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The aim of this paper is to introduce some new double difference sequence spaces with the help of the Musielak-Orlicz function
F = (𝐹𝑗𝑘) and four-dimensional bounded-regular (shortly, RH-regular) matrices 𝐴 = (𝑎𝑛𝑚𝑗𝑘). We also make an effort to study
some topological properties and inclusion relations between these double difference sequence spaces.

1. Introduction, Notations, and Preliminaries

In [1], Hardy introduced the concept of regular convergence
for double sequences. Some important work on double
sequences is also found by Bromwich [2]. Later on, it
was studied by various authors, for example, Móricz [3],
Móricz andRhoades [4], Başarır and Sonalcan [5],Mursaleen
and Mohiuddine [6–8], and many others. Mursaleen [9]
has defined and characterized the notion of almost strong
regularity of four-dimensional matrices and applied these
matrices to establish a core theorem (also see [10, 11]). Altay
and Başar [12] have recently introduced the double sequence
spaces BS, BS(𝑡), CS𝑝, CS𝑏𝑝, CS𝑟, and BV consisting
of all double series whose sequence of partial sums are in
the spaces M𝑢, M𝑢(𝑡), C𝑝, C𝑏𝑝, C𝑟, and L𝑢, respectively.
Başar and Sever [13] extended the well-known space ℓ𝑞 from
single sequence to double sequences, denoted by L𝑞, and
established its interesting properties. The authors of [14]
defined some convex and paranormed sequences spaces and
presented some interesting characterization. Most recently,
Mohiuddine and Alotaibi [15] introduced some new double
sequences spaces for 𝜎-convergence of double sequences and
invariant mean and also determined some inclusion results
for these spaces. For more details on these concepts, one can
be referred to [16–18].

The notion of difference sequence spaces was introduced
by Kızmaz [19], who studied the difference sequence spaces
𝑙∞(Δ), 𝑐(Δ), and 𝑐0(Δ). The notion was further generalized by
Et and Çolak [20] by introducing the spaces 𝑙∞(Δ

𝑟
), 𝑐(Δ𝑟),

and 𝑐0(Δ
𝑟
).

Let 𝑤 be the space of all complex or real sequences 𝑥 =

(𝑥𝑘) and let 𝑟 and 𝑠 be two nonnegative integers.Then for𝑍 =

𝑙∞, 𝑐, 𝑐0, we have the following sequence spaces:

𝑍 (Δ

𝑟
𝑠) = {𝑥 = (𝑥𝑘) ∈ 𝑤 : (Δ

𝑟
𝑠𝑥𝑘) ∈ 𝑍} , (1)

where Δ𝑟𝑠𝑥 = (Δ

𝑟
𝑠𝑥𝑘) = (Δ

𝑟−1
𝑠 𝑥𝑘 − Δ

𝑟−1
𝑠 𝑥𝑘+1) and Δ

0
𝑥𝑘 = 𝑥𝑘

for all 𝑘 ∈ N, which is equivalent to the following binomial
representation:

Δ

𝑟
𝑠𝑥𝑘 =

𝑟

∑

V=0
(−1)

V
(

𝑟

V)𝑥𝑘+𝑠V. (2)

We remark that for 𝑠 = 1 and 𝑟 = 𝑠 = 1, we obtain the
sequence spaces which were introduced and studied by Et
and Çolak [20] andKızmaz [19], respectively. Formore details
about sequence spaces see [21–27] and references therein.
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An Orlicz function 𝐹 : [0,∞) → [0,∞) is continuous,
nondecreasing, and convex such that 𝐹(0) = 0, 𝐹(𝑥) > 0

for 𝑥 > 0 and 𝐹(𝑥) → ∞ as 𝑥 → ∞. If convexity of
Orlicz function is replaced by 𝐹(𝑥 + 𝑦) ≤ 𝐹(𝑥) + 𝐹(𝑦), then
this function is called modulus function. Lindenstrauss and
Tzafriri [28] used the idea of Orlicz function to define the
following sequence space:

ℓ𝐹 = {𝑥 = (𝑥𝑘) ∈ 𝑤 :

∞

∑

𝑘=1

𝐹(






𝑥𝑘





𝜌

) < ∞, 𝜌 > 0} , (3)

which is known as an Orlicz sequence space. The space ℓ𝐹 is
a Banach space with the norm

‖𝑥‖ = inf {𝜌 > 0 :

∞

∑

𝑘=1

𝐹(






𝑥𝑘





𝜌

) ≤ 1} . (4)

Also it was shown in [28] that every Orlicz sequence space
ℓ𝐹 contains a subspace isomorphic to ℓ𝑝 (𝑝 ≥ 1). An Orlicz
function𝐹 can always be represented in the following integral
form:

𝐹 (𝑥) = ∫

𝑥

0

𝜂 (𝑡) 𝑑𝑡, (5)

where 𝜂 is known as the kernel of𝐹, is a right differentiable for
𝑡 ≥ 0, 𝜂(0) = 0, 𝜂(𝑡) > 0, 𝜂 is nondecreasing, and 𝜂(𝑡) →

∞ as 𝑡 → ∞.
A sequence F = (𝐹𝑘) of Orlicz functions is said to be a

Musielak-Orlicz function (see [29, 30]). A sequenceN = (𝑁𝑘)

is defined by

𝑁𝑘 (V) = sup {|V| 𝑢 − 𝐹𝑘 (𝑢) : 𝑢 ≥ 0} , 𝑘 = 1, 2, . . . , (6)

which is called the complementary function of a Musielak-
Orlicz function F. For a given Musielak-Orlicz functionF,
the Musielak-Orlicz sequence space 𝑡F and its subspace ℎF
are defined as follows:

