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We generalize the dispersive estimates and Strichartz inequalities for the solution of the wave equation related to the full Laplacian
on H-type groups, by means of Besov spaces defined by a Littlewood-Paley decomposition related to the spectral of the full
Laplacian. The dimension of the center on those groups is p and we assume that 𝑝 > 1. A key point consists in estimating the
decay in time of the 𝐿∞ norm of the free solution. This requires a careful analysis due also to the nonhomogeneous nature of the
full Laplacian.

1. Introduction

The aim of this paper is to study Strichartz inequalities for
the solution for the following Cauchy problem of the wave
equation related to the full Laplacian on H-type groups 𝐺
with topological dimension 𝑛 and homogeneous dimension
𝑁:

𝜕
𝑡𝑡
𝑢 +L𝑢 = 𝑓 ∈ 𝐿

1

((0, 𝑇) , 𝐿
2

) ,

𝑢|
𝑡=0
= 𝑢

0
∈ 𝐵̇

1

2,2
,

𝜕
𝑡
𝑢|
𝑡=0
= 𝑢

1
∈ 𝐿

2

,

(1)

where L is the full Laplacian on 𝐺 and the Besov
spaces 𝐵̇𝜌

𝑞,𝑟
(L) (written by 𝐵̇𝜌

𝑞,𝑟
for short) are defined by a

Littlewood-Paley decomposition related to the full Laplacian.
In [1], Bahouri et al. found sharp dispersive estimates and
Strichartz inequalities for the Cauchy problem for the wave
equation related to the Kohn-Laplacian Δ on the Heisenberg
group, using the Besov spaces 𝐵̇𝜌

𝑞,𝑟
(Δ). In [2], Furioli et al.

studied the corresponding Cauchy problem for the wave
equation with the full Laplacian on the Heisenberg group,
using the Besov spaces 𝐵̇𝜌

𝑞,𝑟
. They also proved that there was

no hope to obtain a dispersive inequality as inTheorem 1with
the space 𝐵̇𝜌

𝑞,𝑟
(Δ). Later, in [3], Del Hierro generalized the

dispersive and Strichartz estimates for the wave equation on
H-type groups, using the Besov spaces 𝐵̇𝜌

𝑞,𝑟
(Δ).

In this paper, we will show that the wave equation related
to the full Laplacian onH-type groups is also dispersive, using
the Besov space 𝐵̇𝜌

𝑞,𝑟
. To deal with the problem, we have to

pay attention to two points compared with [2, 3]. On the
one hand, the full Laplacian does not have the homogeneous
properties. On the other hand, the dimension of the center
of H-type groups is in general bigger than 1 (actually, in
the H-type groups, only the Heisenberg groups have a one
dimensional centre).

It is well known that the general solution (1) can bewritten
as 𝑢 = V + 𝑤 where V is a solution of (1) with 𝑓 = 0 and 𝑤 is
the solution of (1) with 𝑢

0
= 𝑢

1
= 0. They are classically given

by

V (𝑡) = cos (𝑡√L) 𝑢
0
+
sin (𝑡√L)
√L

𝑢
1
,

𝑤 (𝑡) = ∫

𝑡

0

sin ((𝑡 − 𝜏)√L)
√L

𝑓 (𝜏) 𝑑𝜏.

(2)

We can now state the main results of the paper. As always
when dealing with Strichartz inequalities, we prove first the
following dispersive inequality on V.

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 219375, 10 pages
http://dx.doi.org/10.1155/2014/219375

http://dx.doi.org/10.1155/2014/219375


2 Abstract and Applied Analysis

Theorem 1. Let 𝜌 ∈ [𝑛−1/2, 𝑛+1/2] and 𝑢
0
∈ 𝐵̇

𝜌

1,1
, 𝑢
1
∈ 𝐵̇

𝜌−1

1,1
.

Then there exists a constant 𝐶 > 0, which does not depend on
𝑢
0
, 𝑢
1
, such that

‖V (𝑡)‖
𝐿
∞
(𝐺)
≤ 𝐶|𝑡|

−𝑝/2

(
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐵̇𝜌
1,1

+
󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩𝐵̇𝜌−1
1,1

) , 𝑡 ∈ R
∗

. (3)

The Strichartz inequalities we have obtained are listed as
follows.

Theorem 2. Let 𝑞
1
, 𝑞
2
, 𝑟
1
, 𝑟
2
∈ [2,∞] and 𝜌

1
, 𝜌
2
∈ R such

that

(a)

2

𝑞
𝑖

= 𝑝(
1

2
−
1

𝑟
𝑖

) ; 𝑖 = 1, 2, (4)

(b)

− (𝑛 +
1

2
)(
1

2
−
1

𝑟
1

) + 1

≤ 𝜌
1
≤ −(𝑛 −

1

2
)(
1

2
−
1

𝑟
1

) + 1,

(5)

(c)

−(𝑛 +
1

2
)(
1

2
−
1

𝑟
1

) ≤ 𝜌
2
≤ −(𝑛 −

1

2
)(
1

2
−
1

𝑟
1

) , (6)

except for (𝑞
𝑖
, 𝑟
𝑖
, 𝑝) = (2,∞, 2). Let 𝑞󸀠

𝑖
, 𝑟󸀠
𝑖
denote the conjugate

exponent of 𝑞
𝑖
and 𝑟

𝑖
.Then the following estimates are satisfied:

‖V‖
𝐿
𝑞
1 (R, 𝐵̇

𝜌
1

𝑟
1
,2
)
+
󵄩󵄩󵄩󵄩𝜕𝑡V
󵄩󵄩󵄩󵄩𝐿𝑞1 (R, 𝐵̇

𝜌
1
−1

𝑟
1
,2
)
≤ 𝐶(

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐵̇1
2,2

+
󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩𝐿2) ,

‖𝑤‖
𝐿
𝑞
1 ((0,𝑇), 𝐵̇

𝜌
1

𝑟
1
,2
)
+
󵄩󵄩󵄩󵄩𝜕𝑡𝑤
󵄩󵄩󵄩󵄩𝐿𝑞1 ((0,𝑇), 𝐵̇

𝜌
1
−1

𝑟
1
,2
)
≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑞
󸀠

2 ((0,𝑇), 𝐵̇
−𝜌
2

𝑟
󸀠

2
,2

)

,

(7)

where the constant 𝐶 > 0 does not depend on 𝑢
0
, 𝑢
1
, 𝑓 or 𝑇.

Thus, it is natural to wonder whether such a gener-
alization for Strichartz inequalities, obtained for the wave
equation on H-type groups (with full Laplacian), remains
true also for the corresponding Schrödinger equation:

𝜕
𝑡
𝑢 − 𝑖L𝑢 = 𝑓 ∈ 𝐿

1

((0, 𝑇) , 𝐿
2

) ,

𝑢|
𝑡=0
= 𝑢

0
∈ 𝐵̇

1

2,2
.

(8)

We shall address this problem in a forthcoming paper [4].

2. H-Type Groups and Spherical
Fourier Transform

2.1. H-Type Groups. Let g be a two-step nilpotent Lie algebra
endowed with an inner product ⟨⋅, ⋅⟩. Its center is denoted by
z. g is said to be of H-type if [z⊥, z⊥] = z and for every 𝑠 ∈ z,
the map 𝐽

𝑠
: z⊥ → z⊥ defined by

⟨𝐽
𝑠
𝑢, 𝑤⟩ := ⟨𝑠, [𝑢, 𝑤]⟩ , ∀𝑢, 𝑤 ∈ z

⊥ (9)

is an orthogonal map whenever |𝑠| = 1.

AnH-type group is a connected and simply connected Lie
group 𝐺 whose Lie algebra is of H-type.

For a given 0 ̸= 𝑎 ∈ z∗, the dual of z, we can define a skew-
symmetric mapping 𝐵(𝑎) on z⊥ by

⟨𝐵 (𝑎) 𝑢, 𝑤⟩ = 𝑎 ([𝑢, 𝑤]) , ∀𝑢, 𝑤 ∈ z
⊥

. (10)

We denote by 𝑧
𝑎
the element of z determined by

⟨𝐵 (𝑎) 𝑢, 𝑤⟩ = 𝑎 ([𝑢, 𝑤]) = ⟨𝐽
𝑧
𝑎

𝑢, 𝑤⟩ . (11)

Since 𝐵(𝑎) is skew symmetric and nondegenerate, the dimen-
sion of z⊥ is even; that is, dim z⊥ = 2𝑑.

