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This paper is concerned with some properties of a periodic two-component Camassa-Holm system. By constructing two sequences
of solutions of the two-component Camassa-Holm system, we prove that the solution map of the Cauchy problem of the two-
component Camassa-Holm system is not uniformly continuous in 𝐻

𝑠 (S), 𝑠 > 5/2.

1. Introduction

In this paper, we consider the Cauchy problem of the
following two-component periodic Camassa-Holm system:

𝑚
𝑡
+ 𝑢𝑚
𝑥
+ 2𝑚𝑢

𝑥
= −𝜌𝜌

𝑥
, 𝑡 > 0, 𝑥 ∈ R,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0, 𝑡 > 0, 𝑥 ∈ R,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝜌 (0, 𝑥) = 𝜌

0
(𝑥) , 𝑥 ∈ R,

𝑢 (𝑡, 𝑥 + 1) = 𝑢 (𝑡, 𝑥) , 𝜌 (𝑡, 𝑥 + 1) = 𝜌 (𝑡, 𝑥) ,

𝑡 ≥ 0, 𝑥 ∈ R,

(1)

where 𝑚 = 𝑢 − 𝑢
𝑥𝑥
. The Camassa-Holm equation can be

obtained via the obvious reduction 𝜌 ≡ 0.
The Camassa-Holm (CH) equation has been extended

to a two-component integrable system (CH2) by combining
its integrability property with compressibility, or free-surface
elevation dynamics in its shallow-water interpretation [1, 2];
that is,

𝑚
𝑡
+ 𝑢𝑚
𝑥
+ 2𝑚𝑢

𝑥
+ 𝜎𝜌𝜌

𝑥
= 0, 𝑡 > 0, 𝑥 ∈ R,

𝜌
𝑡
+ (𝜌𝑢)

𝑥
= 0, 𝑡 > 0, 𝑥 ∈ R,

(2)

where 𝑚 = 𝑢 − 𝑢
𝑥𝑥

and 𝜎 = ±1. Local well-posedness of
system (2)with𝜎 = 1was obtained by [1, 3].Theprecise blow-
up scenarios and blow-up phenomena of strong solution for

system (2) was established by [1, 3–6]. Just recently, Gui and
Liu [7] studied system (1) with 𝜎 = 1 in Besov space and they
obtained the local well-posedness. In this paper, we consider
the Cauchy problem of system (1) and study some properties
of it.

If 𝜌 ≡ 0, then system (2) becomes the well-known
Camassa-Holm equation [8]. In the past decade, the
Camassa-Holm equation has attracted much attention
because of its integrability and the existence of multipeakon
solution; see [4, 8–22] for the details. The Cauchy problem
and initial boundary value problem of the Camassa-Holm
equation have been studied extensively [10, 23]. It has been
shown that the Camassa-Holm equation is locally well-
posedness [10] for initial data 𝑢

0
∈ 𝐻
𝑠

(S), 𝑠 > 3/2. Moreover,
it has global strong solutions [10, 18] and finite time blow-up
solutions [10]. On the other hand, it has global weak solution
in 𝐻
1

(S) [8, 9, 13, 19]. The advantage of the Camassa-Holm
equation in comparisonwith the KdV equation lies in the fact
that the Camassa-Holm equation has peaked solutions and
models wave breaking (i.e., the solution remains bounded
while its slope becomes unbounded in finite time [8, 10, 24]).

Recently, some properties of solutions to the Camassa-
Holm equation have been studied bymany authors. Himonas
et al. [15] studied the persistence properties and unique
continuation of solutions of the Camassa-Holm equation.
They showed that a strong solution of the Camassa-Holm
equation, initially decaying exponentially together with its
spatial derivative, must be identically equal to zero if it also
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decays exponentially at a later time; see [11, 22] for the
same properties of solutions to other shallow water equa-
tions. Just recently, Himonas and Kenig [16] and Himonas
et al. [14, 17] considered the nonuniform dependence on
initial data for the Camassa-Holm equation on the line
and on the circle, respectively. Lv et al. [25] obtained the
nonuniform dependence on initial data for 𝜇-𝑏 equation.
Lv and Wang [26] considered the system (1) with 𝜌 =

𝛾 − 𝛾
𝑥𝑥

and obtained the nonuniform dependence on initial
data.

In this paper, we will consider the nonuniform depen-
dence on initial data to system (1). We remark that there
is significant difference between system (1) and system (1)
with 𝜌 = 𝛾 − 𝛾

𝑥𝑥
. It is easy to see that when 𝜌 = 𝛾 − 𝛾

𝑥𝑥
,

there are some similar properties between the two equations
in system (1). Thus the proof of nonuniform dependence on
initial data to system (1) with 𝜌 = 𝛾 − 𝛾

𝑥𝑥
is similar to the

single equation, for example, Camassa-Holm equation. But in
system (1), 𝜌 and 𝑢 have different properties; see Theorem 1.
This needs constructing different asymptotic solution; see
Section 3.

This paper is organized as follows. In Section 2, we recall
the well-posedness result of Hu and Yin [27] and use it to
prove the basic energy estimate fromwhich we derive a lower
bound for the lifespan of the solution as well as an estimate of
the 𝐻

𝑠

(S) × 𝐻
𝑠−1

(S) norm of the solution (𝑢(𝑡, 𝑥), 𝜌(𝑡, 𝑥)) in
terms of 𝐻𝑠(S) × 𝐻

𝑠−1

(S) norm of the initial data (𝑢
0
, 𝜌
0
). In

Section 3, we construct approximate solutions, compute the
error, and estimate the 𝐻

1-norm of this error. In Section 4,
we estimate the difference between approximate and actual
solutions, where the exact solution is a solution to system (1)
with initial data given by the approximate solutions evaluated
at time zero. The nonuniform dependence on initial data for
system (1) is established in Section 5 by constructing two
sequences of solutions to system (1) in a bounded subset
of the Sobolev space 𝐻

𝑠

(S), whose distance at the initial
time is converging to zero while at any later time it is
bounded below by a positive constant. During preparing our
paper, we find another paper [28] where the same problem
has been considered, but our method is different from
theirs.

Notation. In the following, we denote by ∗ the spatial
convolution. Given a Banach space 𝑍, we denote its norm by
‖ ⋅ ‖
𝑍
. Since all space of functions are over S, for simplicity,

we drop S in our notations of function spaces if there is no
ambiguity. Let [𝐴, 𝐵] = 𝐴𝐵 − 𝐵𝐴 denote the commutator
of linear operator 𝐴 and 𝐵; see [29, 30] for the details. Set
‖𝑧‖
2

𝐻
𝑠
×𝐻
𝑠−1 = ‖𝑢‖

2

𝐻
𝑠 + ‖𝜌‖

2

𝐻
𝑠−1 , where 𝑧 = (𝑢, 𝜌).

2. Local Well-Posedness

In this section we first recall the known results of Hu and Yin
[27] and give a new estimate of the solution to (1).

Let Λ = (1 − 𝜕
2

𝑥
)
1/2. Then the operator Λ

−2 acting on
𝐿
2

(S) can be expressed by its associated Green’s function

𝐺(𝑥) = cosh(𝑥 − [𝑥] − (1/2))/2 sinh(1/2), where [𝑥] stands
for the integer part of 𝑥, as

Λ
−2

𝑓 (𝑥) = (𝐺 ∗ 𝑓) (𝑥)

=
1

2
∫
S

cosh (𝑥 − 𝑦 − [𝑥 − 𝑦] − (1/2))

sinh (1/2)
𝑓 (𝑦) 𝑑𝑦,

𝑓 ∈ 𝐿
2

(S) .