𝑡F = {𝑥 ∈ 𝑤 : 𝐼F (𝑐𝑥) < ∞ for some 𝑐 > 0} ,

ℎF = {𝑥 ∈ 𝑤 : 𝐼F (𝑐𝑥) < ∞ ∀𝑐 > 0} ,

(7)

where 𝐼F is a convex modular defined by

𝐼F (𝑥) =

∞

∑

𝑘=1

𝐹𝑘 (𝑥𝑘) , 𝑥 = (𝑥𝑘) ∈ 𝑡F. (8)

We consider 𝑡F equipped with the Luxemburg norm

‖𝑥‖ = inf {𝑘 > 0 : 𝐼F (

𝑥

𝑘

) ≤ 1} (9)

or equipped with the Orlicz norm

‖𝑥‖

0
= inf {1

𝑘

(1 + 𝐼F (𝑘𝑥)) : 𝑘 > 0} . (10)

A Musielak-Orlicz function F = (𝐹𝑘) is said to satisfy
Δ 2-𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 if there exist constants 𝑎,𝐾 > 0 and a sequence
𝑐 = (𝑐𝑘)

∞
𝑘=1 ∈ 𝑙

1
+ (the positive cone of 𝑙1) such that the

inequality

𝐹𝑘 (2𝑢) ≤ 𝐾𝐹𝑘 (𝑢) + 𝑐𝑘 (11)

holds for all 𝑘 ∈ N and 𝑢 ∈ R+, whenever 𝐹𝑘(𝑢) ≤ 𝑎.
A double sequence 𝑥 = (𝑥𝑗𝑘) is said to be bounded if

‖𝑥‖(∞,2) = sup𝑗,𝑘|𝑥𝑗𝑘| < ∞. We denote by 𝑙2∞ the space of
all bounded double sequences.

By the convergence of double sequence 𝑥 = (𝑥𝑗𝑘) we
mean the convergence in the Pringsheim sense; that is, a
double sequence 𝑥 = (𝑥𝑗𝑘) is said to converge to the limit
𝐿 in Pringsheim sense (denoted by, 𝑃-lim𝑥 = 𝐿) provided
that given 𝜖 > 0 there exists 𝑛 ∈ N such that |𝑥𝑗𝑘 − 𝐿| < 𝜖

whenever 𝑗, 𝑘 > 𝑛 (see [31]). We will write more briefly as
𝑃-convergent. If, in addition, 𝑥 ∈ 𝑙

2
∞, then 𝑥 is said to be

boundedly P-convergent to 𝐿. We will denote the space of
all bounded convergent double sequences (or boundedly 𝑃-
convergent) by 𝑐2∞.

Let 𝑆 ⊆ N ×N and let 𝜖 > 0 be given. By 𝜒𝑆(𝑥;𝜖), we denote
the characteristic function of the set 𝑆(𝑥; 𝜖) = {(𝑗, 𝑘) ∈ N×N :

|𝑥𝑗𝑘| ≥ 𝜖}.
Let 𝐴 = (𝑎𝑛𝑚𝑗𝑘) be a four-dimensional infinite matrix of

scalers. For all𝑚, 𝑛 ∈ N0, where N0 := N ∪ {0}, the sum

𝑦𝑛𝑚 =

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘𝑥𝑗𝑘 (12)

is called the 𝐴-𝑚𝑒𝑎𝑛𝑠 of the double sequence (𝑥𝑗𝑘). A double
sequence (𝑥𝑗𝑘) is said to be 𝐴-𝑠𝑢𝑚𝑚𝑎𝑏𝑙𝑒 to the limit 𝐿 if
the 𝐴-means exist for all 𝑚, 𝑛 in the sense of Pringsheim’s
convergence:

𝑃- lim
𝑝,𝑞→∞

𝑝,𝑞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘𝑥𝑗𝑘 = 𝑦𝑛𝑚, 𝑃- lim
𝑛,𝑚→∞

𝑦𝑛𝑚 = 𝐿. (13)

A four-dimensional matrix 𝐴 is said to be bounded-
regular (or RH-regular) if every bounded 𝑃-convergent
sequence is 𝐴-summable to the same limit and the 𝐴-means
are also bounded.

The following is a four-dimensional analogue of the well-
known Silverman-Toeplitz theorem [32].

Theorem 1 (Robison [33] and Hamilton [34]). The four-
dimensional matrix 𝐴 is RH-regular if and only if

(RH1) 𝑃-lim𝑛,𝑚𝑎𝑛𝑚𝑗𝑘 = 0 for each 𝑗 and 𝑘,

(RH2) 𝑃-lim𝑛,𝑚∑
∞,∞
𝑗,𝑘=0,0 |𝑎𝑛𝑚𝑗𝑘| = 1,

(RH3) 𝑃-lim𝑛,𝑚∑
∞
𝑗=0 |𝑎𝑛𝑚𝑗𝑘| = 0 for each 𝑘,

(RH4) 𝑃-lim𝑛,𝑚∑
∞
𝑘=0 |𝑎𝑛𝑚𝑗𝑘| = 0 for each 𝑗,

(RH5) ∑
∞,∞
𝑗,𝑘=0,0 |𝑎𝑛𝑚𝑗𝑘| < ∞ for all 𝑛,𝑚 ∈ N0.
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2. The Double Difference Sequence Spaces

In this section, we define some new paranormed double
difference sequence spaces with the help of Musielak-Orlicz
functions and four-dimensional bounded-regular matrices.
Before proceeding further, first we recall the notion of
paranormed space as follows.