For a given 0 ̸= 𝑎 ∈ z∗, we can choose an orthonormal
basis

{𝐸
1
(𝑎) , 𝐸

2
(𝑎) , . . . , 𝐸

𝑑
(𝑎) , 𝐸

1
(𝑎) , 𝐸

2
(𝑎) , . . . , 𝐸

𝑑
(𝑎)} (12)

of z⊥ such that

𝐵 (𝑎) 𝐸
𝑖
(𝑎) =

󵄨󵄨󵄨󵄨𝑧𝑎
󵄨󵄨󵄨󵄨 𝐽𝑧𝑎/|𝑧𝑎|

𝐸
𝑖
(𝑎) = |𝑎| 𝐸

𝑖
(𝑎) ,

𝐵 (𝑎) 𝐸
𝑖
(𝑎) = − |𝑎| 𝐸

𝑖
(𝑎) .

(13)

We set 𝑝 = dim z. Throughout this paper we assume that
𝑝 > 1. We can choose an orthonormal basis {𝜖

1
, 𝜖
2
, . . . , 𝜖

𝑝
}

of z such that 𝑎(𝜖
1
) = |𝑎|, 𝑎(𝜖

𝑗
) = 0, 𝑗 = 2, 3, . . . , 𝑝. Then we

can denote the element of g by

(𝑧, 𝑡) = (𝑥, 𝑦, 𝑡) =

𝑑

∑

𝑖=1

(𝑥
𝑖
𝐸
𝑖
+ 𝑦

𝑖
𝐸
𝑖
) +

𝑝

∑

𝑗=1

𝑠
𝑗
𝜖
𝑗
. (14)

We identify G with its Lie algebra g by exponential map. The
group law on H-type group 𝐺 has the form

(𝑧, 𝑠) (𝑧
󸀠

, 𝑠
󸀠

) = (𝑧 + 𝑧
󸀠

, 𝑠 + 𝑠
󸀠

+
1

2
[𝑧, 𝑧

󸀠

]) , (15)

where [𝑧, 𝑧󸀠]
𝑗
= ⟨𝑧, 𝑈

𝑗

𝑧
󸀠

⟩ for a suitable skew-symmetric
matrix 𝑈𝑗, 𝑗 = 1, 2, . . . , 𝑝.

Theorem 3. G is an H-type group with underlying manifold
R2𝑑+𝑝, with the group law (15), and the matrix 𝑈𝑗, 𝑗 =
1, 2, . . . , 𝑝 satisfies the following conditions.

(i) 𝑈𝑗 is a 2𝑑×2𝑑 skew-symmetric and orthogonal matrix,
𝑗 = 1, 2, . . . , 𝑝.

(ii) 𝑈𝑖𝑈𝑗 + 𝑈𝑗𝑈𝑖 = 0, 𝑖, 𝑗 = 1, 2, . . . , 𝑝 with 𝑖 ̸= 𝑗.

Proof. See [5].

Remark 4. It is well know that H-type algebras are closely
related to Clifford modules (see [6]). H-type algebras can
be classified by the standard theory of Clifford algebras.
Specially, on H-type group 𝐺, there is a relation between
the dimension of the center and its orthogonal complement
space. That is 𝑝 + 1 ≤ 2𝑑 (see [7]).
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Remark 5. We identify 𝐺 with R2𝑑 × R𝑝. We shall denote
the topological dimension of 𝐺 by 𝑛 = 2𝑑 + 𝑝. Following
Folland and Stein (see [8]), we will exploit the canonical
homogeneous structure, given by the family of dilations
{𝛿
𝑟
}
𝑟>0

,

𝛿
𝑟
(𝑧, 𝑠) = (𝑟𝑧, 𝑟

2

𝑠) . (16)

We then define the homogeneous dimension of 𝐺 by 𝑁 =
2𝑑 + 2𝑝.

The left invariant vector fields which agree, respectively,
with 𝜕/𝜕𝑥

𝑗
, 𝜕/𝜕𝑦

𝑗
at the origin are given by

𝑋
𝑗
=
𝜕

𝜕𝑥
𝑗

+
1

2

𝑝

∑

𝑘=1

(

2𝑑

∑

𝑙=1

𝑧
𝑙
𝑈
𝑘

𝑙,𝑗
)
𝜕

𝜕𝑠
𝑘

,

𝑌
𝑗
=
𝜕

𝜕𝑦
𝑗

+
1

2

𝑝

∑

𝑘=1

(

2𝑑

∑

𝑙=1

𝑧
𝑙
𝑈
𝑘

𝑙,𝑗+𝑑
)
𝜕

𝜕𝑠
𝑘

,

(17)

where 𝑧
𝑙
= 𝑥

𝑙
, 𝑧
𝑙+𝑑
= 𝑦

𝑙
, 𝑙 = 1, 2, . . . , 𝑑.

The vector fields 𝑆
𝑘
= 𝜕/𝜕𝑠

𝑘
, 𝑘 = 1, 2, . . . , 𝑝 correspond

to the center of𝐺. In terms of these vector fields we introduce
the sub-Laplacian Δ and full LaplacianL, respectively,

Δ = −

𝑛

∑

𝑗=1

(𝑋
2

𝑗
+ 𝑌

2

𝑗
) = −Δ

𝑧
+
1

4
|𝑧|
2

S −

𝑝

∑

𝑘=1

⟨𝑧, 𝑈
𝑘

∇
𝑧
⟩ 𝑆

𝑘

L = Δ +S,

(18)

where

Δ
𝑧
=

2𝑑

∑

𝑗=1

𝜕
2

𝜕𝑧2
𝑗

, S = −

𝑝

∑

𝑘=1

𝜕
2

𝜕𝑠2
𝑘

,

∇
𝑧
= (
𝜕

𝜕𝑧
1

,
𝜕

𝜕𝑧
2

, . . . ,
𝜕

𝜕𝑧
2𝑑

)

𝑡

.

(19)

2.2. Spherical Fourier Transform. Korányi, Damek, and Ricci
(see [9, 10]) have computed the spherical functions associated
to the Gelfand pair (𝐺, 𝑂(2𝑑)) (we identify 𝑂(2𝑑) with
𝑂(2𝑑) ⊗ 𝐼𝑑

𝑝
). They involve, as on the Heisenberg group, the

Laguerre functions

L
(𝛼)

𝑚
(𝜏) = 𝐿

(𝛼)

𝑚
(𝜏) 𝑒

−𝜏/2

, 𝜏 ∈ R, 𝑚, 𝛼 ∈ N, (20)

where 𝐿(𝛼)
𝑚

is the Laguerre polynomial of type 𝛼 and degree
𝑚.

We say a function 𝑓 on 𝐺 is radial if the value of 𝑓(𝑧, 𝑠)
depends only on |𝑧| and 𝑠. We denote bySrad(𝐺) and 𝐿

𝑞

rad(𝐺),
1 ≤ 𝑞 ≤ ∞ the spaces of radial functions in S(𝐺) and 𝐿𝑝(𝐺),
respectively. In particular, the set of𝐿1rad(𝐺) endowedwith the
convolution product

𝑓
1
∗ 𝑓

2
(𝑔) = ∫

𝐺

𝑓
1
(𝑔𝑔

󸀠−1

) 𝑓
2
(𝑔
󸀠

) 𝑑𝑔
󸀠

, 𝑔 ∈ 𝐺 (21)

is a commutative algebra.

Let 𝑓 ∈ 𝐿1rad(𝐺). We define the spherical Fourier trans-
form

F (𝑓) (𝜆,𝑚) = 𝑓 (𝜆,𝑚) = (
𝑚 + 𝑑 − 1

𝑚
)

−1

× ∫
R2𝑑+𝑝
𝑒
𝑖𝜆𝑠

𝑓 (𝑧, 𝑠)L
(𝑑−1)

𝑚
(
|𝜆|

2
|𝑧|
2

)𝑑𝑧 𝑑𝑠,

𝑚 ∈ N, 𝜆 ∈ R
𝑝

.

(22)

By a direct computation, we haveF(𝑓
1
∗𝑓

2
) = F(𝑓

1
) ⋅F(𝑓

2
).

Thanks to a partial integration on the sphere 𝑆𝑝−1 we deduce
from the Plancherel theorem on the Heisenberg group its
analogue for the H-type groups.

Proposition 6. For all 𝑓 ∈ Srad(𝐺) such that

∑

𝑚∈N

(
𝑚 + 𝑑 − 1

𝑚
)∫

R𝑝

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝜆,𝑚)

󵄨󵄨󵄨󵄨󵄨
|𝜆|

𝑑

𝑑𝜆 < ∞ (23)

we have

𝑓 (𝑧, 𝑠) = (
1

2𝜋
)

𝑑+𝑝

∑

𝑚∈N

∫
R𝑝
𝑒
−𝑖𝜆𝑠

𝑓 (𝜆,𝑚)L
(𝑑−1)

𝑚

× (
|𝜆|

2
|𝑧|
2

) |𝜆|
𝑑

𝑑𝜆

(24)

the sum being convergent in 𝐿∞ norm.

