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The exponential synchronization issue for stochastic neural networks (SNNs) with mixed time delays and Markovian jump
parameters using sampled-data controller is investigated. Based on a novel Lyapunov-Krasovskii functional, stochastic analysis
theory, and linear matrix inequality (LMI) approach, we derived some novel sufficient conditions that guarantee that the master
systems exponentially synchronize with the slave systems. The design method of the desired sampled-data controller is also
proposed. To reflect the most dynamical behaviors of the system, both Markovian jump parameters and stochastic disturbance
are considered, where stochastic disturbances are given in the form of a Brownian motion. The results obtained in this paper are
a little conservative comparing the previous results in the literature. Finally, two numerical examples are given to illustrate the
effectiveness of the proposed methods.

1. Introduction

Neural networks, such as Hopfield neural networks, cellular
neural networks, the Cohen-Grossberg neural networks, and
bidirectional associative neural networks, are very important
nonlinear circuit networks and, in the past few decades, have
been extensively studied due to their potential applications in
classification, signal and image processing, parallel comput-
ing, associate memories, optimization, cryptography, and so
forth; see [1–7]. Many results, which deal with the dynamics
of various neural networks such as stability, periodic oscilla-
tion, bifurcation, and chaos, have been obtained by applying
the Lyapunov stability theory; see, for example, [8–10] and
the references therein. As a special case, synchronization
issues of the neural network systems have been extensively
investigated too, and a lot of criteria have been developed to
guarantee the global synchronization of the network systems
in [11–17].

It has been widely reported that a neural network some-
times has finite modes that switch from one mode to another
at different times; such a switching (jumping) signal between

different neural network models can be governed by a
Markovian chain; see [18–25] and the references therein.This
class of systems has the advantage of modeling the dynamic
systems subject to abrupt variation in their structures and has
many applications such as target tracking problems, manu-
factory processes, and fault-tolerant systems. In [24], delay-
interval dependent stability criteria are obtained for neural
networks withMarkovian jump parameters and time-varying
delays, which are based on free-weighing matrix method
and LMIs technique. In [25], by introducing some free-
weighting matrices, delay-dependent stochastic exponential
synchronization conditions are derived for chaotic neural
networks with Markovian jump parameters and mixed time
delays in terms of the Jensen inequality and linear matrix
inequalities.

It is well known that noise disturbance widely exists
in biological networks due to environmental uncertainties,
which is a major source of instability and can lead to poor
performances in neural networks. Such systems are described
by stochastic differential systems which have been used
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efficiently in modeling many practical problems that arise
in the fields of engineering, physics, and science as well.
Therefore, the theory of stochastic differential equation is also
attracting much attention in recent years and many results
have been reported in the literature [26–30]. In addition to
the noise disturbance, time delay is also a major source for
causing instability and poor performances in neural net-
works; see, for example, [31–35]. It is known that time
delays are often encountered in real neural networks, and the
existence of time delays may cause oscillation or instability
in neural networks, which are harmful to the applications of
neural networks. Therefore, the stability analysis for neural
networks with time delays has been widely studied in the
literature.

On the other hand, as the rapid development of com-
puter hardware, the sampled-data control technology has
shown superiority over other control approaches because it
is difficult to guarantee that the state variables transmitted to
controllers are continuous in many real-world applications.
In [36], Wu et al. investigated the synchronization problem
of neural networks with time-varying delay under sampled-
data control in the presence of a constant input delay. In [37],
by using sampled-data controller, the global synchronization
of the chaotic Lur’e systems is discussed and sufficient condi-
tions are obtained in terms of effective synchronization linear
matrix inequality by constructing the new discontinuous
Lyapunov functionals. Wu et al. studied the sampled-data
synchronization for Markovian jump neural networks with
time-varying delay; some new and useful synchronization
conditions in the framework of the input delay approach and
the linear matrix inequality technique are derived in [38].

Motivated by the above discussion, in this paper we
study the delay-dependent exponential synchronization of
neural networks with stochastic perturbation, discrete and
distributed time-varying delays, andMarkovian jumpparam-
eters. Here, it should be mentioned that our results are delay
dependent, which depend on not only the upper bounds of
time delays but also their lower bounds.Moreover, the deriva-
tives of time delays are not necessarily zero or smaller than
one since several free matrices are introduced in our results.
By constructing an appropriate Lyapunov-Krasovskii func-
tional based on delay partitioning, several improved delay-
dependent criteria are developed to achieve the exponential
synchronization in mean square in terms of linear matrix
inequalities. Two numerical examples are also provided to
demonstrate the advantage of the theoretical results.

The rest of this paper is organized as follows. In Section 2,
the model of stochastic neural network with both mixed
time delays andMarkovian jump parameters under sampled-
data control is introduced, together with some definitions
and lemmas. Exponential synchronization is proposed for
neural networks with both Markovian jump parameters and
mixed time delays via sampled data in Section 3. In Section 4,
exponential synchronization is proved for stochastic neural
networks with both Markovian jump parameters and mixed
time delays under sampled-data control. In Section 5, two
illustrative examples are given to demonstrate the validity of
the proposed results. Finally, some conclusions are drawn in
Section 6.

Notations. Throughout this paper, 𝑅 denotes the set of real
numbers,𝑅𝑛 denotes the n-dimensional Euclidean space, and
𝑅
𝑚×𝑛 denotes the set of all𝑚×𝑛 real matrices. For any matrix
𝐴, 𝐴𝑇 denotes the transpose of 𝐴. If 𝐴 is a real symmetric
matrix, 𝐴 > 0 (𝐴 < 0) means that 𝐴 is positive definite
(negative definite). 𝜆min(⋅) and 𝜆max(⋅) represent minimum
and maximum eigenvalues of a real symmetric matrix,
respectively. (Ω F P) is a complete probability space, where
Ω is the sample space, F is the 𝜎-algebra of subsets of
the sample space, and P is the probability measure on F.
diag{⋅ ⋅ ⋅ } denotes a block-diagonal matrix and col{⋅ ⋅ ⋅ } stands
for a matrix column with blocks given by the matrices in
{⋅ ⋅ ⋅ }. E{⋅} denotes the expectation operator with respect to
some probability measure P. Given the column vectors 𝑥 =
(𝑥
1
, . . . , 𝑥

𝑛
)
𝑇, 𝑦 = (𝑦

1
, . . . , 𝑦

𝑛
)
𝑇

∈ 𝑅
𝑛, 𝑥𝑇𝑦 = ∑𝑛

𝑖=1
𝑥
𝑖
𝑦
𝑖
,

|𝑥| = (|𝑥
1
|, . . . , |𝑥

𝑛
|)
𝑇, and ‖𝑥‖ = (∑𝑛

𝑖=1
𝑥
2

𝑖
)
1/2. �̇�(𝑡) denotes

the derivative of 𝑥(𝑡) and ∗ represents the symmetric form of
matrix. Matrices, if their dimensions are not explicitly stated,
are assumed to have compatible dimensions for algebraic
operations.

2. Model Description and Preliminaries

Let {𝑟(𝑡), 𝑡 ≥ 0} be a right-continuous Markovian chain on
the probability space (Ω F P) taking values in a finite state
space S = {1, 2, . . . , 𝑠} with generator Υ = (𝜋

𝑖𝑗
)
𝑠×𝑠

given by

𝑃 {𝑟 (𝑡 + Δ𝑡) = 𝑗 | 𝑟 (𝑡) = 𝑖}

= 𝑃
𝑖𝑗
(Δ𝑡) = {

𝜋
𝑖𝑗
Δ𝑡 + 𝑜 (Δ𝑡) , if 𝑖 ̸= 𝑗,

1 + 𝜋
𝑖𝑖
Δ𝑡 + 𝑜 (Δ𝑡) , if 𝑖 = 𝑗,

(1)

where Δ𝑡 > 0 and lim
Δ𝑡→0

(𝑜(Δ𝑡)/Δ𝑡) = 0. Here, 𝜋
𝑖𝑗
≥

0 (𝑗 ̸= 𝑖) is the transition rate from 𝑖 to 𝑗 if 𝑖 ̸= 𝑗 at time 𝑡 + Δ𝑡,
and 𝜋

𝑖𝑖
is the transition rate from 𝑖 to 𝑖 at time 𝑡 + Δ𝑡.

Remark 1. The probability defined in (1) is called time-
homogeneous transition probability, which is only relevant
to the time internal Δ𝑡; that is, 𝑃

𝑖𝑗
(Δ𝑡) is not relevant to the

starting point 𝑡. Moreover, for the time-homogeneous tran-
sition probability defined in (1), the following two properties
should be satisfied:

𝑃
𝑖𝑗
(Δ𝑡) ≥ 0,

𝑠

∑

𝑗=1

𝑃
𝑖𝑗
(Δ𝑡) = 1. (2)

Accordingly, for any Δ𝑡 satisfying the conditions in (2), the
matrix 𝑃 = (𝑃

𝑖𝑗
(Δ𝑡))
𝑠×𝑠

is called the probability transition
matrix for the right-continuousMarkovian chain {𝑟(𝑡), 𝑡 ≥ 0}.

Fix a probability space (Ω F P) and consider the neural
networks with mixed time delays and Markovian jump
described by the following differential equation system:

�̇� (𝑡) = −𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝑊
0
(𝑟 (𝑡)) 𝑔 (𝑥 (𝑡))

+ 𝑊
1
(𝑟 (𝑡)) 𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))

+ 𝑊
2
(𝑟 (𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) ,

(3)
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where 𝑥(𝑡) = [𝑥
1
(𝑡) 𝑥
2
(𝑡) ⋅ ⋅ ⋅ 𝑥

𝑛
(𝑡)]
𝑇

∈ 𝑅
𝑛 is the neuron state

vector and 𝑥
𝑖
(𝑡) is the state of the 𝑖th neuron at time 𝑡;

𝑔(𝑥(𝑡)) = [𝑔
1
(𝑥
1
(𝑡)) 𝑔

2
(𝑥
2
(𝑡)) ⋅ ⋅ ⋅ 𝑔

𝑛
(𝑥
𝑛
(𝑡))]
𝑇 denotes the

neuron activation function; 𝐶(𝑟(𝑡)) = diag{𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
} is a

diagonal matrix with positive entries; 𝑊
0
(𝑟(𝑡)) = (𝑤

0𝑖𝑗
)
𝑛×𝑛

,
𝑊
1
(𝑟(𝑡)) = (𝑤

1𝑖𝑗
)
𝑛×𝑛

, and 𝑊
2
(𝑟(𝑡)) = (𝑤

2𝑖𝑗
)
𝑛×𝑛

are, respec-
tively, the connection weight matrix, the discretely delayed
connection weight matrix, and the distributively delayed
connection weight matrix; 𝐼(𝑡) = [𝐼

1
(𝑡) 𝐼
2
(𝑡) ⋅ ⋅ ⋅ 𝐼

𝑛
(𝑡)]
𝑇 is an

external input vector; 𝑑(𝑡) and 𝜏(𝑡) denote the discrete delay
and the distributed delay.

Throughout this paper, we make the following assump-
tions.
(H
1
)There exist positive constants 𝑑, 𝜇, and 𝜏 such that

𝑑
1
≤ 𝑑 (𝑡) ≤ 𝑑

2
, ̇𝑑 (𝑡) ≤ 𝜇, 0 ≤ 𝜏 (𝑡) ≤ 𝜏. (4)

(H
2
) Each activation function 𝑔

𝑖
in (3) is continuous and

bounded, and there exist constants 𝐹−
𝑖
and 𝐹+

𝑖
such

that

𝐹
−

𝑖
≤
𝑔
𝑖
(𝛼
1
) − 𝑔
𝑖
(𝛼
2
)

𝛼
1
− 𝛼
2

≤ 𝐹
+

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (5)

where 𝛼
1
, 𝛼
2
∈ 𝑅 and 𝛼

1
̸= 𝛼
2
.

