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Let 𝐻 be a complex Hilbert space; denote by AlgN and C𝑝(𝐻) the atomic nest algebra associated with the atomic nest N on 𝐻
and the space of Schatten-𝑝 class operators on, 𝐻 respectively. Let C𝑝(𝐻) ∩ AlgN be the space of Schatten-𝑝 class operators in
AlgN. When 1 ≤ 𝑝 < +∞ and 𝑝 ̸= 2, we give a complete characterization of nonlinear surjective isometries onC𝑝(𝐻) ∩AlgN. If
𝑝 = 2, we also prove that a nonlinear surjective isometry onC2(𝐻) ∩AlgN is the translation of an orthogonality preserving map.

1. Introduction

Let 𝑋 and 𝑌 be normed spaces and let 𝜙 be a map from 𝑋

to 𝑌. We say that 𝜙 is a nonlinear isometry (or a distance
preserving map) if ‖𝜙(𝑥1) − 𝜙(𝑥2)‖ = ‖𝑥1 − 𝑥2‖ for every
pair 𝑥1, 𝑥2 in 𝑋. In particular, 𝜙 is an isometry if 𝜙 is
linear and distance preserving.The question of characterizing
isometries between operator algebras is very important in
studying geometric structure of operator algebras. Many
authors pay their attention to such a problem (see [1–11]
and their references). One of well-known results is due to
Kadison, who states that every isometry for the operator
norm from a unital 𝐶∗-algebra onto another unital 𝐶∗-
algebra is a 𝐶∗-isomorphism followed by left multiplication
by a fixed unitary element (see [7]). Besides, of the operator
norm, isometries for the Schatten-𝑝 norm also are studied
extensively (see [1, 2, 5, 6, 8–11] and their references). Early
in 1975, Arazy in [2] gave a characterization of isometries on
the Schatten-𝑝 class (𝑝 ̸= 2). In [1], Anoussis and Katavolos
characterized isometries on the Schatten-𝑝 class in nest
algebras and obtained the following theorem.

Theorem 1. Let Nand M be two nests of projections on a
Hilbert space 𝐻 and 𝐽 a fixed involution on 𝐻. Assume that
1 ≤ 𝑝 < +∞, 𝑝 ̸= 2. The surjective isometries Φ : C𝑝(𝐻) ∩
AlgN → C𝑝(𝐻) ∩ AlgM have one of the following forms:

Φ (𝐴) = 𝑉𝐴𝑉
∗
𝑊 or Φ (𝐴) = 𝑉𝐽𝐴

∗
𝐽𝑉
∗
𝑊, (1)

where 𝑊 is a unitary operator, and 𝐸 󳨃→ 𝑉𝐸𝑉
∗ is an order

isomorphism of N onto M (𝐸 󳨃→ 𝑉𝐽𝐸𝐽𝑉
∗ is an order

isomorphism ofN ontoM⊥).

More generally, in recent years, many authors are devoted
to characterizing distance preserving maps on operator alge-
bras (see [3, 4, 12–15] and their references). In [14], Chan
et al. showed that a nonlinear surjective isometry Φ for the
unitarily invariant norm on 𝑛 × 𝑚 complex matrix algebras
has one of the following forms.

(a) There are unitary matrices 𝑈,𝑉 and a 𝑛 × 𝑚matrix 𝑆
such that Φ(𝐴) = 𝑈𝐴𝑉 + 𝑆 or Φ(𝐴) = 𝑈𝐴𝑉 + 𝑆 for
each 𝑛 × 𝑚matrix 𝐴.

(b) If 𝑚 = 𝑛 and Φ has the form, there are unitary
matrices 𝑈,𝑉 and a 𝑛 × 𝑛 matrix 𝑆 such that Φ(𝐴) =
𝑈𝐴
𝑡
𝑉 + 𝑆 or Φ(𝐴) = 𝑈𝐴∗𝑉 + 𝑆 for each 𝑛 × 𝑛matrix

𝐴.
(c) If the unitarily invariant norm is a multiple of the

Frobenius norm, that is, ‖𝐴‖ = 𝜆 tr(𝐴𝐴∗)1/2 for some
𝜆 > 0, then the map 𝐴 󳨃→ Φ(𝐴) − 𝑆 is a real
orthogonal transformation with respect to the inner
product (𝐴, 𝐵) = Retr(𝐴𝐵∗) for each 𝑛 × 𝑚matrix 𝐴.