Moreover, if 𝑓 ∈ Srad(𝐺), the functions L𝑓 are also in
Srad(𝐺) and its spherical Fourier transform is given by

L̂𝑓 (𝜆,𝑚) = ((2𝑚 + 𝑑) |𝜆| + |𝜆|
2

) 𝑓 (𝜆,𝑚) . (25)

The full Laplacian L is a positive self-adjoint operator
densely defined on 𝐿2(𝐺). So by the spectral theorem, for any
bounded Borel function ℎ on R, we have

ℎ̂ (L) 𝑓 (𝜆,𝑚) = ℎ ((2𝑚 + 𝑑) |𝜆| + |𝜆|
2

) 𝑓 (𝜆,𝑚) . (26)

3. Littlewood-Paley Decomposition

In this paperwe use the Besov spaces defined by a Littlewood-
Paley decomposition related to the spectral of the full Lapla-
cianL. Let𝑅 be a nonnegative, even function in𝐶∞

0
(R) such

that supp𝑅 ⊆ {𝜏 ∈ R : 1/2 ≤ |𝜏| ≤ 4} and

∑

𝑗∈Z

𝑅 (2
−2𝑗

𝜏) = 1, ∀𝜏 ̸= 0. (27)

For 𝑗 ∈ Z, we denote by 𝜓
𝑗
the kernel of the operator

𝑅(2
−2𝑗L) andwe setΔ

𝑗
𝑓 = 𝑓∗𝜓

𝑗
. As𝑅 ∈ 𝐶∞

0
(R), Hulanicki

proved that 𝜓
𝑗
∈ Srad(𝐺) (see [11]) and

𝜓̂
𝑗
(𝜆,𝑚) = 𝑅 (2

−2𝑗

((2𝑚 + 𝑑) |𝜆| + |𝜆|
2

)) . (28)

By [12] (see Proposition 6), there exists 𝐶 > 0 such that
󵄩󵄩󵄩󵄩󵄩
𝜓
𝑗

󵄩󵄩󵄩󵄩󵄩𝐿1(𝐺)
≤ 𝐶, ∀𝑗 ∈ Z. (29)



4 Abstract and Applied Analysis

By standard arguments (see [12], Proposition 9), we can
deduce from (29) that

󵄩󵄩󵄩󵄩󵄩
L
𝜎/2

Δ
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝐺)

≤ 𝐶2
𝑗𝜎
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿𝑞(𝐺)

,

𝜎 ∈ R, 𝑗 ∈ Z, 1 ≤ 𝑞 ≤ ∞, 𝑓 ∈ S
󸀠

(𝐺) ,

(30)

where both sides of (30) are allowed to be infinite.
By the spectral theorem, for any 𝑓 ∈ 𝐿2(𝐺), the following

homogeneous Littlewood-Paley decomposition holds:

𝑓 = ∑

𝑗∈Z

Δ
𝑗
𝑓 in 𝐿2 (𝐺) . (31)

So
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿∞(𝐺) ≤ ∑

𝑗∈Z

󵄩󵄩󵄩󵄩󵄩
Δ
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐺)

, 𝑓 ∈ 𝐿
2

(𝐺) , (32)

where both sides of (32) are allowed to be infinite.
Let 1 ≤ 𝑞, 𝑟 ≤ ∞, 𝜌 < 𝑁/𝑞. We define the homogeneous

Besov space 𝐵̇𝜌
𝑞,𝑟

as the set of distributions 𝑓 ∈ S󸀠(𝐺) such
that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵̇𝜌
𝑞,𝑟

= (∑

𝑗∈Z

2
𝑗𝜌𝑟
󵄩󵄩󵄩󵄩󵄩
Δ
𝑗
𝑓
󵄩󵄩󵄩󵄩󵄩

𝑟

𝑞

)

1/𝑟

< ∞ (33)

and 𝑓 = ∑
𝑗∈Z Δ 𝑗𝑓 in S󸀠(𝐺).

We collect in the following proposition all the properties
we need about the spaces 𝐵̇𝜌

𝑞,𝑟
.

Proposition 7. Let 𝑞, 𝑟 ∈ [1,∞] and 𝜌 < 𝑁/𝑞.

(i) Thespace 𝐵̇𝜌
𝑞,𝑟

is a Banach spacewith the norm ‖ ⋅ ‖
𝐵̇
𝜌

𝑞,𝑟

;

(ii) the definition of 𝐵̇𝜌
𝑞,𝑟

does not depend on the choice of
the function 𝑅 in the Littlewood-Paley decomposition;

(iii) for −𝑁/𝑞󸀠 < 𝜌 < 𝑁/𝑞 the dual space of 𝐵̇𝜌
𝑞,𝑟

is 𝐵̇−𝜌
𝑞
󸀠
,𝑟
󸀠
;

(iv) for 𝛼 ∈ [𝑛,𝑁] we have the continuous inclusion

𝐵̇
𝜌
1

𝑞
1
,𝑟
⊂ 𝐵̇

𝜌
2

𝑞
2
,𝑟
,
1

𝑞
1

−
𝜌
1

𝛼
=
1

𝑞
2

−
𝜌
2

𝛼
, 𝜌

1
≥ 𝜌

2
; (34)

(v) for all 𝑞 ∈ [2,∞] we have the continuous inclu-
sion 𝐵̇0

𝑞,2
⊂ 𝐿

𝑞;

(vi) 𝐵̇0
2,2
= 𝐿

2;
(vii) for 𝜃 ∈ [0, 1] we have

[𝐵̇
𝜌
1

𝑞
1
,𝑟
1

, 𝐵̇
𝜌
2

𝑞
2
,𝑟
2

]
𝜃

= 𝐵̇
𝜌

𝑞,𝑟
(35)

with 𝜌 = (1 − 𝜃)𝜌
1
+ 𝜃𝜌

2
, 1/𝑞 = (1 − 𝜃)/𝑞

1
+ 𝜃/𝑞

2
, and 1/𝑟 =

(1 − 𝜃)/𝑟
1
+ 𝜃/𝑟

2
.

We omit the proof of the proposition which is analogous
to (see [2, Proposition 3.3]).

4. Dispersive Estimates

It is a very classical way to get a dispersive estimate if we want
to reach Strichartz inequalities. Hence, first what we want to
do is to get a dispersive estimate ‖𝑒−𝑖𝑡√L𝜓

𝑗
‖
𝐿
∞
(𝐺)

.
Our main tool is to apply oscillating integral estimates to

the wave equation. First of all, we recall the stationary phase
lemma (see [13, Chapter VIII]).

Lemma 8 (stationary phase estimate). Let 𝑔 ∈ 𝐶∞([𝑎, 𝑏]) be
real valued such that

󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
≥ 𝛿 (36)

for any 𝑥 ∈ [𝑎, 𝑏] with 𝛿 > 0. Then for any function ℎ ∈
𝐶
∞

([𝑎, 𝑏]), there exists a constant 𝐶 which does not depend
on 𝛿, 𝑎, 𝑏, 𝑔 or ℎ, such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑏

𝑎

𝑒
𝑖𝑔(𝑥)

ℎ (𝑥) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝐶𝛿
−1/2

[‖ℎ‖
∞
+ ∫

𝑏

𝑎

󵄨󵄨󵄨󵄨󵄨
ℎ
󸀠

(𝑥)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑥] . (37)

Next, we will need some estimates of the Laguerre func-
tions.

Lemma 9. Consider the following:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝜏
𝑑

𝑑𝜏
)

𝛼

L
(𝑑−1)

𝑚
(𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

𝛼,𝑑
(2𝑚 + 𝑑)

𝑑−1/4 (38)

for all 0 ≤ 𝛼 ≤ 𝑑.

Proof. We refer the reader to the proof of Lemma 3.2 in [3].

Remark 10. In fact, for 0 ≤ 𝛼 ≤ 𝑑−1, we have a better estimate
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝜏
𝑑

𝑑𝜏
)

𝛼

L
(𝑑−1)

𝑚
(𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

𝛼,𝑑
(2𝑚 + 𝑑)

𝑑−1

. (39)

Furthermore, we will exploit the following estimates,
which can be easily proved by comparing the sums with the
corresponding integrals.