(3)

Hence (1) is equivalent to the following system:

𝑢
𝑡
+ 𝑢𝑢
𝑥
= −𝜕
𝑥
Λ
−2

(𝑢
2

+
1

2
𝑢
2

𝑥
+

1

2
𝜌
2

) ,

𝑡 > 0, 𝑥 ∈ R,

𝜌
𝑡
+ 𝑢𝜌
𝑥
= −𝑢
𝑥
𝜌, 𝑡 > 0, 𝑥 ∈ R,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝜌 (0, 𝑥) = 𝜌

0
(𝑥) , 𝑥 ∈ R,

𝑢 (𝑡, 𝑥 + 1) = 𝑢 (𝑡, 𝑥) , 𝜌 (𝑡, 𝑥 + 1) = 𝜌 (𝑡, 𝑥) ,

𝑡 ≥ 0, 𝑥 ∈ R.

(4)

In the rest of this paper, wewill consider the following system:

𝑢
𝑡
+ 𝑢𝑢
𝑥
= −𝜕
𝑥
Λ
−2

(𝑢
2

+
1

2
𝑢
2

𝑥
+

1

2
𝜌
2

) ,

𝑡 > 0, 𝑥 ∈ S,

𝜌
𝑡
+ 𝑢𝜌
𝑥
= −𝑢
𝑥
𝜌, 𝑡 > 0, 𝑥 ∈ S,

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) , 𝜌 (0, 𝑥) = 𝜌

0
(𝑥) , 𝑥 ∈ S.

(5)

The following result is obtained by Hu and Yin [27].

Theorem 1 (see [27]). Given 𝑧
0

= (𝑢
0
, 𝜌
0
) ∈ 𝐻

𝑠

× 𝐻
𝑠−1,

𝑠 ≥ 2. Then there exists a maximal existence time 𝑇 =

𝑇(‖𝑧
0
‖
𝐻
𝑠
×𝐻
𝑠−1) > 0 and a unique solution 𝑧 = (𝑢, 𝜌) to system

(5) such that

𝑧 = 𝑧 (⋅, 𝑧
0
)

∈ 𝐶 ([0, 𝑇) ;𝐻
𝑠

× 𝐻
𝑠−1

) ∩ 𝐶
1

([0, 𝑇) ;𝐻
𝑠−1

× 𝐻
𝑠−2

) .

(6)

Moreover, the solution depends continuously on the initial data;
that is, the mapping

𝑧
0
→ 𝑧 (⋅, 𝑧

0
) : 𝐻
𝑠

× 𝐻
𝑠−1

→ 𝐶([0, 𝑇) ;𝐻
𝑠

× 𝐻
𝑠−1

)

∩ 𝐶
1

([0, 𝑇) ;𝐻
𝑠−1

× 𝐻
𝑠−2

)

(7)

is continuous.

Next, we will give an explicit estimate for the maximal
existence time 𝑇. Also, we will show that at any time 𝑡 in
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the time interval [0, 𝑇
0
] the𝐻

𝑠-norm of the solution 𝑧(𝑡, 𝑥) is
dominated by the 𝐻

𝑠-norm of the initial data 𝑧
0
(𝑥). In order

to do this, we need the following lemmas.

Lemma 2 (see [29]). If 𝑟 > 0, then 𝐻
𝑟

∩ 𝐿
∞ is an algebra.

Moreover,
𝑓𝑔

𝐻𝑟
≤ 𝐶 (

𝑓
∞

𝑔
𝐻𝑟

+
𝑓

𝐻𝑟
𝑔

∞
) , (8)

where 𝐶 is a positive constant depending only on 𝑟.

Lemma 3 (see [29]). If 𝑟 > 0, then

[Λ
𝑟

, 𝑓] 𝑔
2

≤ 𝐶 (
𝑓𝑥

∞


Λ
𝑟−1

𝑔
2

+
Λ
𝑟

𝑓
2

𝑔
∞

) , (9)

where 𝐶 is a positive constant depending only on 𝑟.

Theorem4. Let 𝑠 > 5/2. If 𝑧 = (𝑢, 𝜌) is a solution of system (5)
with initial data 𝑧

0
described in Theorem 1, then the maximal

existence time 𝑇 satisfies

𝑇 ≥ 𝑇
0
:=

1

2𝐶
𝑠

𝑧0
𝐻𝑠×𝐻𝑠−1

, (10)

where 𝐶
𝑠
is a constant depending only on 𝑠. Also, we have

‖𝑧 (𝑡)‖
𝐻
𝑠
×𝐻
𝑠−1 ≤ 2

𝑧0
𝐻𝑠×𝐻𝑠−1

, 0 ≤ 𝑡 ≤ 𝑇
0
. (11)

Proof. The derivation of the lower bound for the maximal
existence time (10) and the solution size estimate (11) is based
on the following differential inequality for the solution 𝑧:

1

2

𝑑

𝑑𝑡
‖𝑧 (𝑡)‖

2

𝐻
𝑠
×𝐻
𝑠−1 ≤ 𝐶

𝑠
‖𝑧 (𝑡)‖

3

𝐻
𝑠
×𝐻
𝑠−1 , 0 ≤ 𝑡 < 𝑇. (12)

Suppose that (12) holds.Then, integrating (12) from 0 to 𝑡, we
have

‖𝑧 (𝑡)‖
𝐻
𝑠
×𝐻
𝑠−1 ≤

𝑧0
𝐻𝑠×𝐻𝑠−1

1 − 𝐶
𝑠

𝑧0
𝐻𝑠×𝐻𝑠−1

𝑡
. (13)

It follows from the above inequality that ‖𝑧(𝑡)‖
𝐻
𝑠
×𝐻
𝑠−1 is finite

if 𝐶
𝑠
‖𝑧
0
‖
𝐻
𝑠
×𝐻
𝑠−1𝑡 < 1. Let 𝑇

0
= 1/2𝐶

𝑠
‖𝑧
0
‖
𝐻
𝑠
×𝐻
𝑠−1 , then, for

0 ≤ 𝑡 ≤ 𝑇
0
, we have

‖𝑧 (𝑡)‖
𝐻
𝑠
×𝐻
𝑠−1 ≤

𝑧0
𝐻𝑠×𝐻𝑠−1

1 − 𝐶
𝑠

𝑧0
𝐻𝑠×𝐻𝑠−1

𝑇
0

= 2
𝑧0

𝐻𝑠×𝐻𝑠−1
. (14)

Now we prove inequality (12). Note that the products 𝑢𝑢
𝑥

and 𝑢𝜌
𝑥
are only in 𝐻

𝑠−1 if 𝑢,𝜌 ∈ 𝐻
𝑠. To deal with this

problem, we will consider the following modified system:

(𝐽
𝜀
𝑢)
𝑡
+ 𝐽
𝜀
(𝑢𝑢
𝑥
)

= −𝜕
𝑥
Λ
−2

(𝐽
𝜀
𝑢
2

+
1

2
𝐽
𝜀
𝑢
2

𝑥
+

1

2
𝐽
𝜀
𝜌
2

) ,

𝑡 > 0, 𝑥 ∈ S,

(𝐽
𝜀
𝜌)
𝑡
+ 𝐽
𝜀
(𝑢𝜌
𝑥
) = −𝐽

𝜀
(𝑢
𝑥
𝜌) , 𝑡 > 0, 𝑥 ∈ S,

(15)

where for each 𝜀 ∈ (0, 1] the operator 𝐽
𝜀
is the Friedrichs

mollifier defined by

𝐽
𝜀
𝑓 (𝑥) = 𝐽

𝜀
(𝑓) (𝑥) = 𝑗

𝜀
∗ 𝑓. (16)

Here 𝑗
𝜀
(𝑥) = (1/𝜀)𝑗(𝑥/𝜀), and 𝑗(𝑥) is a 𝐶

∞ function sup-
ported in the interval [−1, 1] such that 𝑗(𝑥) ≥ 0, ∫

S
𝑗(𝑥)𝑑𝑥 =

1. Applying the operator Λ
𝑠 and Λ

𝑠−1 to the first and second
equations of (15), respectively, then multiplying the resulting
equations by Λ