Recall that a norm ‖ ⋅ ‖ of operators is a unitary invariant
norm if ‖𝑈𝐴𝑉‖ = ‖𝐴‖ for any unitary operators 𝑈,𝑉. In
[3, 4, 12, 13, 15], distance preserving maps on several kinds
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of operator algebras in the infinite dimensional case were
characterized. Bai and Hou in [12] give a characterization
of nonlinear numerical radius isometries on B(𝐻). Cui
and Hou in [13] characterize nonlinear numerical radius
isometries on atomic nest algebras and diagonal algebras.
Hou and He in [15] give a characterization of nonlinear
isometries on the Schatten-𝑝 class. A nature problem is how
to characterize nonlinear isometries on the Schatten-𝑝 class
in nest algebras. The main purpose of this paper is to give a
complete characterization of nonlinear surjective isometries
on the Schatten-𝑝 class (𝑝 ̸= 2) in atomic nest algebras acting
on Hilbert spaces (Theorem 2). Such a result generalizes
the linear map assumption in Theorem 1 to the nonlinear
case. Also, the problem on orthogonality of nonlinear sur-
jective isometries for Hilbert-Schmidt norms is discussed
(Theorem 3).

By the classical Mazur-Ulam theorem (see [10]) which
states that every distance preserving surjectivemap sending 0
to 0 between normed spaces is real linear, we essentially deal
with the real linear isometries (i.e., the distance preserving
real linear maps). One can not expect that each real isometry
has the same structure as the complex isometry. Applicable
examples are found in [3] (Example 0.2, 0.3 in [3]).

Following the idea of [3], a key step in our approach is
to show that the distance preserving maps on the Schatten-𝑝
class (𝑝 ̸= 2) in nest algebras also preserve rank-one operators
in both directions. This leads to a demand for characteriz-
ing rank-1 preserving additive maps between nest algebras.
Related results had been obtained in [16].

Before embarking upon our results, it is convenient here
to introduce some notations. Denote by R or C the real
or complex field. For an operator 𝐴 on 𝐻, we denote the
range of 𝐴 by ran𝐴 and the adjoint of 𝐴 by 𝐴∗. Let 𝜏 be an
automorphism (or homomorphism) of F = R or C. If a map
𝐴 on𝐻 satisfies𝐴(𝑥+𝑦) = 𝐴𝑥+𝐴𝑦 and𝐴(𝜆𝑥) = 𝜏(𝜆)𝐴𝑥 for
every 𝑥, 𝑦 ∈ 𝐻 and 𝜆 ∈ F , then we say that𝐴 is 𝜏-linear. If 𝜏 is
a ring homomorphism, thenwe say that𝐴 is semilinear and in
the case that F = C and 𝜏(𝜆) ≡ 𝜆, we say𝐴 is conjugate linear.
If𝑈 is a conjugate linear operator betweenHilbert spaces and
𝑈
∗
𝑈 = 𝑈𝑈

∗
= 𝐼,𝑈 is called conjugate unitary or antiunitary,

where𝑈∗ is theHilbert space conjugate operator of𝑈. Denote
by K(𝐻) and F(𝐻) the space of all compact operators and
the space of all finite rank operators on the Hilbert space𝐻.
For any 𝐴 ∈ K(𝐻), the trace of 𝐴, tr(𝐴) = Σ𝑖⟨𝐴𝑒𝑖, 𝑒𝑖⟩, where
{𝑒𝑖}(𝑖∈𝐼) is a normal orthogonal base in the Hilbert space 𝐻.
Let |𝐴| = (𝐴∗𝐴)1/2; the Schatten-𝑝 norm of 𝐴 is as follows:

‖𝐴‖𝑝 = tr (|𝐴|𝑝)1/𝑝. (2)

The Schatten-𝑝 class C𝑝(𝐻) is the set of all Schatten-𝑝
class operators, that is, all compact operators with the finite
Schatten-𝑝 norm. If 𝑝 = 1, the set C1(𝐻) is called the trace
class. If 𝑝 = ∞, C∞(𝐻) = K(𝐻). Recall that a nest on 𝐻 is
a chain N of closed (under norm topology) subspaces of 𝐻
containing {0} and𝐻, which is closed under the formation of
arbitrary closed linear span (denoted by ⋁) and intersection
(denoted by ⋀). AlgN denotes the associated nest algebra,
which is the set of all operators 𝑇 inB(𝐻) such that 𝑇𝑁 ⊆ 𝑁

for every element𝑁 ∈ N. IfN is a nest,N⊥ = {𝑁⊥ | 𝑁 ∈ N}

is a nest. If N ̸= {{0},𝐻}, we say that N is nontrivial. We
denote AlgFN = AlgN ∩ F(𝐻). For any 𝑁 ∈ N, let
𝑁− = ⋁{𝑀 ∈ N | 𝑀 ⊂ 𝑁},𝑁+ = ⋀{𝑀 ∈ N | 𝑁 ⊂ 𝑀}, and
𝑁
⊥

