11

0

0 𝑋
22

)𝑈
⊤
, (9)

where𝑋
11
∈ 𝑆𝑅𝑟×𝑟 and 𝑋

22
∈ 𝑆𝑅(𝑛−𝑟)×(𝑛−𝑟).

Proof. For 𝑋 ∈ 𝐺𝐵𝑆𝑅𝑛×𝑛, by Definition 1, it is easy to know
that 𝑃𝑋 = 𝑋𝑃. Then, we have

𝑃
1
𝑋𝑃

1
=
𝐼
𝑛
+ 𝑃

2
𝑋
𝐼
𝑛
+ 𝑃

2

=
1

4
(𝑋 + 𝑃𝑋 + 𝑋𝑃 + 𝑃𝑋𝑃) =

1

2
(𝑋 + 𝑃𝑋) ,

𝑃
2
𝑋𝑃

2
=
𝐼
𝑛
− 𝑃

2
𝑋
𝐼
𝑛
− 𝑃

2
=
1

4
(𝑋 − 𝑃𝑋 − 𝑋𝑃 + 𝑃𝑋𝑃)

=
1

2
(𝑋 − 𝑃𝑋) .

(10)

By (10) and Lemma 7, we obtain

𝑋 = 𝑃
1
𝑋𝑃

1
+ 𝑃

2
𝑋𝑃

2

= 𝑈
1
𝑈
⊤

1
𝑋𝑈

1
𝑈
⊤

1
+ 𝑈

2
𝑈
⊤

2
𝑋𝑈

2
𝑈
⊤

2
.

(11)

Let 𝑋
11
= 𝑈⊤

1
𝑋𝑈

1
and𝑋

22
= 𝑈⊤

2
𝑋𝑈

2
; it is easy to verify that

𝑋
11
= 𝑋⊤

11
and𝑋

22
= 𝑋⊤

22
. Furthermore, we have

𝑋 = 𝑈
1
𝑋
11
𝑈
⊤

1
+ 𝑈

2
𝑋
22
𝑈
⊤

2
= 𝑈(

𝑋
11

0

0 𝑋
22

)𝑈
⊤
. (12)
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Conversely, for any 𝑋
11
∈ 𝑆𝑅𝑟×𝑟 and 𝑋

22
∈ 𝑆𝑅(𝑛−𝑟)×(𝑛−𝑟),

it is easy to verify that𝑋 = 𝑋⊤. Using (8), we have

𝑃𝑋𝑃 = 𝑈(
𝐼
𝑟

0

0 −𝐼
𝑛−𝑟

)𝑈
⊤
𝑈(

𝑋
11

0

0 𝑋
22

)𝑈
⊤
𝑈(

𝐼
𝑟

0

0 −𝐼
𝑛−𝑟

)𝑈
⊤

= 𝑈(
𝑋
11

0

0 𝑋
22

)𝑈
⊤

= 𝑋.

(13)

This implies that

𝑋 = 𝑈(
𝑋
11

0

0 𝑋
22

)𝑈
⊤
∈ 𝐺𝐵𝑆𝑅

𝑛×𝑛
. (14)

Lemma 9 (see [11]). Assume that the spectral decomposition
of 𝑃 is given as in (8). Then, 𝑋 ∈ 𝐺𝐵𝑆𝑆𝑅𝑛×𝑛 if and only if 𝑋
can be expressed as

𝑋 = 𝑈(
0 𝑋

12

−𝑋⊤
12

0
)𝑈

⊤
, (15)

where𝑋
12
∈ 𝑅𝑟×(𝑛−𝑟).

Proof. For𝑋 ∈ 𝐺𝐵𝑆𝑆𝑅𝑛×𝑛, by Definition 2, we have

𝑃
1
𝑋𝑃

1
=
𝐼
𝑛
+ 𝑃

2
𝑋
𝐼
𝑛
+ 𝑃

2

=
1

4
(𝑋 + 𝑃𝑋 + 𝑋𝑃 + 𝑃𝑋𝑃) =

1

4
(𝑃𝑋 + 𝑋𝑃) ,

𝑃
2
𝑋𝑃

2
=
𝐼
𝑛
− 𝑃

2
𝑋
𝐼
𝑛
− 𝑃

2

=
1

4
(𝑋 − 𝑃𝑋 − 𝑋𝑃 + 𝑃𝑋𝑃) = −

1

4
(𝑃𝑋 + 𝑃𝑋) .

(16)

By (16) and Lemma 7, we obtain

𝑋 = (𝑃
1
+ 𝑃

2
)𝑋 (𝑃

1
+ 𝑃

2
)

= 𝑃
1
𝑋𝑃

1
+ 𝑃

1
𝑋𝑃

2
+ 𝑃

2
𝑋𝑃

1
+ 𝑃

2
𝑋𝑃

2

= 𝑃
1
𝑋𝑃

2
+ 𝑃

2
𝑋𝑃

1

= 𝑈
1
𝑈
⊤

1
𝑋𝑈

2
𝑈
⊤

2
+ 𝑈

2
𝑈
⊤

2
𝑋𝑈

1
𝑈
⊤

1
.

(17)

Let 𝑋
12
= 𝑈⊤

1
𝑋𝑈

2
and𝑋

21
= 𝑈⊤

2
𝑋𝑈

1
; it is easy to verify that

𝑋
21
= −𝑋⊤

12
. And we have

𝑋 = 𝑈
1
𝑋
12
𝑈
⊤

2
+ 𝑈

2
𝑋
21
𝑈
⊤

1

= 𝑈(
0 𝑋

12

𝑋
21

0
)𝑈

⊤
= 𝑈(

0 𝑋
12

−𝑋⊤
12

0
)𝑈

⊤
.

(18)

Conversely, for any𝑋
12
∈ 𝑅𝑟×(𝑛−𝑟), it is easy to verify that

𝑋 = −𝑋⊤. Using (8), we have

𝑃𝑋𝑃 =𝑈(
𝐼
𝑟

0

0 −𝐼
𝑛−𝑟

)𝑈
⊤
𝑈(

0 𝑋
12

−𝑋⊤
12

0
)𝑈

⊤
𝑈(
𝐼
𝑟

0

0 −𝐼
𝑛−𝑟

)𝑈
⊤

= 𝑈(
0 −𝑋

12

𝑋⊤
12

0
)𝑈

⊤

= −𝑋.