𝑠

𝐽
𝜀
𝑢 and Λ

𝑠−1

𝐽
𝜀
𝜌, respectively, and integrating

them with respect to 𝑥 ∈ S, we obtain

1

2

𝑑

𝑑𝑡

𝐽𝜀𝑢


2

𝐻
𝑠 = − ∫

S

Λ
𝑠

𝐽
𝜀
(𝑢𝑢
𝑥
) Λ
𝑠

𝐽
𝜀
𝑢 𝑑𝑥

− ∫
S

𝜕
𝑥
Λ
𝑠−2

𝜕
𝑥
Λ
−2

(𝐽
𝜀
𝑢
2

+
1

2
𝐽
𝜀
𝑢
2

𝑥

+
1

2
𝐽
𝜀
𝜌
2

)Λ
𝑠

𝐽
𝜀
𝑢 𝑑𝑥,

(17)

1

2

𝑑

𝑑𝑡

𝐽𝜀𝜌


2

𝐻
𝑠−1 = − ∫

S

Λ
𝑠−1

𝐽
𝜀
(𝑢𝜌
𝑥
) Λ
𝑠−1

𝐽
𝜀
𝜌 𝑑𝑥

− ∫
S

Λ
𝑠−1

𝐽
𝜀
(𝑢
𝑥
𝜌)Λ
𝑠−1

𝐽
𝜀
𝜌 𝑑𝑥.

(18)

We estimate the right-hand sides of (17) and (18), and we will
use the fact that Λ𝑠 and 𝐽

𝜀
are commutative and

(𝐽
𝜀
𝑓, 𝑔)
0
= (𝑓, 𝐽

𝜀
𝑔)
0
,

𝐽𝜀𝑢
𝐻𝑠

≤ ‖𝑢‖
𝐻
𝑠 . (19)

To estimate the first integrals in the right-hand sides of (17)
and (18) we write them as follows:

∫
S

Λ
𝑠

𝐽
𝜀
(𝑢𝑢
𝑥
) Λ
𝑠

𝐽
𝜀
𝑢 𝑑𝑥 = ∫

S

Λ
𝑠

(𝑢𝑢
𝑥
) 𝐽
𝜀
Λ
𝑠

𝐽
𝜀
𝑢 𝑑𝑥

= ([Λ
𝑠

, 𝑢] 𝑢
𝑥
, 𝐽
𝜀
Λ
𝑠

𝐽
𝜀
𝑢)
0

+ (𝑢Λ
𝑠

𝑢
𝑥
, 𝐽
𝜀
Λ
𝑠

𝐽
𝜀
𝑢)
0
,

∫
S

Λ
𝑠−1

𝐽
𝜀
(𝑢𝜌
𝑥
) Λ
𝑠−1

𝐽
𝜀
𝜌 𝑑𝑥 = ∫

S

Λ
𝑠−1

(𝑢𝜌
𝑥
) 𝐽
𝜀
Λ
𝑠−1

𝐽
𝜀
𝜌 𝑑𝑥

= ([Λ
𝑠−1

, 𝑢] 𝜌
𝑥
, 𝐽
𝜀
Λ
𝑠−1

𝐽
𝜀
𝜌)
0

+ (𝑢Λ
𝑠−1

𝜌
𝑥
, 𝐽
𝜀
Λ
𝑠−1

𝐽
𝜀
𝜌)
0

.

(20)

Using Lemma 3 and (19), we can estimate the first part in the
right-hand sides of (20)

([Λ
𝑠

, 𝑢] 𝑢
𝑥
, 𝐽
𝜀
Λ
𝑠

𝐽
𝜀
𝑢)
0

 ≤
[Λ
𝑠

, 𝑢] 𝑢
𝑥

2

𝐽𝜀Λ
𝑠

𝐽
𝜀
𝑢
2

≤ 𝐶
𝑠

𝑢𝑥
∞‖𝑢‖

2

𝐻
𝑠 ,


([Λ
𝑠−1

, 𝑢] 𝜌
𝑥
, 𝐽
𝜀
Λ
𝑠−1

𝐽
𝜀
𝜌)
0


≤

𝑢𝑥
∞

𝜌


2

𝐻
𝑠−1

+
𝜌𝑥

∞‖𝑢‖
𝐻
𝑠

𝜌
𝐻𝑠−1

,

(21)
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where we use the fact that ‖𝑢‖
𝐻
𝑠 = ‖Λ

𝑠

𝑢‖
2
. Noting that

[𝐽𝜀, 𝑢] 𝑓𝑥
2

≤ 𝐶
𝑢𝑥

∞

𝑓
2

, (22)

which is obtained byHimonas andKenig (see [16, Lemma 2]),
and integrating by parts, we obtain

(𝑢Λ
𝑠

𝑢
𝑥
, 𝐽
𝜀
Λ
𝑠

𝐽
𝜀
𝑢)
0

 =
(𝐽𝜀𝑢Λ

𝑠

𝑢
𝑥
, Λ
𝑠

𝐽
𝜀
𝑢)
0



=
([𝐽𝜀, 𝑢] 𝜕𝑥Λ

𝑠

𝑢, Λ
𝑠

𝐽
𝜀
𝑢)
0

+(𝑢𝐽
𝜀
𝜕
𝑥
Λ
𝑠

𝑢, Λ
𝑠

𝐽
𝜀
𝑢)
0



≤
[𝐽𝜀, 𝑢] 𝜕𝑥Λ

𝑠

𝑢
2‖

𝑢‖
𝐻
𝑠

+
1

2

(𝑢𝑥Λ
𝑠

𝐽
𝜀
𝑢, Λ
𝑠

𝐽
𝜀
𝑢)
0



≤ 𝐶
𝑠
‖ 𝑢
𝑥
‖
∞

‖ 𝑢‖
2

𝐻
𝑠 ,

(23)


(𝑢Λ
𝑠−1

𝜌
𝑥
, 𝐽
𝜀
Λ
𝑠−1

𝐽
𝜀
𝜌)
0


=


([𝐽
𝜀
, 𝑢] 𝜕
𝑥
Λ
𝑠−1

𝜌, Λ
𝑠−1

𝐽
𝜀
𝜌)
0



+
1

2


(𝑢
𝑥
Λ
𝑠−1

𝐽
𝜀
𝜌, Λ
𝑠−1

𝐽
𝜀
𝜌)
0



≤ 𝐶
𝑠

𝑢𝑥
∞

𝜌


2

𝐻
𝑠−1 .

(24)

Combining (21)–(24), we have



∫
S

Λ
𝑠

𝐽
𝜀
(𝑢𝑢
𝑥
) Λ
𝑠

𝐽
𝜀
𝑢 𝑑𝑥



≤ 𝐶
𝑠

𝑢𝑥
∞‖𝑢‖

2

𝐻
𝑠 , (25)



∫
S

Λ
𝑠−1

𝐽
𝜀
(𝑢𝜌
𝑥
) Λ
𝑠−1

𝐽
𝜀
𝜌 𝑑𝑥



≤ 𝐶
𝑠
(
𝑢𝑥

∞
+

𝜌𝑥
∞

) (‖𝑢‖
2

𝐻
𝑠 +

𝜌


2

𝐻
𝑠−1) .

(26)

For the second integral in the right-hand side of (17), we have



∫
S

𝜕
𝑥
Λ
𝑠−2

(𝐽
𝜀
𝑢
2

+
1

2
𝐽
𝜀
𝑢
2

𝑥
+

1

2
𝐽
𝜀
𝜌
2

)Λ
𝑠

𝐽
𝜀
𝑢 𝑑𝑥



≤


𝜕
𝑥
Λ
𝑠−2

(𝐽
𝜀
𝑢
2

+
1

2
𝐽
𝜀
𝑢
2

𝑥
+

1

2
𝐽
𝜀
𝜌
2

)

2
‖𝑢‖
𝐻
𝑠

≤


𝐽
𝜀
𝑢
2

+
1

2
𝐽
𝜀
𝑢
2

𝑥
+

1

2
𝐽
𝜀
𝜌
2

𝐻𝑠−1
‖𝑢‖
𝐻
𝑠

≤ 𝐶
𝑠
(‖𝑢‖
∞

+
𝜌

∞
+

𝑢𝑥
∞

) (‖𝑢‖
2

𝐻
𝑠 +

𝜌


2

𝐻
𝑠−1) ,

(27)

where we have used Lemma 2 with 𝑟 = 𝑠−1. Similarly, for the
second and third integrals in the right-hand side of (18), we
get



∫
S

Λ
𝑠−1

𝐽
𝜀
(𝑢
𝑥
𝜌)Λ
𝑠−1

𝐽
𝜀
𝜌 𝑑𝑥



≤
𝜌𝑢𝑥

𝐻𝑠−1
𝜌

𝐻𝑠−1

≤ 𝐶
𝑠

𝑢𝑥
∞

𝜌


2

𝐻
𝑠−1 .