A linear topological space 𝑋 over the real field R (the
set of real numbers) is said to be a paranormed space if
there is a subadditive function 𝑔 : 𝑋 → R such that
𝑔(𝜃) = 0, 𝑔(𝑥) = 𝑔(−𝑥), and scalar multiplication is
continuous; that is, |𝛼𝑛 − 𝛼| → 0 and 𝑔(𝑥𝑛 − 𝑥) →

0 imply 𝑔(𝛼𝑛𝑥𝑛 − 𝛼𝑥| → 0 for all 𝛼’s in R and all
𝑥’s in 𝑋, where 𝜃 is the zero vector in the linear space
𝑋.

The linear spaces 𝑙∞(𝑝), 𝑐(𝑝), and 𝑐0(𝑝) were defined by
Maddox [35] (also, see Simons [36]).

Let F = (𝐹𝑗𝑘) be a Musielak-Orlicz function; that is,
F is a sequence of Orlicz functions and let 𝐴 = (𝑎𝑛𝑚𝑗𝑘)

be a nonnegative four-dimensional bounded-regular matrix.
Then, we define the following:

𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] = 0

}

}

}

,

𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
]

= 0 for some 𝐿 ∈ C
}

}

}

,

(14)

where 𝑝 = (𝑝𝑗𝑘) is a double sequence of real numbers such
that 𝑝𝑗𝑘 > 0 for 𝑗, 𝑘, sup𝑗,𝑘𝑝𝑗𝑘 = 𝐻 < ∞, and 𝑢 = (𝑢𝑗𝑘) is a
double sequence of strictly positive real numbers.

Remark 2. If we take F(𝑥) = 𝑥 in 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) and

𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝), then we have the following spaces:

𝑊

2
0 (𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] = 0

}

}

}

,

𝑊

2
(𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
]

= 0 for some 𝐿 ∈ C
}

}

}

.

(15)

Remark 3. Let 𝑝 = (𝑝𝑗𝑘) = 1 for all 𝑗, 𝑘. Then 𝑊

2
0 (𝐴,F, 𝑢,

Δ

𝑟
𝑠, 𝑝) and𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) are reduced to

𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘 (𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)] = 0

}

}

}

,

𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘 (𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)]

= 0 for some 𝐿 ∈ C
}

}

}

,

(16)

respectively.
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Remark 4. Let 𝑢 = (𝑢𝑗𝑘) = 1 for all 𝑗, 𝑘. Then, the spaces
𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) and𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) are reduced to

𝑊

2
0 (𝐴,F, Δ

𝑟
𝑠, 𝑝)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(






Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] = 0

}

}

}

,

𝑊

2
(𝐴,F, Δ

𝑟
𝑠, 𝑝)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(






Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
]

= 0 for some 𝐿 ∈ C
}

}

}

,

(17)

respectively.

Remark 5. If we take 𝐴 = (𝐶, 1, 1) in𝑊20 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) and

𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝), then we have the following spaces:

𝑊

2
0 (F, 𝑢, Δ

𝑟
𝑠, 𝑝)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

𝑚−1,𝑛−1

∑

𝑗,𝑘=0,0

[𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] = 0

}

}

}

,

𝑊

2
(F, 𝑢, Δ

𝑟
𝑠, 𝑝)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

𝑚−1,𝑛−1

∑

𝑗,𝑘=0,0

[𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
]

= 0 for some 𝐿 ∈ C
}

}

}

.

(18)

Remark 6. If we take 𝐴 = (𝐶, 1, 1) and F(𝑥) = 𝑥 in
𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) and𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝), then we have the

following spaces:

𝑊

2
0 (𝑢, Δ

𝑟
𝑠, 𝑝)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

𝑚−1,𝑛−1

∑

𝑗,𝑘=0,0

[(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] = 0

}

}

}

,

𝑊

2
(𝑢, Δ

𝑟
𝑠, 𝑝)

=

{

{

{

𝑥 = (𝑥𝑗𝑘) :

𝑃-lim
𝑛,𝑚

𝑚−1,𝑛−1

∑

𝑗,𝑘=0,0

[(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
]

= 0 for some 𝐿 ∈ C
}

}

}

.

(19)

Remark 7. Let𝑝𝑗𝑘 = 𝑢𝑗𝑘 = 1 for all 𝑗, 𝑘. If, in addition,F(𝑥) =

𝐹(𝑥) and 𝑟 = 0, then the spaces 𝑊20 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) and

𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) are reduced to 𝑊

2
0 (𝐴, 𝐹) and 𝑊

2
(𝐴, 𝐹)

which were introduced and studied by Yurdakadim and Tas
[37] as below:

𝑊

2
0 (𝐴, 𝐹) =

{

{

{

𝑥 = (𝑥𝑗𝑘) : 𝑃-lim𝑛,𝑚∑
𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘𝐹 (






𝑥𝑗𝑘







) = 0

}

}

}

,

𝑊

2
(𝐴, 𝐹) =

{

{

{

𝑥 = (𝑥𝑗𝑘) : 𝑃-lim𝑛,𝑚∑
𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘𝐹 (






𝑥𝑗𝑘 − 𝐿







)

= 0 for some 𝐿 ∈ C
}

}

}

.