Remark 2. In the earlier literature, the activation functions
𝑔
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are supposed to be continuous, differ-

entiable, monotonically increasing, and bounded. Moreover,
the constants 𝐹−

𝑖
≡ 0 for 𝑖 = 1, 2, . . . , 𝑛 or the constants 𝐹−

𝑖
=

−𝐹
+

𝑖
for 𝑖 = 1, 2, . . . , 𝑛. However, in this paper, the resulting

activation functions may be not monotonically increasing
and more general than the usual Lipschitz-type conditions.
Moreover, the constants 𝐹−

𝑖
and 𝐹+

𝑖
(𝑖 = 1, 2, . . . , 𝑛) are

allowed to be positive, negative, or zero. Hence, Assumption 2
of this paper isweaker than those given in the earlier literature
(see, e.g., [39, 40]).

In this paper, we consider system (3) as the master system
and a slave system for (3) can be described by the following
equation:

̇𝑦 (𝑡) = −𝐶 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑊
0
(𝑟 (𝑡)) 𝑔 (𝑦 (𝑡))

+ 𝑊
1
(𝑟 (𝑡)) 𝑔 (𝑦 (𝑡 − 𝑑 (𝑡)))

+ 𝑊
2
(𝑟 (𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

𝑔 (𝑦 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) + 𝑢 (𝑡) ,

(6)

where 𝐶(𝑟(𝑡)) and 𝑊
𝑖
(𝑟(𝑡)) for 𝑖 = 0, 1, 2,. . . , are matrices

given in (3) and 𝑢(𝑡) ∈ 𝑅𝑛 is the appropriate control input.
In order to investigate the problem of exponential syn-

chronization between systems (3) and (6), we define the error
signal 𝑒(𝑡) = 𝑦(𝑡) − 𝑥(𝑡). Therefore, the error dynamical
system between (3) and (6) is given as follows:

̇𝑒 (𝑡) = −𝐶 (𝑟 (𝑡)) 𝑒 (𝑡) + 𝑊
0
(𝑟 (𝑡)) 𝑓 (𝑒 (𝑡))

+ 𝑊
1
(𝑟 (𝑡)) 𝑓 (𝑒 (𝑡 − 𝑑 (𝑡)))

+ 𝑊
2
(𝑟 (𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

𝑓 (𝑒 (𝑠)) 𝑑𝑠 + 𝑢 (𝑡) ,

(7)

where 𝑓(𝑒(𝑡)) = 𝑔(𝑦(𝑡)) − 𝑔(𝑥(𝑡)). It can be found that the
functions 𝑓

𝑖
(⋅) satisfy the following condition:

𝐹
−

𝑖
≤
𝑓
𝑖
(𝛼)

𝛼
≤ 𝐹
+

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (8)

where 𝛼 ∈ R and 𝛼 ̸= 0.
The control signal is assumed to be generated by using a

zero-order-hold function with a sequence of hold times 0 =
𝑡
0
< 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ . Therefore, the mode-independent

state feedback controller takes the following form:

𝑢 (𝑡) = 𝐾𝑒 (𝑡
𝑘
) , 𝑡

𝑘
≤ 𝑡 < 𝑡

𝑘+1
, (9)

where𝐾 is a sampled-data feedback controller gain matrix to
be determined, 𝑒(𝑡

𝑘
) is a discrete measurement of 𝑒(𝑡) at the

sampling instant 𝑡
𝑘
, and lim

𝑘→∞
𝑡
𝑘
= +∞. It is assumed that

𝑡
𝑘+1
− 𝑡
𝑘
= ℎ
𝑘
≤ ℎ for any integer 𝑘 ≥ 0, where ℎ is a positive

scalar and represents the largest sampling interval.
By substituting (9) into (7), we obtain

̇𝑒 (𝑡) = −𝐶 (𝑟 (𝑡)) 𝑒 (𝑡) + 𝑊
0
(𝑟 (𝑡)) 𝑓 (𝑒 (𝑡))

+ 𝑊
1
(𝑟 (𝑡)) 𝑓 (𝑒 (𝑡 − 𝑑 (𝑡)))

+ 𝑊
2
(𝑟 (𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

𝑓 (𝑒 (𝑠)) 𝑑𝑠 + 𝐾𝑒 (𝑡
𝑘
) .

(10)

For convenience, in the following, each possible value of
𝑒(𝑡) is denoted by 𝑖, 𝑖 ∈ S. Then we have 𝐶

𝑖
= 𝐶(𝑟(𝑡)),𝑊

0𝑖
=

𝑊
0
(𝑟(𝑡)),𝑊

1𝑖
= 𝑊
1
(𝑟(𝑡)), and𝑊

2𝑖
= 𝑊
2
(𝑟(𝑡)), where 𝐶

𝑖
,𝑊
0𝑖
,

and 𝑊
1𝑖
𝑊
2𝑖
, for any 𝑖 ∈ S, are known constant matrices of

appropriate dimensions. The system (10) can be written as

̇𝑒 (𝑡) = −𝐶
𝑖
𝑒 (𝑡) + 𝑊

0𝑖
𝑓 (𝑒 (𝑡))

+ 𝑊
1𝑖
𝑓 (𝑒 (𝑡 − 𝑑 (𝑡)))

+ 𝑊
2𝑖
∫

𝑡

𝑡−𝜏(𝑡)

𝑓 (𝑒 (𝑠)) 𝑑𝑠 + 𝐾𝑒 (𝑡
𝑘
) .

(11)

The first purpose of this paper is to design a controller
with the form (9) to achieve the exponential synchronization
of the master system (3) and slave system (6). In other words,
we are interested in finding a feedback gain matric 𝐾 such
that the error system (11) is exponentially stable.

As mentioned earlier, it is often the case in practice that
the neural network is disturbed by environmental noises that
affect the stability of the equilibrium. Motivated by this we
express a stochastic system whose consequent parts are a set
of stochastic uncertain recurrent neural networks withmixed
time delays:

𝑑𝑥 (𝑡)

= { − 𝐶 (𝑟 (𝑡)) 𝑥 (𝑡) + 𝑊
0
(𝑟 (𝑡)) 𝑔 (𝑥 (𝑡))

+ 𝑊
1
(𝑟 (𝑡)) 𝑔 (𝑥 (𝑡 − 𝑑 (𝑡)))

+𝑊
2
(𝑟 (𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡)} 𝑑𝑡

+ 𝜌 (𝑡, 𝑥 (𝑡) , 𝑥 (𝑡 − 𝑑 (𝑡)) , 𝑥 (𝑡 − 𝜏 (𝑡)) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) ,

(12)
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where 𝜔(𝑡) = (𝜔
1
(𝑡), 𝜔
2
(𝑡), . . . , 𝜔

𝑛
(𝑡))
𝑇 is an n-dimensional

Brownian motion defined on a complete probability space
(Ω F P) satisfying E{𝑑𝜔(𝑡)} = 0 and E{𝑑𝜔2(𝑡)} = 𝑑𝑡 and
𝜌(𝑡, 𝑥(𝑡), 𝑥(𝑡−𝑑(𝑡)), 𝑥(𝑡−𝜏(𝑡)), 𝑟(𝑡)) : 𝑅+×𝑅𝑛×𝑅𝑛×𝑅𝑛×S →
𝑅
𝑛×𝑚 is the noise intensity function matrix.
And a slave system for (12) can be described by the

following equation:

𝑑𝑦 (𝑡)

= { − 𝐶 (𝑟 (𝑡)) 𝑦 (𝑡) + 𝑊
0
(𝑟 (𝑡)) 𝑔 (𝑦 (𝑡))

+ 𝑊
1
(𝑟 (𝑡)) 𝑔 (𝑦 (𝑡 − 𝑑 (𝑡)))

+ 𝑊
2
(𝑟 (𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

𝑔 (𝑦 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) + 𝑢 (𝑡)} 𝑑𝑡

+ 𝜌 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝑑 (𝑡)) , 𝑦 (𝑡 − 𝜏 (𝑡)) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) .

(13)

The mode-independent state feedback controller is made
as the form of (9) and each possible value of 𝑒(𝑡) is denoted
by 𝑖, 𝑖 ∈ S; then we have the final stochastic error system:

𝑑𝑒 (𝑡)

= { − 𝐶
𝑖
𝑒 (𝑡) + 𝑊

0𝑖
𝑓 (𝑒 (𝑡)) + 𝑊

1𝑖
𝑓 (𝑒 (𝑡 − 𝑑 (𝑡)))

+ 𝑊
2𝑖
∫

𝑡

𝑡−𝜏(𝑡)

𝑓 (𝑒 (𝑠)) 𝑑𝑠 + 𝐾𝑒 (𝑡
𝑘
)} 𝑑𝑡

+ 𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝑑 (𝑡)) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡
𝑘
) , 𝑖) 𝑑𝜔 (𝑡) .

(14)

We impose the following assumption:

(H
3
) 𝜌 : 𝑅

+

× 𝑅
𝑛

× 𝑅
𝑛

× 𝑅
𝑛

× 𝑅
𝑛

× S → 𝑅
𝑛×𝑚 is locally

Lipschitz continuous and satisfies

trace [𝜌𝑇 (𝑡, 𝑒
1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑖) 𝜌 (𝑡, 𝑒

1
, 𝑒
2
, 𝑒
3
, 𝑒
4
, 𝑖)]

≤ 𝑒
𝑇

1
𝑌
1𝑖
𝑒
1
+ 𝑒
𝑇

2
𝑌
2𝑖
𝑒
2
+ 𝑒
𝑇

3
𝑌
3𝑖
𝑒
3
+ 𝑒
𝑇

4
𝑌
4𝑖
𝑒
4
.

(15)

Our second purpose of this paper is to find a feedback
gain matric 𝐾 in the controller with the form (9) to ensure
that the error system (14) is exponentially stable, so that the
master system (12) and slave system (13) are exponentially
synchronous.

To state our main results, the following definition and
lemmas are first introduced, which are essential for the proof
in the sequel.

Definition 3. Master system and slave system are said to be
exponentially synchronous if error system is exponentially
stable; that is, for any initial condition 𝑒(𝑠) = 𝜑(𝑠) defined
on the interval [−𝜛 0 ], 𝜛 = max{𝑑

2
, 𝜏, ℎ}, the following

condition is satisfied:

E {‖𝑒(𝑡)‖
2

} ≤ 𝜁𝑒
−𝜖𝑡

E{ sup
−𝜛≤𝑠≤0

𝜑(𝑠)


2

} . (16)

Lemma 4 (the Jensen inequality, see [41]). For any constant
matrix 𝑃 ∈ 𝑅𝑚×𝑚, 𝑃 > 0, scalar 0 < 𝑧(𝑡) < 𝑧, vector function
𝑉 : [𝑡−𝑧, 𝑡] → 𝑅

𝑚, 𝑡 ≥ 0, such that the integrations concerned
are well defined; then

(∫

𝑧(𝑡)

0

𝑉 (𝑠) 𝑑𝑠)

𝑇

𝑃(∫

𝑧(𝑡)

0

𝑉 (𝑠) 𝑑𝑠)

≤ 𝑧 (𝑡) (∫

𝑧(𝑡)

0

𝑉
𝑇

(𝑠) 𝑃𝑉 (𝑠) 𝑑𝑠) .

(17)

Lemma 5 (the Schur complement). Given one positive defi-
nite matrix 𝐺

2
> 0 and constant matrices 𝐺

1
and 𝐺

3
, where

𝐺
1
= 𝐺
𝑇

1
, 𝐺
1
+ 𝐺
𝑇

3
𝐺
−1

2
𝐺
3
< 0 if and only if

(
𝐺
1
𝐺
𝑇

3

𝐺
3
−𝐺
2

) < 0 𝑜𝑟 (
−𝐺
2
𝐺
𝑇

3

𝐺
3
𝐺
1

) < 0. (18)

Lemma 6 (see [42]). For any constant matric 𝑀 ∈ 𝑅
𝑘×𝑛,

symmetric positive definite matrix 𝑅 ∈ 𝑅𝑛×𝑛, two functions
]
1
(𝑡) and ]

2
(𝑡) satisfying 0 < ]

𝑚
≤ ]
1
(𝑡) < ]

2
(𝑡) ≤ ]

𝑀
(𝑡 ≥

0), and vector function 𝑉 : []
𝑚
, ]
𝑀
] → 𝑅

𝑛 such that the
integrations concerned are well defined, let

∫

]
2
(𝑡)

]
1
(𝑡)

𝑉 (𝑠) 𝑑𝑠 = 𝜉
𝑇

𝜙 (𝑡) , (19)

where 𝜉 ∈ 𝑅𝑘×𝑛 and 𝜙(𝑡) ∈ 𝑅𝑘. Then the following inequality
holds:

𝜙 (𝑡) [𝑀𝜉
𝑇

+ 𝜉𝑀
𝑇

− (]
2
(𝑡) − ]

1
(𝑡))𝑀𝑅

−1

𝑀]𝜙 (𝑡)

≤ ∫

]
2
(𝑡)

]
1
(𝑡)

𝑉
𝑇

(𝑠) 𝑅𝑉 (𝑠) 𝑑𝑠.