(19)

This implies that

𝑋 = 𝑈(
0 𝑋

12

−𝑋⊤
12

0
)𝑈

⊤
∈ 𝐺𝐵𝑆𝑆𝑅

𝑛×𝑛
. (20)

Remark 10. For Lemma 8, Wang and Yu [11] just gave the
conclusion; we prove it here. The proof of Lemma 9 can be
seen in [12]; for the convenience of the reader, we rewrite it.

Lemma 11 (see [13]). Suppose that 𝐴
1
∈ 𝑅𝑚×𝑛, 𝐴

3
∈ 𝑅𝑘×𝑛,

𝐵
2
∈ 𝑅𝑟×𝑠, 𝐵

4
∈ 𝑅𝑟×𝑙, 𝐶

1
∈ 𝑅𝑚×𝑟, 𝐶

2
∈ 𝑅𝑛×𝑠, 𝐶

3
∈ 𝑅𝑘×𝑟,

𝐶
4
∈ 𝑅𝑛×𝑙 are known and 𝑋 ∈ 𝑅𝑛×𝑟 is unknown. Let 𝐾 =

𝐴
3
L

𝐴
1

, 𝑁 = R
𝐵
2

𝐵
4
, 𝑄

1
= 𝐶

3
− 𝐴

3
𝐴
†

1
𝐶
1
− 𝐾𝐶

2
𝐵
†

2
, 𝑄 =

𝐶
4
− 𝐴†

1
𝐶
1
𝐵
4
−L

𝐴
1

𝐶
2
𝐵†
2
𝐵
4
−L

𝐴
1

𝐾†Q
1
𝑁. Then the system

of matrix equations

𝐴
1
𝑋 = 𝐶

1
, 𝑋𝐵

2
= 𝐶

2
, 𝐴

3
𝑋 = 𝐶

3
, 𝑋𝐵

4
= 𝐶

4

(21)

is consistent if and only if

𝐾𝐾
†
𝑄
1
R

𝐵
2

= 𝑄
1
, 𝑄L

𝑁
= 0,

RL
𝐴
1

L
𝐾

𝑄 = 0, 𝐴
1
𝐶
2
= 𝐶

1
𝐵
2
,

𝐴
𝑖
𝐴
†

𝑖
𝐶
𝑖
= 𝐶

𝑖
, 𝐶

𝑗
𝐵
†

𝑗
𝐵
𝑗
= 𝐶

𝑗
, 𝑖 = 1, 3; 𝑗 = 2, 4,

(22)

in which case, the general solutions of the system can be
expressed as

𝑋 = 𝐴
†

1
𝐶
1
+L

𝐴
1

𝐶
2
𝐵
†

2
+L

𝐴
1

𝐾
†
𝑄
1
R

𝐵
2

+ 𝑄𝑁
†
R

𝐵
2

+L
𝐴
1

L
𝐾
𝑍R

𝑁
R

𝐵
2

,

(23)

where𝑍 is an arbitrary real matrix with compatible dimension.

Lemma 12. Given 𝐴, 𝐵 ∈ 𝑅𝑚×𝑛, 𝐶,𝐷 ∈ 𝑅𝑛×𝑙. Let 𝐾 = 𝐶⊤L
𝐴
,

𝑁 =R
𝐶
𝐴
⊤,𝑄

1
= 𝐷

⊤
−𝐶

⊤
𝐴
†
𝐵−𝐾𝐷𝐶

†,𝑄 = 𝐵⊤ −𝐴†𝐵𝐴⊤ −
L
𝐴
𝐷𝐶†𝐴⊤ −L

𝐴
𝐾†𝑄

1
𝑁. Then, the following statements are

equivalent.

(i) The matrix equations

𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷 (24)

have a solution𝑋 ∈ 𝑆𝑅𝑛×𝑛.
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(ii) The system of matrix equations

𝐴𝑌 = 𝐵, 𝑌𝐶 = 𝐷, 𝑌𝐴
⊤
= 𝐵

⊤
, 𝐶

⊤
𝑌 = 𝐷

⊤

(25)

have a solution 𝑌 ∈ 𝑅𝑛×𝑛; in this case, the symmetric solution
of the matrix equations (24) is

𝑋 =
𝑌 + 𝑌

⊤

2
. (26)

(iii) If

𝐾𝐾
†
𝑄
1
R

𝐶
= 𝑄

1
, 𝑄L

𝑁
= 0, RL

𝐴
L
𝐾

𝑄 = 0

𝐴𝐷 = 𝐵𝐶, 𝐴𝐴
†
𝐵 = 𝐵, 𝐷𝐶

†
𝐶 = 𝐷,

(27)

the symmetric solutions of the matrix equations (24) can be
expressed as

𝑋 =
1

2
(𝐴

†
𝐵 +L

𝐴
𝐷𝐶

†
+L

𝐴
𝐾
†
𝑄
1
R

𝐶

+ 𝑄𝑁
†
R

𝐶
+L

𝐴
L

𝐾
𝑍R

𝑁
R

𝐶
)

+
1

2
(𝐵

⊤
𝐴
⊤†
+ 𝐶

⊤†
𝐷
⊤
L

𝐴
+R

𝐶
𝑄
⊤

1
𝐾
⊤†
L

𝐴

+ R
𝐶
𝑁
⊤†
𝑄
⊤
+R

𝐶
R

𝑁
𝑍
⊤
L

𝐾
L

𝐴
) ,

(28)

where 𝑍 ∈ 𝑅𝑛×𝑛 is an arbitrary matrix.

Proof. (i) ⇔ (ii). It is not difficult to get that (i) is equivalent
to (ii). Further, if 𝑌 is a solution of the matrix equations (25),
then

𝑋 =
𝑌 + 𝑌

⊤

2
= 𝑋

⊤
. (29)

Moreover,

𝐴𝑋 = 𝐴
𝑌 + 𝑌

⊤

2
=
1

2
(𝐴𝑌 + 𝐴𝑌

⊤
) =

1

2
(𝐵 + 𝐵) = 𝐵,

𝑋𝐶 =
𝑌 + 𝑌⊤

2
𝐶 =

1

2
(𝑌𝐶 + 𝑌

⊤
𝐶) =

1

2
(𝐷 + 𝐷) = 𝐷.

(30)

Then, the expression in (26) is the symmetric solution of the
matrix equations (24).
(ii) ⇔ (iii). From Lemma 11, it can be proved that (ii) is

equivalent to (iii) and the solutions of the matrix equations
(25) can be expressed as

𝑌 = 𝐴
†
𝐵 +L

𝐴
𝐷𝐶

†
+L

𝐴
𝐾
†
𝑄
1
R

𝐶

+ 𝑄𝑁
†
R

𝐶
+L

𝐴
L

𝐾
𝑍R

𝑁
R

𝐶
.