(20)

Throughout the paper, we will use the following inequal-
ity: let (𝑎𝑗𝑘) and (𝑏𝑗𝑘) be two double sequences. Then







𝑎𝑗𝑘 + 𝑏𝑗𝑘







𝑝𝑗𝑘
≤ 𝐾(







𝑎𝑗𝑘







𝑝𝑗𝑘
+







𝑏𝑗𝑘







𝑝𝑗𝑘
) , (21)

where 𝐾 = max(1, 2𝐻−1) and sup𝑗,𝑘𝑝𝑗𝑘 = 𝐻 (see [15]). We
will also assume throughout this paper that the symbolFwill
denote the sublinear Musielak-Orlicz function.
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3. Main Results

Theorem 8. Let F = (𝐹𝑗𝑘) be a sublinear Musielak-Orlicz
function, 𝐴 = (𝑎𝑛𝑚𝑗𝑘) a nonnegative four-dimensional 𝑅𝐻-
regular matrix, 𝑝 = (𝑝𝑗𝑘) a bounded sequence of positive real
numbers, and 𝑢 = (𝑢𝑗𝑘) a sequence of strictly positive real
numbers.Then𝑊20 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) and𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) are

linear spaces over the complex field C.

Proof. Let 𝑥 = (𝑥𝑗𝑘), 𝑦 = (𝑦𝑗𝑘) ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) and

𝛼, 𝛽 ∈ C. Then there exist integers𝑀𝛼 and𝑁𝛽 such that |𝛼| ≤
𝑀𝛼 and |𝛽| ≤ 𝑁𝛽.

Since F = (𝐹𝑗𝑘) is a nondecreasing function, so by
inequality (21), we have

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠 (𝛼𝑥𝑗𝑘 + 𝛽𝑦𝑗𝑘)







)

𝑝𝑗𝑘
]

≤

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝛼Δ

𝑟
𝑠𝑥𝑗𝑘 + 𝛽Δ

𝑟
𝑠𝑦𝑗𝑘







)

𝑝𝑗𝑘
]

≤ 𝐾

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘𝑀𝛼(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
]

+ 𝐾

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘𝑁𝛽(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑦𝑗𝑘







)

𝑝𝑗𝑘
]

≤ 𝐾𝑀

𝐻
𝛼

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
]

+ 𝐾𝑁

𝐻
𝛽

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑦𝑗𝑘







)

𝑝𝑗𝑘
] → 0.

(22)

Thus 𝛼𝑥 + 𝛽𝑦 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝). This proves that

𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) is a linear space. Similarly we can prove

that𝑊2(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) is also a linear space.

Theorem 9. Let F = (𝐹𝑗𝑘) be a sublinear Musielak-Orlicz
function, 𝐴 = (𝑎𝑛𝑚𝑗𝑘) a nonnegative four-dimensional 𝑅𝐻-
regular matrix, 𝑝 = (𝑝𝑗𝑘) a bounded sequence of positive real
numbers, and 𝑢 = (𝑢𝑗𝑘) a sequence of strictly positive real
numbers.Then𝑊20 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) and𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) are

paranormed spaces with the paranorm

𝑔 (𝑥) = sup
𝑛,𝑚

∞,∞

∑

𝑗,𝑘=0,0

{𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
]}

1/𝑀

, (23)

where 0 < 𝑝𝑗𝑘 ≤ sup𝑝𝑗𝑘 = 𝐻 < ∞ and𝑀 = max(1,𝐻).

Proof. We will prove the result for 𝑊20 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝). Let

𝑥 = (𝑥𝑗𝑘) ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝). Then for each 𝑥 = (𝑥𝑗𝑘) ∈

𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝), 𝑔(𝑥) exists. Also it is clear that 𝑔(0) =

0, 𝑔(−𝑥) = 𝑔(𝑥), and 𝑔(𝑥 + 𝑦) ≤ 𝑔(𝑥) + 𝑔(𝑦).

We now show that the scalarmultiplication is continuous.
First observe the following:

𝑔 (𝜆𝑥) = sup
𝑛𝑚

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
]

≤ (1 + [|𝜆|]) 𝑔 (𝑥) ,

(24)

where [|𝜆|] denotes the integer part of |𝜆|. It is also clear that
if 𝑥 → 0 and 𝜆 → 0 implies 𝑔(𝜆𝑥) → 0. For fixed 𝜆, if
𝑥 → 0, then 𝑔(𝜆𝑥) → 0. We need to show that for fixed
𝑥, 𝜆 → 0 implies 𝑔(𝜆𝑥) → 0. Let 𝑥 ∈ 𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝).

Thus

𝑃-lim
𝑛,𝑚

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] = 0. (25)

Then, for 𝜖 > 0 there exists𝑁 ∈ N such that

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] <

𝜖

4

(26)

for𝑚, 𝑛 > 𝑁. Also, for each𝑚, 𝑛 with 1 ≤ 𝑚, 𝑛 ≤ 𝑁, since

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] < ∞, (27)

there exists an integer𝑀𝑚,𝑛 such that

∑

𝑗,𝑘>𝑀𝑚,𝑛

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] <

𝜖

4

. (28)

Let𝑀 = max1≤(𝑚,𝑛)≤𝑁{𝑀𝑚,𝑛}. We have for each𝑚, 𝑛with 1 ≤
𝑚, 𝑛 ≤ 𝑁

∑

𝑗,𝑘>𝑀

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] <

𝜖

4

. (29)

Also from (26), for𝑚, 𝑛 > 𝑁, we have

∑

𝑗,𝑘>𝑀

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] <

𝜖

4

. (30)

Thus𝑀 is an integer independent of𝑚, 𝑛 such that

∑

𝑗,𝑘>𝑀

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] <

𝜖

4

. (31)
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Since |𝜆|𝑝𝑗𝑘 ≤ max(1, |𝜆|𝐻), therefore
∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
]

=

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝜆𝐿 + 𝜆𝐿







)

𝑝𝑗𝑘
]

≤

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝜆𝐿







)

𝑝𝑗𝑘
]

+

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘 |𝜆𝐿|)
𝑝𝑗𝑘
]

≤ ∑

𝑗,𝑘>𝑀

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝜆𝐿







)

𝑝𝑗𝑘
]

+ ∑

𝑗,𝑘≤𝑀

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝜆𝐿







)

𝑝𝑗𝑘
]

+ ∑

𝑗≥𝑀,𝑘<𝑀

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝜆𝐿







)

𝑝𝑗𝑘
]

+ ∑

𝑗<𝑀,𝑘≥𝑀

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝜆𝐿







)

𝑝𝑗𝑘
]

+

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘 |𝜆𝐿|)
𝑝𝑗𝑘
] .