(20)

3. Exponential Synchronization for
Markovian Jump Neural Networks with
Mixed Time Delays via Sampled Data

To present the main results of this section, we denote 𝐹
1
=

diag{𝐹−
1
𝐹
+

1
, 𝐹
−

2
𝐹
+

2
, . . . , 𝐹

−

𝑛
𝐹
+

𝑛
}, 𝐹
2
= diag{(𝐹−

1
+ 𝐹
+

1
)/2, (𝐹

−

2
+

𝐹
+

2
)/2, . . . , (𝐹

−

𝑛
+ 𝐹
+

𝑛
)/2}, 𝑔

1
= [𝐼 0], and 𝑔

2
= [0 𝐼].

Here, some LMI conditions will be developed to ensure
that master system (3) and slave system (6) are exponential
synchronous by employing the Lyapunov functionals.

Theorem 7. Under Assumptions H
1
and H

2
, for a given

scalar 𝛾, if there exist matrices 𝑃
𝑖
> 0, 𝑄

1
> 0, 𝑄

2
> 0,

𝑄
3
> 0, 𝑍

1
> 0, 𝑍

2
> 0, 𝑍

3
> 0, 𝑈 > 0, 𝑆, 𝑋, 𝑋

1
, 𝐺, 𝐿, and

𝐻
𝑖
= [𝐻
1𝑖
𝐻
2𝑖
𝐻
3𝑖
] and diagonal matrices 𝑉

1𝑖
> 0, 𝑉

2𝑖
> 0,



Abstract and Applied Analysis 5

𝑉
3𝑖
> 0, and 𝑉

4𝑖
> 0 such that, for any 𝑖 ∈ S, inequalities

(21)–(24) hold,

(
𝑍
2
𝑆

∗ 𝑍
2

) > 0, (21)

Σ
𝑖
(ℎ) = (

𝑃
𝑖
+ ℎ
𝑋 + 𝑋

𝑇

2
−ℎ𝑋 + ℎ𝑋

1

∗ −ℎ𝑋
1
− ℎ𝑋
𝑇

1
+ ℎ
𝑋 + 𝑋

𝑇

2

) > 0,

(22)

Σ
1𝑖
(ℎ)

=
(
(
(

(

Σ
11𝑖
Σ
12
Σ
13𝑖
0 Σ
15𝑖
Σ
16𝑖
Σ
17𝑖
+ Λ
1
(ℎ)

∗ Σ
22𝑖
Σ
23
Σ
24
0 0 0

∗ ∗ Σ
33𝑖
Σ
34
0 0 Σ

37𝑖

∗ ∗ ∗ Σ
44
0 0 0

∗ ∗ ∗ ∗ Σ
55
0 Σ

57𝑖

∗ ∗ ∗ ∗ ∗ Σ
66𝑖
Σ
67𝑖
+ Λ
2
(ℎ)

∗ ∗ ∗ ∗ ∗ ∗ Σ
77
+ ℎ𝑈

)
)
)

)

< 0,

(23)

Σ
2𝑖

=

(
(
(
(
(

(

Σ
11𝑖
Σ
12
Σ
13𝑖
0 Σ
15𝑖
Σ
16𝑖
Σ
17𝑖
ℎ𝑔
𝑇

1
𝐻
𝑇

1𝑖

∗ Σ
22𝑖
Σ
23
Σ
24
0 0 0 0

∗ ∗ Σ
33𝑖
Σ
34
0 0 Σ

37𝑖
0

∗ ∗ ∗ Σ
44
0 0 0 0

∗ ∗ ∗ ∗ Σ
55
0 Σ
57𝑖

0

∗ ∗ ∗ ∗ ∗ Σ
66𝑖
Σ
67𝑖

ℎ𝐻
𝑇

2𝑖

∗ ∗ ∗ ∗ ∗ ∗ Σ
77
ℎ𝐻
𝑇

3𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ −ℎ𝑈

)
)
)
)
)

)

< 0

(24)
are satisfied, where

Σ
11𝑖
= 𝑔
𝑇

1
(

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
)𝑔
1
+ 𝑄
1
+ 𝑄
2
+ 𝑄
3

− 𝑔
𝑇

1
𝑍
1
𝑔
1
+ 𝜏
2

𝑔
𝑇

1
𝑍
3
𝑔
1
− 𝑔
𝑇

1

𝑋 + 𝑋
𝑇

2
𝑔
1

+ 𝑔
𝑇

1
𝐻
1𝑖
𝑔
1
+ 𝑔
𝑇

1
𝐻
𝑇

1𝑖
𝑔
1
− 𝑔
𝑇

1
𝐹
1
𝑉
1𝑖
𝑔
1

+ 𝑔
𝑇

2
𝑉
1𝑖
𝐹
2
𝑔
1
+ 𝑔
𝑇

1
𝐹
2
𝑉
1𝑖
𝑔
2
− 𝑔
𝑇

2
𝑉
1𝑖
𝑔
2

− 𝑔
𝑇

1
𝐺𝐶
𝑖
𝑔
1
− 𝑔
𝑇

1
𝐶
𝑇

𝑖
𝐺
𝑇

𝑔
1

+ 𝑔
𝑇

1
𝐺𝑊
0𝑖
𝑔
1
+ 𝑔
𝑇

1
𝑊
𝑇

0𝑖
𝐺
𝑇

𝑔
1
,

Σ
12
= 𝑔
𝑇

1
𝑍
1
𝑔
1
, Σ

13𝑖
= 𝑔
𝑇

1
𝐺𝑊
1𝑖
𝑔
2
,

Σ
15𝑖
= 𝑔
𝑇

1
𝐺𝑊
2𝑖
,

Σ
16𝑖

= 𝑔
𝑇

1
(𝑋 + 𝑋

1
) − 𝑔
𝑇

1
𝐻
𝑇

1𝑖
+ 𝑔
𝑇

1
𝐻
𝑇

2𝑖
+ 𝑔
𝑇

1
𝐿,

Σ
17𝑖

= 𝑔
𝑇

1
𝑃
𝑖
+ 𝑔
𝑇

1
𝐻
3𝑖
− 𝑔
𝑇

1
𝐺

− 𝛾𝑔
𝑇

1
𝐶
𝑇

𝑖
𝐺
𝑇

+ 𝛾𝑔
𝑇

2
𝑊
𝑇

0𝑖
𝐺
𝑇

,

Σ
22𝑖

= −𝑄
1
− 𝑔
𝑇

1
𝑍
1
𝑔
1
− 𝑔
𝑇

1
𝑍
2
𝑔
1
− 𝑔
𝑇

1
𝐹
1
𝑉
2𝑖
𝑔
1

+ 𝑔
𝑇

2
𝑉
2𝑖
𝐹
2
𝑔
1
+ 𝑔
𝑇

1
𝐹
2
𝑉
2𝑖
𝑔
2
− 𝑔
𝑇

2
𝑉
2𝑖
𝑔
2
,

Σ
23
= 𝑔
𝑇

1
(𝑍
2
− 𝑆) 𝑔

1
, Σ

24
= 𝑔
𝑇

1
𝑆𝑔
1
,

Σ
33𝑖

= − (1 − 𝜇)𝑄
2
+ 𝑔
𝑇

1
(−2𝑍
2
+ 𝑆 + 𝑆

𝑇

) 𝑔
1

− 𝑔
𝑇

1
𝐹
1
𝑉
3𝑖
𝑔
1
+ 𝑔
𝑇

2
𝑉
3𝑖
𝐹
2
𝑔
1

+ 𝑔
𝑇

1
𝐹
2
𝑉
3𝑖
𝑔
2
− 𝑔
𝑇

2
𝑉
3𝑖
𝑔
2
,

Σ
34
= 𝑔
𝑇

1
(−𝑆 + 𝑍

2
) 𝑔
1
, Σ

37𝑖
= 𝛾𝑔
𝑇

2
𝑊
𝑇

1𝑖
𝐺
𝑇

,

Σ
44

= −𝑄
3
− 𝑔
𝑇

1
𝑍
3
𝑔
1
− 𝑔
𝑇

1
𝐹
1
𝑉
4𝑖
𝑔
1

+ 𝑔
𝑇

2
𝑉
4𝑖
𝐹
2
𝑔
1
+ 𝑔
𝑇

1
𝐹
2
𝑉
4𝑖
𝑔
2
− 𝑔
𝑇

2
𝑉
4𝑖
𝑔
2
,

Σ
55
= −𝑍
3
, Σ

57𝑖
= 𝛾𝑊

𝑇

2𝑖
𝐺
𝑇

,

Σ
66𝑖
= 𝑋
1
+ 𝑋
𝑇

1
−
𝑋 + 𝑋

𝑇

2
− 𝐻
2𝑖
− 𝐻
𝑇

2𝑖
,

Σ
67𝑖
= −𝐻
3𝑖
+ 𝛾𝐿
𝑇

,

Σ
77
= 𝑑
2

1
𝑍
1
+ 𝑑
2

12
𝑍
2
− 𝛾𝐺 − 𝛾𝐺

𝑇

,

Λ
1
(ℎ) = ℎ𝑔

𝑇

1

𝑋 + 𝑋
𝑇

2
,

Λ
2
(ℎ) = ℎ (−𝑋

𝑇

+ 𝑋
𝑇

1
) ,

(25)

and then the master system (3) and the slave system (6) are
exponentially synchronous. Moreover, the desired controller
gain matrix in (9) can be given by 𝐾 = 𝐺−1𝐿.

Proof. Denote 𝜂(𝑡) = [𝑒𝑇(𝑡)𝑓𝑇(𝑒(𝑡))]𝑇 and

H = (

𝑋 + 𝑋
𝑇

2
−𝑋 + 𝑋

1

∗ −𝑋
1
− 𝑋
𝑇

1
+
𝑋 + 𝑋

𝑇

2

) , (26)

and then consider the following Lyapunov functional for
error system (11):

𝑉 (𝑒 (𝑡) , 𝑡, 𝑟 (𝑡)) =

7

∑

𝑙=1

𝑉
𝑙
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡)) ,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
) ,

(27)
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where
𝑉
1
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡)) = 𝑒

𝑇

(𝑡) 𝑃 (𝑟 (𝑡)) 𝑒 (𝑡) ,

𝑉
2
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡))

= ∫

𝑡

𝑡−𝑑
1

𝜂
𝑇

(𝑠) 𝑄
1
𝜂 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝑑(𝑡)

𝜂
𝑇

(𝑠) 𝑄
2
𝜂 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑
2

𝜂
𝑇

(𝑠) 𝑄
3
𝜂 (𝑠) 𝑑𝑠,

𝑉
3
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡))

= 𝑑
1
∫

0

−𝑑
1

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

(𝑠) 𝑍
1
̇𝑒 (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
4
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡))

= 𝑑
12
∫

−𝑑
1

−𝑑
2

∫

𝑡

𝑡+𝜃

̇𝑒
𝑇

(𝑠) 𝑍
2
̇𝑒 (𝑠) 𝑑𝑠 𝑑𝜃,

𝑉
5
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡))

= 𝜏∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑓
𝑇

(𝑒 (𝑠)) 𝑍
3
𝑓 (𝑒 (𝑠)) 𝑑𝑠 𝑑𝜃,

𝑉
6
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡))

= (𝑡
𝑘+1
− 𝑡) ∫

𝑡

𝑡
𝑘

̇𝑒
𝑇

(𝑠) 𝑈 ̇𝑒 (𝑠) 𝑑𝑠,

𝑉
7
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡))

= (𝑡
𝑘+1
− 𝑡) (

𝑒(𝑡)

𝑒(𝑡
𝑘
)
)

𝑇

H(
𝑒 (𝑡)

𝑒 (𝑡
𝑘
)
) .