(31)

Substituting (31) into (26) yields (28).The proof is completed.

For 𝑈 ∈ 𝑂𝑅𝑛×𝑛 which is given by (8), partition

𝐴𝑈 = (𝐴1
𝐴
2) , 𝐵𝑈 = (𝐵1 𝐵2) ,

𝐴
1
, 𝐵

1
∈ 𝑅

𝑚×𝑟
, 𝐴

2
, 𝐵

2
∈ 𝑅

𝑚×(𝑛−𝑟)
,

(32)

𝐶
⊤
𝑈 = (𝐶

⊤

1
𝐶⊤
2
) , 𝐷

⊤
𝑈 = (𝐷

⊤

1
𝐷⊤
2
) ,

𝐶
1
, 𝐷

1
∈ 𝑅

𝑟×𝑙
, 𝐶

2
, 𝐷

2
∈ 𝑅

(𝑛−𝑟)×𝑙
.

(33)

From Lemma 8, we know that the matrix equations 𝐴𝑋 = 𝐵,
𝑋𝐶 = 𝐷 have a solution 𝑋 ∈ 𝐺𝐵𝑆𝑅𝑛×𝑛 if and only if there
exist𝑋

11
∈ 𝑆𝑅𝑟×𝑟 and𝑋

22
∈ 𝑆𝑅(𝑛−𝑟)×(𝑛−𝑟) such that

𝐴𝑈(
𝑋
11

0

0 𝑋
22

) = 𝐵𝑈,

(
𝑋
11

0

0 𝑋
22

)𝑈
⊤
𝐶 = 𝑈

⊤
𝐷,

(34)

that is,

𝐴
1
𝑋
11
= 𝐵

1
, 𝑋

11
𝐶
1
= 𝐷

1
, (35)

𝐴
2
𝑋
22
= 𝐵

2
, 𝑋

22
𝐶
2
= 𝐷

2
. (36)

Let 𝐾
1
= 𝐶⊤

1
L

𝐴
1

, 𝑁
1
= R

𝐶
1

𝐴⊤
1
, 𝑄

1
= 𝐷⊤

1
− 𝐶⊤

1
𝐴†
1
𝐵
1
−

𝐾
1
𝐷
1
𝐶
†

1
, 𝑄 = 𝐵⊤

1
− 𝐴

†

1
𝐵
1
𝐴
⊤

1
−L

𝐴
1

𝐷
1
𝐶
†

1
𝐴
⊤

1
−L

𝐴
1

𝐾
†

1
𝑄
1
𝑁
1
.

By Lemma 12, thematrix equations (35) have a solution𝑋
11
∈

𝑆𝑅𝑟×𝑟 if and only if

𝐾
1
𝐾
†

1
𝑄
1
R

𝐶
1

= 𝑄
1
, 𝑄L

𝑁
1

= 0, RL
𝐴
1

L
𝐾
1

𝑄 = 0,

𝐴
1
𝐷
1
= 𝐵

1
𝐶
1
, 𝐴

1
𝐴
†

1
𝐵
1
= 𝐵

1
, 𝐷

1
𝐶
†

1
𝐶
1
= 𝐷

1
,

(37)

in which case the general solutions can be expressed as

𝑋
11
=
1

2
(𝐴

†

1
𝐵
1
+L

𝐴
1

𝐷
1
𝐶
†

1
+L

𝐴
1

𝐾
†

1
𝑄
1
R

𝐶
1

+ 𝑄𝑁
†

1
R

𝐶
1

+L
𝐴
1

L
𝐾
1

𝑍
1
R

𝑁
1

R
𝐶
1

)

+
1

2
(𝐵

⊤

1
𝐴
⊤†

1
+ 𝐶

⊤†

1
𝐷
⊤

1
L
𝐴
1

+R
𝐶
1

𝑄
⊤

1
𝐾
⊤†

1
L

𝐴
1

+ R
𝐶
1

𝑁
⊤†

1
𝑄
⊤

+R
𝐶
1

R
𝑁
1

𝑍
⊤

1
L
𝐾
1

L
𝐴
1

) ,

(38)

where 𝑍
1
∈ 𝑅𝑟×𝑟 is an arbitrary matrix.

Let 𝐾
2
= 𝐶⊤

2
L

𝐴
2

, 𝑁
2
= R

𝐶
2

𝐴⊤
2
, 𝑄

2
= 𝐷⊤

2
− 𝐶⊤

2
𝐴†
2
𝐵
2
−

𝐾
2
𝐷
2
𝐶†
2
, 𝑄 = 𝐵⊤

2
− 𝐴†

2
𝐵
2
𝐴⊤
2
−L

𝐴
2

𝐷
2
𝐶†
2
𝐴⊤
2
−L

𝐴
2

𝐾†
2
𝑄
2
𝑁
2
.

Similarly, the matrix equations (36) have a solution 𝑋
22
∈

𝑆𝑅(𝑛−𝑟)×(𝑛−𝑟) if and only if

𝐾
2
𝐾
†

2
𝑄
2
R

𝐶
2

= 𝑄
2
, 𝑄L

𝑁
2

= 0, RL
𝐴
2

L
𝐾
2

𝑄 = 0,

𝐴
2
𝐷
2
= 𝐵

2
𝐶
2
, 𝐴

2
𝐴
†

2
𝐵
2
= 𝐵

2
, 𝐷

2
𝐶
†

2
𝐶
2
= 𝐷

2
,

(39)

in which case the general solutions can be expressed as

𝑋
22
=
1

2
(𝐴

†

2
𝐵
2
+L

𝐴
2

𝐷
2
𝐶
†

2
+L

𝐴
2

𝐾
†

2
𝑄
2
R

𝐶
2

+ 𝑄𝑁
†

2
R

𝐶
2

+L
𝐴
2

L
𝐾
2

𝑍
2
R

𝑁
2

R
𝐶
2

)
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+
1

2
(𝐵

⊤

2
𝐴
⊤†

2
+ 𝐶

⊤†

2
𝐷
⊤

2
L
𝐴
2

+R
𝐶
2

𝑄
⊤

2
𝐾
⊤†

2
L

𝐴
2

+ R
𝐶
2

𝑁
⊤†

2
𝑄
⊤
+R

𝐶
2

R
𝑁
2

𝑍
⊤

2
L

𝐾
2

L
𝐴
2

) ,

(40)

where 𝑍
2
∈ 𝑅(𝑛−𝑟)×(𝑛−𝑟) is an arbitrary matrix.