(28)

Submitting (25), (27), and (26), (28) into (17) and (18), respec-
tively, we obtain

1

2

𝑑

𝑑𝑡

𝐽𝜀𝑢


2

𝐻
𝑠 ≤ 𝐶
𝑠
(‖𝑢‖
∞

+
𝜌

∞
+

𝑢𝑥
∞

𝜌𝑥
∞

)

× (‖𝑢‖
2

𝐻
𝑠 +

𝜌


2

𝐻
𝑠−1) ,

1

2

𝑑

𝑑𝑡

𝐽𝜀𝜌


2

𝐻
𝑠−1 ≤ 𝐶

𝑠
(‖𝑢‖
∞

+
𝜌

∞
+

𝑢𝑥
∞

+
𝜌𝑥

∞
)

× (‖𝑢‖
2

𝐻
𝑠 +

𝜌


2

𝐻
𝑠−1) .

(29)

Consequently,
1

2

𝑑

𝑑𝑡
(
𝐽𝜀𝑢



2

𝐻
𝑠 +

𝐽𝜀𝜌


2

𝐻
𝑠−1)

≤ 𝐶
𝑠
(‖𝑢‖
∞

+
𝜌

∞
+

𝑢𝑥
∞

+
𝜌𝑥

∞
)

× (‖𝑢‖
2

𝐻
𝑠 +

𝜌


2

𝐻
𝑠−1) .

(30)

Then, letting 𝜀 go to 0, we have
1

2

𝑑

𝑑𝑡
(‖𝑢‖
2

𝐻
𝑠 +

𝜌


2

𝐻
𝑠−1)

≤ 𝐶
𝑠
(‖𝑢‖
∞

+
𝜌

∞
+

𝑢𝑥
∞

+
𝜌𝑥

∞
)

× (‖𝑢‖
2

𝐻
𝑠 +

𝜌


2

𝐻
𝑠−1) ,

(31)

or
1

2

𝑑

𝑑𝑡
‖𝑧 (𝑡)‖

2

𝐻
𝑠
×𝐻
𝑠−1 ≤ 𝐶

𝑠
(‖𝑢 (𝑡)‖

𝐶
1 +

𝜌
𝐶1

)

× ‖𝑧 (𝑡)‖
2

𝐻
𝑠
×𝐻
𝑠−1 .

(32)

Since 𝑠 > 5/2, using Sobolev’s inequality we have that
‖𝑢 (𝑡)‖

𝐶
1 ≤ 𝐶
𝑠
‖𝑢 (𝑡)‖

𝐻
𝑠 ,

𝜌 (𝑡)
𝐶1

≤ 𝐶
𝑠

𝜌 (𝑡)
𝐻𝑠−1

. (33)
From (32) we obtain the desired inequality (12). This com-
pletes the proof of Theorem 4.

Recall that ‖𝑧(𝑡)‖
2

𝐻
𝑠
×𝐻
𝑠−1 = ‖𝑢(𝑡)‖

2

𝐻
𝑠 + ‖𝜌(𝑡)‖

2

𝐻
𝑠−1 , where

𝑧(𝑡) = (𝑢(𝑡), 𝜌(𝑡)). It follows fromTheorem 4 that

‖𝑢 (𝑡)‖
𝐻
𝑠 ,
𝜌 (𝑡)

𝐻𝑠−1
≤ ‖𝑧 (𝑡)‖

𝐻
𝑠
×𝐻
𝑠−1

≤ 2
𝑧0

𝐻𝑠×𝐻𝑠−1
, 0 ≤ 𝑡 ≤ 𝑇

0
.

(34)

3. Approximate Solutions

In this section we first construct a two-parameter family of
approximate solutions by using a similar method to [17] and
then compute the error and last estimate the 𝐻

1

× 𝐿
2-norm

of the error.
Following [17], our approximate solutions 𝑢

𝜔,𝜆

= 𝑢
𝜔,𝜆

(𝑡,

𝑥) and 𝜌
𝜔,𝜆

= 𝜌
𝜔,𝜆

(𝑡, 𝑥) to (5) will consist of a low frequency
and a high frequency part, that is,

𝑢
𝜔,𝜆

= 𝜔𝜆
−1

+ 𝜆
−𝑠 cos (𝜆𝑥 − 𝜔𝑡) ,

𝜌
𝜔,𝜆

= 𝜔𝜆
−1

+ 𝜆
−𝑠+1 cos (𝜆𝑥 − 𝜔𝑡) ,

(35)

where 𝜔 is in a bounded set of S and 𝜆 is in the set of positive
integers Z

+
.
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Now we compute the error. Substituting the approximate
solution (𝑢

𝜔,𝜆

, 𝜌
𝜔,𝜆

) into the first and second equation of (5),
we get the following error:

𝐸 = 𝑢
𝜔,𝜆

𝑡
+ 𝑢
𝜔,𝜆

𝑢
𝜔,𝜆

𝑥

+ 𝜕
𝑥
Λ
−2

((𝑢
𝜔,𝜆

)
2

+
1

2
(𝑢
𝜔,𝜆

𝑥
)
2

+
1

2
(𝜌
𝜔,𝜆

)
2

) ,

𝐹 = 𝜌
𝜔,𝜆

𝑡
+ 𝑢
𝜔,𝜆

𝜌
𝜔,𝜆

𝑥
+ 𝑢
𝜔,𝜆

𝑥
𝜌
𝜔,𝜆

.

(36)

Direct calculation shows that

𝑢
𝜔,𝜆

𝑡
+ 𝑢
𝜔,𝜆

𝑢
𝜔,𝜆

𝑥

= −
1

2
𝜆
−2𝑠+1 sin (2𝜆𝑥 − 2𝜔𝑡) := 𝐸

1
,

𝜕
𝑥
Λ
−2

((𝑢
𝜔,𝜆

)
2

+
1

2
(𝑢
𝜔,𝜆

𝑥
)
2

+
1

2
(𝜌
𝜔,𝜆

)
2

)

= −
3

2
𝜆
−2𝑠+1

Λ
−2 sin (2𝜆𝑥 − 2𝜔𝑡)

− 3𝜔𝜆
−𝑠

Λ
−2 sin (𝜆𝑥 − 𝜔𝑡)

+
1

2
𝜆
−2𝑠+3

Λ
−2 sin (2𝜆𝑥 − 2𝜔𝑡)

− 𝜔𝜆
−𝑠+1

Λ
−2 sin (𝜆𝑥 − 𝜔𝑡)

:= 𝐸
2
+ 𝐸
3
+ 𝐸
4
+ 𝐸
5
.

(37)

Similarly, we have

𝜌
𝜔,𝜆

𝑡
+ 𝑢
𝜔,𝜆

𝜌
𝜔,𝜆

𝑥
+ +𝑢
𝜔,𝜆

𝑥
𝜌
𝜔,𝜆

= −𝜆
−𝑠 sin (𝜆𝑥 − 𝜔𝑡)

− 𝜆
−2𝑠+2 sin (2𝜆𝑥 − 2𝜔𝑡)

:= 𝐹
1
+ 𝐹
2
.