Lemma 11. Fix 𝛽 ∈ R. There exists 𝐶
𝛽
> 0 such that for𝐴 > 0

and 𝑑 ∈ Z
+
, and we have

∑

𝑚∈N

2𝑚+𝑑≥𝐴

(2𝑚 + 𝑑)
𝛽

≤ 𝐶
𝛽
𝐴
𝛽+1

, 𝛽 < −1,
(40)

∑

𝑚∈N

2𝑚+𝑑≤𝐴

(2𝑚 + 𝑑)
𝛽

≤ 𝐶
𝛽
𝐴
𝛽+1

, 𝛽 > −1.
(41)

Finally, we introduce the following properties of the
Bessel functions. Let 𝐽

𝜇
be the Bessel function of order 𝜇 >

−1/2,

𝐽
𝜇
(𝑟) =

(𝑟/2)
𝜇

Γ (𝜇 + 1/2) 𝜋1/2
∫

1

−1

𝑒
𝑖𝑟𝑡

(1 − 𝑡
2

)
𝜇−1/2

𝑑𝑡. (42)

By𝑚-fold integration by parts we obtain the following.



Abstract and Applied Analysis 5

Lemma 12. For any𝑚 ∈ N,

𝐽
𝑚+1/2

= 𝑟
−1/2

𝑚

∑

𝑘=0

(𝑎
+

𝑘
𝑒
ir
+ 𝑎

−

𝑘
𝑒
−ir
) 𝑟
−𝑘

, (43)

where 𝑎±
𝑘
are complex coefficients.

Lemma 13. For any𝑚 ∈ N,

𝐽
𝑚
(𝑟) = 𝑒

ir
[
𝑎
+

𝑟1/2
+ 𝜙

+
(𝑟)] + 𝑒

−ir
[
𝑎
−

𝑟1/2
+ 𝜙

−
(𝑟)] , (44)

where 𝜙
±
∈ S(R

+
) are such that

∀𝑟 > 0,
󵄨󵄨󵄨󵄨𝜙± (𝑟)

󵄨󵄨󵄨󵄨 ≤ 𝑟
−1/2

,
󵄨󵄨󵄨󵄨󵄨
𝜙
󸀠

±
(𝑟)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑟

−3/2

. (45)

Proof. See the proof of Lemma 3.4 in [3].

We can now prove the following.

Lemma 14. There exists a 𝐶 > 0, which depends only on 𝑑
and 𝑝, such that for any 𝜌 ∈ [𝑛 − 1/2, 𝑛 + 1/2], 𝑗 ∈ Z, and
𝑡 ∈ R∗ = R \ {0} we have

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑖𝑡√L

𝜓
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐺)
≤ 𝐶|𝑡|

−1/2

2
𝑗𝜌

. (46)

Proof. Fixing 𝑡 ∈ R∗, 𝑗 ∈ Z, and (𝑧, 𝑠) ∈ 𝐺 and by the
inversion Fourier formula, we have

𝑒
−𝑖𝑡√L

𝜓
𝑗
(𝑧, 𝑠) = (

1

2𝜋
)

𝑑+𝑝

∑

𝑚∈N

∫
R𝑝
𝑒
−𝑖𝜆𝑠

𝑒
−𝑖𝑡√(2𝑚+𝑑)|𝜆|+|𝜆|

2

× 𝑅 (2
−2𝑗

((2𝑚 + 𝑑) |𝜆| + |𝜆|
2

))

× L
(𝑑−1)

𝑚
(
|𝜆|

2
|𝑧|
2

) |𝜆|
𝑑

𝑑𝜆

= (
1

2𝜋
)

𝑑+𝑝

∑

𝑚∈N

𝐼
𝑚
,

(47)

where

𝐼
𝑚
= ∫

R𝑝
𝑒
−𝑖𝜆𝑠

𝑒
−𝑖𝑡√(2𝑚+𝑑)|𝜆|+|𝜆|

2

𝑅 (2
−2𝑗

((2𝑚 + 𝑑) |𝜆| + |𝜆|
2

))

× L
(𝑑−1)

𝑚
(
|𝜆|

2
|𝑧|
2

) |𝜆|
𝑑

𝑑𝜆

(48)

and our assertion simply read

∑

𝑚∈N

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲ {

|𝑡|
−1/2

2
𝑗(2𝑑+𝑝−1/2)

, 𝑗 > 0,

|𝑡|
−1/2

2
𝑗(2𝑑+𝑝+1/2)

, 𝑗 ≤ 0.
(49)

Putting 𝜎 = 𝑠/𝑡 and𝑀 = 2𝑚 + 𝑑, we first integrate on R+,
and then

𝐼
𝑚
= ∫

R𝑝
𝑒
−𝑖𝑡(𝜎⋅𝜆+√𝑀|𝜆|+|𝜆|

2

)

𝑅 (2
−2𝑗

(𝑀 |𝜆| + |𝜆|
2

))

× L
(𝑑−1)

𝑚
(
|𝜆|

2
|𝑧|
2

) |𝜆|
𝑑

𝑑𝜆

= ∫
𝑆
𝑝−1

𝐼
𝜖,𝑚
𝑑𝜎 (𝜖) ,

(50)

where

𝐼
𝜖,𝑚
= ∫

+∞

0

𝑒
−𝑖𝑡(𝜆𝜎⋅𝜖+√𝑀𝜆+𝜆

2
)

𝑅 (2
−2𝑗

(𝑀𝜆 + 𝜆
2

))

× L
(𝑑−1)

𝑚
(
𝜆

2
|𝑧|
2

)𝜆
𝑑+𝑝−1

𝑑𝜆.

(51)

Performing the change of variable 𝑥 = 2−2𝑗𝑀𝜆, we obtain

𝐼
𝜖,𝑚
= 2

𝑗(2𝑑+2𝑝)

𝐾
𝜖,𝑚
, (52)

where

𝐾
𝜖,𝑚
= ∫

+∞

0

𝑒
−𝑖𝑡2
𝑗

𝐺
𝑗,𝜎,𝜖,𝑚

(𝑥)

ℎ
𝑗,𝑧,𝑚
(𝑥) 𝑑𝑥. (53)

Here,

𝐺
𝑗,𝜎,𝜖,𝑚

(𝑥) =
2
𝑗

𝑀
(𝑥𝜎 ⋅ 𝜖 + √2−2𝑗𝑀2𝑥 + 𝑥2) ,

ℎ
𝑗,𝑧,𝑚
(𝑥) = 𝑅(𝑥 +

2
2𝑗

𝑀2
𝑥
2

)L
(𝑑−1)

𝑚
(
2
2𝑗−1

𝑥|𝑧|
2

𝑀
)
𝑥
𝑑+𝑝−1

𝑀𝑑+𝑝

.

(54)

So

supp ℎ
𝑗,𝑧,𝑚
⊆ {𝑥 ∈ R

+

:
1

2
≤ 𝑥 +

2
2𝑗

𝑀2
𝑥
2

≤ 4} = [𝑎
𝑗,𝑚
, 𝑏
𝑗,𝑚
] ,

(55)

where

𝑎
𝑗,𝑚
=

1

1 + √1 + 22𝑗+1𝑀−2

, 𝑏
𝑗,𝑚
=

8

1 + √1 + 22𝑗+4𝑀−2

.

(56)

Note that

𝑎
𝑗,𝑚
, 𝑏
𝑗,𝑚
∼ min (1, 2−𝑗𝑀) . (57)

For 𝑥 ∈ [𝑎
𝑗,𝑚
, 𝑏
𝑗,𝑚
], we have

𝐺
󸀠󸀠

𝑗,𝜎,𝜖,𝑚
(𝑥) = −

2
−3𝑗−2

𝑀
3

(2−2𝑗𝑀2𝑥 + 𝑥2)
3/2

. (58)

Because of (55), it is implied that

2
−2𝑗−1

𝑀
2

≤ 2
−2𝑗

𝑀
2

𝑥 + 𝑥
2

≤ 2
−2𝑗+2

𝑀
2

, 𝑥 ∈ [𝑎
𝑗,𝑚
, 𝑏
𝑗,𝑚
] .

(59)

Therefore,

2
−5

≤
󵄨󵄨󵄨󵄨󵄨
𝐺
󸀠󸀠

𝑗,𝜎,𝜖,𝑚
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 2

−1/2

, 𝑥 ∈ [𝑎
𝑗,𝑚
, 𝑏
𝑗,𝑚
] (60)

follows immediately from (58) and (59).
Moreover, by Lemma 9 and (57), one can easily verify that

󵄩󵄩󵄩󵄩󵄩
ℎ
𝑗,𝑧,𝑚

󵄩󵄩󵄩󵄩󵄩𝐿∞[𝑎
𝑗,𝑚
,𝑏
𝑗,𝑚
]

+
󵄩󵄩󵄩󵄩󵄩
ℎ
󸀠

𝑗,𝑧,𝑚

󵄩󵄩󵄩󵄩󵄩𝐿1[𝑎
𝑗,𝑚
,𝑏
𝑗,𝑚
]

≲ {
𝑀
−(𝑝+1)

, 𝑀 ≥ 2
𝑗

,

2
−𝑗(𝑑+𝑝−1)

𝑀
𝑑−2

, 𝑀 < 2
𝑗

.