Now, based on the above discussion, we give the solvabil-
ity conditions and the general expression of the solutions of
Problem 3.

Theorem 13. Given 𝐴, 𝐵 ∈ 𝑅
𝑚×𝑛, 𝐶,𝐷 ∈ 𝑅𝑛×𝑙. And 𝑈 ∈

𝑂𝑅𝑛×𝑛 is given by (8). Let the partitions of 𝐴𝑈, 𝐵𝑈, 𝐶⊤𝑈, and
𝐷⊤𝑈 be as in (32) and (33), respectively. Then, Problem 3 is
consistent if and only if (37) and (39) hold, in which case the
general solutions can be expressed as

𝑋 = 𝑈(
𝑋
11

0

0 𝑋
22

)𝑈
⊤
, (41)

where𝑋
11
and 𝑋

22
are given as in (38) and (40).

FromLemma 9, we know that thematrix equations𝐴𝑋 =
𝐵,𝑋𝐶 = 𝐷 have a solution𝑋 ∈ 𝐺𝐵𝑆𝑆𝑅𝑛×𝑛 if and only if there
exists𝑋

12
∈ 𝑅𝑟×(𝑛−𝑟) such that

𝐴𝑈(
0 𝑋

12

−𝑋⊤
12

0
) = 𝐵𝑈,

(
0 𝑋

12

−𝑋⊤
12

0
)𝑈

⊤
𝐶 = 𝑈

⊤
𝐷,

(42)

that is,

𝐴
1
𝑋
12
= 𝐵

2
, 𝑋

12
𝐴
⊤

2
= −𝐵

⊤

1
,

𝐶
⊤

1
𝑋
12
= −𝐷

⊤

2
, 𝑋

12
𝐶
2
= 𝐷

1
.

(43)

Let 𝐾 = 𝐶⊤
1
L

𝐴
1

, 𝑁 = R
𝐴
⊤

2

𝐶
2
= L

𝐴
2

𝐶
2
, 𝑄

1
= −𝐷⊤

2
−

𝐶⊤
1
𝐴†
1
𝐵
2
+ 𝐾𝐵⊤

1
A⊤†
2
, 𝑄 = 𝐷

1
− 𝐴†

1
𝐵
2
𝐶
2
+ L

𝐴
1

𝐵⊤
1
𝐴⊤†
2
𝐶
2
−

L
𝐴
1

𝐾†𝑄
1
𝑁. By Lemma 11, the system of matrix equations

(43) has a solution𝑋
12
∈ 𝑅𝑟×(𝑛−𝑟) if and only if

𝐾𝐾
†
𝑄
1
R

𝐴
⊤

2

= 𝑄
1
, 𝑄L

𝑁
= 0, RL

𝐴
1

L
𝐾

𝑄 = 0,

𝐴
1
𝐵
⊤

1
= −𝐵

2
𝐴
⊤

2
, 𝐴

1
𝐴
†

1
𝐵
2
= 𝐵

2
, 𝐷

2
𝐶
†

1
𝐶
1
= 𝐷

2
,

𝐴
2
𝐴
†

2
𝐵
1
= 𝐵

1
, 𝐷

1
𝐶
†

2
𝐶
2
= 𝐷

1
,

(44)

in which case the general solutions can be expressed as

𝑋
12
= 𝐴

†

1
𝐵
2
−L

𝐴
1

𝐵
⊤

1
𝐴
⊤†

2
+L

𝐴
1

𝐾
†
𝑄
1
R

𝐴
⊤

2

+ 𝑄𝑁
†
R

𝐴
⊤

2

+L
𝐴
1

L
𝐾
𝑍R

𝑁
R

𝐴
⊤

2

,

(45)

where 𝑍 ∈ 𝑅𝑛×(𝑛−𝑟) is an arbitrary matrix.
Therefore, we have the following result about Problem 4.

Theorem 14. Given 𝐴, 𝐵 ∈ 𝑅𝑚×𝑛, 𝐶,𝐷 ∈ 𝑅𝑛×𝑙. And 𝑈 ∈

𝑂𝑅𝑛×𝑛 is given by (8). Let the partitions of 𝐴𝑈, 𝐵𝑈, 𝐶⊤𝑈, and

𝐷
⊤𝑈 be as in (32) and (33), respectively. Then, Problem 4 is

consistent if and only if (44) holds, in which case the general
solutions can be expressed as

𝑋 = 𝑈(
0 𝑋

12

−𝑋⊤
12

0
)𝑈

⊤
, (46)

where𝑋
12
is given as in (45).

3. The Generalized Bisymmetric (Bi-Skew-
Symmetric) Least Squares Solutions of the
Matrix Equations 𝐴𝑋=𝐵, 𝑋𝐶=𝐷

It is well known that if the solvability conditions of the linear
matrix equation or linear matrix equations are not satisfied,
we can derive its approximate solutions, among which, the
least squares solution is usually considered. In this section,
we try to solve the Problems 5 and 6. Firstly, we present some
lemmas which will play important roles in the following.

Lemma 15 (see [14]). Given 𝐴, 𝐵 ∈ 𝑅
𝑚×𝑛. Let the singular

value decomposition (SVD) of 𝐴 be

𝐴 = 𝑊(
Σ 0

0 0
)𝑉

⊤
, (47)

where 𝑊 = (𝑊1
𝑊
2) ∈ 𝑂𝑅

𝑚×𝑚, 𝑉 = (𝑉1 𝑉2) ∈ 𝑂𝑅
𝑛×𝑛,

Σ = diag(𝜎
1
, . . . , 𝜎

𝑠
) > 0, 𝑠 = rank(𝐴). Then, there exists 𝑋 ∈

𝑆𝑅𝑚×𝑚 such that

𝑋𝐴 − 𝐵


= min
𝑋∈𝑆𝑅

𝑚×𝑚

‖𝑋𝐴 − 𝐵‖ . (48)

In this case, 𝑋 can be expressed as

𝑋 = 𝑊(
Φ ∘ (𝑊⊤

1
𝐵𝑉

1
Σ + Σ𝑉⊤

1
𝐵⊤𝑊

1
) Σ−1𝑉⊤

1
𝐵⊤𝑊

2

𝑊⊤

2
𝐵𝑉

1
Σ−1 𝐺

)𝑊
⊤
,

(49)

where Φ = (𝜑
𝑖𝑗
) ∈ 𝑅𝑠×𝑠, 𝜑

𝑖𝑗
= 1/(𝜎2

𝑖
+ 𝜎2

𝑗
), 1 ≤ 𝑖, 𝑗 ≤ 𝑠, and

𝐺 ∈ 𝑆𝑅(𝑚−𝑠)×(𝑚−𝑠) is an arbitrary matrix.