(28)

Let L be the weak infinitesimal generator of the
random process (𝑒(𝑡), 𝑡 ≥ 0, 𝑟(𝑡)) along system (11).
Next, we will compute L𝑉

1
(𝑒(𝑡), 𝑡, 𝑖), L𝑉

2
(𝑒(𝑡), 𝑡, 𝑖),

L𝑉
3
(𝑒(𝑡), 𝑡, 𝑖), L𝑉

4
(𝑒(𝑡), 𝑡, 𝑖), L𝑉

5
(𝑒(𝑡), 𝑡, 𝑖), L𝑉

6
(𝑒(𝑡), 𝑡, 𝑖),

and L𝑉
7
(𝑒(𝑡), 𝑡, 𝑖) along the trajectories of the error system

(11), respectively, for 𝑟(𝑡) = 𝑖 ∈ S:
L𝑉
1
(𝑒 (𝑡) , 𝑡, 𝑖)

= 2𝑒
𝑇

(𝑡) 𝑃
𝑖
̇𝑒 (𝑡) + 𝑒

𝑇

(𝑡)(

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝑝
𝑗
)𝑒 (𝑡)

= 2𝜂
𝑇

(𝑡) 𝑔
𝑇

1
𝑃
𝑖
̇𝑒 (𝑡)

+ 𝜂
𝑇

(𝑡) 𝑔
𝑇

1
(

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝑝
𝑗
)𝑔
1
𝜂 (𝑡) ,

(29)

L𝑉
2
(𝑒 (𝑡) , 𝑡, 𝑖)

= 𝜂
𝑇

(𝑡) (𝑄
1
+ 𝑄
2
+ 𝑄
3
) 𝜂 (𝑡)

− 𝜂
𝑇

(𝑡 − 𝑑
1
) 𝑄
1
𝜂 (𝑡 − 𝑑

1
)

− (1 − ̇𝑑 (𝑡)) 𝜂
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
1
𝜂 (𝑡 − 𝑑 (𝑡))

− 𝜂
𝑇

(𝑡 − 𝑑
2
) 𝑄
3
𝜂 (𝑡 − 𝑑

2
)

≤ 𝜂
𝑇

(𝑡) (𝑄
1
+ 𝑄
2
+ 𝑄
3
) 𝜂 (𝑡)

− 𝜂
𝑇

(𝑡 − 𝑑
1
) 𝑄
1
𝜂 (𝑡 − 𝑑

1
)

− (1 − 𝜇) 𝜂
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
1
𝜂 (𝑡 − 𝑑 (𝑡))

− 𝜂
𝑇

(𝑡 − 𝑑
2
) 𝑄
3
𝜂 (𝑡 − 𝑑

2
) ,

(30)

L𝑉
3
(𝑒 (𝑡) , 𝑡, 𝑖)

= 𝑑
2

1
̇𝑒
𝑇

(𝑡) 𝑍
1
̇𝑒 (𝑡) − 𝑑

1
∫

𝑡

𝑡−𝑑
1

̇𝑒
𝑇

(𝑠) 𝑍
1
̇𝑒 (𝑠) 𝑑𝑠,

(31)

L𝑉
4
(𝑒 (𝑡) , 𝑡, 𝑖)

= 𝑑
2

12
̇𝑒
𝑇

(𝑡) 𝑍
2
̇𝑒 (𝑡) − 𝑑

12
∫

𝑡−𝑑
1

𝑡−𝑑
2

̇𝑒
𝑇

(𝑠) 𝑍
2
̇𝑒 (𝑠) 𝑑𝑠,

(32)

L𝑉
5
(𝑒 (𝑡) , 𝑡, 𝑖)

= 𝜏
2

𝑓
𝑇

(𝑒 (𝑠)) 𝑍
3
𝑓 (𝑒 (𝑠))

− 𝜏∫

𝑡

𝑡−𝜏

𝑓
𝑇

(𝑒 (𝑠)) 𝑍
3
𝑓 (𝑒 (𝑠)) 𝑑𝑠

≤ 𝜏
2

𝑓
𝑇

(𝑒 (𝑠)) 𝑍
3
𝑓 (𝑒 (𝑠))

− 𝜏∫

𝑡

𝑡−𝜏(𝑡)

𝑓
𝑇

(𝑒 (𝑠)) 𝑍
3
𝑓 (𝑒 (𝑠)) 𝑑𝑠

≤ 𝜏
2

𝑓
𝑇

(𝑒 (𝑠)) 𝑍
3
𝑓 (𝑒 (𝑠))

− (∫

𝑡

𝑡−𝜏(𝑡)

𝑓 (𝑒 (𝑠)) 𝑑𝑠)

𝑇

𝑍
3
∫

𝑡

𝑡−𝜏(𝑡)

𝑓 (𝑒 (𝑠)) 𝑑𝑠,

(33)

L𝑉
6
(𝑒 (𝑡) , 𝑡, 𝑖)

= −∫

𝑡

𝑡
𝑘

̇𝑒(𝑠)
𝑇

𝑈 ̇𝑒 (𝑠) 𝑑𝑠 + (𝑡
𝑘+1
− 𝑡) ̇𝑒(𝑡)

𝑇

𝑈 ̇𝑒 (𝑡) ,

(34)

L𝑉
7
(𝑒 (𝑡) , 𝑡, 𝑖)

= −(
𝑒 (𝑡)

𝑒 (𝑡
𝑘
)
)

𝑇

H(
𝑒 (𝑡)

𝑒 (𝑡
𝑘
)
)

+ 2 (𝑡
𝑘+1
− 𝑡) (

𝑒(𝑡)

𝑒(𝑡
𝑘
)
)

𝑇

H(
̇𝑒 (𝑡)

0
) .

(35)

According to Lemma 4, it follows that

− 𝑑
1
∫

𝑡

𝑡−𝑑
1

̇𝑒
𝑇

(𝑡) 𝑍
1
̇𝑒 (𝑡) 𝑑𝑠

≤ −∫

𝑡

𝑡−𝑑
1

̇𝑒
𝑇

(𝑡) 𝑑𝑠𝑍
1
∫

𝑡

𝑡−𝑑
1

̇𝑒 (𝑡) 𝑑𝑠

= −(
𝜂(𝑡)

𝜂(𝑡 − 𝑑
1
)
)

𝑇

(
𝑔
𝑇

1
𝑍
1
𝑔
1
−𝑔
𝑇

1
𝑍
1
𝑔
1

∗ 𝑔
𝑇

1
𝑍
1
𝑔
1

)(
𝜂 (𝑡)

𝜂 (𝑡 − 𝑑
1
)
) .

(36)
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On the other hand, denote

J
1
(𝑡) = ∫

𝑡−𝑑
1

𝑡−𝑑(𝑡)

̇𝑒 (𝑠) 𝑑𝑠,

J
2
(𝑡) = ∫

𝑡−𝑑(𝑡)

𝑡−𝑑
2

̇𝑒 (𝑠) 𝑑𝑠.

(37)

When 𝑑
1
< 𝑑(𝑡) < 𝑑

2
, by Lemma 4, we have that

𝑑
12
∫

𝑡−𝑑
1

𝑡−𝑑
2

̇𝑒
𝑇

(𝑠) 𝑍
2
̇𝑒 (𝑠) 𝑑𝑠

= 𝑑
12
∫

𝑡−𝑑
1

𝑡−𝑑(𝑡)

̇𝑒
𝑇

(𝑠) 𝑍
2
̇𝑒 (𝑠) 𝑑𝑠

+ 𝑑
12
∫

𝑡−𝑑(𝑡)

𝑡−𝑑
12

̇𝑒
𝑇

(𝑠) 𝑍
2
̇𝑒 (𝑠) 𝑑𝑠

≥
𝑑
12

𝑑 (𝑡) − 𝑑
1

J
𝑇

1
(𝑡) 𝑍
2
J
1
(𝑡)

+
𝑑
12

𝑑
2
− 𝑑 (𝑡)

J
𝑇

2
(𝑡) 𝑍
2
J
2
(𝑡) .

(38)

It is clear from (21) that

(
J
1
(𝑡)

J
2
(𝑡)
)

𝑇

(
𝑍
2
𝑆

∗ 𝑍
2

)(
J
1
(𝑡)

J
2
(𝑡)
)

= (
J𝑇
1
(𝑡) 𝑍
2
J
1
(𝑡) J𝑇

1
(𝑡) 𝑆J

2
(𝑡)

∗ J𝑇
2
(𝑡) 𝑍
2
J
2
(𝑡)
) ≥ 0.

(39)

Moreover,

1

𝑑
12
/ (𝑑 (𝑡) − 𝑑

1
)
+

1

𝑑
12
/ (𝑑
1
− 𝑑 (𝑡))

= 1. (40)

Based on the lower bounds lemmaof [43], we have from (38)–
(40) that

𝑑
12
∫

𝑡−𝑑
1

𝑡−𝑑
2

̇𝑒
𝑇

(𝑠) 𝑍
2
̇𝑒 (𝑠) 𝑑𝑠

≥ J
𝑇

1
(𝑡) 𝑍
2
J
1
(𝑡) +J

𝑇

2
(𝑡) 𝑍
2
J
2
(𝑡)

+J
𝑇

1
(𝑡) 𝑆J

2
(𝑡) +J

𝑇

2
(𝑡) 𝑆J

1
(𝑡)

= (
J
1
(𝑡)

J
2
(𝑡)
)

𝑇

(
𝑍
2
𝑆

∗ 𝑍
2

)(
J
1
(𝑡)

J
2
(𝑡)
) .

(41)

Note that, when 𝑑(𝑡) = 𝑑
1
or 𝑑(𝑡) = 𝑑

2
, we haveJ

1
(𝑡) = 0

orJ
2
(𝑡) = 0, respectively. Thus, (41) still holds.

Therefore,

−𝑑
2

12
∫

𝑡−𝑑
1

𝑡−𝑑
2

̇𝑒
𝑇

(𝑡) 𝑍
2
̇𝑒 (𝑡) ≤N

𝑇

(𝑡)WN (𝑡) , (42)

where

N (𝑡)

= [𝜂
𝑇

(𝑡 − 𝑑
1
) 𝜂
𝑇

(𝑡 − 𝑑 (𝑡)) 𝜂
𝑇

(𝑡 − 𝑑
2
)]
𝑇

,

W

=(

−𝑔
𝑇

1
𝑍
2
𝑔
1

𝑔
𝑇

1
(𝑍
2
− 𝑆) 𝑔

1
𝑔
𝑇

1
𝑆𝑔
1

∗ 𝑔
𝑇

1
(−2𝑍
2
+ 𝑆 + 𝑆

𝑇

) 𝑔
1
𝑔
𝑇

1
(−𝑆 + 𝑍

2
) 𝑔
1

∗ ∗ −𝑔
𝑇

1
𝑍
2
𝑔
1

).

(43)

Inspired by the free-weighting matric approach [44], we
can find that, for any appropriately dimensioned matrix 𝐻

𝑖
,

(
𝐻
𝑇

𝑖
𝑈
−1
𝐻
𝑖
𝐻
𝑇

𝑖

∗ 𝑈

) ≥ 0. Hence, the following inequality holds:

∫

𝑡

𝑡
𝑘

(
𝜓(𝑡)

̇𝑒(𝑠)
)

𝑇

(
𝐻
𝑇

𝑖
𝑈
−1

𝐻
𝑖
𝐻
𝑇

𝑖

∗ 𝑈
)(
𝜓 (𝑡)

̇𝑒 (𝑠)
) 𝑑𝑠 ≥ 0, (44)

where 𝜓(𝑡) = [𝑒𝑇(𝑡) 𝑒𝑇(𝑡
𝑘
) ̇𝑒
𝑇

(𝑡)]
𝑇.