(61)
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Applying the stationary phase Lemma 8, we obtain a consis-
tent estimate

󵄨󵄨󵄨󵄨𝐾𝜖,𝑚
󵄨󵄨󵄨󵄨 ≲
{

{

{

|𝑡|
−1/2

2
−𝑗/2

𝑀
−(𝑝+1)

, 𝑀 ≥ 2
𝑗

,

|𝑡|
−1/2

2
−𝑗(𝑑+𝑝−1/2)

𝑀
𝑑−2

, 𝑀 < 2
𝑗

.
(62)

Hence, we have

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲
{

{

{

|𝑡|
−1/2

2
𝑗(2𝑑+2𝑝−1/2)

𝑀
−(𝑝+1)

, 𝑀 ≥ 2
𝑗

,

|𝑡|
−1/2

2
𝑗(𝑑+𝑝+1/2)

𝑀
𝑑−2

, 𝑀 < 2
𝑗

.
(63)

For 𝑗 ≤ 0,∑
𝑚∈N |𝐼𝑚| ≲ |𝑡|

−1/2

2
𝑗(2𝑑+2𝑝−1/2)

≲ |𝑡|
−1/2

2
𝑗(2𝑑+𝑝+1/2).

For 𝑗 > 0, ∑
𝑚∈N |𝐼𝑚| ≲ |𝑡|

−1/2

2
𝑗(2𝑑+𝑝−1/2) follows from (63)

by applying Lemma 11 separately to the sums ∑
𝑀≥2
𝑗 |𝐼

𝑚
| and

∑
𝑀<2
𝑗 |𝐼

𝑚
|.

Next, we integrate first over 𝑆𝑝−1 to estimate 𝐼
𝑚
,

𝐼
𝑚
= ∫

+∞

0

𝑑𝜎 (𝜆𝑠) 𝑒
−𝑖𝑡√𝑀𝜆+𝜆

2

× 𝑅 (2
−2𝑗

(𝑀𝜆 + 𝜆
2

))L
(𝑑−1)

𝑚
(
𝜆

2
|𝑧|
2

)𝜆
𝑑+𝑝−1

𝑑𝜆,

(64)

where

𝑑𝜎 (𝜉) = ∫
𝑆
𝑝−1

𝑒
−𝑖𝑥⋅𝜉

𝑑𝜎 (𝑥) = 2𝜋(

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

2𝜋
)

(2−𝑝)/2

𝐽
(𝑝−2)/2

(
󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨) .

(65)

Case 1 (𝑝 is odd). Using Lemma 12, we put

𝐼
𝑚
= (2𝜋)

𝑝/2

∑

±

(𝑝−3)/2

∑

𝑘=0

𝑎
±

𝑘
𝐼
±

𝑚,𝑘
, (66)

where

𝐼
±

𝑚,𝑘
= |𝑠|

(1−𝑝)/2−𝑘

∫

+∞

0

𝑒
±𝑖𝜆|𝑠|−𝑖𝑡√𝑀𝜆+𝜆

2

× 𝑅 (2
−2𝑗

(𝑀𝜆 + 𝜆
2

))L
(𝑑−1)

𝑚
(
𝜆

2
|𝑧|
2

)𝜆
𝑑+(𝑝−1)/2−𝑘

𝑑𝜆.

(67)

Analogous to what we have done in Lemma 14, we obtain

󵄨󵄨󵄨󵄨󵄨
𝐼
±

𝑚,𝑘

󵄨󵄨󵄨󵄨󵄨

≲
{

{

{

|𝑡|
−1/2

|𝑠|
(1−𝑝)/2−𝑘

2
𝑗(2𝑑+𝑝+1/2−2𝑘)

𝑀
−((𝑝+3)/2−𝑘)

, 𝑀 ≥ 2
𝑗

,

|𝑡|
−1/2

|𝑠|
(1−𝑝)/2−𝑘

2
𝑗(𝑑+𝑝/2+1−𝑘)

𝑀
𝑑−2

, 𝑀 < 2
𝑗

.

(68)

Case 2 (𝑝 is even). Using Lemma 13, we put

𝐼
𝑚
= (2𝜋)

𝑝/2

∑

±

𝑎
±
(𝐼
±

𝑚,0
+ Υ

±

𝑚
) , (69)

where

Υ
±

𝑚
= |𝑠|

(2−𝑝)/2

∫

+∞

0

𝑒
±𝑖𝜆|𝑠|−𝑖𝑡√𝑀𝜆+𝜆

2

𝜙
±
(𝜆 |𝑠|)

× 𝑅 (2
−2𝑗

(𝑀𝜆 + 𝜆
2

))L
(𝑑−1)

𝑚
(
𝜆

2
|𝑧|
2

)𝜆
𝑑+𝑝/2

𝑑𝜆

(70)

and the estimate holds
󵄨󵄨󵄨󵄨Υ
±

𝑚

󵄨󵄨󵄨󵄨

≲
{

{

{

|𝑡|
−1/2

|𝑠|
(1−𝑝)/2

2
𝑗(2𝑑+𝑝+1/2)

𝑀
−(𝑝+3)/2

, 𝑀 ≥ 2
𝑗

,

|𝑡|
−1/2

|𝑠|
(1−𝑝)/2

2
𝑗(𝑑+𝑝/2+1)

𝑀
𝑑−2

, 𝑀 < 2
𝑗

.

(71)

To improve the time decay, we will try to apply 𝑝 times a
noncritical phase estimate. First, we need to give an estimate
of the derivatives of the phase function 𝐺

𝑗,𝜎,𝜖,𝑚
.

Lemma 15. For any 𝑥 ∈ [𝑎
𝑗,𝑚
, 𝑏
𝑗,𝑚
], 𝑙 ≥ 2, we obtain

󵄨󵄨󵄨󵄨󵄨
𝐺
(𝑙)

𝑗,𝜎,𝜖,𝑚
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≲
{

{

{

1, 𝑀 ≥ 2
𝑗

,

(2
𝑗

𝑀
−1

)
𝑙−2

, 𝑀 < 2
𝑗

.

(72)

Proof. According to (58), we have

𝐺
󸀠󸀠

𝑗,𝜎,𝜖,𝑚
(𝑥) = −

2
−3𝑗−2

𝑀
3

(𝜑 (𝑥))
3/2

, (73)

where

𝜑 (𝑥) = 2
−2𝑗

𝑀
2

𝑥 + 𝑥
2

. (74)

By a direct induction, for 𝑙 ≥ 2, we have

𝐺
(𝑙)

𝑗,𝜎,𝜖,𝑚
(𝑥) = (𝐺

󸀠󸀠

𝑗,𝜎,𝜖,𝑚
)
(𝑙−2)

(𝑥)

= −2
−3𝑗−2

𝑀
3

× ∑

𝑙
1
+2𝑙
2
=𝑙−2

𝐶 (𝑙, 𝑙
1
, 𝑙
2
)
(𝜑
󸀠

(𝑥))
𝑙
1

(𝜑
󸀠󸀠

(𝑥))
𝑙
2

(𝜑 (𝑥))
3/2+𝑙−2−𝑙

2

.

(75)

Because of

𝜑 (𝑥) ∼ 2
−2𝑗

𝑀
2

, (76)

𝜑
󸀠

(𝑥) = 2
−2𝑗

𝑀
2

+ 2𝑥, (77)

𝜑
󸀠󸀠

(𝑥) = 2, (78)

for any 𝑥 ∈ [𝑎
𝑗,𝑚
, 𝑏
𝑗,𝑚
].

By (57), when𝑀 ≥ 2𝑗, we have 𝑥 ∼ 1. Hence, (77) yields

𝜑
󸀠

(𝑥) ∼ 2
−2𝑗

𝑀
2

. (79)
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Then, according to (75), (76), (78), and (79), we have
󵄨󵄨󵄨󵄨󵄨
𝐺
(𝑙)

𝑗,𝜎,𝜖,𝑚
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≲ 2

−3𝑗−2

𝑀
3

∑

𝑙
1
+2𝑙
2
=𝑙−2

(2
−2𝑗

𝑀
2

)
−(3/2+𝑙−2−𝑙

2
−𝑙
1
)

≲ 2
−3𝑗−2

𝑀
3

∑

0≤𝑙
2
≤[(𝑙−2)/2]

(2
−2𝑗

𝑀
2

)
−(3/2+𝑙

2
)

≲ 2
−3𝑗−2

𝑀
3

(2
−2𝑗

𝑀
2

)
−3/2

≲ 1.