(38)

Let 𝐶 be a generic positive constant. For any positive
quantities 𝑃 and 𝑄, we write 𝑃 ≲ 𝑄 (𝑃 ≳ 𝑄) meaning that
𝑃 ≤ 𝐶𝑄 (𝑃 ≥ 𝐶𝑄) in the following.

Next, we estimate the error. We remark that the error of
the periodic Camassa-Holm equation contains 𝐸

𝑖
(𝑖 = 1, 2, 3)

and the estimate of 𝐸
𝑖
was contained in paper [17]. In [17],

they obtained that

𝐸1
𝐻1

,
𝐸2

𝐻1
,
𝐸4

𝐻1
≲ 𝜆
−2𝑠+2

,

𝐸3
𝐻1

≲ 𝜆
−𝑠−1

.

(39)

Now, we estimate 𝐸
5
and 𝐹

𝑖
(𝑖 = 1, 2). We need the

following lemma.

Lemma 5 (see [17]). Let 𝜎 ∈ R. If 𝜆 ∈ Z
+
and 𝜆 ≫ 1 then

‖cos (𝜆𝑥 − 𝛼)‖
𝐻
𝜎
(S) ≈ 𝜆

𝜎

, 𝛼 ∈ R. (40)

The above relation also holds if cos(𝜆𝑥 − 𝛼) is replaced with
sin(𝜆𝑥 − 𝛼).

Estimating the 𝐻
1-Norm of 𝐸

5
. By using the definition of Λ,

we have
𝐸5

𝐻1
=


𝜔𝜆
−𝑠+1

Λ
−2 sin (𝜆𝑥 − 𝜔𝑡)

𝐻1

=

𝜔𝜆
−𝑠+1


‖sin (𝜆𝑥 − 𝜔𝑡)‖

𝐻
−1

≲ 𝜆
−𝑠

,

(41)

where we used Lemma 5.

Estimating the 𝐿
2-Norms of 𝐹

1
and 𝐹

2
. Also, we have

𝐹1
𝐿2

=
𝜆
−𝑠 sin (𝜆𝑥 − 𝜔𝑡)

𝐿2
≲ 𝜆
−𝑠

,

𝐹2
𝐿2

=

𝜆
−2𝑠+2 sin (2𝜆𝑥 − 2𝜔𝑡)

𝐿2
≲ 𝜆
−2𝑠+2

.

(42)

Collecting all error estimates together, we have the following
Theorem.

Theorem 6. Let 𝑠 > 5/2. If 𝜔 is bounded, then for 𝜆 ≫ 1 we
have

‖𝐸‖
𝐻
1 , ‖𝐹‖
𝐿
2 ≲ 𝜆
−𝑠

. (43)

4. Difference between Approximate and
Actual Solutions

In this section, we will estimate the difference between the
approximate and actual solutions.

Let (𝑢
𝜔,𝜆

(𝑡, 𝑥), 𝜌
𝜔,𝜆

(𝑡, 𝑥)) be the solution to system (5)
with initial data of the value of the approximate solu-
tion (𝑢

𝜔,𝜆

(𝑡, 𝑥), 𝜌
𝜔,𝜆

(𝑡, 𝑥)) at time zero; that is, (𝑢
𝜔,𝜆

(𝑡, 𝑥),

𝜌
𝜔,𝜆

(𝑡, 𝑥)) satisfies

𝜕
𝑡
𝑢
𝜔,𝜆

+ 𝑢
𝜔,𝜆

𝜕
𝑥
𝑢
𝜔,𝜆

+ 𝜕
𝑥
Λ
−2

(𝑢
2

𝜔,𝜆
+

1

2
(𝜕
𝑥
𝑢
𝜔,𝜆

)
2

+
1

2
𝜌
2

𝜔,𝜆
) = 0,

𝑡 > 0, 𝑥 ∈ S,

𝜕
𝑡
𝜌
𝜔,𝜆

+ 𝑢
𝜔,𝜆

𝜕
𝑥
𝜌
𝜔,𝜆

+ 𝑢
𝜔,𝜆

𝜕𝜌
𝜔,𝜆

= 0, 𝑡 > 0, 𝑥 ∈ S,

𝑢
𝜔,𝜆

(0, 𝑥) = 𝑢
𝜔,𝜆

(0, 𝑥) = 𝜔𝜆
−1

+ 𝜆
−𝑠 cos (𝜆𝑥) , 𝑥 ∈ S,

𝜌
𝜔,𝜆

(0, 𝑥) = 𝜌
𝜔,𝜆

(0, 𝑥) = 𝜔𝜆
−1

+ 𝜆
−𝑠+1 cos (𝜆𝑥) , 𝑥 ∈ S.

(44)

Note that (𝑢
𝜔,𝜆

(0, 𝑥), 𝜌
𝜔,𝜆

(0, 𝑥)) ∈ 𝐻
𝑠

×𝐻
𝑠−1, 𝑠 ≥ 0. Moreover,

we have
𝑢𝜔,𝜆 (0, 𝑥)

𝐻𝑠
≲ |𝜔| 𝜆

−1

+ 1, 𝜆 ≫ 1,

𝜌𝜔,𝜆 (0, 𝑥)
𝐻𝑠−1

≲ |𝜔| 𝜆
−1

+ 1, 𝜆 ≫ 1.

(45)

Therefore, if 𝑠 > 5/2, by using Theorems 1 and 4, we have
that, for any 𝜔 in a bounded set and 𝜆 ≫ 1, problem (44) has
a unique solution 𝑧

𝜔,𝜆
∈ 𝐶([0, 𝑇];𝐻

𝑠

) × 𝐶([0, 𝑇];𝐻
𝑠−1

) with

𝑇 ≳
1

𝑧𝜔,𝜆 (0)
𝐻𝑠×𝐻𝑠−1

≳
1

1 + 𝜆−1
≳ 1. (46)
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To estimate the difference between the approximate and
actual solutions, we let

V = 𝑢
𝜔,𝜆

− 𝑢
𝜔,𝜆

, 𝜎 = 𝜌
𝜔,𝜆

− 𝜌
𝜔,𝜆

. (47)

Then (V, 𝜎) satisfies

V
𝑡
− VV
𝑥
+ 𝑢
𝜔,𝜆V
𝑥
+ V𝑢𝜔,𝜆
𝑥

− 𝜕
𝑥
Λ
−2

[V2 +
1

2
V2
𝑥

+
1

2
𝜎
2

− 2𝑢
𝜔,𝜆V

−𝑢
𝜔,𝜆

𝑥
V
𝑥
− 𝜌
𝜔,𝜆

𝜎] = 𝐸, 𝑡 > 0, 𝑥 ∈ S,

𝜎
𝑡
− V𝜎
𝑥
+ 𝑢
𝜔,𝜆

𝜎
𝑥
+ V𝜌𝜔,𝜆
𝑥

− (𝜎V
𝑥
− 𝑢
𝜔,𝜆

𝜎 − 𝜌
𝜔,𝜆V
𝑥
) = 𝐹, 𝑡 > 0, 𝑥 ∈ S,

V (0, 𝑥) = 𝜎 (0, 𝑥) = 0, 𝑥 ∈ S,

(48)

where 𝐸 and 𝐹 are defined as in Section 3.
Now we prove that the 𝐻

1-norm of difference decays.

Theorem 7. Let 𝑠 > 5/2; then

‖V (𝑡)‖
𝐻
1 ≲ 𝜆
−𝑠

, ‖𝜎 (𝑡)‖
𝐿
2 ≲ 𝜆
−𝑠

, 0 ≤ 𝑡 ≤ 𝑇, 𝜆 ≫ 1.