(32)

For each 𝑚, 𝑛 and by the continuity of 𝐹 as 𝜆 → 0, we have
the following:

∑

𝑗,𝑘≤𝑀

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝜆𝐿







)

𝑝𝑗𝑘
]

+

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘 |𝜆𝐿|)
𝑝𝑗𝑘
] → 0

(33)

in Pringsheim’s sense. Now choose 𝛿 < 1 such that |𝜆| < 𝛿

implies

∑

𝑗,𝑘≤𝑀

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝜆𝐿







)

𝑝𝑗𝑘
]

+

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘 |𝜆𝐿|)
𝑝𝑗𝑘
] <

𝜖

4

.

(34)

In the same manner, we have

∑

𝑗≥𝑀,𝑘<𝑀

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝜆𝐿







)

𝑝𝑗𝑘
] <

𝜖

4

, (35)

∑

𝑗<𝑀,𝑘≥𝑀

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝜆𝐿







)

𝑝𝑗𝑘
] <

𝜖

4

. (36)

It follows from (31), (34), (35), and (36) that
∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







𝜆Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] < 𝜖 ∀𝑚, 𝑛. (37)

Thus 𝑔(𝜆𝑥) → 0 as 𝜆 → 0. Therefore 𝑊20 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝)

is a paranormed space. Similarly, we can prove that
𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) is a paranormed space.This completes the

proof.

Theorem 10. Let F = (𝐹𝑗𝑘) be a sublinear Musielak-Orlicz
function, 𝐴 = (𝑎𝑛𝑚𝑗𝑘) a nonnegative four-dimensional 𝑅𝐻-
regular matrix, 𝑝 = (𝑝𝑗𝑘) a bounded sequence of positive real
numbers, and 𝑢 = (𝑢𝑗𝑘) a sequence of strictly positive real
numbers.Then𝑊20 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) and𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) are

complete topological linear spaces.

Proof. Let (𝑥𝑞
𝑗𝑘
) be a Cauchy sequence in𝑊20 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝);

that is, 𝑔(𝑥𝑞 − 𝑥

𝑡
) → 0 as 𝑞, 𝑡 → ∞. Then, we have

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘








Δ

𝑟
𝑠𝑥
𝑞

𝑗𝑘
− Δ

𝑟
𝑠𝑥
𝑡
𝑗𝑘








)

𝑝𝑗𝑘
] → 0. (38)

Thus for each fixed 𝑗 and 𝑘 as 𝑞, 𝑡 → ∞, since 𝐴 = (𝑎𝑛𝑚𝑗𝑘) is
nonnegative, we are granted that

𝐹𝑗𝑘 (𝑢𝑗𝑘








Δ

𝑟
𝑠𝑥
𝑞

𝑗𝑘
− Δ

𝑟
𝑠𝑥
𝑡
𝑗𝑘








) → 0, (39)

and by continuity ofF = (𝐹𝑗𝑘), (𝑥
𝑞

𝑗𝑘
) is a Cauchy sequence in

C for each fixed 𝑗 and 𝑘.
Since C is complete as 𝑡 → ∞, we have 𝑥𝑞

𝑗𝑘
→ 𝑥𝑗𝑘 for

each (𝑗, 𝑘). Now from (36), we have that, for 𝜖 > 0, there exists
a natural number𝑁 such that

∞,∞

∑

𝑗,𝑘=0,0 𝑞,𝑡>𝑁

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘








Δ

𝑟
𝑠𝑥
𝑞

𝑗𝑘
− Δ

𝑟
𝑠𝑥
𝑡
𝑗𝑘








)

𝑝𝑗𝑘
] < 𝜖 ∀𝑚, 𝑛.

(40)

Since for any fixed natural number𝑀, from (38) we have

∞,∞

∑

𝑗,𝑘≤𝑀𝑞,𝑡>𝑁

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘








Δ

𝑟
𝑠𝑥
𝑞

𝑗𝑘
− Δ

𝑟
𝑠𝑥
𝑡
𝑗𝑘








)

𝑝𝑗𝑘
] < 𝜖 ∀𝑚, 𝑛.

(41)

By letting 𝑡 → ∞ in the above expression we obtain

∞,∞

∑

𝑗,𝑘≤𝑀𝑞>𝑁

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘








Δ

𝑟
𝑠𝑥
𝑞

𝑗𝑘
− Δ

𝑟
𝑠𝑥𝑗𝑘








)

𝑝𝑗𝑘
] < 𝜖. (42)

Since𝑀 is arbitrary, by letting𝑀 → ∞ we obtain

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘








Δ

𝑟
𝑠𝑥
𝑞

𝑗𝑘
− Δ

𝑟
𝑠𝑥𝑗𝑘








)

𝑝𝑗𝑘
] < 𝜖 ∀𝑚, 𝑛. (43)

Thus 𝑔(𝑥

𝑞
− 𝑥) → 0 as 𝑞 → ∞. This proves that

𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) is a complete topological linear space.
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Now we will show that 𝑊2(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) is a complete

topological linear space. For this, since (𝑥𝑞) is also a sequence
in𝑊2(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) by definition of𝑊2(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝), for

each 𝑞, there exists 𝐿𝑞 with

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘








Δ

𝑟
𝑠𝑥
𝑞

𝑗𝑘
− Δ

𝑟
𝑠𝐿
𝑞





)