(80)

By (57), when𝑀 ≤ 2𝑗, we have 𝑥 ∼ 2−𝑗𝑀. Hence, (77) yields

𝜑
󸀠

(𝑥) ∼ 2
−𝑗

𝑀. (81)

Similarly, we prove that
󵄨󵄨󵄨󵄨󵄨
𝐺
(𝑙)

𝑗,𝜎,𝜖,𝑚
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≲ (2

𝑗

𝑀
−1

)
𝑙−2

. (82)

Furthermore, we will exploit the following estimates for
the derivatives of ℎ

𝑗,𝑧,𝑚
.

Lemma 16. For any 𝑥 ∈ [𝑎
𝑗,𝑚
, 𝑏
𝑗,𝑚
], 0 ≤ 𝑙 ≤ 𝑑, we have

󵄨󵄨󵄨󵄨󵄨
ℎ
(𝑙)

𝑗,𝑧,𝑚
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≲
{

{

{

𝑀
−(𝑝+𝜃

𝑙
)

, 𝑀 ≥ 2
𝑗

,

2
−𝑗(𝑑+𝑝−𝑙−1)

𝑀
𝑑−𝑙−𝜃

𝑙
−1

, 𝑀 < 2
𝑗

,
(83)

where

𝜃
𝑙
=
{

{

{

1, 0 ≤ 𝑙 ≤ 𝑑 − 1,

1

4
, 𝑙 = 𝑑.

(84)

Proof. Recall that

ℎ
𝑗,𝑧,𝑚
(𝑥) = 𝑅(𝑥 +

2
2𝑗

𝑀2
𝑥
2

)L
(𝑑−1)

𝑚
(
2
2𝑗−1

𝑥|𝑧|
2

𝑀2
)
𝑥
𝑑+𝑝−1

𝑀𝑑+𝑝

.

(85)

By an induction we get

ℎ
(𝑙)

𝑗,𝑧,𝑚
(𝑥) = ∑

𝛼∈F

𝐴 (𝑙, 𝛼) 𝑅
(𝛼
1
)

(𝑥 +
2
2𝑗

𝑀2
𝑥
2

)

× (1 +
2
2𝑗+1

𝑀2
𝑥)

𝛼
2

(
2
2𝑗+1

𝑀2
)

𝛼
3

× [(𝑥
𝑑

𝑑𝑥
)

𝛼
4

L
(𝑑−1)

𝑚
] (
2
2𝑗−1

𝑥|𝑧|
2

𝑀2
)
𝑥
𝑑+𝑝−𝛼

5
−1

𝑀𝑑+𝑝

,

(86)

whereF = {𝛼 = (𝛼
1
, . . . , 𝛼

5
) ∈ N5 : 𝛼

1
= 𝛼

2
+𝛼

3
, 𝛼
1
+𝛼

3
+𝛼

5
=

𝑙, 𝛼
4
≤ 𝛼

5
}.

Applying Lemma 9 and (57), Lemma 16 comes out easily.

We can now prove the following.

Lemma 17. There exists a𝐶 > 0, which depends only on 𝑑 and
𝑝, such that for any 𝜌 ∈ [𝑛 − 1/2, 𝑛 + 1/2], 𝑗 ∈ Z, and 𝑡 ∈ R∗
we have

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑖𝑡√L

𝜓
𝑗

󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐺)
≤ 𝐶|𝑡|

−𝑝/2

2
𝑗𝜌

. (87)

Proof. From Lemma 14, it suffices to prove the case |𝑡| > 1.
In the following, we only give a detailed proof about the case
when 𝑝 is odd. For the case 𝑝 is even, the proof is similar.

Recall that

𝐾
𝜖,𝑚
= ∫

+∞

0

𝑒
−𝑖𝑡2
𝑗

𝐺
𝑗,𝜎,𝜖,𝑚

(𝑥)

ℎ
𝑗,𝑧,𝑚
(𝑥) 𝑑𝑥, (88)

where

𝐺
󸀠

𝑗,𝜎,𝜖,𝑚
(𝑥) =

2
𝑗

𝑀
(𝜎 ⋅ 𝜖 + √1 +

2
−4𝑗−2

𝑀
4

2−2𝑗𝑀2𝑥 + 𝑥2
) . (89)

For 𝑗 > 0, we divide N into three (possible empty) disjoint
subsets:

𝐴
1
= {𝑚 ∈ N : 𝑀 ≥ 2

𝑗

, |𝜎| ≲ 2
−𝑗

𝑀} ,

𝐴
2
= {𝑚 ∈ N : 𝑀 ≥ 2

𝑗

, |𝜎| ≳ 2
−𝑗

𝑀} ,

𝐴
3
= {𝑚 ∈ N : 𝑀 < 2

𝑗

} .

(90)

Then our assertion reads

∑

𝑚∈𝐴
𝑟

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲ |𝑡|

−𝑝/2

2
𝑗(2𝑑+𝑝−1/2)

, 𝑟 = 1, 2, 3. (91)

For 𝑟 = 1, by (89), we obtain
󵄨󵄨󵄨󵄨󵄨
𝐺
󸀠

𝑗,𝜎,𝜖,𝑚
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≳ 1, for any 𝑥 ∈ [𝑎

𝑗,𝑚
, 𝑏
𝑗,𝑚
] . (92)

The phase function 𝐺󸀠
𝑗,𝜎,𝜖,𝑚

(𝑥) for 𝐾
𝜖,𝑚

has no critical points
on [𝑎

𝑗,𝑚
, 𝑏
𝑗,𝑚
]. By 𝑄-fold integration by parts, we get

𝐾
𝜖,𝑚
= (𝑖𝑡2

𝑗

)
−𝑄

∫

+∞

0

𝑒
−𝑖𝑡2
𝑗

𝐺
𝑗,𝜎,𝜖,𝑚

(𝑥)

𝐷
𝑄

ℎ
𝑗,𝑧,𝑚
(𝑥) 𝑑𝑥, (93)

where the differential operator𝐷 is defined by

𝐷ℎ
𝑗,𝑧,𝑚
(𝑥) =

𝑑

𝑑𝑥
(
ℎ
𝑗,𝑧,𝑚
(𝑥)

𝐺󸀠
𝑗,𝜎,𝜖,𝑚

(𝑥)
) . (94)

By a direct induction, we have

𝐷
𝑄

ℎ
𝑗,𝑧,𝑚
=

2𝑄

∑

𝑘=𝑄

∑

∑
𝑄+1

𝑙=1
𝑙𝛼
𝑙
=𝑘

𝐶 (𝛼, 𝑘, 𝑄)

×
ℎ
(𝛼
1
)

𝑗,𝑧,𝑚
(𝐺

󸀠󸀠

𝑗,𝜎,𝜖,𝑚
)
𝛼
2

⋅ ⋅ ⋅ (𝐺
(𝑄+1)

𝑗,𝜎,𝜖,𝑚
)
𝛼
𝑄+1

(𝐺󸀠
𝑗,𝜎,𝜖,𝑚

)
𝑘

(95)

with 𝛼 = (𝛼
1
, 𝛼
2
, . . . , 𝛼

𝑄+1
) ∈ {0, 1, . . . , 𝑄} × N𝑄.
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For any 𝑙 ≥ 2, Lemma 15 implies
󵄨󵄨󵄨󵄨󵄨
𝐺
(𝑙)

𝑗,𝜎,𝜖,𝑚
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≲ 1, for any 𝑥 ∈ [𝑎

𝑗,𝑚
, 𝑏
𝑗,𝑚
] . (96)

The estimates (92) and (96) yield
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑄

ℎ
𝑗,𝑧,𝑚

󵄩󵄩󵄩󵄩󵄩∞
≲ sup
0≤𝛼
1
≤𝑄

󵄩󵄩󵄩󵄩󵄩
ℎ
(𝛼
1
)

𝑗,𝑧,𝑚

󵄩󵄩󵄩󵄩󵄩∞
. (97)

Applying Lemma 16, we obtain

sup
0≤𝛼
1
≤𝑄

󵄩󵄩󵄩󵄩󵄩
ℎ
(𝛼
1
)

𝑗,𝑧,𝑚

󵄩󵄩󵄩󵄩󵄩∞
≲ 𝑀

−(𝑝+1/4)

. (98)

By (57),

𝑎
𝑗,𝑚
, 𝑏
𝑗,𝑚
∼ 1. (99)

So
󵄨󵄨󵄨󵄨𝐾𝜖,𝑚

󵄨󵄨󵄨󵄨 ≲ |𝑡|
−𝑄

2
−𝑗𝑄

𝑀
−(𝑝+1/4)

. (100)

It follows from (40) that

∑

𝐴
1

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲ |𝑡|

−𝑄

2
𝑗(2𝑑+2𝑝−𝑄)

× ∑

𝑀≥2
𝑗

𝑀
−(𝑝+1/4)

≲ |𝑡|
−𝑄

2
𝑗(2𝑑+𝑝+3/4−𝑄)

.