Lemma 16 (see [15]). Given 𝐴 ∈ 𝑅𝑚×𝑛, 𝐵 ∈ 𝑅𝑚×𝑝, 𝐶 ∈ 𝑅𝑝×𝑙,
and 𝐷 ∈ 𝑅𝑛×𝑙. Let the SVDs of 𝐴 and 𝐶 be

𝐴 = 𝑊(
Σ 0

0 0
)𝑉

⊤
, 𝐶 = 𝑇(

Ω 0

0 0
)𝑄

⊤
, (50)

where 𝑊 = (𝑊1
𝑊
2), 𝑉 = (𝑉1 𝑉2), 𝑇 = (𝑇1 𝑇2), and

𝑄 = (𝑄1 𝑄2) are all orthogonal matrices and the partitions
are compatible with the sizes of

Σ = diag (𝜎
1
, . . . , 𝜎

𝑠
) > 0, Ω = diag (𝜔

1
, . . . , 𝜔

𝑡
) > 0,

𝑠 = rank (𝐴) , 𝑡 = rank (𝐶) .
(51)

Then the least squares solutions of the matrix equations 𝐴𝑋 =
𝐵,𝑋𝐶 = 𝐷 can be expressed as
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�̂�

= 𝑉(
Φ ∘ [𝑉

⊤

1
(𝐴

⊤
𝐵 + 𝐷𝐶

⊤
)𝑇1] (Σ

−1
)
2

𝑉
⊤

1
(𝐴

⊤
𝐵 + 𝐷𝐶

⊤
)𝑇2

𝑉
⊤

2
(𝐴

⊤
𝐵 + 𝐷𝐶

⊤
)𝑇1(Ω

−1
)
2

𝐺

)𝑇
⊤
,

(52)

whereΦ = (𝜑
𝑖𝑗
) ∈ 𝑅

𝑠×𝑡, 𝜑
𝑖𝑗
= 1/(𝜎

2

𝑖
+𝜔

2

𝑗
), 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝑡,

and 𝐺 ∈ 𝑅(𝑛−𝑠)×(𝑝−𝑡) is an arbitrary matrix.

Let the SVDs of (𝐴⊤
1
𝐶
1
) and (𝐴⊤

2
𝐶
2
) be

(𝐴
⊤

1
𝐶
1
) = 𝑉(

Σ 0

0 0
)𝑊

⊤
, (𝐴

⊤

2
𝐶
2
) = 𝑇(

Ω 0

0 0
)𝑄

⊤
,

(53)

where 𝑉 = (𝑉1 𝑉2),𝑊 = (𝑊1
𝑊
2), 𝑇 = (𝑇1 𝑇2), and 𝑄 =

(𝑄1 𝑄2) are all orthogonal matrices and the partitions are
compatible with the sizes of

Σ = diag (𝜎
1
, . . . , 𝜎

𝑠
) > 0, Ω = diag (𝜔

1
, . . . , 𝜔

𝑡
) > 0,

𝑠 = rank ((𝐴⊤
1
𝐶
1
)) , 𝑡 = rank ((𝐴⊤

2
𝐶
2
)) .

(54)

Based on Lemma 8 and the properties of Frobenius norm,
we have

‖𝐴𝑋 − 𝐵‖
2
+ ‖𝑋𝐶 − 𝐷‖

2

=

𝐴𝑈(

𝑋
11

0

0 𝑋
22

)𝑈
⊤
− 𝐵


2

+

𝑈(

𝑋
11

0

0 𝑋
22

)𝑈
⊤
𝐶 − 𝐷



2

=
𝐴1

𝑋
11
− 𝐵

1


2

+
𝐴2

𝑋
22
− 𝐵

2


2

+
𝑋11𝐶1 − 𝐷1


2

+
𝑋22𝐶2 − 𝐷2


2

=
𝑋11 (𝐴

⊤

1
𝐶
1
) − (𝐵

⊤

1
𝐷
1
)

2

+
𝑋22 (𝐴

⊤

2
𝐶
2
) − (𝐵

⊤

2
𝐷
2
)

2

.

(55)

Hence, min
𝑋∈𝐺𝐵𝑆𝑅

𝑛×𝑛‖𝐴𝑋 − 𝐵‖ + ‖𝑋𝐶 − 𝐷‖ is equivalent to

min
𝑋
11
∈𝑆𝑅
𝑟×𝑟

𝑋11 (𝐴
⊤

1
𝐶
1
) − (𝐵

⊤

1
𝐷
1
)
 , (56)

min
𝑋
22
∈𝑆𝑅
(𝑛−𝑟)×(𝑛−𝑟)

𝑋22 (𝐴
⊤

2
𝐶
2
) − (𝐵

⊤

2
𝐷
2
)
 . (57)

From Lemma 15, when𝑋
11
has the form

𝑋
11
= 𝑉(

Φ
1
∘ [𝑉

⊤

1
(𝐵

⊤

1
𝐷
1
)𝑊

1
Σ + Σ𝑊

⊤

1
(𝐵

⊤

1
𝐷
1
)
⊤

𝑉
1
] Σ

−1
𝑊

⊤

1
(𝐵

⊤

1
𝐷
1
)
⊤

𝑉
2

𝑉⊤
2
(𝐵

⊤

1
𝐷
1
)𝑊

1
Σ−1 𝐺

1

)𝑉
⊤
, (58)

where Φ
1
= (𝜑

𝑖𝑗
) ∈ 𝑅𝑠×𝑠, 𝜑

𝑖𝑗
= 1/(𝜎2

𝑖
+ 𝜎2

𝑗
), 1 ≤ 𝑖, 𝑗 ≤ 𝑠, and

𝐺
1
∈ 𝑆𝑅(𝑟−𝑠)×(𝑟−𝑠) is an arbitrary matrix, (56) holds.
According to Lemma 15, we know that (57) holds if 𝑋

22

has the form

𝑋
22
= 𝑇(

Φ
2
∘ [𝑇⊤

1
(𝐵

⊤

2
𝐷
2
) 𝑄

1
Ω + Ω𝑄⊤

1
(𝐵

⊤

2
𝐷
2
)
⊤

𝑇
1
] Ω−1𝑄⊤

1
(𝐵

⊤

2
𝐷
2
)
⊤

𝑇
2

𝑇⊤
2
(𝐵

⊤

2
𝐷
2
) 𝑄

1
Ω−1 𝐺

2

)𝑇
⊤
, (59)

where Φ
2
= (𝜑

𝑖𝑗
) ∈ 𝑅𝑡×𝑡, 𝜑

𝑖𝑗
= 1/(𝜔2

𝑖
+ 𝜔2

𝑗
), 1 ≤ 𝑖, 𝑗 ≤ 𝑡, and

𝐺
2
∈ 𝑆𝑅(𝑛−𝑟−𝑡)×(𝑛−𝑟−𝑡) is an arbitrary matrix.
From the above discussion, we get the solutions of

Problem 5.