−
= (𝑁−)

⊥. 0− = 0, 𝐻+ = 𝐻. If 𝑁 ⊖ 𝑁− = 𝑁 ∩ (𝑁−)
⊥

̸= 0,
we say 𝑁 ⊖ 𝑁− is an atom of N. A nest N on 𝐻 is said to
be atomic if 𝐻 is spanned by its atoms and to be maximal
if N is atomic and all its atoms are one-dimensional. The
rank-one operator 𝑥 ⊗ 𝑓 ∈ AlgN if and only if there is an
𝑁 ∈ N such that 𝑥 ∈ 𝑁 and 𝑓 ∈ 𝑁

⊥

−
. For each 𝑥 ∈ 𝐻,

𝐿𝑥 = {𝑥 ⊗ 𝑓 | 𝑓 ∈ 𝐻} and 𝑓 ∈ 𝐻, 𝑅𝑓 = {𝑥 ⊗ 𝑓 | 𝑥 ∈ 𝐻}. IfN
is a nest and𝑁 ∈ N, for 𝑥 ∈ 𝑁, 𝐿𝑁

𝑥
= {𝑥 ⊗ 𝑓 | 𝑓 ∈ 𝑁

⊥

−
}; for

𝑓 ∈ 𝑁
⊥

−
, 𝑅𝑁
𝑓
= {𝑥⊗𝑓 | 𝑥 ∈ 𝑁}. Assume thatE1(N) = ∪{𝑁 ∈

N | dim𝑁
⊥

−
> 1}, E2(N) = ∪{𝑁

⊥

−
| 𝑁 ∈ N, dim𝑁 > 1},

D1(N) = ∪{𝑁 ∈ N | 𝑁− ̸=𝐻}, D2(N) = ∪{𝑁
⊥

−
| 𝑁 ∈ N

and 𝑁 ̸= 0}, 𝐸1(N) = {𝑁 | 𝑁 ∈ N, dim𝑁
⊥

−
> 1}, and

𝐸2(N) = {𝑁 ∈ N | dim𝑁 > 1}. If the nest is fixed, they
are written briefly as E1, E2,D1,D2, 𝐸1, 𝐸2, respectively.

2. Main Results

In the following theorem, we give a characterization of non-
linear surjective isometries on C𝑝(𝐻) ∩ AlgN, where N is
an atomic nest.

Theorem 2. Let 𝐻 be a complex Hilbert space, N an atomic
nest on 𝐻. Assume that 1 ≤ 𝑝 < +∞, 𝑝 ̸= 2, Φ : C𝑝(𝐻) ∩
AlgN → C𝑝(𝐻) ∩ AlgN is a surjective map. Then Φ

satisfies ‖Φ(𝐴) − Φ(𝐵)‖𝑝 = ‖𝐴 − 𝐵‖𝑝 for all 𝐴, 𝐵 ∈ C𝑝(𝐻) ∩
AlgN if and only if one of the following holds true.

(1) There exist an operator 𝑆 ∈ C𝑝(𝐻) ∩ AlgN, a
dimension preserving order isomorphism 𝜃 : N →

N, and unitary operators 𝑈,𝑉 : 𝐻 → 𝐻 satisfying
𝑈(𝑁) = 𝜃(𝑁) and 𝑉(𝑁⊥) = 𝜃(𝑁)

⊥

−
for every𝑁 ∈ N,

such that
Φ (𝐴) = 𝑈𝐴𝑉 + 𝑆, ∀𝐴 ∈ C𝑝 (𝐻) ∩ AlgN. (3)

(2) There exist an operator 𝑆 ∈ C𝑝(𝐻) ∩ AlgN, a
dimension preserving order isomorphism 𝜃 : N →

N, and conjugate unitary operators 𝑈,𝑉 : 𝐻 → 𝐻

satisfying𝑈(𝑁) = 𝜃(𝑁) and𝑉(𝑁⊥) = 𝜃(𝑁)⊥
−
for every

𝑁 ∈ N, such that
Φ (𝐴) = 𝑈𝐴𝑉 + 𝑆, ∀𝐴 ∈ C𝑝 (𝐻) ∩ AlgN. (4)

(3) There exist an operator 𝑆 ∈ C𝑝(𝐻) ∩ AlgN, a
dimension preserving order isomorphism 𝜃 : N⊥ →