(101)

Let 𝑄 = 𝑑. Since 𝑝 ≤ 2𝑑 − 1 and 𝑝 > 1, we have 𝑑 > 𝑝/2 and
𝑑 ≥ 2. Hence,

∑

𝐴
1

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲ |𝑡|

−𝑑

2
𝑗(𝑑+𝑝+3/4)

≤ |𝑡|
−𝑝/2

2
𝑗(2𝑑+𝑝−1/2)

. (102)

For 𝑟 = 2, the estimate (68) yields
󵄨󵄨󵄨󵄨󵄨
𝐼
±

𝑚,𝑘

󵄨󵄨󵄨󵄨󵄨
≲ |𝑡|

−𝑝/2−𝑘

2
𝑗(2𝑑+3𝑝/2−𝑘)

𝑀
−(𝑝+1)

≲ |𝑡|
−𝑝/2

2
𝑗(2𝑑+3𝑝/2)

𝑀
−(𝑝+1)

.

(103)

Then it follows from (40) that

∑

𝑚∈𝐴
2

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲ |𝑡|

−𝑝/2

2
𝑗(2𝑑+3𝑝/2)

× ∑

𝑀≥2
𝑗

𝑀
−(𝑝+1)

≲ |𝑡|
−𝑝/2

2
𝑗(2𝑑+𝑝/2)

≲ |𝑡|
−𝑝/2

2
𝑗(2𝑑+𝑝−1/2)

.

(104)

For 𝑟 = 3, when |𝜎| ≳ 1, the estimate (68) yields
󵄨󵄨󵄨󵄨󵄨
𝐼
±

𝑚,𝑘

󵄨󵄨󵄨󵄨󵄨
≲ |𝑡|

−𝑝/2−𝑘

2
𝑗(𝑑+𝑝/2+1−𝑘)

𝑀
𝑑−2

≲ |𝑡|
−𝑝/2

2
𝑗(𝑑+𝑝/2+1)

𝑀
𝑑−2

.

(105)

Thanks to (41), we have

∑

𝑚∈𝐴
3

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲ |𝑡|

−𝑝/2

2
𝑗(𝑑+𝑝/2+1)

× ∑

𝑀<2
𝑗

𝑀
𝑑−2

≲ |𝑡|
−𝑝/2

2
𝑗(2𝑑+𝑝/2)

≲ |𝑡|
−𝑝/2

2
𝑗(2𝑑+𝑝−1/2)

.

(106)

When |𝜎| ≲ 1, similar to 𝑟 = 1, the estimates
󵄨󵄨󵄨󵄨󵄨
𝐺
󸀠

𝑗,𝜎,𝜖,𝑚
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≳ 2

𝑗

𝑀
−1

,

󵄨󵄨󵄨󵄨󵄨
𝐺
(𝑙)

𝑗,𝜎,𝜖,𝑚
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≲ (2

𝑗

𝑀
−1

)
𝑙−2

, 𝑙 ≥ 2

(107)

hold for any 𝑥 ∈ [𝑎
𝑗,𝑚
, 𝑏
𝑗,𝑚
]. Therefore,

󵄩󵄩󵄩󵄩󵄩
𝐷
𝑄

ℎ
𝑗,𝑧,𝑚

󵄩󵄩󵄩󵄩󵄩∞
≲ sup
0≤𝛼
1
≤𝑄

󵄩󵄩󵄩󵄩󵄩
ℎ
(𝛼
1
)

𝑗,𝑧,𝑚

󵄩󵄩󵄩󵄩󵄩∞

× sup
𝑄≤𝑘≤2𝑄

sup
∑
𝑄+1

𝑙=1
𝑙𝛼
𝑙
=𝑘

(2
𝑗

𝑀
−1

)
∑
𝑄+1

𝑙=2
(𝑙−2)𝛼

𝑙
−𝑘

.

(108)

Because of
𝑄+1

∑

𝑙=2

(𝑙 − 2) 𝛼
𝑙
− 𝑘 = −

𝑄+1

∑

𝑙=2

2𝛼
𝑙
− 𝛼

1

≤
−2

(𝑄 + 1)

𝑄+1

∑

𝑙=1

𝑙𝛼
𝑙
= −

2𝑘

(𝑄 + 1)
≤ −

2𝑄

(𝑄 + 1)

(109)

and according to Lemma 16

sup
0≤𝛼
1
≤𝑄

󵄩󵄩󵄩󵄩󵄩
ℎ
(𝛼
1
)

𝑗,𝑧,𝑚

󵄩󵄩󵄩󵄩󵄩∞
≲ 2

−𝑗(𝑝+𝑑−𝑄−1)

𝑀
𝑑−𝑄−5/4

, (110)

it follows that
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑄

ℎ
𝑗,𝑧,𝑚

󵄩󵄩󵄩󵄩󵄩∞
≲ 2

−𝑗(𝑝+𝑑+2𝑄/(𝑄+1)−𝑄−1)

𝑀
𝑑+2𝑄/(𝑄+1)−𝑄−5/4

.

(111)

Moreover, by (57),

𝑎
𝑗,𝑚
, 𝑏
𝑗,𝑚
∼ 2

−𝑗

𝑀. (112)

Therefore, we obtain
󵄨󵄨󵄨󵄨𝐾𝜖,𝑚

󵄨󵄨󵄨󵄨 ≲ |𝑡|
−𝑄

2
−𝑗𝑄
󵄩󵄩󵄩󵄩󵄩
𝐷
𝑄

ℎ
𝑗,𝑧,𝑚

󵄩󵄩󵄩󵄩󵄩∞
2
−𝑗

𝑀

= |𝑡|
−𝑄

2
−𝑗(𝑝+𝑑+2𝑄/(𝑄+1))

𝑀
𝑑+2𝑄/(𝑄+1)−𝑄−1/4

.

(113)

Let 𝑄 = 𝑑, and then
󵄨󵄨󵄨󵄨𝐾𝜖,𝑚

󵄨󵄨󵄨󵄨 ≲ |𝑡|
−𝑑

2
−𝑗(𝑑+𝑝+2𝑑/(𝑑+1))

𝑀
2𝑑/(𝑑+1) −1/4

. (114)

Because of (41) and 𝑑 > 𝑝/2,

∑

𝐴
3

󵄨󵄨󵄨󵄨𝐾𝜖,𝑚
󵄨󵄨󵄨󵄨 ≲ |𝑡|

−𝑝/2

2
−𝑗(𝑑+𝑝+2𝑑/(𝑑+1))

× ∑

𝑀<2
𝑗

𝑀
2𝑑/(𝑑+1)−1/4

≲ |𝑡|
−𝑝/2

2
−𝑗(𝑑+𝑝−3/4)

.

(115)

Noticing that 𝑑 ≥ 2, we have

∑

𝐴
3

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲ 2

𝑗(2𝑑+2𝑝)

∑

𝐴
3

󵄨󵄨󵄨󵄨𝐾𝜖,𝑚
󵄨󵄨󵄨󵄨

≲ |𝑡|
−𝑝/2

2
𝑗(𝑑+𝑝+3/4)

≤ |𝑡|
−𝑝/2

2
𝑗(2𝑑+𝑝−1/2)

.

(116)
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For 𝑗 ≤ 0, we divide N into two (possible empty) disjoint
subsets

𝐵
1
= {𝑚 ∈ N : |𝜎| ≲ 2

−𝑗

𝑀} ,

𝐵
2
= {𝑚 ∈ N : |𝜎| ≳ 2

−𝑗

𝑀} .

(117)

Then our assertion reads

∑

𝑚∈𝐵
𝑟

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲ |𝑡|

−𝑝/2

2
𝑗(2𝑑+𝑝+1/2)

, 𝑟 = 1, 2. (118)

For 𝐵
1
, analogous to the case 𝐴

1
for 𝑗 > 0, we get

󵄨󵄨󵄨󵄨𝐾𝜖,𝑚
󵄨󵄨󵄨󵄨 ≲ |𝑡|

−𝑄

2
−𝑗𝑄

𝑀
−(𝑝+1/4)

. (119)

So

∑

𝑚∈𝐵
1

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲ |𝑡|

−𝑄

2
𝑗(2𝑑+2𝑝−𝑄)

× ∑

𝑚∈N

𝑀
−(𝑝+1/4)

≲ |𝑡|
−𝑄

2
𝑗(2𝑑+2𝑝−𝑄)

.