From (44), we can immediately get that

− ∫

𝑡

𝑡
𝑘

̇𝑒
𝑇

(𝑠) 𝑈 ̇𝑒 (𝑠) 𝑑𝑠

≤ (𝑡 − 𝑡
𝑘
) 𝜓
𝑇

(𝑡)𝐻
𝑇

𝑖
𝑈
−1

𝐻
𝑖
𝜓 (𝑡)

+ 2𝜓
𝑇

(𝑡)𝐻
𝑇

𝑖
(𝑒 (𝑡) − 𝑒 (𝑡

𝑘
)) .

(45)

Furthermore, according to error system (11), for any
appropriately dimensioned matrix𝐺 and scalar 𝛾, the follow-
ing equality is satisfied:

2 [𝜂
𝑇

(𝑡) 𝑔
𝑇

1
𝐺 + 𝛾 ̇𝑒

𝑇

(𝑡) 𝐺]

× [ − ̇𝑒 (𝑡) − 𝐶
𝑖
𝑒 (𝑡) + 𝑊

0𝑖
𝑓 (𝑒 (𝑡))

+ 𝑊
1𝑖
𝑓 (𝑒 (𝑡 − 𝑑 (𝑡)))

+𝑊
2𝑖
∫

𝑡

𝑡−𝜏(𝑡)

𝑓 (𝑒 (𝑠)) 𝑑𝑠 + 𝐾𝑒 (𝑡
𝑘
)] = 0.

(46)

On the other hand, we have from (8) that, for any 𝜀 =
1, 2, . . . , 𝑛,

(𝑓
𝜀
(𝑒
𝜀
(𝑡)) − 𝐹

−

𝜀
𝑒
𝜀
(𝑡)) (𝑓

𝜀
(𝑒
𝜀
(𝑡)) − 𝐹

+

𝜀
𝑒
𝜀
(𝑡))

≤ 0,

(47)

which is equivalent to

𝜂
𝑇

(𝑡)(

𝐹
−

𝜀
𝐹
+

𝜀
𝑒
𝜀
𝑒
𝑇

𝜀
−
𝐹
−

𝜀
+ 𝐹
+

𝜀

2
𝑒
𝜀
𝑒
𝑇

𝜀

−
𝐹
−

𝜀
+ 𝐹
+

𝜀

2
𝑒
𝜀
𝑒
𝑇

𝜀
𝑒
𝜀
𝑒
𝑇

𝜀

)𝜂(𝑡)

≤ 0,

(48)
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where 𝑒
𝜀
denotes the unit column vector with one element on

its 𝜀th row and zeros elsewhere. Thus, for any appropriately
dimensioned diagonal matrices 𝑉

1𝑖
> 0, the following

inequality holds [45]:

𝜂
𝑇

(𝑡) (
−𝐹
1
𝑉
1𝑖
𝐹
2
𝑉
1𝑖

∗ −𝑉
1𝑖

) 𝜂 (𝑡) ≥ 0, (49)

which implies

𝜂
𝑇

(𝑡)

× (−𝑔
𝑇

1
𝐹
1
𝑉
1𝑖
𝑔
1
+ 𝑔
𝑇

2
𝑉
1𝑖
𝐹
2
+ 𝑔
𝑇

1
𝐹
2
𝑉
1𝑖
𝑔
2
− 𝑔
𝑇

2
𝑉
1𝑖
𝑔
2
)

× 𝜂 (𝑡) ≥ 0.

(50)

Similarly, for any appropriately dimensioned diagonal
matrices 𝑉

2𝑖
> 0, 𝑉

3𝑖
> 0, and 𝑉

4𝑖
> 0, the following inequali-

ties also hold:

𝜂
𝑇

(𝑡 − 𝑑
1
)

× (−𝑔
𝑇

1
𝐹
1
𝑉
2𝑖
𝑔
1
+ 𝑔
𝑇

2
𝑉
2𝑖
𝐹
2
+ 𝑔
𝑇

1
𝐹
2
𝑉
2𝑖
𝑔
2
− 𝑔
𝑇

2
𝑉
2𝑖
𝑔
2
)

× 𝜂 (𝑡 − 𝑑
1
) ≥ 0,

𝜂
𝑇

(𝑡 − 𝑑 (𝑡))

× (−𝑔
𝑇

1
𝐹
1
𝑉
3𝑖
𝑔
1
+ 𝑔
𝑇

2
𝑉
3𝑖
𝐹
2
+ 𝑔
𝑇

1
𝐹
2
𝑉
3𝑖
𝑔
2
− 𝑔
𝑇

2
𝑉
3𝑖
𝑔
2
)

× 𝜂 (𝑡 − 𝑑 (𝑡)) ≥ 0,

𝜂
𝑇

(𝑡 − 𝑑
2
)

× (−𝑔
𝑇

1
𝐹
1
𝑉
4𝑖
𝑔
1
+ 𝑔
𝑇

2
𝑉
4𝑖
𝐹
2
+ 𝑔
𝑇

1
𝐹
2
𝑉
4𝑖
𝑔
2
− 𝑔
𝑇

2
𝑉
4𝑖
𝑔
2
)

× 𝜂 (𝑡 − 𝑑
2
) ≥ 0.

(51)

Adding the left-hand sides of (46)–(51) to L𝑉(𝑒(𝑡), 𝑡, 𝑖)
and letting 𝐿 = 𝐺𝐾, we have from (29)–(36), (42), and (45)
that, for 𝑡 ∈ [𝑡

𝑘
, 𝑡
𝑘+1
),

L𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)

≤ X
𝑇

(𝑡) [
𝑡
𝑘+1
− 𝑡

ℎ
𝑘

Σ
1𝑖
(ℎ
𝑘
) +
𝑡 − 𝑡
𝑘

ℎ
𝑘

Γ
𝑖
(ℎ
𝑘
)]X (𝑡) ,

(52)

where

Γ
𝑖
(ℎ
𝑘
) = Σ
1𝑖
(0) + ℎ

𝑘

(
(
(

(

𝑔
𝑇

1
𝐻
𝑇

1𝑖

0

0

0

𝐻
𝑇

2𝑖

𝐻
𝑇

3𝑖

)
)
)

)

𝑈
−1
(
(
(

(

𝑔
𝑇

1
𝐻
𝑇

1𝑖

0

0

0

𝐻
𝑇

2𝑖

𝐻
𝑇

3𝑖

)
)
)

)

𝑇

,

X (𝑡) = [𝜂𝑇 (𝑡) 𝜂𝑇 (𝑡 − 𝑑
1
) 𝜂
𝑇

(𝑡 − 𝑑 (𝑡)) 𝜂
𝑇

(𝑡 − 𝑑
2
) (∫

𝑡

𝑡−𝜏(𝑡)

𝑓 (𝑒 (𝑠)) 𝑑𝑠)

𝑇

𝑒
𝑇

(𝑡
𝑘
) ̇𝑒
𝑇

(𝑡)]

𝑇

.

(53)

According to Lemma 5, (24) is equivalent to

Σ
1𝑖
(ℎ
𝑘
) + ℎ

(
(
(

(

𝑔
𝑇

1
𝐻
𝑇

1𝑖

0

0

0

𝐻
𝑇

2𝑖

𝐻
𝑇

3𝑖

)
)
)

)

𝑈
−1
(
(
(

(

𝑔
𝑇

1
𝐻
𝑇

1𝑖

0

0

0

𝐻
𝑇

2𝑖

𝐻
𝑇

3𝑖

)
)
)

)

𝑇

< 0, (54)

which implies

Γ
𝑖
(ℎ
𝑘
) < 0, Σ

1𝑖
(0) < 0. (55)

From (23) and (55), it can be seen that

Σ
1𝑖
(ℎ
𝑘
) =
ℎ
𝑘

ℎ
Σ
1𝑖
(ℎ) +

ℎ − ℎ
𝑘

ℎ
Σ
1𝑖
(0) < 0. (56)

Thus, we can show from (52)–(56) that

L𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)

≤ −𝜉 (‖𝑒(𝑡)‖
2

+ ‖𝑒(𝑡 − 𝑑(𝑡))‖
2

+ ‖𝑒(𝑡 − 𝜏(𝑡))‖
2

+
𝑒(𝑡𝑘)



2

) .

(57)

From the definition of 𝑉(𝑒(𝑡), 𝑡, 𝑟(𝑡)), ̇𝑒(𝑡), and 𝑓(𝑒(𝑡)),
there exist positive scalars 𝛿

0
, 𝛿
1
, 𝛿
2
, 𝛿
3
, and 𝛿

4
such that the

following inequality holds:

𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)

≤ 𝛿
0

𝑒(𝑡𝑘)


2

+ 𝛿
1
‖𝑒(𝑡)‖

2

+ 𝛿
2
∫

𝑡

𝑡−𝜛

‖𝑒(𝑠)‖
2

𝑑𝑠
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+ 𝛿
3
∫

𝑡

𝑡−𝜛

‖𝑒(𝑠 − 𝑑(𝑠))‖
2

𝑑𝑠

+ 𝛿
4
∫

𝑡

𝑡−𝜛

‖𝑒(𝑠 − 𝜏(𝑠))‖
2

𝑑𝑠.

(58)

Define a new function �̃�(𝑒(𝑡), 𝑡, 𝑟(𝑡)) = 𝑒𝜖𝑡𝑉(𝑒(𝑡), 𝑡, 𝑟(𝑡)),
where 𝜖 > 0 and 𝜖max{𝛿

0
, 𝛿
1
+ 𝛿
2
𝜛𝑒
𝜖𝜛

, 𝛿
3
𝜛𝑒
𝜖𝜛

, 𝛿
4
𝜛𝑒
𝜖𝜛

} ≤ 𝜉.
It can be found that

�̃� (𝑒 (𝑡) , 𝑡, 𝑟 (𝑡))

≥ �̃�
1
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡)) + �̃�

7
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡))

= 𝑒
𝜖𝑡

(
𝑒 (𝑡)

𝑒 (𝑡
𝑘
)
)

𝑇

[
𝑡
𝑘+1
− 𝑡

ℎ
𝑘

Σ
𝑖
(ℎ
𝑘
) +
𝑡 − 𝑡
𝑘

ℎ
𝑘

Σ
𝑖
(0)]

× (
𝑒 (𝑡)

𝑒 (𝑡
𝑘
)
) ,

(59)

where

Σ
𝑖
(ℎ
𝑘
) =
ℎ
𝑘

ℎ
Σ
𝑖
(ℎ) +

ℎ − ℎ
𝑘

ℎ
Σ
𝑖
(0) . (60)

Due to the fact that 𝑃
𝑖
> 0 and Σ

𝑖
(ℎ) > 0, we can find a

sufficiently small scalar 𝛿 > 0 such that 𝑃
𝑖
> 𝛿𝐼 and Σ

𝑖
(ℎ) >

𝛿𝐼, which implies �̃�(𝑒(𝑡), 𝑡, 𝑟(𝑡)) > 𝛿𝑒𝜖𝑡‖𝑒(𝑡)‖2 > 0.
On the other hand, from (57) and (58) we have

L�̃� (𝑒 (𝑡) , 𝑡, 𝑖)

≤ 𝑒
𝜖𝑡

[ (𝜖𝛿
0
− 𝜉)
𝑒(𝑡𝑘)



2

+ (𝜖𝛿
1
− 𝜉) ‖𝑒(𝑡)‖

2

− 𝜉‖𝑒 (𝑡 − 𝑑 (𝑡))‖
2

− 𝜉‖𝑒 (𝑡 − 𝜏 (𝑡))‖
2

+ 𝜖𝛿
2
∫

𝑡

𝑡−𝜛

‖𝑒 (𝑠)‖
2

𝑑𝑠

+ 𝜖𝛿
3
∫

𝑡

𝑡−𝜛

‖𝑒 (𝑡 − 𝑑 (𝑠))‖
2

𝑑𝑠

+𝜖𝛿
4
∫

𝑡

𝑡−𝜛

‖𝑒 (𝑡 − 𝜏 (𝑠))‖
2

𝑑𝑠] .