Theorem 17. Given 𝐴, 𝐵 ∈ 𝑅
𝑚×𝑛, 𝐶,𝐷 ∈ 𝑅𝑛×𝑙. And 𝑈 ∈

𝑂𝑅𝑛×𝑛 is given by (8). Let the partitions of 𝐴𝑈, 𝐵𝑈, 𝐶⊤𝑈,
and 𝐷⊤𝑈 be as in (32) and (33), respectively. Let the SVDs
of (𝐴⊤

1
𝐶
1
) and (𝐴⊤

2
𝐶
2
) be as (53). Then, the solutions of

Problem 5 can be expressed as

𝑋 = 𝑈(
𝑋
11

0

0 𝑋
22

)𝑈
⊤
, (60)

where𝑋
11
and 𝑋

22
are given as in (58) and (59).

Now, we give another main result of this section. Based
on Lemma 9 and the properties of Frobenius norm, we have

‖𝐴𝑋 − 𝐵‖
2
+ ‖𝑋𝐶 − 𝐷‖

2

=

𝐴𝑈(

0 𝑋
12

−𝑋⊤
12

0
)𝑈

⊤
− 𝐵


2

+

𝑈(

0 𝑋
12

−𝑋⊤
12

0
)𝑈

⊤
𝐶 − 𝐷



2

=

𝑋
12
𝐴
⊤

2
− (−𝐵

⊤

1
)


2

+
𝐴1

𝑋
12
− 𝐵

2


2
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+
𝑋12𝐶2 − 𝐷1


2

+

𝐶
⊤

1
𝑋
12
− (−𝐷

⊤

2
)


2

=

(
𝐴
1

𝐶⊤
1

)𝑋
12
− (

𝐵
2

−𝐷⊤
2

)


2

+
𝑋12 (𝐴

⊤

2
𝐶
2
) − (−𝐵

⊤

1
𝐷
1
)

2

.

(61)

Then, from Lemma 16, the least squares solutions of the
matrix equations

(
𝐴
1

𝐶⊤
1

)𝑋
12
= (

𝐵
2

−𝐷⊤
2

) , 𝑋
12
(𝐴

⊤

2
𝐶
2
) = (−𝐵

⊤

1
𝐷
1
)

(62)

can be written as

𝑋
12
= 𝑉(

Φ ∘ (𝑉⊤
1
𝑋
0
𝑇
1
) (Σ−1)

2

𝑉⊤
1
𝑋
0
𝑇
2

𝑉⊤
2
𝑋
0
𝑇
1
(Ω−1)

2

𝐺
)𝑇

⊤
, (63)

where𝑋
0
= 𝐴⊤

1
𝐵
2
− 𝐵⊤

1
𝐴
2
−𝐶

1
𝐷⊤
2
+𝐷

1
𝐶⊤
2
,Φ = (𝜑

𝑖𝑗
) ∈ 𝑅𝑠×𝑡,

𝜑
𝑖𝑗
= 1/(𝜎2

𝑖
+ 𝜔2

𝑗
), 1 ≤ 𝑖 ≤ 𝑠, 1 ≤ 𝑗 ≤ 𝑡, and 𝐺 ∈ 𝑅(𝑟−𝑠)×(𝑛−𝑟−𝑡)

is an arbitrary matrix.

Theorem 18. Given 𝐴, 𝐵 ∈ 𝑅𝑚×𝑛, 𝐶,𝐷 ∈ 𝑅𝑛×𝑙. And 𝑈 ∈

𝑂𝑅𝑛×𝑛 is given by (8). Let the partitions of 𝐴𝑈, 𝐵𝑈, 𝐶⊤𝑈,
and 𝐷⊤𝑈 be as in (32) and (33), respectively. Let the SVDs
of (𝐴⊤

1
𝐶
1
) and (𝐴⊤

2
𝐶
2
) be as (53). Then, the solutions of

Problem 6 can be expressed as

𝑋 = 𝑈(
0 𝑋

12

−𝑋⊤
12

0
)𝑈

⊤
, (64)

where𝑋
12
is given as in (63).

4. Numerical Examples

In this section, we provide two algorithms to compute
the generalized bisymmetric (bi-skew-symmetric) solution
and the generalized bisymmetric (bi-skew-symmetric) least
squares solution of the matrix equations 𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷
and give some examples to illustrate the efficiency of our
proposed algorithms.

Algorithm 1 (the algorithm about Problems 3 and 5).

Step 1. Input 𝐴, 𝐵, 𝐶,𝐷, 𝑃.

Step 2. Compute 𝐴
1
, 𝐴

2
, 𝐵

1
, 𝐵

2
, 𝐶

1
, 𝐶

2
, 𝐷

1
, 𝐷

2
by (32) and

(33).

Step 3. If any of conditions in (37) and (39) does not hold,
then turn to Step 4. Otherwise, compute the generalized
bisymmetric solution of the matrix equations 𝐴𝑋 = 𝐵,𝑋𝐶 =
𝐷 byTheorem 13.

Step 4. Compute the generalized bisymmetric least squares
solution of the matrix equations 𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷 by
Theorem 17.

Algorithm 2 (the algorithm about Problems 4 and 6).

Step 1. Input 𝐴, 𝐵, 𝐶,𝐷, 𝑃.

Step 2. Compute 𝐴
1
, 𝐴

2
, 𝐵

1
, 𝐵

2
, 𝐶

1
, 𝐶

2
, 𝐷

1
, 𝐷

2
by (32) and

(33).

Step 3. If any of conditions in (44) does not hold, then
turn to Step 4. Otherwise, compute the generalized bi-skew-
symmetric solution of thematrix equations𝐴𝑋 = 𝐵,𝑋𝐶 = 𝐷
byTheorem 14.