(49)

Proof. Note that

1

2

𝑑

𝑑𝑡
‖V (𝑡)‖

2

𝐻
1 = ∫

S

(VV
𝑡
+ V
𝑥
V
𝑥𝑡
) 𝑑𝑥, (50)

1

2

𝑑

𝑑𝑡
‖𝜎 (𝑡)‖

2

𝐿
2 = ∫

S

𝜎𝜎
𝑡
𝑑𝑥. (51)

Applying the operator 1 − 𝜕
2

𝑥
= Λ
2 to both sides of the first

equations of system (48), we have

V
𝑡
= Λ
2

𝐸 − Λ
2

(𝑢
𝜔,𝜆V
𝑥
− V𝑢𝜔,𝜆
𝑥

)

− (2𝑢
𝜔,𝜆V + 𝑢

𝜔,𝜆

𝑥
V
𝑥
+ 𝜌
𝜔,𝜆

𝜎)
𝑥

+
1

2
(𝜎
2

)
𝑥

+ 3VV
𝑥
− 2V
𝑥
V
𝑥𝑥

− VV
𝑥𝑥𝑥

+ V
𝑥𝑥𝑡

,

(52)

𝜎
𝑡
= 𝐹 − (𝑢

𝜔,𝜆

𝜎
𝑥
+ V𝜌𝜔,𝜆
𝑥

) − (𝑢
𝜔,𝜆

𝑥
𝜎 + 𝜌
𝜔,𝜆V
𝑥
) + (V𝜎)

𝑥
. (53)

Substituting (52) and (53) into (50) and (51), respectively, we
obtain

1

2

𝑑

𝑑𝑡
‖V (𝑡)‖

2

𝐻
1 = ∫

S

VΛ2𝐸𝑑𝑥 − ∫
S

VΛ2 (𝑢𝜔,𝜆V
𝑥
+ V𝑢𝜔,𝜆
𝑥

) 𝑑𝑥

− ∫
S

V(2𝑢𝜔,𝜆V + 𝑢
𝜔,𝜆

𝑥
V
𝑥
+ 𝜌
𝜔,𝜆

𝜎)
𝑥

𝑑𝑥

+
1

2
∫
S

V(𝜎2)
𝑥

𝑑𝑥

+ ∫
S

(V (3VV
𝑥
− 2V
𝑥
V
𝑥𝑥

− VV
𝑥𝑥𝑥

+ V
𝑥𝑥𝑡

)

+V
𝑥
V
𝑥𝑡
) 𝑑𝑥,

(54)

1

2

𝑑

𝑑𝑡
‖𝜎 (𝑡)‖

2

𝐿
2 = ∫

S

𝜎𝐹𝑑𝑥 − ∫
S

𝜎 (𝑢
𝜔,𝜆

𝜎
𝑥
+ V𝜌𝜔,𝜆
𝑥

) 𝑑𝑥

− ∫
S

𝜎 (𝜌
𝜔,𝜆V
𝑥
+ 𝜎𝑢
𝜔,𝜆

𝑥
) 𝑑𝑥 + ∫

S

𝜎(V𝜎)
𝑥
𝑑𝑥.

(55)

It is direct to calculate that

∫
S

(V (3VV
𝑥
− 2V
𝑥
V
𝑥𝑥

− VV
𝑥𝑥𝑥

+ V
𝑥𝑥𝑡

) + V
𝑥
V
𝑥𝑡
) 𝑑𝑥

= ∫
S

[(V3)
𝑥

− (V2V
𝑥𝑥

)
𝑥

+ (VV
𝑥𝑡
)
𝑥
] 𝑑𝑥 = 0.

(56)

Substituting the above equalities into (54) and adding the
resulting equations, we get

1

2

𝑑

𝑑𝑡
(‖V (𝑡)‖

2

𝐻
1 + ‖𝜎 (𝑡)‖

2

𝐿
2)

= ∫
S

VΛ2𝐸𝑑𝑥 + ∫
S

𝜎𝐹𝑑𝑥

− ∫
S

VΛ2 (𝑢𝜔,𝜆V
𝑥
+ V𝑢𝜔,𝜆
𝑥

) 𝑑𝑥

− ∫
S

𝜎 (𝑢
𝜔,𝜆

𝜎
𝑥
+ V𝜌𝜔,𝜆
𝑥

) 𝑑𝑥

− ∫
S

V(2𝑢𝜔,𝜆V + 𝑢
𝜔,𝜆

𝑥
V
𝑥
+ 𝜌
𝜔,𝜆

𝜎)
𝑥

𝑑𝑥

− ∫
S

𝜎 (𝜌
𝜔,𝜆V
𝑥
+ 𝜎𝑢
𝜔,𝜆

𝑥
) 𝑑𝑥

+ ∫
S

[
1

2
V(𝜎2)

𝑥

+ 𝜎(V𝜎)
𝑥
] 𝑑𝑥

:= 𝐼
1
+ 𝐼
2
+ ⋅ ⋅ ⋅ + 𝐼

7
.

(57)

We first look at the last term 𝐼
7
. Integrating by parts gives

𝐼
7
= ∫

S

[
1

2
V(𝜎2)

𝑥

+ 𝜎(V𝜎)
𝑥
] 𝑑𝑥 = 0. (58)

Estimates of Integrals 𝐼
1
and 𝐼

2
. Integrating by parts and

applying the Cauchy-Schwarz inequality, we have



∫
S

VΛ2𝐸𝑑𝑥



=



∫
S

(V𝐸 − V
𝑥
𝐸
𝑥
) 𝑑𝑥



≤ ‖𝐸‖
𝐻
1‖V (𝑡)‖

𝐻
1 ,



∫
S

𝜎𝐹𝑑𝑥



≤ ‖𝐹‖
𝐿
2‖𝜎 (𝑡)‖

𝐿
2 .

(59)
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Estimates of Integrals 𝐼
3
. Integrating by parts, we get

−𝐼
3
= ∫

S

VΛ2 (𝑢𝜔,𝜆V
𝑥
+ V𝑢𝜔,𝜆
𝑥

) 𝑑𝑥

= ∫
S

V (𝑢
𝜔,𝜆V
𝑥
+ V𝑢𝜔,𝜆
𝑥

) 𝑑𝑥

+ ∫
S

V
𝑥
(𝑢
𝜔,𝜆V
𝑥
)
𝑥

𝑑𝑥 + ∫
S

V
𝑥
(V𝑢𝜔,𝜆
𝑥

)
𝑥

𝑑𝑥,

(60)

and estimate its first part by



∫
S

V (𝑢
𝜔,𝜆V
𝑥
+ V𝑢𝜔,𝜆
𝑥

) 𝑑𝑥



≤ (

𝑢
𝜔,𝜆

(𝑡)
∞

+

𝑢
𝜔,𝜆

𝑥
(𝑡)

∞
) ‖V (𝑡)‖

2

𝐻
1 .

(61)

Its second part can be estimated by



∫
S

V
𝑥
(𝑢
𝜔,𝜆V
𝑥
)
𝑥

𝑑𝑥



=



∫

S

(𝑢
𝜔,𝜆

𝑥
V2
𝑥
+

1

2
𝑢
𝜔,𝜆

(V2
𝑥
)
𝑥

)𝑑𝑥



=
1

2



∫
S

𝑢
𝜔,𝜆

𝑥
V2
𝑥
𝑑𝑥



≤

𝑢
𝜔,𝜆

𝑥

∞
‖V (𝑡)‖

2

𝐻
1 .

(62)

For the last part, integrating by parts, we obtain



∫
S

V
𝑥
(V𝑢𝜔,𝜆
𝑥

)
𝑥

𝑑𝑥



≤



∫

S

𝑢
𝜔,𝜆

𝑥
V2
𝑥
𝑑𝑥



+



∫

S

VV
𝑥
𝑢
𝜔,𝜆

𝑥𝑥
𝑑𝑥



≤ (

𝑢
𝜔,𝜆

𝑥
(𝑡)

∞
+


𝑢
𝜔,𝜆

𝑥𝑥
(𝑡)

∞
) ‖V (𝑡)‖

2

𝐻
1 .