N⊥, and unitary operators 𝑈,𝑉 : 𝐻 → 𝐻 satisfying
𝑈(𝑁
⊥
) = 𝜃(𝑁

⊥
) and 𝑉(𝑁) = 𝜃(𝑁

⊥

−
)
⊥

−
for every

𝑁 ∈ N, such that
Φ (𝐴) = 𝑈𝐴

∗
𝑉 + 𝑆, ∀𝐴 ∈ C𝑝 (𝐻) ∩ AlgN. (5)

(4) There exist an operator 𝑆 ∈ C𝑝(𝐻) ∩ AlgN, a
dimension preserving order isomorphism 𝜃 : N⊥ →

N⊥, and conjugate unitary operators 𝑈,𝑉 : 𝐻 → 𝐻

satisfying 𝑈(𝑁⊥) = 𝜃(𝑁
⊥
) and 𝑉(𝑁) = 𝜃(𝑁

⊥

−
)
⊥

−
for

every𝑁 ∈ N, such that
Φ (𝐴) = 𝑈𝐴

∗
𝑉 + 𝑆, ∀𝐴 ∈ C𝑝 (𝐻) ∩ AlgN. (6)
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The problem on orthogonality of nonlinear surjective
isometries for Hilbert-Schmidt norms is discussed in the
following theorem.

Theorem 3. Let 𝐻 be a complex Hilbert space, N an atomic
nest on 𝐻. Assume that Φ : C2(𝐻) ∩ AlgN → C2(𝐻) ∩
AlgN is a surjective map.ThenΦ satisfies ‖Φ(𝐴) − Φ(𝐵)‖2 =
‖𝐴 − 𝐵‖2 for all𝐴, 𝐵 ∈ C2(𝐻)∩ AlgN and then themap𝐴 󳨃→

Φ(𝐴)+Φ(0) is a real linear and an orthogonal transformation
on C2(𝐻) ∩ AlgN with respect to the real inner product
⟨𝐴, 𝐵⟩ = Retr (𝐴𝐵∗).

3. Proof of Main Results

To prove our main results, we need the following lemmas.

Lemma 4 (see [17]). For arbitrary𝐴, 𝐵 ∈ C𝑝(𝐻) and 1 ≤ 𝑝 <
+∞, 𝑝 ̸= 2, 𝐴∗𝐵 = 𝐴𝐵∗ = 0 if and only if

‖𝐴 − 𝐵‖
𝑝

𝑝
+ ‖𝐴 + 𝐵‖

𝑝

𝑝
= 2 (‖𝐴‖

𝑝

𝑝
+ ‖𝐵‖
𝑝

𝑝
) . (7)

In the following lemmas, we give a characterization of
rank-oneness of operators by the relation of orthogonality
between operators. Let {𝐴}⊥ = {𝐵 ∈ C𝑝(𝐻) ∩ AlgN \ {0} :

𝐴
∗
𝐵 = 𝐴𝐵

∗
= 0} for arbitrary 𝐴 ∈ C𝑝(𝐻) ∩ AlgN. The

set {𝐴}⊥ is maximal, if for arbitrary operator 𝑁 ∈ C𝑝(𝐻) ∩

AlgN, {𝐴}⊥ ⊆ {𝑁}⊥ ⇒ {𝐴}
⊥
= {𝑁}

⊥.

Lemma 5 (see Lemma 3 in [1]). For 𝐴 = 𝑥 ⊗ 𝑓 ∈ C𝑝(𝐻) ∩
AlgN, then

(1) ∩{ker𝑇 : 𝑇 ∈ {𝐴}
⊥
} = [𝑓] unless [𝑥] = 0+, in which

case ∩{ker𝑇 : 𝑇 ∈ {𝐴}
⊥
} = [𝑥, 𝑓];

(2) ∩{ker𝑇∗ : 𝑇 ∈ {𝐴}
⊥
} = [𝑥] unless [𝑓] = 𝐻⊥

−
, in which

case ∩{ker𝑇∗ : 𝑇 ∈ {𝐴}
⊥
} = [𝑥, 𝑓].

Lemma 6. For any nonzero operator 𝐴 ∈ C𝑝(𝐻) ∩ AlgN
with the atomic nest N, if the set {𝐴}⊥ is maximal and
nonempty, then rank𝐴 = 1. Conversely, if rank𝐴 = 1,
and either 0+ ̸= ran𝐴 or 𝐻⊥

−
̸= ran (𝐴∗), then the set {𝐴}⊥ is

maximal and nonempty.