(61)

By using Dynkin’s formula, for 𝑇 > 0, we have

E (�̃� (𝑒 (𝑡) , 𝑡, 𝑖))

≤ 𝐽
1
+ (𝜖𝛿
0
− 𝜉)E{∫

𝑇

0

𝑒
𝜖𝑡𝑒 (𝑡𝑘)



2

𝑑𝑡}

+ (𝜖𝛿
1
− 𝜉)E{∫

𝑇

0

𝑒
𝜖𝑡

‖𝑒 (𝑡)‖
2

𝑑𝑡}

− 𝜉E{∫
𝑇

0

𝑒
𝜖𝑡

‖𝑒 (𝑡 − 𝑑 (𝑡))‖
2

𝑑𝑡}

− 𝜉E{∫
𝑇

0

𝑒
𝜖𝑡

‖𝑒 (𝑡 − 𝜏 (𝑡))‖
2

𝑑𝑡}

+ 𝜖𝛿
2
E{∫
𝑇

0

∫

𝑡

𝑡−𝜛

𝑒
𝜖𝑡

‖𝑒 (𝑠)‖
2

𝑑𝑠 𝑑𝑡}

+ 𝜖𝛿
3
E{∫
𝑇

0

∫

𝑡

𝑡−𝜛

𝑒
𝜖𝑡

‖𝑒 (𝑠 − 𝑑 (𝑠))‖
2

𝑑𝑠 𝑑𝑡}

+ 𝜖𝛿
4
E{∫
𝑇

0

∫

𝑡

𝑡−𝜛

𝑒
𝜖𝑡

‖𝑒 (𝑠 − 𝜏 (𝑠))‖
2

𝑑𝑠 𝑑𝑡} ,

(62)

where 𝐽
1
= [𝛿
0
+ 𝛿
1
+ 𝜛𝛿
2
+ 𝜛𝛿
3
+ 𝜛𝛿
4
]sup
−𝜛≤𝑠≤0

E‖𝜑(𝑠)‖
2.

Consequently, by changing the integration sequence, the
following inequalities hold:

∫

𝑇

0

∫

𝑡

𝑡−𝜛

𝑒
𝜖𝑡

‖𝑒(𝑠)‖
2

𝑑𝑠 𝑑𝑡

≤ ∫

𝑇

−𝜛

(∫

𝜃+𝜛

𝜃

𝑒
𝜖𝑡

𝑑𝑡) ‖𝑒(𝑠)‖
2

𝑑𝑠

≤ ∫

𝑇

−𝜛

𝜛𝑒
𝜖(𝜃+𝜛)

‖𝑒 (𝑠)‖
2

𝑑𝑠

≤ 𝜛𝑒
𝜖𝜛

∫

𝑇

0

𝑒
𝜖𝑡

‖𝑒 (𝑡)‖
2

𝑑𝑡 + 𝜛𝑒
𝜖𝜛

∫

0

−𝜛

𝜑 (𝑠)


2

𝑑𝑠

≤ 𝜛𝑒
𝜖𝜛

∫

𝑇

0

𝑒
𝜖𝑡

‖𝑒 (𝑡)‖
2

𝑑𝑡 + 𝜛𝑒
𝜖𝜛 sup
−𝜛≤𝑠≤0

𝜑 (𝑠)


2

,

∫

𝑇

0

∫

𝑡

𝑡−𝜛

𝑒
𝜖𝑡

‖𝑒 (𝑠 − 𝑑 (𝑠))‖
2

𝑑𝑠𝑑𝑡

≤ 𝜛𝑒
𝜖𝜛

∫

𝑇

0

𝑒
𝜖𝑡

‖𝑒(𝑡 − 𝑑(𝑡))‖
2

𝑑𝑡

+ 𝜛𝑒
𝜖𝜛 sup
−𝜛≤𝑠≤0

𝜑 (𝑠)


2

,

∫

𝑇

0

∫

𝑡

𝑡−𝜛

𝑒
𝜖𝑡

‖𝑒(𝑠 − 𝜏(𝑠))‖
2

𝑑𝑠𝑑𝑡

≤ 𝜛𝑒
𝜖𝜛

∫

𝑇

0

𝑒
𝜖𝑡

‖𝑒(𝑡 − 𝜏(𝑡))‖
2

𝑑𝑡

+ 𝜛𝑒
𝜖𝜛 sup
−𝜛≤𝑠≤0

𝜑 (𝑠)


2

.

(63)

After substituting (63) into the right side of (62) and then
using 𝜖max{𝛿

0
, 𝛿
1
+ 𝛿
2
𝜛𝑒
𝜖𝜛

, 𝛿
3
𝜛𝑒
𝜖𝜛

, 𝛿
4
𝜛𝑒
𝜖𝜛

} ≤ 𝜉, we can
obtain

E (�̃� (𝑒 (𝑡) , 𝑡, 𝑖)) ≤ 𝐽
1
+ 𝐽
2
, (64)

where 𝐽
2

= (𝜖𝛿
2
𝜛
2

𝑒
𝜖𝜛

+ 𝜖𝛿
3
𝜛
2

𝑒
𝜖𝜛

+ 𝜖𝛿
4
𝜛
2

𝑒
𝜖𝜛

)

sup
−𝜛≤𝑠≤0

E‖𝜑(𝑠)‖
2.
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So,

E‖𝑒 (𝑇)‖
2

≤
𝐽
1
+ 𝐽
2

𝛿
𝑒
−𝜖𝑡

. (65)

Then it can be shown that, for any 𝑡 > 0,

E‖𝑒 (𝑡)‖
2

≤ 𝜁𝑒
−𝜖𝑡

E{ sup
−𝜛≤𝑠≤0

𝜑 (𝑠)


2

} , (66)

where 𝜁 = (1/𝛿)[𝛿
0
+𝛿
1
+𝜏𝛿
2
+𝜏𝛿
3
+𝜏𝛿
4
+𝜖𝛿
2
𝜛
2

𝑒
𝜖𝜛

+𝜖𝛿
3
𝜛
2

𝑒
𝜖𝜛

+

𝜖𝛿
4
𝜛
2

𝑒
𝜖𝜛

].
Consequently, according to the Lyapunov-Krasovskii sta-

bility theory and Definition 3, we know that the error system
(11) is exponentially stable. This completes the proof.

4. Exponential Synchronization for Stochastic
Neural Networks with Mixed Time Delays
and Markovian Jump via Sampled Data

In this section, some sufficient conditions of exponential
synchronization for stochastic error system (14) are obtained
by employing the Lyapunov-Krasovskii functionals.

Theorem 8. Under Assumptions H
1
, H
2
, and H

3
, for given

scalar 𝛾, the error system (14) is globally exponentially stable,
which ensures that the master system (12) and slave system (13)
are stochastically synchronized, if there exist positive scalars 𝜆

𝑖
,

symmetric positive definite matrices 𝑃
𝑖
, 𝑄
1
, 𝑄
2
, 𝑄
3
, 𝑍
1
, 𝑍
2
,

𝑍
3
, and 𝑍

4
, positive definite matrices 𝑌

1𝑖
, 𝑌
2𝑖
, 𝑌
3𝑖
, and 𝑌

4𝑖
, and

matrices �̃�
𝑘
, 𝑄
𝑘
, �̃�
𝑘
, (𝑘 = 1, 2, . . . , 8), 𝐺, and 𝐿, such that, for

any 𝑖 ∈ S, the following matrix inequalities hold:

𝑃
𝑖
≤ 𝜆
𝑖
𝐼, (67)

Ω =(

Π √𝑑
1
�̃� √𝑑

12
𝑄 √ℎ�̃�

∗ −𝑍
1

0 0

∗ ∗ −𝑍
2

0

∗ ∗ ∗ −𝑍
4

) < 0, (68)

where �̃� = col{�̃�
1
�̃�
2
⋅ ⋅ ⋅ �̃�
8
}, 𝑄 = col{𝑄

1
𝑄
2
⋅ ⋅ ⋅ 𝑄
8
}, �̃� =

col{�̃�
1
�̃�
2
⋅ ⋅ ⋅ �̃�
8
}, and Π is given as follows:

Π =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

Π
11𝑖
Π
12
Π
13𝑖
Π
14
Π
15
Π
16

Π
17𝑖

Π
18𝑖

∗ Π
22
Π
23
Π
24
Π
25
Π
26

Π
27

Π
28

∗ ∗ Π
33
−𝑄
3
0 −�̃�

3
𝛾𝐹
𝑇

𝑊
𝑇

1𝑖
𝐺 0

∗ ∗ ∗ Π
44
−𝑄
𝑇

5
Π
46

−𝑄
𝑇

7
−𝑄
𝑇

8

∗ ∗ ∗ ∗ 𝜆
𝑖
𝑌
3𝑖
−�̃�
5

0 0

∗ ∗ ∗ ∗ ∗ Π
66

Π
67𝑖

−�̃�
𝑇

8

∗ ∗ ∗ ∗ ∗ ∗ Π
77

𝛾𝐺𝑊
2𝑖

∗ ∗ ∗ ∗ ∗ ∗ ∗ −𝑍
3

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (69)

where

Π
11𝑖

=

𝑠

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗
+ 𝜆
𝑖
𝑌
1𝑖
+ 𝑄
1
+ 𝑄
2
+ 𝑄
3

+ 𝜏
2

𝐹
𝑇

𝑍
3
𝐹 − 𝐺𝐶

𝑖
− 𝐶
𝑇

𝑖
𝐺

+ 𝐺𝑊
0𝑖
𝐹 + 𝐹

𝑇

𝑊
𝑇

0𝑖
𝐺 + �̃�

1
+ �̃�
𝑇

1
+ �̃�
1
+ �̃�
𝑇

1
,

Π
12
= −�̃�
1
+ �̃�
𝑇

2
+ 𝑄
1
+ �̃�
𝑇

2
,

Π
13𝑖
= 𝐺𝑊

1𝑖
𝐹 + �̃�

𝑇

3
+ �̃�
𝑇

3
,

Π
14
= �̃�
𝑇

4
− 𝑄
1
+ �̃�
𝑇

4
,

Π
15
= �̃�
𝑇

5
+ �̃�
𝑇

5
,

Π
16
= 𝐿 + �̃�

𝑇

6
+ �̃�
𝑇

6
− �̃�
1
,

Π
17𝑖

= 𝑃
𝑖
− 𝐺 − 𝛾𝐶

𝑇

𝑖
𝐺 + 𝛾𝐹

𝑇

𝑊
𝑇

0𝑖
𝐺 + �̃�

𝑇

7
+ �̃�
𝑇

7
,

Π
18𝑖
= 𝐺𝑊

2𝑖
+ �̃�
𝑇

8
+ �̃�
𝑇

8
,

Π
22
= −𝑄
1
− �̃�
2
− �̃�
𝑇

1
+ 𝑄
2
+ 𝑄
𝑇

2
,

Π
23
= −�̃�
𝑇

3
+ 𝑄
𝑇

3
,

Π
24
= −�̃�
𝑇

4
− 𝑄
2
+ 𝑄
𝑇

4
,

Π
25
= −�̃�
𝑇

5
+ 𝑄
𝑇

5
, Π

26
= −�̃�
𝑇

6
+ 𝑄
𝑇

6
− �̃�
2
,

Π
27
= −�̃�
𝑇

7
+ 𝑄
𝑇

7
, Π

28
= −�̃�
𝑇

8
+ 𝑄
𝑇

8
,

Π
33
= 𝜆
𝑖
𝑌
2𝑖
− (1 − 𝜇)𝑄

2
,
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Π
44
= −𝑄
3
− 𝑄
4
− 𝑄
𝑇

4
,

Π
46
= −𝑄
𝑇

6
− �̃�
4
,

Π
66
= 𝜆
𝑖
𝑌
3𝑖
− �̃�
6
− �̃�
𝑇

6
,

Π
67𝑖
= 𝛾𝐿
𝑇

− �̃�
𝑇

7
+ 𝜆
𝑖
𝑌
4𝑖
,

Π
77
= 𝑑
1
𝑍
1
+ 𝑑
12
𝑍
2
+ ℎ𝑍
4
− 𝛾𝐺 − 𝛾𝐺

𝑇

,

𝐹 = diag {𝐹
1
𝐹
2
⋅ ⋅ ⋅ 𝐹
𝑛
} , 𝐹

𝜀
= max {𝐹

−

𝜀

 ,
𝐹
+

𝜀

} ,

𝜀 = 1, 2, . . . , 𝑛.