𝑝𝑗𝑘
] → 0

as 𝑚, 𝑛 → ∞;

(44)

whence from the fact that sup𝑛𝑚∑
∞,∞
𝑗,𝑘=0,0 𝑎𝑛𝑚𝑗𝑘 < ∞ and

from the definition of Musielak-Orlicz function, we have
𝐹𝑗𝑘|Δ
𝑟
𝑠𝐿
𝑞
− Δ

𝑟
𝑠𝐿| → 0 as 𝑞 → ∞ and so 𝐿

𝑞 converges to
𝐿. Thus

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] → 0

as 𝑚, 𝑛 → ∞.

(45)

Hence 𝑥 ∈ 𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) and this completes the proof.

Theorem 11. Let F = (𝐹𝑗𝑘) be a sublinear Musielak-
Orlicz function which satisfies the Δ 2-condition. Then
𝑊

2
(𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝) ⊆ 𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝).

Proof. Let 𝑥 = (𝑥𝑘) ∈ 𝑊
2
(𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝); that is,

lim
𝑛,𝑚

∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] = 0. (46)

Let 𝜖 > 0 and choose 𝛿with 0 < 𝛿 < 1 such that 𝐹𝑗𝑘(𝑡) < 𝜖 for
0 ≤ 𝑡 ≤ 𝛿. Write 𝑦𝑗𝑘 = (𝑢𝑗𝑘|Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿|) and consider

∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑦𝑗𝑘)
𝑝𝑗𝑘
] = ∑

𝑗,𝑘:|𝑦𝑗𝑘|≤𝛿

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑦𝑗𝑘)
𝑝𝑗𝑘
]

+ ∑

𝑗,𝑘:|𝑦𝑗𝑘|>𝛿

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑦𝑗𝑘)
𝑝𝑗𝑘
]

= 𝜖 ∑

𝑗,𝑘:|𝑦𝑗𝑘|≤𝛿

𝑎𝑛𝑚𝑗𝑘

+ ∑

𝑗,𝑘:|𝑦𝑗𝑘|>𝛿

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑦𝑗𝑘)
𝑝𝑗𝑘
] .

(47)

For 𝑦𝑗𝑘 > 𝛿, we use the fact that 𝑦𝑗𝑘 < 𝑦𝑗𝑘/𝛿 < 1 + 𝑦𝑗𝑘/𝛿.
Hence

𝐹𝑗𝑘 (𝑦𝑗𝑘) < 𝐹𝑗𝑘 (1 +

𝑦𝑗𝑘

𝛿

) <

𝐹𝑗𝑘 (2)

2

+

1

2

𝐹𝑗𝑘 (2

𝑦𝑗𝑘

𝛿

) .
(48)

SinceF satisfies the Δ 2-condition, we have

𝐹𝑗𝑘 (𝑦𝑗𝑘) < 𝐾

𝑦𝑗𝑘

2𝛿

𝐹𝑗𝑘 (2) + 𝐾

𝑦𝑗𝑘

2𝛿

𝐹𝑗𝑘 (2) = 𝐾

𝑦𝑗𝑘

𝛿

𝐹𝑗𝑘 (2) ,

(49)

and hence

∑

𝑗,𝑘:|𝑦𝑗𝑘|>𝛿

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑦𝑗𝑘)
𝑝𝑗𝑘
]

≤ 𝐾

𝐹𝑗𝑘

𝛿

(2)∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] .

(50)

Since 𝐴 is 𝑅𝐻-regular and 𝑥 ∈ 𝑊

2
(𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝), we get 𝑥 ∈

𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝).

Theorem 12. Let F = (𝐹𝑗𝑘) be a sublinear Musielak-
Orlicz function and let 𝐴 = (𝑎𝑛𝑚𝑗𝑘) be a nonnegative
four-dimensional RH-regular matrix. Suppose that 𝛽 =

lim𝑡→∞(𝐹𝑗𝑘(𝑡)/𝑡) < ∞. Then

𝑊

2
(𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝) = 𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) .

(51)

Proof. In order to prove that 𝑊2(𝐴, 𝑢, Δ𝑟𝑠, 𝑝) = 𝑊

2
(𝐴,F, 𝑢,

Δ

𝑟
𝑠, 𝑝), it is sufficient to show that 𝑊2(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ⊂

𝑊

2
(𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝). Now, let 𝛽 > 0. By definition of 𝛽, we have

𝐹𝑗𝑘(𝑡) ≥ 𝛽𝑡 for all 𝑡 ≥ 0. Since 𝛽 > 0, we have 𝑡 ≤ (1/𝛽)𝐹𝑗𝑘(𝑡)

for all 𝑡 ≥ 0. Let 𝑥 = (𝑥𝑗𝑘) ∈ 𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝). Thus, we

have
∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
]

≤

1

𝛽

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] ,

(52)

which implies that 𝑥 = (𝑥𝑗𝑘) ∈ 𝑊

2
(𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝). This com-

pletes the proof.

Theorem 13. (i) Let 0 < inf 𝑝𝑗𝑘 < 𝑝𝑗𝑘 ≤ 1. Then

𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ⊆ 𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠) .

(53)

(ii) Let 1 ≤ 𝑝𝑗𝑘 ≤ sup𝑝𝑗𝑘 < ∞. Then

𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠) ⊆ 𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) .