(63)

Estimates of Integrals 𝐼
4
and 𝐼
6
. Integrating by parts, we can

deal with the integral 𝐼
4
:

𝐼4
 =



− ∫
S

𝜎 (𝑢
𝜔,𝜆

𝜎
𝑥
+ V𝜌𝜔,𝜆
𝑥

) 𝑑𝑥



=



∫

S

𝜎
2

2
𝑢
𝜔,𝜆

𝑥
+ V𝜎𝜌𝜔,𝜆
𝑥

𝑑𝑥



≤ (

𝑢
𝜔,𝜆

𝑥
(𝑡)

𝐿∞
+


𝜌
𝜔,𝜆

𝑥
(𝑡)

𝐿∞
)

× (‖𝜎‖
2

𝐿
2 + ‖V (𝑡)‖

2

𝐻
1) .

(64)

Similarly, we can estimate the term 𝐼
6
,

𝐼6
 =



− ∫
S

𝜎 (𝜌
𝜔,𝜆V
𝑥
+ 𝜎𝑢
𝜔,𝜆

𝑥
) 𝑑𝑥



≤ (

𝑢
𝜔,𝜆

𝑥
(𝑡)

𝐿∞
+


𝜌
𝜔,𝜆

(𝑡)
𝐿∞

)

× (‖𝜎‖
2

𝐿
2 + ‖V (𝑡)‖

2

𝐻
1) .

(65)

Estimate of the Integral 𝐼
5
. Integrating by parts, we have

𝐼5
 =



∫
S

V(2𝑢𝜔,𝜆V + 𝑢
𝜔,𝜆

𝑥
V
𝑥
+ 𝜌
𝜔,𝜆

𝜎)
𝑥

𝑑𝑥



=



∫

S

V
𝑥
(2𝑢
𝜔,𝜆V + 𝑢

𝜔,𝜆

𝑥
V
𝑥
+ 𝜌
𝜔,𝜆

𝜎) 𝑑𝑥



≲ (

𝑢
𝜔,𝜆

(𝑡)
∞

+

𝑢
𝜔,𝜆

𝑥
(𝑡)

∞
+


𝜌
𝜔,𝜆

(𝑡)
∞

)

× (‖V (𝑡)‖
2

𝐻
1 + ‖𝜎 (𝑡)‖

2

𝐿
2) .

(66)

Combining the estimations of 𝐼
1
–𝐼
7
, we have that

1

2

𝑑

𝑑𝑡
(‖V (𝑡)‖

2

𝐻
1 + ‖𝜎 (𝑡)‖

2

𝐿
2)

≲ (‖𝐸‖
𝐻
1 + ‖𝐹‖

𝐻
1) (‖V (𝑡)‖

𝐻
1 + ‖𝜎 (𝑡)‖

𝐿
2)

+ (

𝑢
𝜔,𝜆

(𝑡)
∞

+

𝑢
𝜔,𝜆

𝑥
(𝑡)

∞
+


𝑢
𝜔,𝜆

𝑥𝑥
(𝑡)

∞

+

𝜌
𝜔,𝜆

(𝑡)
∞

+

𝜌
𝜔,𝜆

𝑥
(𝑡)

∞
)

× (‖V (𝑡)‖
2

𝐻
1 + ‖𝜎 (𝑡)‖

2

𝐻
1) .

(67)

Note that

𝑢
𝜔,𝜆

= 𝜔𝜆
−1

+ 𝜆
−𝑠 cos (𝜆𝑥 − 𝜔𝑡) ,

𝜌
𝜔,𝜆

= 𝜔𝜆
−1

+ 𝜆
−𝑠 cos (𝜆𝑥 − 𝜔𝑡) ;

(68)

we have 𝜕
𝑥
𝑢
𝜔,𝜆

= −𝜆
−𝑠+1 sin(𝜆𝑥 − 𝜔𝑡). Furthermore, we have

𝑢
𝜔,𝜆

𝐿∞
, ≲ 𝜆
−1

+ 𝜆
−𝑠

,


𝜕
𝑥
𝑢
𝜔,𝜆

𝐿∞
,

𝜕𝜌
𝜔,𝜆

𝐿∞
≲ 𝜆
−𝑠+1

,


𝑢
𝜔,𝜆

𝑥𝑥

𝐿∞
≲ 𝜆
−𝑠+2

.

(69)

Submitting (69) into (67) and usingTheorem 6, we obtain

1

2

𝑑

𝑑𝑡
‖𝑧 (𝑡)‖

2

𝐻
1
×𝐿
2

≲ 𝜆
−𝑠

‖𝑧 (𝑡)‖
𝐻
1
×𝐿
2 + 𝜆
−𝑠+2

‖𝑧 (𝑡)‖
2

𝐻
1
×𝐿
2 ,

(70)

which implies that

‖𝑧 (𝑡)‖
𝐻
1
×𝐿
2 ≲ 𝜆
−𝑠

. (71)

Noting that

‖V (𝑡)‖
𝐻
1 ,
𝜑 (𝑡)

𝐿2
≤ ‖𝑧 (𝑡)‖

𝐻
1
×𝐿
2 , (72)

combining the above inequality, we complete the proof of
Theorem 7.

5. Nonuniform Dependence

In this section, we will prove nonuniform dependence for
system (5) by taking advantage of the information provided
byTheorems 1–4, 6, and 7. Our main result is the following.
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Theorem 8. If 𝑠 > 5/2, then the data-to-solution 𝑧(0) → 𝑧(𝑡)

for system (5) is not uniformly continuous from any bounded
subset of 𝐻

𝑠

× 𝐻
𝑠−1 into 𝐶([−𝑇, 𝑇];𝐻

𝑠

) × 𝐶([−𝑇, 𝑇];𝐻
𝑠−1

),
where 𝑧(0) = (𝑢

0
(𝑥), 𝜌
0
(𝑥)) and 𝑧(𝑡) = (𝑢(𝑡, 𝑥), 𝜌(𝑡, 𝑥)). More

precisely, there exist two sequences of solutions (𝑢
𝜆
(𝑡), 𝜌
𝜆
(𝑡))

and (�̃�
𝜆
(𝑡), 𝜌
𝜆
(𝑡)) to the differential equations of (5) in

𝐶([−𝑇, 𝑇];𝐻
𝑠

) × 𝐶([−𝑇, 𝑇];𝐻
𝑠−1

) such that
𝑢𝜆 (𝑡)

𝐻𝑠
+

�̃�𝜆 (𝑡)
𝐻𝑠

+
𝜌𝜆 (𝑡)

𝐻𝑠−1
+

𝜌𝜆 (𝑡)
𝐻𝑠−1

≲ 1,

lim
𝜆→∞

𝑢𝜆 (0) − �̃�
𝜆
(0)

𝐻𝑠
= lim
𝜆→∞

𝜌𝜆 (0) − 𝜌
𝜆
(0)

𝐻𝑠−1
= 0,

(73)

lim inf
𝜆→∞

(
𝑢𝜆 (𝑡) − �̃�

𝜆
(𝑡)

𝐻𝑠
+

𝜌𝜆 (𝑡) − 𝜌
𝜆
(𝑡)

𝐻𝑠−1
) ≳ sin 𝑡,

|𝑡| < 𝑇 ≤ 1.