(70)

Proof. Let 𝛽(𝑒(𝑡)) = −𝐶(𝑟(𝑡))𝑒(𝑡) + 𝑊
0
(𝑟(𝑡))𝑓(𝑒(𝑡)) +

𝑊
1
(𝑟(𝑡))𝑓(𝑒(𝑡 − 𝑑(𝑡))) + 𝑊

2
(𝑟(𝑡)) ∫

𝑡

𝑡−𝜏(𝑡)

𝑓(𝑒(𝑠))𝑑𝑠 + 𝐾𝑒(𝑡
𝑘
).

Then, the system (14) can be written as

𝑑𝑒 (𝑡)

= 𝛽 (𝑒 (𝑡)) 𝑑𝑡 + 𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝑑 (𝑡)) ,

𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡
𝑘
) , 𝑟 (𝑡)) 𝑑𝜔 (𝑡) .

(71)

To analyze the stability of error system (14), we construct
the following stochastic Lyapunov functional candidate:

𝑉 (𝑒 (𝑡) , 𝑡, 𝑟 (𝑡)) =

6

∑

𝑙=1

𝑉
𝑙
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡)) ,

𝑡 ∈ [𝑡
𝑘
, 𝑡
𝑘+1
) ,

(72)

where

𝑉
1
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡)) = 𝑒

𝑇

(𝑡) 𝑃 (𝑟 (𝑡)) 𝑒 (𝑡) ,

𝑉
2
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡))

= ∫

𝑡

𝑡−𝑑
1

𝑒
𝑇

(𝑠) 𝑄
1
𝑒 (𝑠) 𝑑𝑠 + ∫

𝑡

𝑡−𝑑(𝑡)

𝑒
𝑇

(𝑠) 𝑄
2
𝑒 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑
2

𝑒
𝑇

(𝑠) 𝑄
3
𝑒 (𝑠) 𝑑𝑠,

𝑉
3
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡)) = ∫

0

−𝑑
1

∫

𝑡

𝑡+𝜃

𝛽
𝑇

(𝑒 (𝑠)) 𝑍
1
𝛽 (𝑒 (𝑠)) 𝑑𝑠 𝑑𝜃,

𝑉
4
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡)) = ∫

−𝑑
1

−𝑑
2

∫

𝑡

𝑡+𝜃

𝛽
𝑇

(𝑒 (𝑠)) 𝑍
2
𝛽 (𝑒 (𝑠)) 𝑑𝑠 𝑑𝜃,

𝑉
5
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡))

= 𝜏∫

0

−𝜏

∫

𝑡

𝑡+𝜃

𝑓
𝑇

(𝑒 (𝑠)) 𝑍
3
𝑓 (𝑒 (𝑠)) 𝑑𝑠 𝑑𝜃,

𝑉
6
(𝑒 (𝑡) , 𝑡, 𝑟 (𝑡))

= ∫

0

−ℎ

∫

𝑡

𝑡+𝜃

𝛽
𝑇

(𝑒 (𝑠)) 𝑍
4
𝛽 (𝑒 (𝑠)) 𝑑𝑠 𝑑𝜃.

(73)

Let L be the weak infinitesimal operator of stochastic
process (𝑒(𝑡), 𝑡 ≥ 0, 𝑟(𝑡)) along the trajectories of error system
(14). Then we obtain that

𝑑𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)

=L𝑉 (𝑒 (𝑡) , 𝑡, 𝑖) 𝑑𝑡

+ 2𝑒
𝑇

(𝑡) 𝑃
𝑖
𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝑑 (𝑡)) ,

𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡
𝑘
) , 𝑖) 𝑑𝜔 (𝑡) ,

(74)

where

L𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)

= 𝑉
𝑡
(𝑒 (𝑡) , 𝑡, 𝑖) + 𝑉

𝑥
(𝑒 (𝑡) , 𝑡, 𝑖) 𝛽 (𝑒 (𝑡))

+
1

2
trace [𝜌𝑇 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝑑 (𝑡)) ,

𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡
𝑘
) , 𝑖)

× 𝑉
𝑒𝑒
(𝑒 (𝑡) , 𝑡, 𝑖)

× 𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝑑 (𝑡)) ,

𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡
𝑘
) , 𝑖) ]

+

S

∑

𝑗=1

𝜋
𝑖𝑗
𝑉 (𝑒 (𝑡) , 𝑡, 𝑗) ,

𝑉
𝑡
(𝑒 (𝑡) , 𝑡, 𝑖) =

𝜕𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)

𝜕𝑡
,

𝑉
𝑒
(𝑒 (𝑡) , 𝑡, 𝑖)

= (
𝜕𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)

𝜕𝑒
1

,
𝜕𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)

𝜕𝑒
2

, . . . ,
𝜕𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)

𝜕𝑒
𝑛

) ,

𝑉
𝑒𝑒
(𝑒 (𝑡) , 𝑡, 𝑖) = (

𝜕
2
𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)

𝜕𝑒
𝑖
𝜕𝑒
𝑗

)

𝑛×𝑛

.

(75)

So, we have that

L𝑉
1
(𝑒 (𝑡) , 𝑡, 𝑖)

= 2𝑒
𝑇

(𝑡) 𝑃
𝑖
𝛽 (𝑒 (𝑡)) + 𝑒

𝑇

(𝑡) [

[

S

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗

]

]

𝑒 (𝑡)

+ trace [𝜌𝑇 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝑑 (𝑡)) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡
𝑘
) , 𝑖)

× 𝑃
𝑖
𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝑑 (𝑡)) ,

𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡
𝑘
) , 𝑖) ]

≤ 2𝑒
𝑇

(𝑡) 𝑃
𝑖
𝛽 (𝑒 (𝑡)) + 𝑒

𝑇

(𝑡) [

[

S

∑

𝑗=1

𝜋
𝑖𝑗
𝑃
𝑗

]

]

𝑒 (𝑡)

+ 𝜆
𝑖
[𝑒
𝑇

(𝑡) 𝑌
1𝑖
𝑒 (𝑡) + 𝑒

𝑇

(𝑡 − 𝑑 (𝑡))
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× 𝑌
2𝑖
𝑒 (𝑡 − 𝑑 (𝑡)) + 𝑒

𝑇

(𝑡 − 𝜏 (𝑡)) 𝑌
3𝑖
𝑒 (𝑡 − 𝜏 (𝑡))

+𝑒
𝑇

(𝑡
𝑘
) 𝑌
4𝑖
𝑒 (𝑡
𝑘
)] ,

L𝑉
2
(𝑒 (𝑡) , 𝑡, 𝑖)

= 𝑒
𝑇

(𝑡) (𝑄
1
+ 𝑄
2
+ 𝑄
3
) 𝑒 (𝑡)

− 𝑒
𝑇

(𝑡 − 𝑑
1
) 𝑄
1
𝑒 (𝑡 − 𝑑

1
)

− (1 − 𝜇) 𝑒
𝑇

(𝑡 − 𝑑 (𝑡)) 𝑄
2
𝑒 (𝑡 − 𝑑 (𝑡))

− 𝑒
𝑇

(𝑡 − 𝑑
2
) 𝑄
3
𝑒 (𝑡 − 𝑑

2
) ,

L𝑉
3
(𝑒 (𝑡) , 𝑡, 𝑖)

= 𝑑
1
𝛽
𝑇

(𝑒 (𝑡)) 𝑍
1
𝛽 (𝑒 (𝑡))

− ∫

𝑡

𝑡−𝑑
1

𝛽
𝑇

(𝑒 (𝑡)) 𝑍
1
𝛽 (𝑒 (𝑡)) 𝑑𝑠,

L𝑉
4
(𝑒 (𝑡) , 𝑡, 𝑖)

= 𝑑
12
𝛽
𝑇

(𝑒 (𝑡)) 𝑍
2
𝛽 (𝑒 (𝑡))

− ∫

𝑡

𝑡−𝑑
1

𝛽
𝑇

(𝑒 (𝑡)) 𝑍
2
𝛽 (𝑒 (𝑡)) 𝑑𝑠,

L𝑉
6
(𝑒 (𝑡) , 𝑡, 𝑖)

= ℎ𝛽
𝑇

(𝑒 (𝑡)) 𝑍
4
𝛽 (𝑒 (𝑡))

− ∫

𝑡

𝑡−ℎ

𝛽
𝑇

(𝑒 (𝑡)) 𝑍
4
𝛽 (𝑒 (𝑡)) 𝑑𝑠

≤ ℎ𝛽
𝑇

(𝑒 (𝑡)) 𝑍
4
𝛽 (𝑒 (𝑡))

− ∫

𝑡

𝑡
𝑘

𝛽
𝑇

(𝑒 (𝑡)) 𝑍
4
𝛽 (𝑒 (𝑡)) 𝑑𝑠.

(76)

It is easy to see from (71) that

𝑒 (𝑡) − 𝑒 (𝑡 − 𝑑
1
)

= ∫

𝑡

𝑡−𝑑
1

𝛽 (𝑒 (𝑠)) 𝑑𝑠

+ ∫

𝑡

𝑡−𝑑
1

𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝑑 (𝑡)) ,

𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡
𝑘
) , 𝑖) 𝑑𝜔 (𝑡) .

(77)

Taking the mathematical expectation on both sides of
(77) yields

E{∫
𝑡

𝑡−𝑑
1

𝛽 (𝑒 (𝑠)) 𝑑𝑠}

= E {𝑒 (𝑡) − 𝑒 (𝑡 − 𝑑
1
)} = E {𝜉

𝑇

1
X (𝑡)} ,

(78)

where

X (𝑡) = col{𝑒 (𝑡) 𝑒 (𝑡 − 𝑑
1
) 𝑒 (𝑡 − 𝑑 (𝑡)) 𝑒 (𝑡 − 𝑑

2
) 𝑒 (𝑡 − 𝜏 (𝑡)) 𝑒 (𝑡

𝑘
) 𝛽 (𝑡) ∫

𝑡

𝑡−𝜏(𝑡)

𝑓 (𝑒 (𝑠)) 𝑑𝑠} ,

𝜉
1
= col {𝐼 − 𝐼 0 0 0 0 0 0} .

(79)

Applying Lemma 6, we have that there exists a matrix �̃� ∈
𝑅
8𝑛×𝑛 such that

E{−∫
𝑡

𝑡−𝑑
1

𝛽
𝑇

(𝑒 (𝑠)) 𝑍
1
𝛽 (𝑒 (𝑠)) 𝑑𝑠}

≤ E {X(𝑡)
𝑇

[�̃�𝜉
𝑇

1
+ 𝜉
1
�̃�
𝑇

+ 𝑑
1
�̃�𝑍
−1

1
�̃�
𝑇

]X (𝑡)} .