(120)

Let 𝑄 = (𝑝 + 1)/2 ≤ 𝑑. Because of 𝑝 > 1, it is implied that

∑

𝑚∈𝐵
1

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲ |𝑡|

−𝑝/2

2
𝑗(2𝑑+3𝑝/2−1/2)

≲ |𝑡|
−𝑝/2

2
𝑗(2𝑑+𝑝+1/2)

. (121)

For 𝐵
2
, the estimate (68) yields

󵄨󵄨󵄨󵄨󵄨
𝐼
±

𝑚,𝑘

󵄨󵄨󵄨󵄨󵄨
≲ |𝑡|

−𝑝/2−𝑘

2
𝑗(2𝑑+3𝑝/2−𝑘)

𝑀
−(𝑝+1)

≲ |𝑡|
−𝑝/2

2
𝑗(2𝑑+𝑝+3/2)

𝑀
−(𝑝+1)

.

(122)

It follows that

∑

𝑚∈𝐵
2

󵄨󵄨󵄨󵄨𝐼𝑚
󵄨󵄨󵄨󵄨 ≲ |𝑡|

−𝑝/2

2
𝑗(2𝑑+𝑝+3/2)

∑

𝑚∈N

𝑀
−(𝑝+1)

≲ |𝑡|
−𝑝/2

2
𝑗(2𝑑+𝑝+3/2)

≲ |𝑡|
−𝑝/2

2
𝑗(2𝑑+𝑝+1/2)

.

(123)

From Lemma 17, it is easy to obtain our sharp dispersive
inequality.

Corollary 18. There exists 𝐶 > 0, which depends only on 𝑑
and 𝑝, such that for any 𝜌 ∈ [𝑛 − 1/2, 𝑛 + 1/2], 𝑡 ∈ R∗ and
𝑓 ∈ S(𝐺) we have

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑖𝑡√L

𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝐿∞(𝐺)

≤ 𝐶|𝑡|
−𝑝/2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐵̇𝜌
1,1

, (124)

󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑖𝑡√L

𝑓
󵄩󵄩󵄩󵄩󵄩󵄩𝐵̇−1
∞,1

≤ 𝐶|𝑡|
−𝑝/2󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐵̇𝜌−1
1,1

. (125)

We can obtain Corollary 18 by the same proof as in [14,
Corollary 10].

The dispersive inequality inTheorem 1 is straightforward
(see [2, Proposition 1.1]).

In the end of the section, let us show as in [3] the
sharpness of the time decay in Corollary 18. First we recall
the asymptotic expansion of oscillating integrals.

Proposition 19. Suppose 𝜙 is a smooth function on R𝑝 and
has a nondegenerate critical point at 𝑥

0
. If 𝜓 is supported in a

sufficiently small neighborhood of 𝑥
0
, then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
R𝑝
𝑒
𝑖𝑡𝜙(𝑥)

𝜓 (𝑥) 𝑑𝑥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∼ |𝑡|

−𝑝/2

, 𝑎𝑠 𝑡 󳨀→ ∞. (126)

A proof can be found in [13, Proposition 6, page 344].
Let 𝑄 ∈ 𝐶∞

0
(𝐷

0
) with 𝑄(𝑑) = 1, where 𝐷

0
is a small

neighborhood of 𝑑 such that 0 ∉ 𝐷
0
. Then

𝑢̂
0
(𝜆,𝑚) = 𝑄 (|𝜆|) 𝛿

𝑚,0
(127)

and 𝑢
1
:= 0 determines a solution of the Cauchy problem (1)

with 𝑓 = 0:

𝑢 ((𝑧, 𝑠) , 𝑡) = cos (𝑡√L) 𝑢
0

= 𝐶∫
R𝑝
𝑒
−𝑖𝜆⋅𝑠−|𝜆||𝑧|

2

/4 cos(𝑡√𝑑 |𝜆| + |𝜆|2)

× 𝑄 (|𝜆|) |𝜆|
𝑑

𝑑𝜆.

(128)

Consider 𝑢((0, 𝑡𝑠
0
), 𝑡) for a fixed 𝑠

0
such that |𝑠

0
| = (3/2√2).

This oscillating integral has a phase 𝜙
±
(𝜆) := −𝜆 ⋅ 𝑠

0
±

√𝑑|𝜆| + |𝜆|
2 with a unique critical point 𝜆±

0
= ∓(2√2𝑑/3)𝑠

0

which is not degenerate. Indeed, the Hessian is equal to

𝐻(𝜆) = ∓
{

{

{

4|𝜆|
2

+ 6𝑑 |𝜆| + 3𝑑
2

4|𝜆|
2

(𝑑 |𝜆| + |𝜆|
2

)
3/2

𝜆
𝑘
𝜆
𝑙

−𝛿
𝑘,𝑙

𝑑 + 2 |𝜆|

2 |𝜆| (𝑑 |𝜆| + |𝜆|
2

)
1/2

}

}

}1≤𝑘, 𝑙≤𝑝

.

(129)

Let 𝑠
0
= (3/2√2)(0, . . . , 0, 1), so 𝜆±

0
= ∓(2√2𝑑/3)𝑠

0
= ∓(0,

. . . , 0, 𝑑). The Hessian at 𝜆±
0
is

𝐻(𝜆
±

0
) = ±

1

8√2𝑑

{{{

{{{

{

12

d
12

−1

}}}

}}}

}

. (130)

Applying asymptotic expansion of oscillating integrals, we get

𝑢 ((0, 𝑡𝑠
0
) , 𝑡) ∼ |𝑡|

−𝑝/2

. (131)

5. Strichartz Estimates

We are now to prove our Strichartz estimates.

Proposition 20. For 𝑖 = 1, 2, let 𝑞
𝑖
, 𝑟
𝑖
∈ [2,∞] and 𝜌

𝑖
∈ R

such that

(a)

2

𝑞
𝑖

= 𝑝(
1

2
−
1

𝑟
𝑖

) , (132)
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(b)

−(𝑛 +
1

2
)(
1

2
−
1

𝑟
𝑖

) ≤ 𝜌
𝑖
≤ −(𝑛 −

1

2
)(
1

2
−
1

𝑟
𝑖

) , (133)

except for (𝑞
𝑖
, 𝑟
𝑖
, 𝑝) = (2,∞, 2). Then the following estimates

are satisfied:
󵄩󵄩󵄩󵄩󵄩󵄩
𝑒
−𝑖𝑡√L

𝑢
0

󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞1 (R,𝐵̇𝜌1
𝑟
1
,2
)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐿2 ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
∫

𝑡

0

𝑒
−𝑖(𝑡−𝜏)√L

𝑓 (𝜏) 𝑑𝜏

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝐿𝑞1 ((0,𝑇),𝐵̇𝜌1
𝑟
1
,2
)

≤ 𝐶
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿𝑞
󸀠

2 ((0,𝑇),𝐵̇
−𝜌
2

𝑟
󸀠

2
,2

)

,

(134)

where the constant 𝐶 > 0 does not depend on 𝑢
0
, 𝑓, or 𝑇.

Once we have obtained the estimate in Lemma 17, the
proof is classical and a good reference is, for example, the
papers by Ginibre and Velo [15] or by Keel and Tao [16]. A
detailed presentation in this framework is also given by [14]
in the proof of Theorem 11.

Theorem 2 follows easily from the above proposition by
the same proof that in [2].

In particular, by Besov interpolation we get the Strichartz
estimates on Lebesgue spaces.

Theorem 21. Let 𝑢 be the solution of the Cauchy problem (1).
If 𝑞 and 𝑟 satisfy 0 ≤ 2/𝑞 ≤ 𝑝(1/2 − 1/𝑟) and 𝑝[𝑛(1/2 − 1/𝑟) −
1] ≤ 1/𝑞 ≤ (𝑝/(2𝑝 − 1))[𝑁(1/2 − 1/𝑟) − 1], then there exists a
constant 𝐶 > 0, which does not depend on 𝑢

0
, 𝑢
1
, 𝑓, or 𝑇, such

that the following estimate is satisfied:

‖𝑢‖
𝐿
𝑞
((0,𝑇),𝐿

𝑟
)
≤ 𝐶(

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩𝐵̇1
2,2

+
󵄩󵄩󵄩󵄩𝑢1
󵄩󵄩󵄩󵄩𝐿2 +

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿1((0,𝑇),𝐿2)) . (135)

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is performed while Manli Song studies as a joint
Ph.D. student in the Mathematics Department of Christian-
Albrechts-Universität zu Kiel. Manli Song thanks Profes-
sor Detlef Müller for the hospitality of his Department.
Thanks are also due to him for generous discussions and
his continuous encouragement. Heping Liu is supported by
National Natural Science Foundation of China under Grant
no. 11371036 and the Specialized Research Fund for the
Doctoral ProgramofHigher Education of China underGrant
no. 2012000110059. Manli Song is supported by the China
Scholarship Council under Grant no. 201206010098.

References

[1] H. Bahouri, P. Gérard, and C.-J. Xu, “Espaces de Besov et esti-
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