(74)

Proof. Let (𝑢
𝜆
(𝑡), 𝜌
𝜆
(𝑡)) = (𝑢

1,𝜆
(𝑡, 𝑥), 𝜌

1,𝜆
(𝑡, 𝑥)) and (�̃�

𝜆
(𝑡),

𝜌
𝜆
(𝑡)) = (𝑢

−1,𝜆
(𝑡, 𝑥), 𝜌

−1,𝜆
(𝑡, 𝑥)), where (𝑢

1,𝜆
(𝑡, 𝑥), 𝜌

1,𝜆
(𝑡, 𝑥))

and (𝑢
−1,𝜆

(𝑡, 𝑥), 𝜌
−1,𝜆

(𝑡, 𝑥)) are the unique solution to Cauchy
problem (44) with initial data (𝑢

1,𝜆

(0, 𝑥), 𝜌
1,𝜆

(0, 𝑥)) and
(𝑢
−1,𝜆

(0, 𝑥), 𝜌
−1,𝜆

(0, 𝑥)), respectively.
It follows from Theorem 1 that these solutions belong in

𝐶([0, 𝑇];𝐻
𝑠

) × 𝐶([0, 𝑇];𝐻
𝑠−1

). By (48) and the assumptions
after Theorem 1, we see that 𝑇 is independent of 𝜆 ≫ 1.
Letting 𝑘 = [𝑠] + 2 and using estimate (34), we have

𝑢±1,𝜆 (𝑡)
𝐻𝑘

,
𝜌±1,𝜆 (𝑡)

𝐻𝑘−1
≲


𝑧
±1,𝜆

(0)
𝐻𝑘×𝐻𝑘−1

, (75)

where 𝑧
±1,𝜆

(0) = (𝑢
±1,𝜆

(0), 𝜌
±1,𝜆

(0)) and ‖𝑧
±1,𝜆

(0)‖
2

𝐻
𝑘
×𝐻
𝑘−1 =

‖𝑢
±1,𝜆

(0)‖
2

𝐻
𝑘 + ‖𝜌

±1,𝜆

(0)‖
2

𝐻
𝑘−1 . If 𝜆 is large enough, then from

Lemma 5 we have

𝑢
±1,𝜆

(𝑡)
𝐻𝑘

≤
𝑢±1,𝜆 (𝑡)

𝐻𝑘

+ 𝜆
−(1/2)𝛿−𝑠


𝜙 (

𝑥

𝜆𝛿
) cos (𝜆𝑥 − 𝜔𝑡)

𝐻𝑘

≲ 𝜆
−1+(1/2)𝛿

+ 𝜆
𝑘−𝑠𝜙

2
,

(76)

which gives

𝑢
±1,𝜆

(𝑡)
𝐻𝑘

≲ 𝜆
𝑘−𝑠

. (77)

Combining (75) with (77), we obtain
𝑢±1,𝜆 (𝑡)

𝐻𝑘
≲ 𝜆
𝑘−𝑠

, 𝜆 ≫ 1. (78)

Estimate (77) together with (78) yields

𝑢
±1,𝜆

(𝑡) − 𝑢
±1,𝜆

(𝑡)
𝐻𝑘

≲ 𝜆
𝑘−𝑠

, 𝜆 ≫ 1. (79)

Theorem 7 implies that

𝑢
±1,𝜆

(𝑡) − 𝑢
±1,𝜆

(𝑡)
𝐻1

≲ 𝜆
−𝑠

, 𝜆 ≫ 1. (80)

Now, applying the interpolation inequality

𝜑
𝐻𝑠

≤
𝜑



(𝑠
2
−𝑠)/(𝑠

2
−𝑠
1
)

𝐻
𝑠
1

𝜑


(𝑠−𝑠
1
)/(𝑠
2
−𝑠
1
)

𝐻
𝑠
2

(81)

with 𝑠
1
= 1 and 𝑠

2
= [𝑠] + 2 = 𝑘 and using estimates (79) and

(80), we get


𝑢
±1,𝜆

(𝑡) − 𝑢
±1,𝜆

(𝑡)
𝐻𝑠

≤

𝑢
±1,𝜆

(𝑡) − 𝑢
±1,𝜆

(𝑡)


(𝑘−𝑠)/(𝑘−1)

𝐻
1

×

𝑢
±1,𝜆

(𝑡) − 𝑢
±1,𝜆

(𝑡)


(𝑠−1)/(𝑘−1)

𝐻
𝑘

≲ 𝜆
−𝑠(𝑘−𝑠)/(𝑘−1)

𝜆
(𝑘−𝑠)(𝑠−1)/(𝑘−1)

≲ 𝜆
−(𝑘−𝑠)/(𝑘−1)

, 𝜆 ≫ 1.

(82)

Hence

𝑢
±1,𝜆

(𝑡) − 𝑢
±1,𝜆

(𝑡)
𝐻𝑠

≲ 𝜆
−𝜀
𝑠 , 𝜆 ≫ 1, (83)

where 𝜀
𝑠
= 1/(𝑠 + 2).

Next, we prove (73) and (74). From (44), we have

𝑢1,𝜆 (0) − 𝑢
−1,𝜆

(0)
𝐻𝑠

=

2𝜆
−1

𝐻𝑠

≊ 𝜆
−1

→ 0 as 𝜆 → ∞,

𝜌1,𝜆 (0) − 𝜌
−1,𝜆

(0)
𝐻𝑠−1

=

2𝜆
−1

𝐻𝑠−1

≊ 𝜆
−1

→ 0 as 𝜆 → ∞,

(84)

which implies that (73) holds.
Now, we prove (74). Obviously, we have

lim inf
𝜆→∞

(
𝑢𝜆 (𝑡) − �̃�

𝜆
(𝑡)

𝐻𝑠
+

𝜌𝜆 (𝑡) − 𝜌
𝜆
(𝑡)

𝐻𝑠−1
)

≥ lim inf
𝜆→∞

𝑢𝜆 (𝑡) − �̃�
𝜆
(𝑡)

𝐻𝑠
.

(85)

Thus we only prove that

lim inf
𝜆→∞

𝑢𝜆 (𝑡) − �̃�
𝜆
(𝑡)

𝐻𝑠
≳ sin 𝑡, |𝑡| < 𝑇 ≤ 1. (86)

It is easy to see that

𝑢1,𝜆 (𝑡) − 𝑢
−1,𝜆

(𝑡)
𝐻𝑠

≥

𝑢
1,𝜆

(𝑡) − 𝑢
−1,𝜆

(𝑡)
𝐻𝑠

−

𝑢
1,𝜆

(𝑡) − 𝑢
1,𝜆

(𝑡)
𝐻𝑠

−

𝑢
−1,𝜆

(𝑡) − 𝑢
−1,𝜆

(𝑡)
𝐻𝑠

.

(87)

It follows from (77) that

𝑢1,𝜆 (𝑡) − 𝑢
−1,𝜆

(𝑡)
𝐻𝑠

≥

𝑢
1,𝜆

(𝑡) − 𝑢
−1,𝜆

(𝑡)
𝐻𝑠

− 𝑐𝜆
−𝜀
𝑠 ,

𝜆 ≫ 1,

(88)

which implies that

lim inf
𝜆→∞

𝑢1,𝜆 (𝑡) − 𝑢
−1,𝜆

(𝑡)
𝐻𝑠

≥ lim inf
𝜆→∞


𝑢
1,𝜆

(𝑡) − 𝑢
−1,𝜆

(𝑡)
𝐻𝑠

.

(89)
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Using the identity

cos𝛼 − cos𝛽 = −2 sin
𝛼 + 𝛽

2
sin

𝛼 − 𝛽

2
(90)

gives

𝑢
1,𝜆

(𝑡) − 𝑢
−1,𝜆

(𝑡) = 2𝜆
−1

+ 2𝜆
−𝑠 sin (𝜆𝑥) sin 𝑡. (91)

Thus,

𝑢
1,𝜆

(𝑡) − 𝑢
−1,𝜆

(𝑡)
𝐻𝑠

≥ 2𝜆
−𝑠

‖sin 𝜆𝑥‖
𝐻
𝑠 |sin 𝑡| − 2𝜆

−1

‖1‖
𝐻
𝑠

≳ 𝜆
−𝑠

‖sin 𝜆𝑥‖
𝐻
𝑠 |sin 𝑡| − 𝜆

−1

, 𝜆 ≫ 1.

(92)

Letting 𝜆 → ∞ in the above inequality, we have

lim inf
𝜆→∞


𝑢
1,𝜆

(𝑡) − 𝑢
−1,𝜆

(𝑡)
𝐻𝑠

≳ |sin 𝑡| . (93)

Summing inequalities (89) and (93) up, it yields inequality
(74). This completes the proof of this Theorem.
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