Proof. If {𝐴}⊥ is maximal and nonempty, we show that
rank𝐴 = 1. If not, rank𝐴 ≥ 2, then there are two nonzero
vectors 𝑥1 and 𝑥2 such that 𝐴𝑥1 ⊥ 𝐴𝑥2. Since the nest is
atomic, let 𝑃 = 𝐴𝑥1 ⊗ 𝐴

∗
𝑥1 = 𝐴𝑥1 ⊗ 𝑥1𝐴 ∈ C𝑝(𝐻) ∩ AlgN

and one can find a vector𝑦2 ⊥ 𝐴
∗
𝑥1 such that𝑄 = 𝐴𝑥2⊗𝑦2 ∈

C𝑝(𝐻) ∩ AlgN (if necessary, interchanging 𝑥1 for 𝑥2). Now
for any 𝑇 ∈ {𝐴}

⊥, it follows from the definition of {𝐴}⊥ that
𝐴
∗
𝑇 = 𝐴𝑇

∗
= 0. So𝑃∗𝑇 = 𝐴

∗
𝑥1⊗𝐴𝑥1𝑇 = 𝐴

∗
𝑥1⊗𝑥1𝐴

∗
𝑇 = 0

and 𝑃𝑇∗ = 𝐴𝑥1 ⊗ 𝐴
∗
𝑥1𝑇
∗
= 𝐴𝑥1 ⊗ 𝑇𝐴

∗
𝑥1 = 0; it follows

that 𝑇 ∈ {𝑃}
⊥. So we have {𝑃}⊥ ⊇ {𝐴}

⊥. One can check
𝑃
∗
𝑄 = 𝑃𝑄

∗
= 0 but 𝐴∗𝑄 ̸= 0. That is, 𝑄 ∈ {𝑃}

⊥ but is not
in {𝐴}

⊥. It is a contradiction to the maximum of {𝐴}⊥. So
rank𝐴 = 1.

If rank𝐴 = 1, let 𝐴 = 𝑥 ⊗ 𝑓, and either 0+ ̸= ran𝐴 or
𝐻
⊥

−
̸= ran(𝐴∗), and by Lemma 5, one of the following three

cases happens.

Case 1. ∩{ker𝑇 : 𝑇 ∈ {𝐴}
⊥
} = [𝑓] and ∩{ker𝑇∗ : 𝑇 ∈ {𝐴}

⊥
} =

[𝑥].

Case 2. ∩{ker𝑇 : 𝑇 ∈ {𝐴}
⊥
} = [𝑥, 𝑓] and ∩{ker𝑇∗ : 𝑇 ∈

{𝐴}
⊥
} = [𝑥].

Case 3. ∩{ker𝑇 : 𝑇 ∈ {𝐴}
⊥
} = [𝑓] and ∩{ker𝑇∗ : 𝑇 ∈

{𝐴}
⊥
} = [𝑥, 𝑓].
If for𝑁 ∈ C𝑝(𝐻) ∩ AlgN, {𝐴}⊥ ⊆ {𝑁}⊥, then either

∩ {ker𝑇 : 𝑇 ∈ {𝑁}
⊥
} ⊆ ∩ {ker𝑇 : 𝑇 ∈ {𝐴}

⊥
} ⊆ [𝑓] (8)

or

∩ {ker𝑇∗ : 𝑇 ∈ {𝑁}
⊥
} ⊆ ∩ {ker𝑇 : 𝑇 ∈ {𝐴}

⊥
} ⊆ [𝑥] . (9)

It follows that either ran(𝐴∗) ⊆ ∩{ker𝑇 : 𝑇 ∈ {𝑁}
⊥
} ⊆ [𝑓]

or ran𝐴 ⊆ ∩{ker𝑇∗ : 𝑇 ∈ {𝑁}
⊥
} ⊆ [𝑥]. It implies that

rank𝑁 = 1 and𝑁,𝐴 are linearly dependent. By computation,
then {𝐴}⊥ = {𝑁}⊥. So {𝐴}⊥ is maximal and nonempty.

In the following lemma that is taken from [16], let 𝑋󸀠 be
the dual of a Banach space𝑋. LetN be a nest on𝑋 over real
or complex field F . If dim 0+ = 1, E2(N) ⊕ [𝑒0] = 𝑋, and if
dim𝐻

⊥

−
= 1, E1(N) ⊕ [𝑓0] = 𝑋

󸀠.

Lemma 7 (see [16]). Let N and M be two nests on Banach
spaces 𝑋 and 𝑌 over real or complex field F , respectively. Let
Φ : AlgFN → AlgFM be a continuous surjective additive
map. Then Φ preserves rank-1 operators in both directions if
and only if one of the following is true.