(54)

Proof. (i) Let 𝑥 = (𝑥𝑗𝑘) ∈ 𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝). Then since 0 <

inf 𝑝𝑗𝑘 < 𝑝𝑗𝑘 ≤ 1, we obtain the following:
∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘 (𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)]

≤

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
] .

(55)

Thus 𝑥 = (𝑥𝑗𝑘) ∈ 𝑊
2
(𝐴,F, 𝑢, Δ

𝑟
𝑠).

(ii) Let 𝑝𝑗𝑘 ≥ 1 for each 𝑗 and 𝑘 and sup𝑝𝑗𝑘 < ∞. Let
𝑥 = (𝑥𝑗𝑘) ∈ 𝑊

2
(𝐴,F, 𝑢, Δ

𝑟
𝑠). Then for each 0 < 𝜖 < 1 there

exists a positive integer𝑁 such that
∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘 (𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)] ≤ 𝜖 < 1 ∀𝑚, 𝑛 ≥ 𝑁.

(56)



8 Abstract and Applied Analysis

This implies that

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)

𝑝𝑗𝑘
]

≤

∞,∞

∑

𝑗,𝑘=0,0

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘 (𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − 𝐿







)] .

(57)

Therefore 𝑥 = (𝑥𝑗𝑘) ∈ 𝑊
2
(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝). This completes the

proof.

Lemma 14. Let F = (𝐹𝑗𝑘) be a sublinear Musielak-Orlicz
function which satisfies the Δ 2-condition and let 𝐴 = (𝑎𝑛𝑚𝑗𝑘)

be a nonnegative four-dimensional 𝑅𝐻-regular matrix. Then
𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ is an ideal in 𝑙2∞.

Proof. Let 𝑥 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ and 𝑦 ∈ 𝑙

2
∞. We need

to show that 𝑥𝑦 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞. Since 𝑦 ∈ 𝑙

2
∞,

there exists 𝑇1 > 1 such that ‖𝑦‖ < 𝑇1. In this case |𝑥𝑗𝑘𝑦𝑗𝑘| <
𝑇1|𝑥𝑗𝑘| for all 𝑗, 𝑘. SinceF is nondecreasing and satisfies Δ 2-
condition, we have

[𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠 (𝑥𝑗𝑘𝑦𝑗𝑘)







)

𝑝𝑗𝑘
] < [𝐹𝑗𝑘(𝑢𝑗𝑘𝑇1







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
]

≤ 𝑇 (𝑇1) [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] ,

(58)

for all 𝑗, 𝑘 and 𝑇 > 0. Therefore lim𝑛,𝑚∑𝑗,𝑘 𝑎𝑛𝑚𝑗𝑘[𝐹𝑗𝑘
(𝑢𝑗𝑘|Δ

𝑟
𝑠(𝑥𝑗𝑘𝑦𝑗𝑘)|)

𝑝𝑗𝑘
] = 0. Thus 𝑥𝑦 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞.

This completes the proof.

Lemma 15. Let 𝐺 be an ideal in 𝑙

2
∞ and let 𝑥 = (𝑥𝑗𝑘) ∈ 𝑙

2
∞.

Then 𝑥 is in the closure of 𝐺 in 𝑙2∞ if and only if 𝜒𝑆(𝑥;𝜖) ∈ 𝐺 for
all 𝜖 > 0.

Proof. Let 𝑥 be in the closure of 𝐺 and let 𝜖 > 0 be given.
Suppose that 𝑧 = (𝑧𝑗𝑘) ∈ 𝐺 such that ‖𝑥 − 𝑧‖ < 𝜖/2 and
observe that 𝑆(𝑥; 𝜖) ⊆ 𝑆(𝑧; 𝜖/2). Define a double sequence 𝑦 =

(𝑦𝑗𝑘) ∈ 𝑙
2
∞ by

𝑦𝑗𝑘 =

{
{
{

{
{
{

{

1

𝑧𝑗𝑘

, if 



𝑧𝑗𝑘







≧

𝜖

2

,

0, otherwise.

(59)

Clearly 𝑦𝑧 = 𝜒𝑆(𝑧;𝜖/2) ∈ 𝐺. Since 𝑆(𝑥; 𝜖) ⊆ 𝑆(𝑧; 𝜖/2) and
𝜒𝑆(𝑥;𝜖) ∈ 𝑙

2
∞, hence 𝜒𝑆(𝑥;𝜖)𝜒𝑆(𝑧;𝜖/2) = 𝜒𝑆(𝑥;𝜖) ∈ 𝐺.

Conversely, if 𝑥 ∈ 𝑙

2
∞ then ‖𝑥 − 𝑥𝜒𝑆(𝑥;𝜖)‖ < 𝜖. It follows

that 𝜒𝑆(𝑥;𝜖) ∈ 𝐺 for all 𝜖 > 0; then 𝑥 is in the closure of 𝐺.

Lemma 16. If 𝐴 is a nonnegative four-dimensional 𝑅𝐻-
regular matrix, then 𝑊

2
0 (𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ is a closed ideal in

𝑙

2
∞.