(80)

Similarly, it can be seen that there exist matrices 𝑄 and
�̃� ∈ 𝑅

8𝑛×𝑛 such that

E{−∫
𝑡−𝑑
1

𝑡−𝑑
2

𝛽
𝑇

(𝑒 (𝑠)) 𝑍
2
𝛽 (𝑒 (𝑠)) 𝑑𝑠}

≤ E {X(𝑡)
𝑇

[𝑄𝜉
𝑇

2
+ 𝜉
2
𝑄
𝑇

+ 𝑑
12
𝑄𝑍
−1

2
𝑄
𝑇

]X (𝑡)} ,

E{−∫
𝑡

𝑡
𝑘

𝛽
𝑇

(𝑒 (𝑠)) 𝑍
4
𝛽 (𝑒 (𝑠)) 𝑑𝑠}

≤ E {X(𝑡)
𝑇

[�̃�𝜉
𝑇

3
+ 𝜉
3
�̃�
𝑇

+ ℎ�̃�𝑍
−1

4
�̃�
𝑇

]X (𝑡)} ,

(81)

where

𝜉
2
= col {0 𝐼 0 −1 0 0 0 0} ,

𝜉
3
= col {𝐼 0 0 0 0 −𝐼 0 0} .

(82)

Furthermore, according to the definition of 𝛽(𝑒(𝑡)), for
any appropriately dimensioned matrix 𝐺 and scalar 𝛾, the
following equality is satisfied:

2 [𝑒
𝑇

(𝑡) 𝐺 + 𝛾𝛽
𝑇

(𝑒 (𝑡)) 𝐺]

× [ − 𝛽 (𝑒 (𝑡)) − 𝐶
𝑖
𝑒 (𝑡) + 𝑊

0𝑖
𝑓 (𝑒 (𝑡))

+ 𝑊
1𝑖
𝑓 (𝑒 (𝑡 − 𝑑 (𝑡)))

+𝑊
2𝑖
∫

𝑡

𝑡−𝜏(𝑡)

𝑓 (𝑒 (𝑠)) 𝑑𝑠 + 𝐾𝑒 (𝑡
𝑘
)] = 0.

(83)
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Taking the mathematical expectation on both sides of
(74), letting𝐿 = 𝐺𝐾, and considering (8), (33), (76), and (80)–
(83), we obtain that

E {L𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)}

= E {X(𝑡)
𝑇

(Π + 𝑑
1
�̃�𝑍
−1

1
�̃�
𝑇

+𝑑
12
𝑄𝑍
−1

2
𝑄
𝑇

+ ℎ�̃�𝑍
−1

4
�̃�
𝑇

)X (𝑡)} .

(84)

Applying Lemma 5 and (68), we have that

E {L𝑉 (𝑒 (𝑡) , 𝑡, 𝑖)}

≤ E {−𝜉 (‖𝑒(𝑡)‖
2

+ ‖𝑒(𝑡 − 𝑑(𝑡))‖
2

+ ‖𝑒(𝑡 − 𝜏(𝑡))‖
2

)} .

(85)

Following the similar line of the proof of Theorem 7, we
can get that, for any 𝑡 > 0,

E‖𝑒 (𝑡)‖
2

≤ 𝜁𝑒
−𝜖𝑡

E{ sup
−𝜛≤𝑠≤0

𝜑(𝑠)


2

} , (86)

where 𝜁 = (1/𝛿)[𝛿
1
+ 𝜏𝛿
2
+ 𝜏𝛿
3
+ 𝜏𝛿
4
+ 𝜖𝛿
2
𝜛
2

𝑒
𝜖𝜛

+ 𝜖𝛿
3
𝜛
2

𝑒
𝜖𝜛

+

𝜖𝛿
4
𝜛
2

𝑒
𝜖𝜛

].
Thus, the master system and the slave system are expo-

nentially synchronized; the sampled-data feedback control
gain is given by 𝐾 = 𝐺−1𝐿. This completes the proof.

5. Illustrative Examples

In this section, two numerical examples are given to demon-
strate the effectiveness of the theoretical results.

Example 9. Consider the second-ordermaster system (3) and
slave system (6) with the following parameters:

𝐶
1
= (
0.8 0

0 0.9
) , 𝑊

01
= (
1.7 −0.15

−5.2 3.3
) ,

𝑊
11
= (
−1.7 −0.1

−0.26 −2.5
) ,

𝐶
2
= (
1 0

0 1
) , 𝑊

02
= (
1.5 −0.16

−5.1 3.4
) ,

𝑊
12
= (
−1.9 −0.1

−0.25 −2.6
) ,

𝑊
21
= (
0.7 0.15

2 −0.12
) , 𝑊

22
= (
0.8 0.15

1.5 −0.12
) ,

(87)

and the activation functions are taken as 𝑔(𝛼) = (|𝛼+1|− |𝛼−
1|)/2.

It can be verified that 𝐹−
1
= 𝐹
−

2
= 0 and 𝐹+

1
= 𝐹
+

2
= 1.

Thus, 𝐹
1
= (
0 0

0 0
) and 𝐹

2
= (
0.5 0

0 0.5
).

It is assumed that 𝐼(𝑡) = 0, discrete delay 𝑑(𝑡) =
𝑒
𝑡

/𝑒
𝑡

+ 1, and distributed delay 𝜏(𝑡) = 0.5 sin2(𝑡). Hence, a
straightforward calculation gives 𝑑

1
= 0.5, 𝑑

2
= 1, 𝜇 = 0.25,

and 𝜏 = 0.5. Moreover, the transition probability matrix is
chosen as Υ = ( −5 5

5 −5
).
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Figure 1: Chaotic behavior of master system (3) with 𝑢(𝑡) = 0.
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Figure 2: Chaotic behavior of slave system (6) with 𝑢(𝑡) = 0.

The chaotic behaviors of the master system (3) and slave
system (6) with 𝑢(𝑡) = 0 are given in Figures 1 and 2,
respectively, with the initial states chosen as 𝑥(𝑡) =

[−0.5 0.5]
𝑇 and 𝑦(𝑡) = [0.5 −0.5]𝑇, 𝑡 ∈ [−1 0].

Choosing 𝛾 = 0.7 and applying Theorem 7, we can find
that the upper bound on the samplings, which preserves that
master system (3) and slave system (6) are exponentially
synchronous, is 0.11. And using the Matlab LMI Control
Toolbox to solve LMIs (21)–(24), we can also obtain the
following matrices:

𝐺 = (

1.7892 0.1326

0.1326 0.2696
) ,

𝐿 = (

−3.4741 0.0513

0.0513 0.1577
) .

(88)
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Figure 3: Control input 𝑢(𝑡).
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Figure 4: State responses of error system (10).

Thus, the corresponding gain matrix in (9) is given by

𝐾 = (

−2.0298 −0.0152

1.1882 0.5924
) . (89)

Under the obtained gain matrix in (89), the response
curves of control input (9) and error system (11) are exhibited
in Figures 3 and 4, respectively. It is obvious from Figure 4
that the slave system (3) exponentially synchronizes with the
master system (6).

Example 10. In the following, we consider the second-order
stochasticmaster system (12) and slave system (13) with 𝐼(𝑡) =
(𝐼
1
(𝑡), 𝐼
2
(𝑡))
𝑇; 𝜔(𝑡) is a second-order Brownian motion and

𝑟(𝑡) is a right-continuous Markovian chain taking values in
𝑆 = {1, 2} with generator Υ = ( −3 3

3 −3

).
For the two operating conditions (modes), the associated

data are

𝐶
1
= (
0.8 0

0 0.9
) , 𝑊

01
= (
0.1 5.1

3.2 0.1
) ,

𝑊
11
= (
−0.1 3.2

5.1 −0.1
) ,

𝐶
2
= (
1 0

0 1
) , 𝑊

02
= (
0 5.2

3.1 0
) ,

𝑊
12
= (
−0.1 3.1

5.2 −0.1
) ,

𝑊
21
= (
0.7 0.15

2 −0.12
) , 𝑊

22
= (
0.8 0.15

1.5 −0.12
) ,

𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝑑 (𝑡)) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡
𝑘
) , 1)

= (
𝑧
1
(𝑡) 0

0 𝑧
2
(𝑡)
) ,

𝜌 (𝑡, 𝑒 (𝑡) , 𝑒 (𝑡 − 𝑑 (𝑡)) , 𝑒 (𝑡 − 𝜏 (𝑡)) , 𝑒 (𝑡
𝑘
) , 2)

= (
𝑧
3
(𝑡) 0

0 𝑧
4
(𝑡)
) ,

(90)

where
𝑧
1
(𝑡)

= 0.2𝑒
1
(𝑡) + 0.3𝑒

1
(𝑡 − 𝑑 (𝑡))

+ 0.1𝑒
1
(𝑡 − 𝜏 (𝑡)) + 0.4𝑒

1
(𝑡
𝑘
) ,

𝑧
2
(𝑡)

= 0.1𝑒
2
(𝑡) + 0.2𝑒

2
(𝑡 − 𝑑 (𝑡))

+ 0.2𝑒
2
(𝑡 − 𝜏 (𝑡)) + 0.3𝑒

2
(𝑡
𝑘
) ,

𝑧
3
(𝑡)

= 0.2𝑒
1
(𝑡) + 0.3𝑒

1
(𝑡 − 𝑑 (𝑡))

+ 0.1𝑒
1
(𝑡 − 𝜏 (𝑡)) + 0.2𝑒

1
(𝑡
𝑘
) ,

𝑧
4
(𝑡)

= 0.2𝑒
2
(𝑡) + 0.1𝑒

2
(𝑡 − 𝑑 (𝑡))

+ 0.1𝑒
2
(𝑡 − 𝜏 (𝑡)) + 0.3𝑒

2
(𝑡
𝑘
)

(91)

and the activation functions are taken as 𝑔(𝛼) = (1/2) sin(𝛼).
It can be verified that 𝐹−

1
= 𝐹
−

2
= −0.5 and 𝐹+

1
= 𝐹
+

2
= 0.5.

Thus, 𝐹 = ( 0.5 0
0 0.5
).

In this example, 𝐼(𝑡) = 0, discrete delay 𝑑(𝑡) = 1 +
0.3 sin(2𝑡), and distributed delay 𝜏(𝑡) = 0.5 sin2(𝑡). Then, a
straightforward calculation gives 𝑑

1
= 0.7, 𝑑

2
= 1.3, 𝜏 = 0.5,

and ̇𝑑(𝑡) = 0.6 cos(2𝑡) ≤ 0.6, which implies 𝜇 = 0.6.
Figures 5 and 6 show the chaotic behavior of the master

system (12) and slave system (13) with 𝑢(𝑡) = 0, respectively,
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Figure 5: Chaotic behavior of master system (12) with 𝑢(𝑡) = 0.
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Figure 6: Chaotic behavior of slave system (13) with 𝑢(𝑡) = 0.

under the initial states 𝑥(𝑡) = [−0.2 0.2]𝑇 and 𝑦(𝑡) =
[0.2 −0.2]

𝑇, 𝑡 ∈ [−1.3 0].
By using Matlab LMI Control Toolbox to solve the LMIs

given in Theorem 8 with 𝛾 = 0.2, we can find that the upper
bound on the samplings, which preserves that master system
(12) and slave system (13) are exponentially synchronous, is
0.1. Moreover, we can also get the following matrices:

𝐺 = (

0.1798 −0.0507

−0.0507 0.1495
) ,

𝐿 = (

−1.7755 −0.0854

−0.0854 −1.6652
) .

(92)
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Figure 7: Control input 𝑢(𝑡).

0 1 2 3 4 5
t

e 1
,e

2

0.4

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

Figure 8: State responses of error system (14).

Thus, the corresponding gain matrix in (9) is given by

𝐾 = 𝐺
−1

𝐿 = (

−11.1000 −3.9995

−4.3360 −12.4944
) . (93)

Under the above given gain matrix, Figures 7 and 8 show
the response curves of control input (9) and error system
(14), respectively. It is clear from Figures 7 and 8 that the
obtained sampled-data controller achieves the exponential
synchronization of master system (12) and slave system (13).

6. Conclusion

In this paper, the exponential synchronization issue for
stochastic neural networks (SNNs) with mixed time delays
andMarkovian jump parameters under sampled-data control
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has been addressed. New delay-dependent conditions have
been presented in terms of LMIs to ensure the exponential
stability of the considered error systems, and, thus, themaster
systems exponentially synchronize with the slave systems.
The results obtained in this paper are a little conservative
comparing the previous results in the literature.Themethods
of this paper can be applied to other classes of neural
networks such as complex neural networks and impulsive
neural networks.
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