(1) There are linear or conjugate linear bounded bijective
operators 𝐴 : 𝑋 → 𝑌, 𝐶 : 𝑋

󸀠
→ 𝑌
󸀠, a dimension

preserving order isomorphism 𝜃 : N → M, and
vectors 𝑦0 ∈ 𝑌, 𝑔0 ∈ 𝑌

󸀠 such that 𝐴(𝑁) = 𝜃(𝑁),
𝐶(𝑁
⊥

−
) = 𝜃(𝑁)

⊥

−
for every𝑁 ∈ N, and for each rank-1

operator 𝑥 ⊗ 𝑓 ∈ AlgFN,

Φ(𝑥 ⊗ 𝑓) =

{{{{{{{{{

{{{{{{{{{

{

𝐴𝑥 ⊗ 𝐶𝑓

if 𝑥 ∈ E1 (N), 𝑓 ∈ E2 (N),

𝐴𝑥 ⊗ 𝐶𝑓 + Im𝑓 (𝑥)𝐴𝑒0 ⊗ 𝑔0

if 𝑥 ∈ E1 (N), 𝑓 ∉ E2 (N),

𝐴𝑥 ⊗ 𝐶𝑓 + Im𝑓 (𝑥) 𝑦0 ⊗ 𝐶𝑓0

if 𝑥 ∉ E1 (N), 𝑓 ∈ E2 (N).

(10)

(2) There are linear or conjugate linear bounded bijective
operators 𝐴 : 𝑋

󸀠
→ 𝑌, 𝐶 : 𝑋 → 𝑌

󸀠, a dimension
preserving order isomorphism 𝜃 : N⊥ → M, and
vectors 𝑦0 ∈ 𝑌, 𝑔0 ∈ 𝑌

󸀠 such that 𝐴(𝑁⊥
−
) = 𝜃(𝑁

⊥

−
),
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𝐶(𝑁) = 𝜃(𝑁
⊥

−
)
⊥

−
for every𝑁 ∈ N, and for each rank-1

operator 𝑥 ⊗ 𝑓 ∈ AlgFN,

Φ(𝑥 ⊗ 𝑓) =

{{{{{{{{{

{{{{{{{{{

{

𝐴𝑓 ⊗ 𝐶𝑥

if 𝑥 ∈ E1 (N) , 𝑓 ∈ E2 (N) ,

𝐴𝑓 ⊗ 𝐶𝑥 + Im𝑓 (𝑥) 𝑦0 ⊗ 𝐶𝑒0

if 𝑥 ∈ E1 (N) , 𝑓 ∉ E2 (N) ,

𝐴𝑓 ⊗ 𝐶𝑥 + Im𝑓 (𝑥)𝐴𝑓0 ⊗ 𝑔0

if 𝑥 ∉ E1 (N) , 𝑓 ∈ E2 (N) .

(11)

Moreover, in this case, 𝑋 and 𝑌 are reflexive.

Lemma 8. For any 𝐴, 𝐵 ∈ C2(𝐻), the following are equiva-
lent:

(I) ⟨𝐴, 𝐵⟩ = Retr(𝐴𝐵∗) = 0;
(II) ‖𝐴 + 𝜆𝐵‖2 ≥ ‖𝐴‖2 for any real number 𝜆.

Proof. (I) ⇒ (II) If ⟨𝐴, 𝐵⟩ = Retr(𝐴𝐵∗) = 0, for any real
number 𝜆,

‖𝐴‖
2

2
≤ ‖𝐴‖

2

2
+ ‖𝜆𝐵‖

2

2
= tr (𝐴𝐴∗) + 𝜆2 tr (𝐵𝐵∗)

+ 2𝜆Retr (𝐴𝐵∗) = ‖𝐴 + 𝜆𝐵‖
2

2
.

(12)

(II) ⇒ (I) Without loss of generality, assume that 𝐵 ̸= 0,
and by (II), we have, for any real number 𝜆,

‖𝐴‖
2

2
≤ ‖𝐴 + 𝜆𝐵‖

2

2
= tr (|𝐴 + 𝜆𝐵|)

= ‖𝐴‖
2

2
+ ‖𝜆𝐵‖

2

2
+ 𝜆 tr (𝐴𝐵∗)+ 𝜆 tr (𝐵𝐴∗) ;

(13)

that is, 𝜆2‖𝐵‖2
2

≥ −𝜆 tr(𝐴𝐵∗) − 𝜆 tr(𝐵𝐴∗). So 𝜆‖𝐵‖
2

2
≥

−Retr(𝐴𝐵∗). It follows from arbitrariness of 𝜆 that
Retr(𝐴𝐵∗) = 0. We complete the proof.