Proof. We have 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ ⊂ 𝑙

2
∞ and it is

clear that𝑊20 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝)∩ 𝑙

2
∞ ̸= 0. For 𝑥, 𝑦 ∈ 𝑊

2
0 (𝐴,F, 𝑢,

Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞, we get |𝑥𝑗𝑘 + 𝑦𝑗𝑘| < |𝑥𝑗𝑘| + |𝑦𝑗𝑘|. Now, we have

[𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠 (𝑥𝑗𝑘 + 𝑦𝑗𝑘)







)

𝑝𝑗𝑘
]

≤ [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







+







Δ

𝑟
𝑠𝑦𝑗𝑘







)

𝑝𝑗𝑘
]

<

1

2

[𝐹𝑗𝑘(𝑢𝑗𝑘2






Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] +

1

2

[𝐹𝑗𝑘(𝑢𝑗𝑘2






Δ

𝑟
𝑠𝑦𝑗𝑘







)

𝑝𝑗𝑘
]

<

1

2

𝐾1 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] +

1

2

𝐾2 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑦𝑗𝑘







)

𝑝𝑗𝑘
]

(60)

by the Δ 2-condition and the convexity of 𝐹. Since

∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠 (𝑥𝑗𝑘 + 𝑦𝑗𝑘)







)

𝑝𝑗𝑘
]

≤

1

2

𝐾∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
]

+

1

2

𝐾∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑦𝑗𝑘







)

𝑝𝑗𝑘
] ,

(61)

where𝐾 = max{𝐾1, 𝐾2}, so𝑥+𝑦, 𝑥−𝑦 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝)∩

𝑙

2
∞.

Let 𝑥 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ and 𝑦 ∈ 𝑙

2
∞. Thus, there

exists a positive integer 𝐾, so that, for every 𝑗, 𝑘, we have
|𝑥𝑗𝑘𝑦𝑗𝑘| ≤ 𝐾|𝑥𝑗𝑘|. Therefore

[𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠 (𝑥𝑗𝑘𝑦𝑗𝑘)







)

𝑝𝑗𝑘
] ≤ [𝐹𝑗𝑘(𝑢𝑗𝑘𝐾







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
]

≤ 𝑇 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] ,

(62)

and so

∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠 (𝑥𝑗𝑘𝑦𝑗𝑘)







)

𝑝𝑗𝑘
]

≤ 𝑇∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] .

(63)

Hence 𝑥𝑦 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝)∩ 𝑙

2
∞. So𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝)∩

𝑙

2
∞ is an ideal in 𝑙

2
∞ for a Musielak-Orlicz function which

satisfies the Δ 2-condition.
Now, we have to show that 𝑊20 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ is

closed. Let 𝑥 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞; there exists 𝑥

𝑐𝑑
=

𝑥

𝑐𝑑
𝑗𝑘 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ such that 𝑥𝑐𝑑 → 𝑥 ∈ 𝑙

2
∞.
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For every 𝜖 > 0 there exists 𝑁1(𝜖) ∈ N such that, for all
𝑐, 𝑑 > 𝑁1(𝜖), |Δ

𝑟
𝑠𝑥
𝑐𝑑
− Δ

𝑟
𝑠𝑥| < 𝜖. Now, for 𝜖 > 0, we have

∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
]

= ∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − Δ

𝑟
𝑠𝑥
𝑐𝑑
𝑗𝑘 + Δ

𝑟
𝑠𝑥
𝑐𝑑
𝑗𝑘







)

𝑝𝑗𝑘
]

≤ ∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘 − Δ

𝑟
𝑠𝑥
𝑐𝑑
𝑗𝑘







+







Δ

𝑟
𝑠𝑥
𝑐𝑑
𝑗𝑘







)

𝑝𝑗𝑘
]

≤

1

2

∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘2






Δ

𝑟
𝑠𝑥𝑗𝑘 − Δ

𝑟
𝑠𝑥
𝑐𝑑
𝑗𝑘







)

𝑝𝑗𝑘
]

+

1

2

∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘2






Δ

𝑟
𝑠𝑥
𝑐𝑑
𝑗𝑘







)

𝑝𝑗𝑘
]

≤

1

2

𝐾𝐹𝑗𝑘 (𝜖)∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 +
1

2

𝐾∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥
𝑐𝑑
𝑗𝑘







)

𝑝𝑗𝑘
] .

(64)

Since 𝑥𝑐𝑑 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ and 𝐴 is RH-regular, we

get

lim
𝑛,𝑚

∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝑢𝑗𝑘







Δ

𝑟
𝑠𝑥𝑗𝑘







)

𝑝𝑗𝑘
] = 0; (65)

so 𝑥 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝)∩𝑙

2
∞.This completes the proof.

Theorem 17. Let 𝑥 = (𝑥𝑗𝑘) be a bounded sequence,F = (𝐹𝑗𝑘)

a sublinear Musielak-Orlicz function which satisfies the Δ 2-
condition, and 𝐴 a nonnegative four-dimensional 𝑅𝐻-regular
matrix. Then𝑊2(𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ = 𝑊

2
(𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞.

Proof. Without loss of generality we may take 𝐿 = 0 and
establish

𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ = 𝑊

2
0 (𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞.

(66)

Since𝑊20 (𝐴, 𝑢, Δ
𝑟
𝑠, 𝑝) ⊆ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝), therefore𝑊

2
0 (𝐴,

𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ ⊆ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞. We need to show

that𝑊20 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ ⊆ 𝑊

2
0 (𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞. Notice

that if 𝑆 ⊂ N × N, then

∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘 [𝐹𝑗𝑘(𝜒𝑆 (𝑗, 𝑘))
𝑝𝑗𝑘
] = 𝐹𝑗𝑘 (1)∑

𝑗,𝑘

𝑎𝑛𝑚𝑗𝑘(𝜒𝑆 (𝑗, 𝑘))
𝑝𝑗𝑘
,

(67)

for all 𝑛,𝑚. Observe that 𝜒𝑆(𝑗, 𝑘) ∈ 𝑊

2
0 (𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞

whenever 𝑥 ∈ 𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ by Lemmas 14 and

15, so

𝑊

2
0 (𝐴,F, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞ ⊆ 𝑊

2
0 (𝐴, 𝑢, Δ

𝑟
𝑠, 𝑝) ∩ 𝑙

2
∞.

(68)

The proof is complete.
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