Step 4. Compute the generalized bi-skew-symmetric least
squares solution of the matrix equations𝐴𝑋 = 𝐵,𝑋𝐶 = 𝐷 by
Theorem 18.

Example 1. Given 𝐴, 𝐵, 𝐶,𝐷 ∈ 𝑅3×3, 𝑃 ∈ 𝑆𝑂𝑅3×3 as follows:

𝐴 = (

0.9649 0.9572 0.1419

0.1576 0.4854 0.4218

0.9706 0.8003 0.9157

) ,

𝐵 = (

2.6396 2.2226 −0.8424

0.2559 0.9047 0.1875

2.4422 1.2061 0.4122

) ,

𝐶 = (

0.7922 0.0357 0.6787

0.9595 0.8491 0.7577

0.6557 0.9340 0.7431

) ,

𝐷 = (

1.9731 −0.3179 1.6446

1.8522 1.4664 1.2772

−0.0385 0.6894 0.2831

) ,

𝑃 = (

0.2140 0.9246 −0.3151

0.9246 −0.0878 0.3707

−0.3151 0.3707 0.8737

) .

(65)

Then, there exists

𝑈 = (

−0.6612 −0.4121 −0.6269

−0.6742 −0.0400 0.7375

−0.3290 0.9103 −0.2513

) ∈ 𝑂𝑅
3×3 (66)

such that

𝑃 = 𝑈(

1 0 0

0 1 0

0 0 −1

)𝑈
⊤
. (67)

(1) By Algorithm 1, the conditions in (37) and (39) hold.
Hence, the matrix equations 𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷 have a
generalized bisymmetric solution

𝑋
∗

𝐺𝐵𝑆
≈ (

2.9380 −0.1583 −0.3089

−0.1583 2.5979 −0.7858

−0.3089 −0.7858 1.4643

) . (68)
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Furthermore,
𝐴𝑋

∗

𝐺𝐵𝑆
− 𝐵
 = 2.2775𝑒 − 004,

𝑋
∗

𝐺𝐵𝑆
𝐶 − 𝐷

 = 2.2231𝑒 − 004,


𝑋
∗

𝐺𝐵𝑆
− 𝑋

∗⊤

𝐺𝐵𝑆


= 3.5108𝑒 − 016,

𝑋
∗

𝐺𝐵𝑆
− 𝑃𝑋

∗

𝐺𝐵𝑆
𝑃
 = 7.6271𝑒 − 004.

(69)

(2) By Algorithm 2, at least one of conditions in (44) does
not hold. Hence, we get the generalized bi-skew-symmetric
least squares solution of the matrix equations 𝐴𝑋 = 𝐵,
𝑋𝐶 = 𝐷, and the generalized bi-skew-symmetric least
squares solution is

𝑋
𝐺𝐵𝑆𝑆

= (

0 0.2668 −0.4629

−0.2668 0 0.4377

0.4629 −0.4377 0

) . (70)

Furthermore,

min
𝑋∈𝐺𝐵𝑆𝑆𝑅

𝑛×𝑛

‖𝐴𝑋 − 𝐵‖ + ‖𝑋C − 𝐷‖ = 8.3276,


𝑋
𝐺𝐵𝑆𝑆

+ 𝑋
⊤

𝐺𝐵𝑆𝑆


= 1.2413𝑒 − 016,

𝑋𝐺𝐵𝑆𝑆 + 𝑃𝑋𝐺𝐵𝑆𝑆𝑃
 = 1.4017𝑒 − 004.

(71)

Example 2. Given 𝐴, 𝐵, 𝐶,𝐷 ∈ 𝑅4×4, 𝑃 ∈ 𝑆𝑂𝑅4×4 as follows:

𝐴 = (

0.8147 0.6324 0.9575 0.9572

0.9058 0.0975 0.9649 0.4854

0.1270 0.2785 0.1576 0.8003

0.9134 0.5469 0.9706 0.1419

) ,

𝐵 = (

0.5972 0.8079 0.2988 −1.3409

−0.0105 0.5625 0.5447 −1.1762

0.6749 0.4230 0.1967 −0.2930

−0.0796 0.4102 0.0463 −1.3852

) ,

𝐶 = (

0.2769 0.6948 0.4387 0.1869

0.0462 0.3171 0.3816 0.4898

0.0971 0.9502 0.7655 0.4456

0.8235 0.0344 0.7952 0.6463

) ,

𝐷 = (

−0.6165 0.2563 −0.4455 −0.5208

−0.3196 −0.4437 −0.7539 −0.5512

−0.4543 −0.0793 −0.2536 0.0091

0.2788 1.1039 0.8516 0.5620

) ,

𝑃 = (

−0.0913 −0.3887 0.8868 0.2326

−0.3887 0.5024 −0.0224 0.7720

0.8868 −0.0224 −0.0391 0.4598

0.2326 0.7720 0.4598 −0.3721

) .

(72)

Then, there exists

𝑈 = (

−0.4583 0.4943 −0.3030 −0.6737

−0.4033 −0.7672 −0.4944 −0.0661

−0.6074 0.3339 −0.1177 0.7111

−0.5082 −0.2359 0.8062 −0.1899

) ∈ 𝑂𝑅
4×4

(73)

such that

𝑃 = 𝑈(

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

)𝑈
⊤
. (74)

(1) By Algorithm 1, at least one of conditions in (37)
and (39) does not hold. Hence, we get the generalized
bisymmetric least squares solution of the matrix equations
𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷 and the generalized bisymmetric least
squares solution is

𝑋
𝐺𝐵𝑆

= (

0.8056 0.3706 −0.5480 −0.3864

0.3706 0.2007 −0.2672 −0.2756

−0.5480 −0.2672 0.3995 0.1788

−0.3864 −0.2756 0.1788 0.2760

) . (75)

Furthermore,

min
𝑋∈𝐺𝐵𝑆𝑅

𝑛×𝑛

‖𝐴𝑋 − 𝐵‖ + ‖𝑋𝐶 − 𝐷‖ = 4.7963,


𝑋
𝐺𝐵𝑆
− 𝑋

⊤

𝐺𝐵𝑆


= 1.7988𝑒 − 016,

𝑋𝐺𝐵𝑆 − 𝑃𝑋𝐺𝐵𝑆𝑃
 = 1.4279𝑒 − 004.