Proof of Theorem 2. Checking the “if ” part is straightforward,
so we will only deal with the “only if ” part.

LetΨ(𝐴) = Φ(𝐴)−Φ(0) for any𝐴 ∈ C𝑝(𝐻)∩AlgN; then
Ψ(0) = 0, and ‖Ψ(𝐴) − Ψ(𝐵)‖𝑝 = ‖𝐴 − 𝐵‖𝑝 for any 𝐴, 𝐵 ∈

C𝑝(𝐻) ∩ AlgN. By the Mazur-Ulam theorem (see [10]), we
have that Ψ is an additive map. Furthermore, we have that
‖Ψ(𝐴)‖𝑝 = ‖𝐴‖𝑝 and ‖Ψ(𝐴) ± Ψ(𝐵)‖𝑝 = ‖𝐴 ± 𝐵‖𝑝 for any
𝐴, 𝐵 ∈ C𝑝(𝐻) ∩ AlgN. By Lemma 4, Ψ satisfies that 𝐴∗𝐵 =

𝐴𝐵
∗
= 0 ⇔ Ψ(𝐴)

∗
Ψ(𝐵) = Ψ(𝐴)Ψ(𝐵)

∗
= 0 for all 𝐴, 𝐵 ∈

C𝑝(𝐻) ∩ AlgN.
Next we show that Ψ preserves rank-one operators in

both directions. For any rank-one operator 𝐴 = 𝑥 ⊗ 𝑓, by
the above discussion, Ψ({𝐴}⊥) = {Ψ(𝐴)}

⊥. By Lemma 6, if
either 0+ ̸= ran𝐴 or 𝐻⊥

−
̸= ran(𝐴∗), then Ψ(𝐴) has rank one.

Ψ
−1 has the same property as Ψ, and Ψ

−1 preserves rank-
one operators. So Ψ preserves rank-one operators in both
directions. If both 0+ = ran𝐴 and𝐻⊥

−
= ran(𝐴∗), take rank-

one operator𝐴𝑛 = 𝑥⊗((1/𝑛)𝑥+𝑓); then𝐴𝑛 → 𝐴(𝑛 → ∞).
So we haveΨ(𝐴𝑛) → Ψ(𝐴). SinceΨ(𝐴𝑛) has rank one, then
Ψ(𝐴) has rank one. As Ψ−1 has the same property as Ψ, so Ψ
preserves rank-one operators in both directions.

Ψ preserves rank-one operators in both directions; then
Ψ has the form in Lemma 7. In the case of complex Hilbert
space, we have that one of the following is true.

(1) There are linear or conjugate linear bounded bijective
operators 𝐴,𝐶 : 𝐻 → 𝐻, vectors 𝑦0, 𝑔0 ∈ 𝐻, and a
dimension preserving order isomorphism 𝜃 : N →

N such that 𝐴(𝑁) = 𝜃(𝑁), 𝐶(𝑁⊥
−
) = 𝜃(𝑁)

⊥

−
for every

𝑁 ∈ N, such that

Φ(𝑥 ⊗ 𝑦) =

{{{{{{{{{

{{{{{{{{{

{

𝐴𝑥 ⊗ 𝐶𝑦

if 𝑥 ∈ E1, 𝑦 ∈ E2,

𝐴𝑥 ⊗ 𝐶𝑦 + Im ⟨𝑥, 𝑦⟩𝐴𝑒0 ⊗ 𝑔0

if 𝑥 ∈ E1, 𝑦 ∉ E2,

𝐴𝑥 ⊗ 𝐶𝑦 + Im⟨𝑥, 𝑦⟩𝑦0 ⊗ 𝐶𝑓0
if 𝑥 ∉ E1, 𝑦 ∈ E2.

(14)

(2) There are linear or conjugate linear bounded bijective
operators 𝐴,𝐶 : 𝐻 → 𝐻, vectors 𝑦0, 𝑔0 ∈ 𝐻, and a
dimension preserving order isomorphism 𝜃 : N⊥ →
N such that 𝐴(𝑁⊥

−
) = 𝜃(𝑁

⊥

−
), 𝐶(𝑁) = 𝜃(𝑁

⊥

−
)
⊥

−
for

every𝑁 ∈ N, such that

Φ(𝑥 ⊗ 𝑦) =

{{{{{{{{{

{{{{{{{{{

{

𝐴𝑦 ⊗ 𝐶𝑥

if 𝑥 ∈ E1, 𝑦 ∈ E2,

𝐴𝑦 ⊗ 𝐶𝑥 + Im⟨𝑥, 𝑦⟩𝑦0 ⊗ 𝐶𝑒0
if 𝑥 ∈ E1, 𝑦 ∉ E2,

𝐴𝑦 ⊗ 𝐶𝑥 + Im⟨𝑥, 𝑦⟩𝐴𝑓0 ⊗ 𝑔0
if 𝑥 ∉ E1, 𝑦 ∈ E2.

(15)

One can note that ‖𝑇‖ = ‖𝑇‖𝑝 for all rank-one operator
𝑇, so is the same to the proof of Lemma 4.11 in [3], 𝐴,𝐶 can
be chosen as unitary or conjugate unitary operators; denote
𝐴,𝐶 by 𝑈,𝑊.

If case (1) occurs, next we claim 𝑈𝑒0 ⊗ 𝑔0 = 0, and
𝑦0 ⊗ 𝑊𝑓0 = 0. For case (2), similarly, we can show that
𝑦0 ⊗ 𝑊𝑒0 = 0 and 𝑈𝑓0 ⊗ 𝑔0 = 0. Assume that (1) occurs and
Ψ has the second form, in fact dim 0+ = 1, E2 = [𝑒0]

⊥. Just
like the discussion in Lemma 4.11 in [3], we have 𝑔0 = 𝑒0,
𝑊𝑒0 = 𝑒0. Assume on the contrary that 𝑈𝑒0 ⊗ 𝑔0 ̸= 0. Let
𝐴 = 𝑖𝑒0 ⊗ 𝑒0, Ψ(𝐴) = Ψ(𝑖𝑒0 ⊗ 𝑒0) = 𝑖𝑈𝑒0 ⊗ 𝑊𝑒0 + 𝑈𝑒0 ⊗ 𝑒0;
then ‖𝐴‖𝑝 = ‖𝑖𝑒0 ⊗ 𝑒0‖𝑝 = ‖𝑖𝑒0‖‖𝑒0‖ = 1. By a computa-
tion, ‖Ψ(𝐴)‖𝑝 = ‖𝑖𝑈𝑒0 ⊗𝑊𝑒0 + 𝑈𝑒0 ⊗ 𝑒0‖𝑝 = ‖𝑖𝑒0 ⊗ 𝑒0 + 𝑒0⊗

𝑊
∗
𝑒0‖𝑝 = ‖𝑖𝑒0 ⊗ 𝑒0 + 𝑒0 ⊗ 𝑒0‖𝑝 = ‖(𝑖𝑒0 + 𝑒0) ⊗ 𝑒0‖𝑝 ̸= 1. So

‖Ψ(𝐴)‖𝑝 ̸= ‖𝐴‖𝑝, a contradiction. So 𝑈𝑒0 ⊗ 𝑔0 = 0. If Ψ has
the third form, in this case dim𝐻

⊥

−
= 1, E1 = [𝑓0]

⊥. Just like
the discussion in Lemma 4.11 in [3] again, 𝑦0 = 𝑓0 = 𝑈𝑒0.
Assume on the contrary that 𝑦0 ⊗ 𝑊𝑓0 ̸= 0; let 𝐴 = 𝑖𝑓0 ⊗ 𝑓0,
similar to the above discussion, and we get a contradiction
again.

Every finite rank operator can bewritten as a sumof rank-
one operators in the nest algebra, and the set of finite rank
operators is dense inC𝑝(𝐻)∩AlgN, so by addition ofΨ, we
have that Theorem 2 holds true by replacing𝑊∗ by 𝑉.

Proof of Theorem 3. Let Ψ(𝐴) = Φ(𝐴) − Φ(0) for any 𝐴 ∈

C2(𝐻); then Ψ(0) = 0, and ‖Ψ(𝐴) − Ψ(𝐵)‖2 = ‖𝐴 − 𝐵‖2 for
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𝐴, 𝐵 ∈ C2(𝐻) ∩ AlgN. By the Mazur-Ulam theorem (see
[10]), Ψ is real linear.

By real linearity of Ψ, we have that ‖𝐴 + 𝜆𝐵‖
2

2
= ‖Ψ(𝐴)+

𝜆Ψ(𝐵)‖
2

2
for any real number 𝜆. By Lemma 8, Ψ is real

linear and the mapΨ preserves orthogonality with respect to
⟨𝐴, 𝐵⟩ = tr(𝐴𝐵∗). We complete the proof.
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