(76)

(2) By Algorithm 2, the conditions in (44) hold. Hence,
the matrix equations 𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷 have a generalized
bi-skew-symmetric solution

𝑋
∗

𝐺𝐵𝑆𝑆
≈ (

0 −0.4451 0.4464 −0.7763

0.4451 0 −0.7764 −0.4461

−0.4464 0.7764 0 −0.4451

0.7763 0.4461 0.4451 0

) . (77)

Furthermore,

𝐴𝑋
∗

𝐺𝐵𝑆𝑆
− 𝐵
 = 2.6885𝑒 − 004,

𝑋
∗

𝐺𝐵𝑆𝑆
𝐶 − 𝐷

 = 2.5515𝑒 − 004,


𝑋
∗

𝐺𝐵𝑆𝑆
+ 𝑋

∗⊤

𝐺𝐵𝑆𝑆


= 4.4948𝑒 − 016,

𝑋
∗

𝐺𝐵𝑆𝑆
+ 𝑃𝑋

∗

𝐺𝐵𝑆𝑆
𝑃
 = 1.5075𝑒 − 004.

(78)
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Example 3. Given 𝐴, 𝐵 ∈ 𝑅6×5, 𝐶,𝐷 ∈ 𝑅5×4, and 𝑃 ∈ 𝑆𝑂𝑅5×5
as follows:

𝐴 = (

(

0.8147 0.2785 0.9572 0.7922 0.6787

0.9058 0.5469 0.4854 0.9595 0.7577

0.1270 0.9575 0.8003 0.6557 0.7431

0.9134 0.9649 0.1419 0.0357 0.3922

0.6324 0.1576 0.4218 0.8491 0.6555

0.0975 0.9706 0.9157 0.9340 0.1712

)

)

,

𝐵 = (

(

0.7060 0.6948 0.7655 0.7094 0.1190

0.0318 0.3171 0.7952 0.7547 0.4984

0.2769 0.9502 0.1869 0.2760 0.9597

0.0462 0.0344 0.4898 0.6797 0.3404

0.0971 0.4387 0.4456 0.6551 0.5853

0.8235 0.3816 0.6463 0.1626 0.2238

)

)

,

𝐶 = (

0.7513 0.9593 0.8407 0.3500

0.2551 0.5472 0.2543 0.1966

0.5060 0.1386 0.8143 0.2511

0.6991 0.1493 0.2435 0.6160

0.8909 0.2575 0.9293 0.4733

) ,

𝐷 = (

0.3517 0.2858 0.0759 0.1299

0.8308 0.7572 0.0540 0.5688

0.5853 0.7537 0.5308 0.4694

0.5497 0.3804 0.7792 0.0119

0.9172 0.5678 0.9340 0.3371

) ,

𝑃 =(

−0.1397 −0.2600 0.9091 0.2239 0.1904

−0.2600 0.6869 0.0500 −0.1319 0.6638

0.9091 0.0500 0.1771 −0.2921 0.2332

0.2239 −0.1319 −0.2921 0.8240 0.4098

0.1904 0.6638 0.2332 0.4098 −0.5483

) .

(79)

Then, there exists

𝑈 =(

−0.3882 0.4871 0.2054 −0.0715 −0.7515

−0.4756 −0.3492 −0.7038 −0.3709 −0.1377

−0.4034 0.6471 −0.0840 −0.1630 0.6204

−0.5101 −0.4573 0.6653 −0.2416 0.1720

−0.4474 −0.1134 −0.1130 0.8788 0.0430

)

∈ 𝑂𝑅
4×4

(80)

such that

𝑃 = 𝑈(

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 −1

)𝑈
⊤
. (81)

(1) By Algorithm 1, it is verified that any of conditions in
(37) and (39) does not hold. Hence, we get the generalized
bisymmetric least squares solution of the matrix equations

𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷, and the generalized bisymmetric least
squares solution is

𝑋
𝐺𝐵𝑆

=(

−0.1363 0.1110 0.3857 0.3289 0.0153

0.1110 0.3641 0.1631 0.2608 0.0069

0.3857 0.1631 −0.1462 0.2554 0.1547

0.3289 0.2608 0.2554 −0.0403 0.0532

0.0153 0.0069 0.1547 0.0532 0.6063

) .

(82)

Furthermore,

min
𝑋∈𝐺𝐵𝑆𝑅

𝑛×𝑛

‖𝐴𝑋 − 𝐵‖ + ‖𝑋𝐶 − 𝐷‖ = 2.3819,


𝑋
𝐺𝐵𝑆
− 𝑋

⊤

𝐺𝐵𝑆


= 1.9192𝑒 − 016,

𝑋𝐺𝐵𝑆 − 𝑃𝑋𝐺𝐵𝑆𝑃
 = 1.9312𝑒 − 004.

(83)

(2) By Algorithm 2, it is verified that any of conditions in
(44) does not hold. Hence, we get the generalized bi-skew-
symmetric least squares solution of the matrix equations
𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷, and the generalized bi-skew-symmetric
least squares solution is

𝑋
𝐺𝐵𝑆𝑆

=(

0 −0.0977 −0.1843 0.2895 −0.1616

0.0977 0 −0.2626 −0.0055 0.1672

0.1843 0.2626 0 −0.1968 −0.1138

−0.2895 0.0055 0.1968 0 0.1110

0.1616 −0.1672 0.1138 −0.1110 0

).

(84)

Furthermore,

min
𝑋∈𝐺𝐵𝑆𝑆𝑅

𝑛×𝑛

‖𝐴𝑋 − 𝐵‖ + ‖𝑋𝐶 − 𝐷‖ = 5.3861,


𝑋
𝐺𝐵𝑆𝑆

+ 𝑋
⊤

𝐺𝐵𝑆𝑆


= 1.2889𝑒 − 016,

𝑋𝐺𝐵𝑆𝑆 + 𝑃𝑋𝐺𝐵𝑆𝑆𝑃
 = 1.4358𝑒 − 004.

(85)

5. Conclusions

This paper is devoted to considering the generalized bisym-
metric (bi-skew-symmetric) solutions of matrix equations
𝐴𝑋 = 𝐵, 𝑋𝐶 = 𝐷, and the necessary and sufficient
conditions for the solvability and the general expression
of the solutions are obtained. If the solvability conditions
are not satisfied, the generalized bisymmetric (bi-skew-
symmetric) least squares solution of the matrix equations
is considered. As an auxiliary, two algorithms have been
provided to compute the generalized bisymmetric (bi-skew-
symmetric) solutions and the generalized bisymmetric (bi-
skew-symmetric) least squares solution, and some examples
have been given to illustrate that the results are reasonable.
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